CN104156550A - Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system - Google Patents
Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system Download PDFInfo
- Publication number
- CN104156550A CN104156550A CN201410446586.4A CN201410446586A CN104156550A CN 104156550 A CN104156550 A CN 104156550A CN 201410446586 A CN201410446586 A CN 201410446586A CN 104156550 A CN104156550 A CN 104156550A
- Authority
- CN
- China
- Prior art keywords
- leaf spring
- suspension system
- vehicle
- suspension
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vehicle Body Suspensions (AREA)
Abstract
Description
技术领域technical field
本发明涉及车辆钢板弹簧悬架系统,特别是车辆钢板弹簧悬架系统阻尼比的分析计算方法。The invention relates to a vehicle leaf spring suspension system, in particular to an analysis and calculation method for the damping ratio of the vehicle leaf spring suspension system.
背景技术Background technique
很多非承载式车身的硬派越野车、卡车及中大型货车上都采用钢板弹簧悬架系统,其悬架系统阻尼比大小对车辆的行驶平顺性、安全性以及乘坐舒适性具有重要的影响。尽管很多专家已对钢板弹簧悬架系统阻尼比进行了大量研究,然而对于钢板弹簧悬架系统阻尼比的计算却一直没有给出简便、准确、可靠的计算方法,大都是采用有限元分析计算、仿真的方法对钢板弹簧悬架系统阻尼比进行计算,然后利用反复试验和修改的方法,最终得到某车辆钢板弹簧悬架系统的阻尼比。随着汽车行业的快速发展,目前车辆钢板弹簧悬架系统阻尼比的计算方法,不能满足钢板弹簧悬架发展及平顺性、安全性的设计要求。因此,必须建立一种简便、准确、可靠的车辆钢板弹簧悬架系统阻尼比的分析计算方法,即根据悬架钢板弹簧加载和卸载下的变形试验数据,通过对试验数据的分析和处理,得到车辆钢板弹簧悬架系统的阻尼比,同时降低设计及试验费用,并且加快车辆钢板弹簧悬架系统阻尼比的计算速度。Leaf spring suspension systems are used on many non-load-bearing hard-core off-road vehicles, trucks and medium and large trucks. The damping ratio of the suspension system has an important impact on the ride comfort, safety and ride comfort of the vehicle. Although many experts have done a lot of research on the damping ratio of the leaf spring suspension system, there is no simple, accurate and reliable calculation method for the calculation of the damping ratio of the leaf spring suspension system, and most of them use finite element analysis. The simulation method calculates the damping ratio of the leaf spring suspension system, and then uses the method of trial and error and modification to finally obtain the damping ratio of the leaf spring suspension system of a certain vehicle. With the rapid development of the automobile industry, the current calculation method of the damping ratio of the vehicle leaf spring suspension system cannot meet the design requirements of the development of the leaf spring suspension and the ride comfort and safety. Therefore, it is necessary to establish a simple, accurate and reliable analysis and calculation method for the damping ratio of the vehicle leaf spring suspension system, that is, according to the deformation test data of the suspension leaf spring under loading and unloading, through the analysis and processing of the test data, the obtained The damping ratio of the vehicle leaf spring suspension system, while reducing design and test costs, and speeding up the calculation of the damping ratio of the vehicle leaf spring suspension system.
发明内容Contents of the invention
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种简便、准确、可靠的车辆钢板弹簧悬架系统阻尼比的分析计算方法,其设计流程如图1所示。Aiming at the above-mentioned defects in the prior art, the technical problem to be solved by the present invention is to provide a simple, accurate and reliable method for analyzing and calculating the damping ratio of the vehicle leaf spring suspension system, the design process of which is shown in Figure 1.
为了解决上述技术问题,本发明所提供的车辆钢板弹簧悬架系统阻尼比的分析计算方法,其技术方案实施步骤如下:In order to solve the above-mentioned technical problems, the method for analyzing and calculating the damping ratio of the vehicle leaf spring suspension system provided by the present invention, the implementation steps of the technical solution are as follows:
(1)悬架钢板弹簧加载和卸载变形试验:(1) Loading and unloading deformation test of suspension leaf spring:
利用钢板弹簧试验机,根据在额定载荷下单轮钢板弹簧悬架的簧上质量m2及所承受的最大载荷Fmax=m2g,对悬架钢板弹簧进行逐步加载和卸载试验,同时对相应载荷的变形量进行测试,试验所测得的载荷数组及变形数组,分别为:Using the leaf spring testing machine, according to the sprung mass m 2 of the single-wheel leaf spring suspension under the rated load and the maximum load F max = m 2 g, the suspension leaf spring is gradually loaded and unloaded. The deformation of the corresponding load is tested, and the load array and deformation array measured by the test are:
F={F(i)},X={x(i)},其中i=1,2,3,…,n;F={F(i)}, X={x(i)}, where i=1, 2, 3,..., n;
其中,n为一个周期循环试验中所采集的载荷数据或位移数据的个数;Among them, n is the number of load data or displacement data collected in a cycle test;
(2)悬架钢板弹簧刚度K的分析计算:(2) Analysis and calculation of suspension leaf spring stiffness K:
根据步骤(1)中所得到的载荷数组F={F(i)}及变形数组X={x(i)},分别对加载试验过程和卸载试验过程中得到的数据进行曲线拟合分析,得到悬架钢板弹簧的刚度,具体步骤如下:According to the load array F={F(i)} and deformation array X={x(i)} obtained in the step (1), the data obtained in the loading test process and the unloading test process are respectively subjected to curve fitting analysis, To obtain the stiffness of the suspension leaf spring, the specific steps are as follows:
A步骤:根据步骤(1)中加载试验过程所得到的载荷数据和位移数据,拟合得到钢板弹簧加载过程的直线斜率K1;A step: according to the load data and displacement data obtained in the loading test process in step (1), the straight line slope K 1 of the leaf spring loading process is obtained by fitting;
B步骤:根据步骤(1)中卸载试验过程所得到的载荷数据和位移数据,拟合得到钢板弹簧卸载过程的直线斜率K2;Step B: According to the load data and the displacement data obtained in the unloading test process in the step (1), the straight line slope K 2 obtained by fitting the unloading process of the leaf spring;
C步骤:根据A步骤得到的K1,及B步骤得到的K2,对悬架钢板弹簧刚度K进行分析计算,即:Step C: According to K 1 obtained in step A and K 2 obtained in step B, analyze and calculate the stiffness K of the suspension leaf spring, namely:
(3)钢板弹簧加载和卸载一个循环过程中所消耗功W的计算:(3) Calculation of the work W consumed during a cycle of loading and unloading of the leaf spring:
根据步骤(1)中试验所得到的载荷数组F={F(i)}和变形数组X={x(i)},其中i=1,2,3,…,n,对钢板弹簧加载和卸载一个周期循环试验中所消耗的功W进行计算,即:According to the load array F={F(i)} and the deformation array X={x(i)} obtained by the test in step (1), wherein i=1, 2, 3,..., n, the leaf spring is loaded and The work W consumed in unloading a cycle test is calculated, that is:
(4)钢板弹簧等效阻尼系数Cd的计算:(4) Calculation of leaf spring equivalent damping coefficient C d :
根据车辆参数,步骤(2)中得到的K,及步骤(3)中分析计算得到的W,对钢板弹簧的等效阻尼系数Cd进行计算,具体步骤如下:According to the vehicle parameters, the K obtained in step (2), and the W obtained by analysis and calculation in step (3), the equivalent damping coefficient C d of the leaf spring is calculated, and the specific steps are as follows:
I步骤:根据车辆单轮悬架的簧上质量m2,及步骤(2)中得到的K,确定钢板弹簧悬架系统的固有频率f0,即:Step I: According to the sprung mass m 2 of the single-wheel suspension of the vehicle and K obtained in step (2), determine the natural frequency f 0 of the leaf spring suspension system, namely:
II步骤:根据车辆悬架钢板弹簧正常工作状态下的最大动挠度fd,确定钢板弹簧的振动位移幅值A,即:Step II: Determine the vibration displacement amplitude A of the leaf spring according to the maximum dynamic deflection f d of the leaf spring of the vehicle suspension under normal working conditions, namely:
A=fd;A = f d ;
III步骤:根据II步骤中的振动位移幅值A,及I步骤中所确定的钢板弹簧悬架系统的固有频率f0,确定钢板弹簧的最大振动速度V,即:Step III: According to the vibration displacement amplitude A in step II and the natural frequency f 0 of the leaf spring suspension system determined in step I, determine the maximum vibration velocity V of the leaf spring, namely:
V=2πf0A;V = 2πf 0 A;
IV步骤:根据III步骤中所确定的V,I步骤中确定的钢板弹簧悬架系统的固有频率f0,及步骤(3)中计算得到的W,确定钢板弹簧的等效阻尼系数Cd,即:Step IV: According to the V determined in Step III, the natural frequency f 0 of the leaf spring suspension system determined in Step I, and the W calculated in Step (3), determine the equivalent damping coefficient C d of the leaf spring, Right now:
(5)车辆钢板弹簧悬架系统阻尼比ξ0的计算:(5) Calculation of the damping ratio ξ0 of the vehicle leaf spring suspension system:
根据车辆单轮悬架的簧上质量m2,步骤(2)中得到的K,及步骤(4)中所确定的钢板弹簧的等效阻尼系数Cd,对车辆钢板弹簧悬架系统的阻尼比ξ0进行计算,即:According to the sprung mass m 2 of the single-wheel suspension of the vehicle, K obtained in step (2), and the equivalent damping coefficient C d of the leaf spring determined in step (4), the damping of the leaf spring suspension system of the vehicle than ξ 0 for calculation, namely:
本发明比现有技术具有的优点:The present invention has the advantage over prior art:
先前对于车辆钢板弹簧悬架系统阻尼比的计算一直没有给出简便、准确、可靠的计算方法,大都是采用有限元分析计算、仿真的方法对车辆钢板弹簧悬架系统阻尼比进行计算,然后利用反复试验和修改的方法,最终得到某车辆钢板弹簧悬架系统的阻尼比。本发明所建立的车辆钢板弹簧悬架系统阻尼比的分析计算方法,根据悬架钢板弹簧加载和卸载变形试验所测得的载荷数组和变形数组,通过对试验数据的分析和处理,对钢板弹簧的等效阻尼系数进行分析计算,得到车辆钢板弹簧悬架系统的阻尼比,并且可降低设计及试验费用,加快车辆钢板弹簧悬架系统阻尼比的计算速度,为车辆钢板弹簧悬架系统减振器最佳阻尼匹配的设计提供了可靠的技术基础。Previously, no simple, accurate and reliable calculation method has been given for the calculation of the damping ratio of the vehicle leaf spring suspension system. Most of them use finite element analysis and simulation methods to calculate the damping ratio of the vehicle leaf spring suspension system, and then use The damping ratio of the leaf spring suspension system of a certain vehicle is finally obtained through trial and error and modification. The analysis and calculation method of the damping ratio of the vehicle leaf spring suspension system established by the present invention, according to the load array and deformation array measured by the suspension leaf spring loading and unloading deformation test, through the analysis and processing of the test data, the leaf spring The equivalent damping coefficient is analyzed and calculated to obtain the damping ratio of the vehicle leaf spring suspension system, which can reduce design and test costs, speed up the calculation of the damping ratio of the vehicle leaf spring suspension system, and reduce vibration for the vehicle leaf spring suspension system The design of the optimal damping matching of the damper provides a reliable technical basis.
为了更好地理解本发明下面结合附图作进一步的说明。In order to better understand the present invention, the following will be further described in conjunction with the accompanying drawings.
图1是车辆钢板弹簧悬架系统阻尼比的分析计算方法的设计流程图;Fig. 1 is a design flow chart of the analysis and calculation method for the damping ratio of the vehicle leaf spring suspension system;
图2是实施例一悬架钢板弹簧加载和卸载变形试验的回归线;Fig. 2 is the regression line of embodiment one suspension leaf spring loading and unloading deformation test;
图3是实施例二悬架钢板弹簧加载和卸载变形试验的回归线。Fig. 3 is the regression line of the loading and unloading deformation tests of the suspension leaf spring of the second embodiment.
具体实施方案specific implementation plan
下面通过实施例对本发明所提供的车辆钢板弹簧悬架系统阻尼比的分析计算方法作进一步详细说明,设计流程如图1所示。The method for analyzing and calculating the damping ratio of the vehicle leaf spring suspension system provided by the present invention will be further described in detail through examples below, and the design process is shown in FIG. 1 .
实施例一:某卡车钢板弹簧悬架系统,前轴单轮悬架的簧上质量m2=35000kg,悬架钢板弹簧正常工作状态下的最大动挠度fd=0.05m。Embodiment 1: A truck leaf spring suspension system, the sprung mass m 2 of the front axle single wheel suspension is 35000kg, and the maximum dynamic deflection f d of the suspension leaf spring under normal working condition is 0.05m.
本发明实例所提供的车辆钢板弹簧悬架系统阻尼比的分析计算方法,其具体步骤如下:The analytical calculation method of the damping ratio of the vehicle leaf spring suspension system provided by the example of the present invention, its concrete steps are as follows:
(1)悬架钢板弹簧加载和卸载变形试验:(1) Loading and unloading deformation test of suspension leaf spring:
利用钢板弹簧试验机,根据在额定载荷下单轮钢板弹簧悬架的簧上质量m2及所承受的最大载荷Fmax=m2g,对悬架钢板弹簧进行逐步加载和卸载试验,同时对相应载荷的变形量进行测试,试验所测得的载荷数组F={F(i)}和位移数组X={x(i)},分别为:Using the leaf spring testing machine, according to the sprung mass m 2 of the single-wheel leaf spring suspension under the rated load and the maximum load F max = m 2 g, the suspension leaf spring is gradually loaded and unloaded. The deformation of the corresponding load is tested, and the load array F={F(i)} and displacement array X={x(i)} measured by the test are respectively:
F={F(i)}=[0.64 0.17 2.63 4.03 5.28 6.78 7.9 8.92 10.2 11.25 12.3 13.57 14.6 15.59 16.84 17.8518.86 20.09 21.08 22.11 23.38 24.39 25.4 26.64 27.72 28.79 30.02 31.03 32.11 33.46 34.47 35.5536.8 37.85 38.99 40.09 41.45 42.44 43.79 44.91 45.99 47.28 48.38 49.48 50.88 51.93 53.05 54.3455.42 56.54 57.94 58.95 60.07 61.54 62.66 63.78 65.12 66.19 67.4 68.51 69.83 70.97 72.13 73.5474.55 75.76 77.12 78.28 79.4 80.78 81.96 83.08 84.57 85.58 86.72 88.24 89.38 90.6 91.86 93.0894.31 95.72 96.9 97.97 99.47 100.67 101.79 103.29 104.4 105.54 107.03 108.22 109.4 110.83111.99 113.22 114.71 115.9 117.08 118.53 119.71 120.92 122.46 123.62 124.8 126.32 127.54128.71 130.27 131.34 132.63 134.19 135.4 136.56 138.07 139.32 140.55 142.07 143.21 144.76 146147.25 148.72 149.94 151.24 152.51 154.09 155.34 156.43 158.06 159.29 160.58 162.1 163.32164.49 166.13 167.38 168.65 170.12 171.37 172.69 174.27 175.52 176.68 178.26 179.56 180.79182.37 183.59 184.82 186.44 187.7 189.19 190.48 191.82 193.47 194.74 195.83 197.61 198.84200.11 201.61 202.9 204.25 205.89 207.12 208.33 209.93 211.23 212.51 214.13 215.29 216.68218.33 219.67 221.01 222.43 223.8 225.2 226.8 228.04 229.31 231 232.23 233.57 235.15 236.4237.83 239.48 240.88 242.01 243.74 245.06 246.42 248.04 249.28 250.66 252.35 253.6 255.03256.7 257.87 259.25 260.98 262.39 263.71 265.24 266.65 268.01 269.7 270.94 272.28 274.03275.31 276.69 278.34 279.57 281.02 282.75 284.16 285.34 287.1 288.49 289.89 291.58 292.81294.24 296 297.34 298.68 299.89 279.17 264.63 255.32 250.26 247.08 244.44 241.78 239.66237.85 236.23 234.85 232.62 231.26 230.23 228.47 228.3 227.07 224.76 223.23 221.91 220.66219.29 218.15 217.07 215.65 215.19 213.12 211.85 210.64 209.47 208.13 207.17 205.47 204.36203.26 202.14 200.69 199.52 198.27 197.22 196.45 194.36 193.55 192.67 191.01 190.33 189.51188.37 186.14 184.82 183.53 182.45 180.83 180.59 178.5 177.19 176.51 175.1 174.16 172.17170.94 170.06 168.35 166.94 165.63 164.55 163.08 161.94 161.13 160.03 158.39 156.92 155.93154.9 153.54 152.55 151.46 150.03 148.74 147.57 146.57 145.2 144.06 143.12 141.91 140.6139.22 138.19 137.22 136.69 134.98 134.06 132.44 131.34 130.26 128.93 128.09 126.87 125.59124.69 123.62 122.63 121.34 120.4 119.43 117.85 117.39 115.99 114.62 113.44 112.13 111.31110.15 108.9 107.96 107.08 106.09 104.65 103.79 102.67 101.42 100.7 99.67 98.5 96.88 95.9395.69 93.98 92.73 91.74 90.74 89.66 88.61 87.4 86.63 85.54 84.24 83.47 82.56 81.68 80.32 79.4878.17 77.09 76.46 75.16 74.04 73.14 71.85 71.1 70.14 68.85 68.12 67.33 65.97 65.09 64.22 63.0161.96 61.36 60.05 59.02 58.12 56.93 56.17 55.2 54.04 53.11 52.39 51.25 50.35 49.48 48.35 47.3346.47 45.48 44.5 43.66 42.48 41.71 40.86 39.69 38.93 38.03 36.88 36.01 35.31 34.14 33.27 32.4631.45 30.57 29.78 28.77 27.94 27.06 26.31 25.29 24.45 23.46 22.7 21.88 20.9 20.09 19.3 18.3817.59 16.86 15.88 15.18 14.5 13.53 12.83 12.02 11.14 10.4 9.74 9.03 8.13 7.43 6.73 5.88 5.22 4.543.66 2.98 2.17 1.51 0.85];F={F(i)}=[0.64 0.17 2.63 4.03 5.28 6.78 7.9 8.92 10.2 11.25 12.3 13.57 14.6 15.59 16.84 17.8518.86 20.09 21.08 22.11 23.38 24.39 25.4 26.64 27.72 28.79 30.02 31.03 32.11 33.46 34.47 35.5536.8 37.85 38.99 40.09 41.45 42.44 43.79 44.91 45.99 47.28 48.38 49.48 50.88 51.93 53.05 54.3455.42 56.54 57.94 58.95 60.07 61.54 62.66 63.78 65.12 66.19 67.4 68.51 69.83 70.97 72.13 73.5474.55 75.76 77.12 78.28 79.4 80.78 81.96 83.08 84.57 85.58 86.72 88.24 89.38 90.6 91.86 93.0894.31 95.72 96.9 97.97 99.47 100.67 101.79 103.29 104.4 105.54 107.03 108.22 109.4 110.83111.99 113.22 114.71 115.9 117.08 118.53 119.71 120.92 122.46 123.62 124.8 126.32 127.54128.71 130.27 131.34 132.63 134.19 135.4 136.56 138.07 139.32 140.55 142.07 143.21 144.76 146147.25 148.72 149.94 151.24 152.51 154.09 155.34 156.43 158.06 159.29 160.58 162.1 163.32164 .49 166.13 167.38 168.65 170.12 171.37 172.69 174.27 175.52 176.68 178.26 179.56 180.79182.37 183.59 184.82 186.44 187.7 189.19 190.48 191.82 193.47 194.74 195.83 197.61 198.84200.11 201.61 202.9 204.25 205.89 207.12 208.33 209.93 211.23 212.51 214.13 215.29 216.68218.33 219.67 221.01 222.43 223.8 225.2 226.8 228.04 229.31 231 232.23 233.57 235.15 236.4237.83 239.48 240.88 242.01 243.74 245.06 246.42 248.04 249.28 250.66 252.35 253.6 255.03256.7 257.87 259.25 260.98 262.39 263.71 265.24 266.65 268.01 269.7 270.94 272.28 274.03275.31 276.69 278.34 279.57 281.02 282.75 284.16 285.34 287.1 288.49 289.89 291.58 292.81294.24 296 297.34 298.68 299.89 279.17 264.63 255.32 250.26 247.08 244.44 241.78 239.66237.85 236.23 234.85 232.62 231.26 230.23 228.47 228.3 227.07 224.76 223.23 221.91 220.66219 .29 218.15 217.07 215.65 215.19 213.12 211.85 210.64 209.47 208.13 207.17 205.47 204.36203.26 202.14 200.69 199.52 198.27 197.22 196.45 194.36 193.55 192.67 191.01 190.33 189.51188.37 186.14 184.82 183.53 182.45 180.83 180.59 178.5 177.19 176.51 175.1 174.16 172.17170.94 170.06 168.35 166.94 165.63 164.55 163.08 161.94 161.13 160.03 158.39 156.92 155.93 154.9 153.54 15 2.55 151.46 150.03 148.74 147.57 146.57 145.2 144.06 143.12 141.91 140.6139.22 138.19 137.22 136.69 134.98 134.06 132.44 131.34 130.26 128.93 128.09 126.87 125.59124.69 123.62 122.63 121.34 120.4 119.43 117.85 117.39 115.99 114.62 113.44 112.13 111.31110.15 108.9 107.96 107.08 106.09 104.65 103.79 102.67 101.42 100.7 99.67 98.5 96.88 95.9395.69 93.98 92.73 91.74 90.74 89.66 88.61 87.4 86.63 85.54 84.24 83.47 82.56 81.68 80.32 79.4878.17 77.09 76.46 75.16 74.04 73.14 71.85 71.1 70.14 68.85 68.12 67.33 65.97 65.09 64.22 63.0161.96 61.36 60.05 59.02 58.12 56.93 56.17 55.2 54.04 53.11 52.39 51.25 50.35 49.48 48.35 47.3346.47 45.48 44.5 43.66 42.48 41.71 40.86 39.69 38.93 38.03 36.88 36.01 35.31 34.14 33.27 32.4631.45 30.57 29.78 28.77 27.94 27.06 26.31 25.29 24.45 23.46 22.7 21.88 20.9 20.09 19.3 18.3817.59 16.86 15.88 15.18 14.5 13.53 12.83 12.02 11.14 10.4 9.74 9.03 8.13 7.43 6.73 5.88 5.22 4.54 3.66 2.98 2.17 1.51 0.85];
X={x(i)}=[0.01 -0.03 0.37 0.7 1.05 1.51 1.86 2.19 2.6 2.95 3.29 3.71 4.05 4.38 4.8 5.13 5.445.84 6.17 6.49 6.89 7.2 7.51 7.9 8.23 8.56 8.94 9.24 9.56 9.97 10.28 10.6 10.97 11.28 11.6 11.9212.3 12.6 12.98 13.3 13.61 13.98 14.29 14.6 15 15.31 15.62 15.99 16.3 16.62 17 17.29 17.61 18.0118.32 18.63 19.01 19.32 19.64 19.95 20.32 20.63 20.95 21.33 21.62 21.94 22.32 22.63 22.94 23.3123.63 23.93 24.34 24.61 24.92 25.33 25.65 25.96 26.32 26.63 26.95 27.33 27.64 27.93 28.32 28.6428.94 29.34 29.63 29.93 30.33 30.64 30.94 31.33 31.62 31.94 32.33 32.64 32.94 33.32 33.63 33.9434.34 34.63 34.93 35.33 35.64 35.95 36.34 36.62 36.94 37.33 37.64 37.94 38.31 38.63 38.94 39.3239.61 40.01 40.33 40.64 41 41.31 41.63 41.95 42.33 42.65 42.93 43.32 43.64 43.95 44.34 44.6444.93 45.33 45.64 45.95 46.33 46.62 46.94 47.33 47.64 47.93 48.31 48.63 48.94 49.34 49.63 49.9350.33 50.64 51 51.31 51.63 52.02 52.33 52.61 53.01 53.32 53.62 54 54.3 54.61 55.01 55.32 55.6 5656.31 56.62 57.01 57.29 57.61 58 58.32 58.64 59 59.31 59.63 60.02 60.32 60.61 61.01 61.31 61.6362.01 62.3 62.62 63 63.33 63.62 64 64.31 64.62 65.01 65.3 65.61 66.01 66.3 66.63 67.01 67.3167.62 68 68.32 68.63 69 69.31 69.62 70.01 70.31 70.6 71.01 71.31 71.62 72.01 72.29 72.61 7373.32 73.61 73.98 74.3 74.62 75.02 75.31 75.61 76.01 76.32 76.63 76.59 76.38 76.05 75.7 75.3675.08 74.76 74.4 74.1 73.73 73.44 73.15 72.76 72.47 72.16 71.78 71.52 71.23 70.83 70.5 70.1969.83 69.48 69.2 68.81 68.51 68.25 67.82 67.51 67.18 66.83 66.52 66.22 65.82 65.51 65.22 64.8764.52 64.23 63.83 63.54 63.28 62.84 62.56 62.24 61.87 61.57 61.29 60.9 60.58 60.24 59.9 59.5859.21 58.92 58.58 58.22 57.87 57.56 57.27 56.86 56.56 56.26 55.89 55.54 55.22 54.89 54.52 54.2253.86 53.56 53.25 52.84 52.55 52.24 51.87 51.56 51.25 50.89 50.55 50.23 49.9 49.55 49.21 48.8548.59 48.25 47.85 47.54 47.26 46.91 46.57 46.28 45.87 45.56 45.25 44.88 44.59 44.26 43.89 43.5943.28 42.89 42.61 42.3 41.91 41.55 41.24 40.9 40.58 40.24 39.86 39.58 39.25 38.88 38.58 38.2837.91 37.59 37.29 36.89 36.55 36.23 35.91 35.58 35.17 34.87 34.62 34.23 33.87 33.57 33.23 32.8932.58 32.18 31.93 31.59 31.19 30.9 30.58 30.22 29.9 29.6 29.22 28.88 28.62 28.23 27.89 27.5927.18 26.89 26.6 26.19 25.91 25.59 25.21 24.9 24.6 24.22 23.87 23.61 23.23 22.89 22.59 22.1821.91 21.59 21.2 20.88 20.59 20.22 19.91 19.59 19.22 18.88 18.58 18.22 17.89 17.59 17.19 16.8916.6 16.2 15.9 15.58 15.18 14.87 14.6 14.2 13.89 13.59 13.22 12.9 12.61 12.22 11.9 11.58 11.310.91 10.59 10.22 9.92 9.6 9.22 8.9 8.59 8.21 7.9 7.6 7.2 6.9 6.63 6.22 5.92 5.59 5.2 4.9 4.61 4.33.92 3.62 3.3 2.94 2.64 2.33 1.94 1.62 1.26 0.96 0.65];X={x(i)}=[0.01 -0.03 0.37 0.7 1.05 1.51 1.86 2.19 2.6 2.95 3.29 3.71 4.05 4.38 4.8 5.13 5.445.84 6.17 6.49 6.89 7.2 7.51 7.9 8.23 8.56 8.94 9.24 9.56 9.97 10.28 10.6 10.97 11.28 11.6 11.9212.3 12.6 12.98 13.3 13.61 13.98 14.29 14.6 15 15.31 15.62 15.99 16.3 16.62 17 17.29 17.61 18.0118.32 18.63 19.01 19.32 19.64 19.95 20.32 20.63 20.95 21.33 21.62 21.94 22.32 22.63 22.94 23.3123.63 23.93 24.34 24.61 24.92 25.33 25.65 25.96 26.32 26.63 26.95 27.33 27.64 27.93 28.32 28.6428.94 29.34 29.63 29.93 30.33 30.64 30.94 31.33 31.62 31.94 32.33 32.64 32.94 33.32 33.63 33.9434.34 34.63 34.93 35.33 35.64 35.95 36.34 36.62 36.94 37.33 37.64 37.94 38.31 38.63 38.94 39.3239.61 40.01 40.33 40.64 41 41.31 41.63 41.95 42.33 42.65 42.93 43.32 43.64 43.95 44.34 44.6444.93 45.33 45.64 45.95 46.33 46.62 46.94 47.33 47.64 47.93 48.31 48.63 48.94 49.34 49.63 49.9350.33 50.64 51 51.31 51.63 52.02 52.33 52.61 53.01 53.32 53.62 54 54.3 54.61 55.01 55.32 55.6 5656.31 56.62 57.01 57.29 57.61 58 58.32 58.64 59 59.31 59.63 60.02 60.32 60.61 61.01 61.31 61.6362.01 62.3 62.62 63 63.33 63.62 64 64.31 64.62 65.01 65.3 65.61 66.01 66.3 66.63 67.01 67.3167.62 68 68.32 68.63 69 69.31 69.62 70.01 70.31 70.6 71.01 71.31 71.62 72.01 72.29 72.61 7373.32 73.61 73.98 74.3 74.62 75.02 75.31 75.61 76.01 76.32 76.63 76.59 76.38 76.05 75.7 75.3675.08 74.76 74.4 74.1 73.73 73.44 73.15 72.76 72.47 72.16 71.78 71.52 71.23 70.83 70.5 70.1969.83 69.48 69.2 68.81 68.51 68.25 67.82 67.51 67.18 66.83 66.52 66.22 65.82 65.51 65.22 64.8764.52 64.23 63.83 63.54 63.28 62.84 62.56 62.24 61.87 61.57 61.29 60.9 60.58 60.24 59.9 59.5859.21 58.92 58.58 58.22 57.87 57.56 57.27 56.86 56.56 56.26 55.89 55.54 55.22 54.89 54.52 54.2253.86 53.56 53.25 52.84 52.55 52.24 51.87 51.56 51.25 50.89 50.55 50.23 49.9 49.55 49.21 48.8548.59 48.25 47.85 47.54 47.26 46.91 46.57 46.28 45.87 45.56 45.25 44.88 44.59 44.26 43.89 43.5943.28 42.89 42.61 42.3 41.91 41.55 41.24 40.9 40.58 40.24 39.86 39.58 39.25 38.88 38.58 38.2837.91 37.59 37.29 36.89 36 .55 36.23 35.91 35.58 35.17 34.87 34.62 34.23 33.87 33.57 33.23 32.8932.58 32.18 31.93 31.59 31.19 30.9 30.58 30.22 29.9 29.6 29.22 28.88 28.62 28.23 27.89 27.5927.18 26.89 26.6 26.19 25.91 25.59 25.21 24.9 24.6 24.22 23.87 23.61 23.23 22.89 22.59 22.1821.91 21.59 21.2 20.88 20.59 20.22 19.91 19.59 19.22 18.88 18.58 18.22 17.89 17.59 17.19 16.8916.6 16.2 15.9 15.58 15.18 14.87 14.6 14.2 13.89 13.59 13.22 12.9 12.61 12.22 11.9 11.58 11.310.91 10.59 10.22 9.92 9.6 9.22 8.9 8.59 8.21 7.9 7.6 7.2 6.9 6.63 6.22 5.92 5.59 5.2 4.9 4.61 4.33.92 3.62 3.3 2.94 2.64 2.33 1.94 1.62 1.26 0.96 0.65];
其中,试验所得到的悬架钢板弹簧加载和卸载变形试验的回归线,如图2所示;Among them, the regression line of the suspension leaf spring loading and unloading deformation test obtained from the test is shown in Figure 2;
(2)悬架钢板弹簧刚度K的分析计算:(2) Analysis and calculation of suspension leaf spring stiffness K:
根据步骤(1)中所得到的载荷数组F={F(i)}及变形数组X={x(i)},分别对加载试验过程和卸载试验过程中得到的数据进行曲线拟合分析,得到悬架钢板弹簧的刚度,具体步骤如下:According to the load array F={F(i)} and deformation array X={x(i)} obtained in the step (1), the data obtained in the loading test process and the unloading test process are respectively subjected to curve fitting analysis, To obtain the stiffness of the suspension leaf spring, the specific steps are as follows:
A步骤:根据步骤(1)中加载试验过程所得到的载荷数据和位移数据,拟合得到钢板弹簧加载过程的直线斜率K1=3909800N/m;Step A: According to the load data and displacement data obtained in the loading test process in step (1), the linear slope K 1 =3909800N/m of the leaf spring loading process is obtained by fitting;
B步骤:根据步骤(1)中卸载试验过程所得到的载荷数据和位移数据,拟合得到钢板弹簧卸载过程的直线斜率K2=3327600N/m;Step B: According to the load data and displacement data obtained in the unloading test process in step (1), the straight line slope K 2 =3327600N/m in the unloading process of the leaf spring is obtained by fitting;
C步骤:根据A步骤得到的K1=3909800N/m及B步骤得到的K2=3327600N/m,对悬架钢板弹簧刚度K进行分析计算,即:Step C: According to K 1 = 3909800N/m obtained in step A and K 2 = 3327600N/m obtained in step B, analyze and calculate the stiffness K of the suspension leaf spring, namely:
(3)钢板弹簧加载和卸载一个循环过程中所消耗功W的计算:(3) Calculation of the work W consumed during a cycle of loading and unloading of the leaf spring:
根据步骤(1)中试验所得到的载荷数组F={F(i)}和变形数组X={x(i)},其中i=1,2,3,…,n,其中n=460,对钢板弹簧加载和卸载一个周期循环试验中所消耗的功W进行计算,即:Obtained load array F={F(i)} and deformation array X={x(i)} according to the test in step (1), wherein i=1, 2, 3,..., n, wherein n=460, Calculate the work W consumed in the leaf spring loading and unloading cycle test, namely:
(4)钢板弹簧等效阻尼系数Cd的计算:(4) Calculation of leaf spring equivalent damping coefficient C d :
根据车辆参数,步骤(2)中得到的K=3618700N/m,及步骤(3)中分析计算得到的W=2118.7N.m,对钢板弹簧的等效阻尼系数Cd进行计算,具体步骤如下:According to the vehicle parameters, K=3618700N/m obtained in step (2), and W=2118.7Nm obtained by analysis and calculation in step (3), the equivalent damping coefficient C d of the leaf spring is calculated, and the specific steps are as follows:
I步骤:根据车辆单轮悬架的簧上质量m2=35000kg,及步骤(2)中得到的K=3618700N/m,确定钢板弹簧悬架系统的固有频率f0,即:Step I: According to the sprung mass m 2 =35000kg of the single-wheel suspension of the vehicle, and K=3618700N/m obtained in step (2), determine the natural frequency f 0 of the leaf spring suspension system, namely:
II步骤:根据车辆悬架钢板弹簧正常工作状态下的最大动挠度fd=0.05m,确定钢板弹簧的振动位移幅值A,即:Step II: According to the maximum dynamic deflection f d =0.05m of the vehicle suspension leaf spring under normal working conditions, determine the vibration displacement amplitude A of the leaf spring, namely:
A=fd=0.05m;A = f d = 0.05m;
III步骤:根据II步骤中的振动位移幅值A=0.05m,及I步骤中所确定的钢板弹簧悬架系统的固有频率f0=1.6183Hz,确定钢板弹簧的最大振动速度V,即:Step III: According to the vibration displacement amplitude A=0.05m in step II, and the natural frequency f 0 =1.6183Hz of the leaf spring suspension system determined in step I, determine the maximum vibration velocity V of the leaf spring, namely:
V=2πf0A=0.5084m/s;V=2πf 0 A=0.5084m/s;
IV步骤:根据III步骤中所确定的V=0.5084m/s,I步骤中确定的钢板弹簧悬架系统的固有频率f0=1.6183Hz,及步骤(3)中计算得到的W=2118.7N.m,确定钢板弹簧的等效阻尼系数Cd,即:Step IV: According to V=0.5084m/s determined in step III, the natural frequency f 0 of the leaf spring suspension system determined in step I=1.6183Hz, and W=2118.7Nm calculated in step (3), Determine the equivalent damping coefficient C d of the leaf spring, namely:
(5)车辆钢板弹簧悬架系统阻尼比ξ0的计算:(5) Calculation of the damping ratio ξ0 of the vehicle leaf spring suspension system:
根据车辆单轮悬架的簧上质量m2=35000kg,步骤(2)中得到的K=3618700N/m,及步骤(4)中所确定的钢板弹簧的等效阻尼系数Cd=26530N.s/m,对车辆钢板弹簧悬架系统的阻尼比ξ0进行计算,即:According to the sprung mass m 2 of the single-wheel suspension of the vehicle = 35000kg, K = 3618700N/m obtained in step (2), and the equivalent damping coefficient C d of the leaf spring determined in step (4) = 26530N.s /m, calculate the damping ratio ξ 0 of the vehicle leaf spring suspension system, namely:
实施例二:某卡车钢板弹簧悬架系统,前轴单轮悬架的簧上质量m2=7800kg,悬架钢板弹簧正常工作状态下的最大动挠度fd=0.05m。Embodiment 2: For a leaf spring suspension system of a truck, the sprung mass of the single wheel suspension of the front axle is m 2 =7800kg, and the maximum dynamic deflection f d of the suspension leaf spring under normal working conditions is 0.05m.
本发明实例所提供的车辆钢板弹簧悬架系统阻尼比的分析计算方法,其具体步骤如下:The analytical calculation method of the damping ratio of the vehicle leaf spring suspension system provided by the example of the present invention, its concrete steps are as follows:
(1)悬架钢板弹簧加载和卸载变形试验:(1) Loading and unloading deformation test of suspension leaf spring:
利用钢板弹簧试验机,根据在额定载荷下单轮钢板弹簧悬架的簧上质量m2及所承受的最大载荷Fmax=m2g,对悬架钢板弹簧进行逐步加载和卸载试验,同时对相应载荷的变形量进行测试,试验所测得的载荷数组F={F(i)}和位移数组X={x(i)},分别为:Using the leaf spring testing machine, according to the sprung mass m 2 of the single-wheel leaf spring suspension under the rated load and the maximum load F max = m 2 g, the suspension leaf spring is gradually loaded and unloaded. The deformation of the corresponding load is tested, and the load array F={F(i)} and displacement array X={x(i)} measured by the test are respectively:
F={F(i)}=[0.487 0.104 0.826 1.179 1.535 1.771 2.061 2.303 2.576 2.808 3.081 3.299 3.5723.78 4.045 4.263 4.52 4.72 4.987 5.185 5.427 5.627 5.861 6.044 6.283 6.468 6.697 6.874 7.1097.29 7.516 7.699 7.932 8.113 8.291 8.514 8.7 8.917 9.11 9.331 9.516 9.738 9.925 10.143 10.32210.544 10.727 10.942 11.134 11.355 11.54 11.766 11.94 12.154 12.343 12.561 12.755 12.97713.149 13.378 13.552 13.779 13.966 14.182 14.369 14.587 14.764 14.99 15.18 15.402 15.57615.788 15.977 16.198 16.38 16.603 16.781 17.001 17.182 17.362 17.581 17.766 17.986 18.16818.397 18.574 18.799 18.979 19.159 19.383 19.569 19.786 19.969 20.196 20.368 20.603 20.77921.007 21.191 21.416 21.6 21.817 21.986 22.218 22.391 22.611 22.795 23.012 23.196 23.4123.586 23.77 23.987 24.175 24.395 24.576 24.789 24.977 25.186 25.37 25.598 25.768 25.98826.165 26.382 26.562 26.79 26.963 27.169 27.349 27.577 27.747 27.967 28.148 28.361 28.55228.762 28.931 29.159 29.325 29.546 29.73 29.95 30.127 30.34 30.52 30.737 30.914 31.138 31.31131.506 31.72 31.904 32.121 32.297 32.522 32.691 32.923 33.096 33.32 33.5 33.714 33.883 34.11534.295 34.512 34.696 34.905 35.093 35.262 35.483 35.66 35.877 36.094 36.27 36.495 36.66836.844 37.069 37.245 37.469 37.646 37.874 38.04 38.276 38.452 38.673 38.856 39.017 39.24539.421 39.641 39.817 40.038 40.206 40.426 40.61 40.823 41.014 41.226 41.403 41.63 41.79942.004 42.188 42.415 42.599 42.812 42.98 43.2 43.377 43.597 43.78 43.993 44.162 44.382 44.55844.778 44.962 45.131 45.343 45.527 45.74 45.916 46.136 46.312 46.525 46.701 46.929 47.09747.318 47.494 47.714 47.897 48.11 48.279 48.514 48.683 48.896 49.072 49.292 49.476 49.69649.872 50.085 50.276 50.481 50.665 50.885 51.054 51.274 51.45 51.67 51.854 52.023 52.2552.419 52.639 52.815 53.043 53.212 53.425 53.608 53.828 53.997 54.217 54.394 54.621 54.79755.01 55.179 55.414 55.583 55.796 55.972 56.199 56.368 56.588 56.765 56.985 57.168 57.37457.55 57.778 57.954 58.167 58.35 58.526 58.739 58.923 59.135 59.319 59.525 59.708 59.93660.104 60.325 60.501 60.721 60.897 61.11 61.286 61.499 61.683 61.903 62.072 62.306 62.46162.688 62.864 63.077 63.261 63.481 63.657 63.877 64.046 64.266 64.435 64.67 64.846 65.05965.235 65.455 65.646 65.852 66.021 66.219 66.439 66.608 66.835 67.019 67.224 67.401 67.62867.812 68.032 68.201 68.428 68.612 68.825 69.008 69.221 69.39 69.595 69.786 70.014 70.1970.41 70.586 70.814 70.983 71.21 71.379 71.607 71.775 72.003 72.187 72.407 72.59 72.76672.987 73.177 73.39 73.567 73.794 73.963 74.19 74.367 74.601 74.77 74.998 75.174 75.39475.563 75.798 75.974 76.3 76.54 76.73 76.96 77.14 77.35 77.53 77.75 77.93 78.17 78.34 78.2376.93 75.844 74.954 74.249 73.603 73.133 72.539 72.187 71.834 71.497 71.137 70.895 70.56470.263 69.97 69.676 69.434 69.302 69.008 68.854 68.56 68.384 68.105 67.966 67.738 67.51167.291 67.1 66.879 66.762 66.505 66.351 66.153 65.947 65.683 65.529 65.353 65.155 64.97864.773 64.641 64.354 64.2 63.958 63.819 63.576 63.43 63.209 63.048 62.798 62.666 62.41762.277 62.13 61.91 61.697 61.58 61.294 61.11 60.956 60.743 60.589 60.383 60.222 60.009 59.90659.62 59.436 59.231 59.077 58.857 58.71 58.497 58.335 58.13 57.917 57.704 57.609 57.33 57.19857.036 56.831 56.632 56.464 56.251 56.045 55.862 55.664 55.473 55.304 55.098 54.944 54.7954.562 54.335 54.173 54.012 53.814 53.652 53.439 53.263 53.043 52.904 52.654 52.507 52.34652.148 51.942 51.78 51.56 51.391 51.186 51.002 50.819 50.665 50.445 50.276 50.122 49.87949.725 49.512 49.358 49.16 48.991 48.786 48.595 48.382 48.22 48.03 47.853 47.619 47.49447.259 47.119 46.892 46.723 46.525 46.363 46.151 45.982 45.769 45.637 45.402 45.248 45.04244.844 44.646 44.47 44.287 44.14 43.912 43.751 43.553 43.362 43.149 43.01 42.782 42.62142.423 42.254 42.048 41.872 41.703 41.498 41.278 41.153 40.926 40.757 40.573 40.39 40.18440.06 39.861 39.627 39.465 39.26 39.106 38.907 38.731 38.533 38.364 38.144 37.968 37.74537.591 37.374 37.205 37.01 36.829 36.612 36.465 36.292 36.086 35.913 35.704 35.56 35.31735.156 34.957 34.791 34.571 34.416 34.214 34.037 33.828 33.666 33.452 33.29 33.055 32.92632.72 32.536 32.323 32.168 31.955 31.797 31.587 31.414 31.212 31.039 30.866 30.697 30.47630.281 30.116 29.902 29.752 29.546 29.369 29.159 29.001 28.784 28.611 28.416 28.247 28.02627.886 27.647 27.519 27.302 27.118 26.912 26.735 26.547 26.386 26.172 26.003 25.815 25.60625.455 25.227 25.087 24.881 24.712 24.498 24.348 24.123 23.95 23.748 23.575 23.362 23.21523.005 22.847 22.626 22.457 22.251 22.078 21.872 21.699 21.511 21.331 21.121 20.956 20.73520.584 20.372 20.203 20.002 19.826 19.65 19.463 19.232 19.064 18.897 18.691 18.539 18.30718.162 17.942 17.766 17.569 17.42 17.189 17.039 16.81 16.644 16.442 16.283 16.056 15.91115.695 15.53 15.328 15.164 14.94 14.775 14.577 14.396 14.195 14.033 13.876 13.665 13.48413.288 13.108 12.896 12.735 12.52 12.352 12.143 11.982 11.762 11.603 11.377 11.218 11.01810.833 10.637 10.456 10.247 10.09 9.872 9.692 9.489 9.335 9.115 8.95 8.745 8.575 8.364 8.1928.016 7.814 7.646 7.437 7.274 7.069 6.898 6.673 6.51 6.301 6.134 5.912 5.749 5.529 5.374 5.1564.989 4.771 4.615 4.384 4.212 3.999 3.827 3.602 3.43 3.212 3.032 2.862 2.638 2.473 2.262 2.0861.874 1.7 1.487 1.309 1.104 0.927 0.719 0.547 0.344 0.181];F={F(i)}=[0.487 0.104 0.826 1.179 1.535 1.771 2.061 2.303 2.576 2.808 3.081 3.299 3.5723.78 4.045 4.263 4.52 4.72 4.987 5.185 5.427 5.627 5.861 6.044 6.283 6.468 6.697 6.874 7.1097.29 7.516 7.699 7.932 8.113 8.291 8.514 8.7 8.917 9.11 9.331 9.516 9.738 9.925 10.143 10.32210.544 10.727 10.942 11.134 11.355 11.54 11.766 11.94 12.154 12.343 12.561 12.755 12.97713.149 13.378 13.552 13.779 13.966 14.182 14.369 14.587 14.764 14.99 15.18 15.402 15.57615.788 15.977 16.198 16.38 16.603 16.781 17.001 17.182 17.362 17.581 17.766 17.986 18.16818. 397 18.574 18.799 18.979 19.159 19.383 19.569 19.786 19.969 20.196 20.368 20.603 20.77921.007 21.191 21.416 21.6 21.817 21.986 22.218 22.391 22.611 22.795 23.012 23.196 23.4123.586 23.77 23.987 24.175 24.395 24.576 24.789 24.977 25.186 25.37 25.598 25.768 25.98826.165 26.382 26.562 26.79 26.963 27.169 27.349 27.577 27.747 27.967 28.148 28.361 28.55228.762 28.931 29.159 29.325 29.546 29.73 29.95 30.127 30.34 30.52 30.737 30.914 31.1361 31.51.3 904 32.121 32.297 32.522 32.691 32.923 33.096 33.32 33.5 33.714 33.883 34.11534.295 34.512 34.696 34.905 35.093 35.262 35.483 35.66 35.877 36.094 36.27 36.495 36.66836.844 37.069 37.245 37.469 37.646 37.874 38.04 38.276 38.452 38.673 38.856 39.017 39.24539.421 39.641 39.817 40.038 40.206 40.426 40.61 40.823 41.014 41.226 41.403 41.63 41.79942.004 42.188 42.415 42.599 42.812 42.98 43.2 43.377 43.597 43.78 43.993 44.162 44.382 44.55844.778 44.962 45.131 45.343 45.527 45.74 45.916 46.136 46.312 46.525 46.701 46.929 47.09747.318 47.494 47.714 47.897 48.11 48.279 48.514 48.683 48.896 49.072 49.292 49.476 49.69649.872 50.085 50.276 50.481 50.665 50.885 51.054 51.274 51.45 51.67 51.854 52.023 52.2552.419 52.639 52.815 53.043 53.212 53.425 53.608 53.828 53.997 54.217 54.394 54.621 54.79755.01 55.179 55.414 55.583 55.796 55.972 56.199 56.368 56.588 56.765 56.985 57.168 57.37457.55 57.778 57.954 58.167 58.35 58.526 58.739 58.923 59.135 59.319 59.525 59.708 59.93660.104 60.325 60.501 60.721 60.89 7 61.11 61.286 61.499 61.683 61.903 62.072 62.306 62.46162.688 62.864 63.077 63.261 63.481 63.657 63.877 64.046 64.266 64.435 64.67 64.846 65.05965.235 65.455 65.646 65.852 66.021 66.219 66.439 66.608 66.835 67.019 67.224 67.401 67.62867.812 68.032 68.201 68.428 68.612 68.825 69.008 69.221 69.39 69.595 69.786 70.014 70.1970.41 70.586 70.814 70.983 71.21 71.379 71.607 71.775 72.003 72.187 72.407 72.59 72.76672.987 73.177 73.39 73.567 73.794 73.963 74.19 74.367 74.601 74.77 74.998 75.174 75.39475.563 75.798 75.974 76.3 76.54 76.73 76.96 77.14 77.35 77.53 77.75 77.93 78.17 78.34 78.2376.93 75.844 74.954 74.249 73.603 73.133 72.539 72.187 71.834 71.497 71.137 70.895 70.56470.263 69.97 69.676 69.434 69.302 69.008 68.854 68.56 68.384 68.105 67.966 67.738 67.51167.291 67.1 66.879 66.762 66.505 66.351 66.153 65.947 65.683 65.529 65.353 65.155 64.97864.773 64.641 64.354 64.2 63.958 63.819 63.576 63.43 63.209 63.048 62.798 62.666 62.41762.277 62.13 61.91 61.697 61.58 61.294 61.11 60.956 60.743 6 0.589 60.383 60.222 60.009 59.90659.62 59.436 59.231 59.077 58.857 58.71 58.497 58.335 58.13 57.917 57.704 57.609 57.33 57.19857.036 56.831 56.632 56.464 56.251 56.045 55.862 55.664 55.473 55.304 55.098 54.944 54.7954.562 54.335 54.173 54.012 53.814 53.652 53.439 53.263 53.043 52.904 52.654 52.507 52.34652.148 51.942 51.78 51.56 51.391 51.186 51.002 50.819 50.665 50.445 50.276 50.122 49.87949.725 49.512 49.358 49.16 48.991 48.786 48.595 48.382 48.22 48.03 47.853 47.619 47.49447.259 47.119 46.892 46.723 46.525 46.363 46.151 45.982 45.769 45.637 45.402 45.248 45.04244.844 44.646 44.47 44.287 44.14 43.912 43.751 43.553 43.362 43.149 43.01 42.782 42.62142.423 42.254 42.048 41.872 41.703 41.498 41.278 41.153 40.926 40.757 40.573 40.39 40.18440.06 39.861 39.627 39.465 39.26 39.106 38.907 38.731 38.533 38.364 38.144 37.968 37.74537.591 37.374 37.205 37.01 36.829 36.612 36.465 36.292 36.086 35.913 35.704 35.56 35.31735.156 34.957 34.791 34.571 34.416 34.214 34.037 33.828 33.666 33.452 33.29 33 .055 32.92632.72 32.536 32.323 32.168 31.955 31.797 31.587 31.414 31.212 31.039 30.866 30.697 30.47630.281 30.116 29.902 29.752 29.546 29.369 29.159 29.001 28.784 28.611 28.416 28.247 28.02627.886 27.647 27.519 27.302 27.118 26.912 26.735 26.547 26.386 26.172 26.003 25.815 25.60625.455 25.227 25.087 24.881 24.712 24.498 24.348 24.123 23.95 23.748 23.575 23.362 23.21523.005 22.847 22.626 22.457 22.251 22.078 21.872 21.699 21.511 21.331 21.121 20.956 20.73520.584 20.372 20.203 20.002 19.826 19.65 19.463 19.232 19.064 18.897 18.691 18.539 18.30718.162 17.942 17.766 17.569 17.42 17.189 17.039 16.81 16.644 16.442 16.283 16.056 15.91115.695 15.53 15.328 15.164 14.94 14.775 14.577 14.396 14.195 14.033 13.876 13.665 13.48413.288 13.108 12.896 12.735 12.52 12.352 12.143 11.982 11.762 11.603 11.377 11.218 11.01810.833 10.637 10.456 10.247 10.09 9.872 9.692 9.489 9.335 9.115 8.95 8.745 8.575 8.364 8.1928.016 7.814 7.646 7.437 7.274 7.069 6.898 6.673 6.51 6.301 6.134 5.912 5.749 5.529 5.374 5.1564 .989 4.771 4.61 4.384 4.212 3.999 3.827 3.602 3.212 3.032 2.862 2.638 2.473 2.262 2.0861.874 1.7 1.04 0.927 0.719 0.347 0.181];
X={x(i)}=[0.14 0 0.43 0.76 1.18 1.5 1.9 2.23 2.64 2.96 3.36 3.68 4.08 4.39 4.78 5.1 5.49 5.786.18 6.48 6.86 7.17 7.55 7.85 8.24 8.55 8.92 9.22 9.6 9.9 10.27 10.57 10.95 11.26 11.56 11.93 12.2412.6 12.91 13.28 13.58 13.95 14.25 14.62 14.92 15.29 15.59 15.96 16.27 16.64 16.94 17.32 17.617.97 18.27 18.64 18.95 19.32 19.61 19.99 20.28 20.65 20.96 21.33 21.62 21.99 22.29 22.65 22.9623.33 23.62 23.98 24.29 24.66 24.96 25.34 25.63 25.99 26.3 26.59 26.96 27.27 27.63 27.93 28.3128.6 28.98 29.28 29.6 29.97 30.27 30.64 30.94 31.31 31.6 31.98 32.27 32.65 32.95 33.32 33.6333.98 34.28 34.66 34.95 35.32 35.63 35.99 36.3 36.66 36.95 37.26 37.63 37.93 38.3 38.6 38.9639.27 39.64 39.93 40.31 40.6 40.97 41.27 41.64 41.95 42.32 42.61 42.98 43.27 43.65 43.94 44.3244.62 44.99 45.3 45.65 45.95 46.33 46.62 46.99 47.3 47.65 47.96 48.32 48.62 48.99 49.29 49.6749.96 50.28 50.64 50.94 51.31 51.6 51.98 52.27 52.65 52.94 53.31 53.63 53.99 54.28 54.66 54.9555.32 55.63 55.99 56.29 56.58 56.95 57.25 57.63 57.99 58.3 58.67 58.97 59.27 59.64 59.93 60.3160.61 60.98 61.28 61.66 61.95 62.33 62.63 62.92 63.3 63.6 63.96 64.26 64.64 64.92 65.3 65.665.97 66.27 66.64 66.94 67.32 67.61 67.97 68.28 68.65 68.96 69.32 69.61 69.99 70.28 70.65 70.9671.33 71.62 71.99 72.29 72.66 72.96 73.25 73.62 73.93 74.29 74.59 74.96 75.27 75.63 75.93 76.3176.6 76.97 77.27 77.64 77.95 78.31 78.6 78.99 79.29 79.65 79.94 80.32 80.62 80.99 81.29 81.6581.96 82.32 82.62 82.99 83.29 83.65 83.96 84.33 84.63 84.92 85.29 85.6 85.96 86.26 86.64 86.9387.3 87.61 87.97 88.27 88.63 88.93 89.32 89.61 89.97 90.27 90.65 90.94 91.3 91.6 91.99 92.2892.65 92.95 93.32 93.62 93.99 94.28 94.66 94.95 95.33 95.63 95.93 96.29 96.59 96.96 97.27 97.6397.93 98.3 98.6 98.97 99.28 99.64 99.94 100.3 100.6 100.97 101.27 101.64 101.94 102.32 102.6102.98 103.27 103.64 103.95 104.33 104.61 104.99 105.28 105.65 105.95 106.32 106.62 106.99107.28 107.66 107.96 108.32 108.62 108.94 109.3 109.6 109.98 110.28 110.64 110.94 111.31111.61 111.99 112.27 112.65 112.95 113.32 113.62 113.99 114.28 114.64 114.94 115.32 115.62115.99 116.28 116.66 116.95 117.31 117.61 117.99 118.29 118.66 118.96 119.33 119.62 119.92120.29 120.6 120.96 121.27 121.64 121.92 122.29 122.59 122.97 123.26 123.63 123.92 124.29124.59 124.96 125.27 125.59 125.98 126.28 126.65 126.96 127.32 127.62 127.98 128.29 128.65128.87 128.86 128.49 128.08 127.78 127.44 127.06 126.75 126.35 126.01 125.65 125.32 124.92124.68 124.29 123.97 123.57 123.21 122.86 122.63 122.21 121.92 121.51 121.19 120.82 120.57120.18 119.84 119.48 119.16 118.81 118.55 118.15 117.86 117.49 117.19 116.79 116.51 116.21115.85 115.54 115.18 114.89 114.5 114.2 113.81 113.53 113.13 112.85 112.48 112.19 111.79111.52 111.11 110.85 110.55 110.18 109.86 109.53 109.13 108.81 108.53 108.16 107.87 107.5107.2 106.83 106.56 106.16 105.84 105.48 105.17 104.79 104.54 104.12 103.87 103.5 103.15102.79 102.56 102.11 101.85 101.5 101.18 100.82 100.53 100.14 99.81 99.48 99.14 98.8 98.4998.13 97.84 97.51 97.16 96.78 96.5 96.21 95.85 95.53 95.18 94.86 94.46 94.18 93.79 93.52 93.1792.86 92.48 92.21 91.8 91.5 91.14 90.82 90.47 90.18 89.8 89.5 89.15 88.81 88.53 88.14 87.8787.52 87.2 86.84 86.51 86.16 85.84 85.48 85.17 84.8 84.55 84.13 83.87 83.49 83.18 82.83 82.5282.14 81.84 81.48 81.21 80.79 80.53 80.17 79.82 79.47 79.15 78.81 78.52 78.14 77.85 77.48 77.1676.79 76.53 76.14 75.84 75.48 75.17 74.8 74.49 74.15 73.82 73.44 73.18 72.8 72.49 72.15 71.8471.47 71.19 70.82 70.48 70.2 69.81 69.54 69.18 68.87 68.51 68.2 67.83 67.52 67.14 66.84 66.4666.17 65.8 65.49 65.12 64.84 64.53 64.17 63.87 63.5 63.21 62.82 62.52 62.16 61.85 61.48 61.260.84 60.53 60.15 59.86 59.47 59.19 58.79 58.53 58.15 57.84 57.47 57.18 56.79 56.51 56.13 55.8355.47 55.16 54.86 54.51 54.17 53.82 53.53 53.14 52.87 52.51 52.19 51.83 51.52 51.15 50.85 50.4850.18 49.81 49.54 49.13 48.87 48.49 48.16 47.8 47.49 47.14 46.85 46.46 46.16 45.81 45.49 45.244.8 44.54 44.17 43.87 43.5 43.2 42.83 42.52 42.16 41.85 41.47 41.21 40.83 40.53 40.17 39.8639.48 39.18 38.82 38.5 38.16 37.85 37.4 837.18 36.79 36.52 36.14 35.84 35.48 35.17 34.87 34.5134.12 33.83 33.52 33.14 32.87 32.46 32.2 31.82 31.5 31.14 30.88 30.47 30.19 29.8 29.51 29.1428.85 28.47 28.19 27.81 27.51 27.15 26.86 26.47 26.18 25.82 25.5 25.14 24.83 24.54 24.18 23.8623.5 23.2 22.82 22.53 22.15 21.85 21.49 21.2 20.81 20.52 20.14 19.84 19.49 19.17 18.82 18.5218.13 17.85 17.48 17.17 16.81 16.52 16.14 15.85 15.48 15.18 14.8 14.52 14.21 13.84 13.55 13.1712.88 12.51 12.21 11.83 11.53 11.16 10.88 10.49 10.2 9.83 9.53 9.16 8.86 8.49 8.19 7.81 7.51 7.156.85 6.47 6.18 5.81 5.52 5.21 4.84 4.54 4.19 3.88 3.52 3.22 2.84 2.56 2.18 1.88 1.52 1.22 0.860.57];X={x(i)}=[0.14 0 0.43 0.76 1.18 1.5 1.9 2.23 2.64 2.96 3.36 3.68 4.08 4.39 4.78 5.1 5.49 5.786.18 6.48 6.86 7.17 7.55 7.85 8.24 8.55 8.92 9.22 9.6 9.9 10.27 10.57 10.95 11.26 11.56 11.93 12.2412.6 12.91 13.28 13.58 13.95 14.25 14.62 14.92 15.29 15.59 15.96 16.27 16.64 16.94 17.32 17.617.97 18.27 18.64 18.95 19.32 19.61 19.99 20.28 20.65 20.96 21.33 21.62 21.99 22.29 22.65 22.9623.33 23.62 23.98 24.29 24.66 24.96 25.34 25.63 25.99 26.3 26.59 26.96 27.27 27.63 27.93 28.3128. 6 28.98 29.28 29.6 29.97 30.27 30.64 30.94 31.31 31.6 31.98 32.27 32.65 32.95 33.32 33.6333.98 34.28 34.66 34.95 35.32 35.63 35.99 36.3 36.66 36.95 37.26 37.63 37.93 38.3 38.6 38.9639.27 39.64 39.93 40.31 40.6 40.97 41.27 41.64 41.95 42.32 42.61 42.98 43.27 43.65 43.94 44.3244 .62 44.99 45.3 45.65 45.95 46.33 46.62 46.99 47.3 47.65 47.96 48.32 48.62 48.99 49.29 49.6749.96 50.28 50.64 50.94 51.31 51.6 51.98 52.27 52.65 52.94 53.31 53.63 53.99 54.28 54.66 54.9555.32 55.63 55.99 56.29 56.58 56.95 57.25 57.63 57.99 58.3 58 .67 58.97 59.27 59.64 59.93 60.3160.61 60.98 61.28 61.66 61.95 62.33 62.63 62.92 63.3 63.6 63.96 64.26 64.64 64.92 65.3 65.665.97 66.27 66.64 66.94 67.32 67.61 67.97 68.28 68.65 68.96 69.32 69.61 69.99 70.28 70.65 70.9671.33 71.62 71.99 72.29 72.66 72.96 73.25 73.62 73.93 74.29 74.59 74.96 75.27 75.63 75.93 76.3176.6 76.97 77.27 77.64 77.95 78.31 78.6 78.99 79.29 79.65 79.94 80.32 80.62 80.99 81.29 81.6581.96 82.32 82.62 82.99 83.29 83.65 83.96 84.33 84.63 84.92 85.29 85.6 85.96 86.26 86.64 86.9387.3 87.61 87.97 88.27 88.63 88.93 89.32 89.61 89.97 90.27 90.65 90.94 91.3 91.6 91.99 92.2892.65 92.95 93.32 93.62 93.99 94.28 94.66 94.95 95.33 95.63 95.93 96.29 96.59 96.96 97.27 97.6397.93 98.3 98.6 98.97 99.28 99.64 99.94 100.3 100.6 100.97 101.27 101.64 101.94 102.32 102.6102.98 103.27 103.64 103.95 104.33 104.61 104.99 105.28 105.65 105.95 106.32 106.62 106.99107.28 107.66 107.96 108.32 108.94 109.6 109.98 110.28 110.94 111.3111.61 112.65 112.95 113.322.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32. 113 113 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 113 112 112 113 112 112 113 112 113 112s. 113.62 113.99 114.28 114.64 114.94 115.32 115.62115.99 116.28 116.66 116.95 117.31 117.61 117.99 118.29 118.66 118.96 119.33 119.62 119.92120.29 120.6 120.96 121.27 121.64 121.92 122.29 122.59 122.97 123.26 123.63 123.92 124.29124.59 124.96 125.27 125.59 125.98 126.28 126.65 126.96 127.32 127.62 127.98 128.29 128.65128. 87 128.86 128.49 128.08 127.78 127.44 127.06 126.75 126.35 126.01 125.65 125.32 124.92124.68 124.29 123.97 123.57 123.21 122.86 122.63 122.21 121.92 121.51 121.19 120.82 120.57120.18 119.84 119.48 119.16 118.81 118.55 118.15 117.86 117.49 117.19 116.79 116.51 116.21115.85 115.54 115.18 114.89 114.5 114.2 113.81 113.53 113.13 112.85 112.48 112.19 111.79111.52 111.11 110.85 110.55 110.18 109.86 109.53 109.13 108.81 108.53 108.16 107.87 107.5107.2 106.83 106.56 106.16 105.84 105.48 105.17 104.79 104.54 104.12 103.87 103.5 103.15102.79 102.56 102.11 101.85 101.5 101.18 100.82 100.53 100.14 99.81 99.48 99.14 98.8 98.4998.13 97.84 97.51 97.16 96.78 96.5 96.21 95.85 95.53 95.18 94.86 94.46 94.18 93.79 93.52 93.1792.86 92.48 92.21 91.8 91.5 91.14 90.82 90.47 90.18 89.8 89.5 89.15 88.81 88.53 88.14 87.8787.52 87.2 86.84 86.51 86.16 85.84 85.48 85.17 84.8 84.55 84.13 83.87 83.49 83.18 82.83 82.5282.14 81.84 81.48 81.21 80.79 80.53 80.17 79.82 79.47 79.15 78.81 78.52 78.14 77.85 77.48 77.1676.79 76.53 76.14 75.84 75.48 75.17 74.8 74.49 74.15 73.82 73.44 73.18 72.8 72.49 72.15 71.8471.47 71.19 70.82 70.48 70.2 69.81 69.54 69.18 68.87 68.51 68.2 67.83 67.52 67.14 66.84 66.4666.17 65.8 65.49 65.12 64.84 64.53 64.17 63.87 63.5 63.21 62.82 62.52 62.16 61.85 61.48 61.260.84 60.53 60.15 59.86 59.47 59.19 58.79 58.53 58.15 57.84 57.47 57.18 56.79 56.51 56.13 55.8355.47 55.16 54.86 54.51 54.17 53.82 53.53 53.14 52.87 52.51 52.19 51.83 51.52 51.15 50.85 50.4850.18 49.81 49.54 49.13 48.87 48.49 48.16 47.8 47.49 47.14 46.85 46.46 46.16 45.81 45.49 45.244.8 44.54 44.17 43.87 43.5 43.2 42.83 42.52 42.16 41.85 41.47 41.21 40.83 40.53 40.17 39.8639.48 39.18 38.82 38.5 38.16 37. 85 37.4 837.18 36.79 36.52 36.14 35.84 35.48 35.17 34.87 34.5134.12 33.83 33.52 33.14 32.87 32.46 32.2 31.82 31.5 31.14 30.88 30.47 30.19 29.8 29.51 29.1428.85 28.47 28.19 27.81 27.51 27.15 26.86 26.47 26.18 25.82 25.5 25.14 24.83 24.54 24.18 23.8623.5 23.2 22.82 22.53 22.15 21.85 21.49 21.2 20.81 20.52 20.14 19.84 19.49 19.17 18.82 18.5218.13 17.85 17.48 17.17 16.81 16.52 16.14 15.85 15.48 15.18 14.8 14.52 14.21 13.84 13.55 13.1712.88 12.51 12.21 11.83 11.53 11.16 10.88 10.49 10.2 9.83 9.53 9.16 8.86 8.49 8.19 7.81 7.51 7.156.85 6.47 6.18 5.81 5.52 5.21 4.84 4.54 4.19 3.88 3.52 3.22 2.84 2.56 2.18 1.88 1.52 1.22 0.860.57];
其中,试验所得到的悬架钢板弹簧加载和卸载变形试验的回归线,如图3所示;Among them, the regression line of the suspension leaf spring loading and unloading deformation test obtained from the test is shown in Figure 3;
(2)悬架钢板弹簧刚度K的分析计算:(2) Analysis and calculation of suspension leaf spring stiffness K:
根据步骤(1)中所得到的载荷数组F={F(i)}及变形数组X={x(i)},分别对加载试验过程和卸载试验过程中得到的数据进行曲线拟合分析,得到悬架钢板弹簧的刚度,具体步骤如下:According to the load array F={F(i)} and deformation array X={x(i)} obtained in the step (1), the data obtained in the loading test process and the unloading test process are respectively subjected to curve fitting analysis, To obtain the stiffness of the suspension leaf spring, the specific steps are as follows:
A步骤:根据步骤(1)中加载试验过程所得到的载荷数据和位移数据,拟合得到钢板弹簧加载过程的直线斜率K1=595580N/m;Step A: according to the load data and displacement data obtained in the loading test process in step (1), the linear slope K 1 =595580N/m of the leaf spring loading process is obtained by fitting;
B步骤:根据步骤(1)中卸载试验过程所得到的载荷数据和位移数据,拟合得到钢板弹簧卸载过程的直线斜率K2=565990N/m;Step B: according to the load data and displacement data obtained in the unloading test process in step (1), the straight line slope K 2 =565990N/m in the unloading process of the leaf spring is obtained by fitting;
C步骤:根据A步骤得到的K1=595580N/m,及B步骤得到的K2=565990N/m,对悬架钢板弹簧刚度K进行分析计算,即:Step C: According to K 1 = 595580N/m obtained in step A and K 2 = 565990N/m obtained in step B, analyze and calculate the stiffness K of the suspension leaf spring, namely:
(3)钢板弹簧加载和卸载一个循环过程中所消耗功W的计算:(3) Calculation of the work W consumed during a cycle of loading and unloading of the leaf spring:
根据步骤(1)中试验所得到的载荷数组F={F(i)}和变形数组X={x(i)},其中i=1,2,3,…,n,其中n=772,对钢板弹簧加载和卸载一个周期循环试验中所消耗的功W进行计算,即:Obtained load array F={F(i)} and deformation array X={x(i)} according to the test in step (1), wherein i=1, 2, 3,..., n, wherein n=772, Calculate the work W consumed in the leaf spring loading and unloading cycle test, namely:
(4)钢板弹簧等效阻尼系数Cd的计算:(4) Calculation of leaf spring equivalent damping coefficient C d :
根据车辆参数,步骤(2)中得到的K=580785N/m,及步骤(3)中分析计算得到的W=424.6296N.m,对钢板弹簧的等效阻尼系数Cd进行计算,具体步骤如下:According to the vehicle parameters, K=580785N/m obtained in step (2), and W=424.6296Nm obtained through analysis and calculation in step (3), the equivalent damping coefficient C d of the leaf spring is calculated, and the specific steps are as follows:
I步骤:根据车辆单轮悬架的簧上质量m2=7800kg,及步骤(2)中得到的K=580785N/m,确定钢板弹簧悬架系统的固有频率f0,即:Step I: According to the sprung mass m 2 =7800kg of the single-wheel suspension of the vehicle, and K=580785N/m obtained in step (2), determine the natural frequency f 0 of the leaf spring suspension system, namely:
II步骤:根据车辆悬架钢板弹簧正常工作状态下的最大动挠度fd=0.05m,确定钢板弹簧的振动位移幅值A,即:Step II: According to the maximum dynamic deflection f d =0.05m of the vehicle suspension leaf spring under normal working conditions, determine the vibration displacement amplitude A of the leaf spring, namely:
A=fd=0.05m;A = f d = 0.05m;
III步骤:根据II步骤中的振动位移幅值A=0.05m,及I步骤中所确定的钢板弹簧悬架系统的固有频率f0=1.3733Hz,确定钢板弹簧的最大振动速度V,即:Step III: According to the vibration displacement amplitude A=0.05m in the step II, and the natural frequency f 0 =1.3733Hz of the leaf spring suspension system determined in the step I, determine the maximum vibration velocity V of the leaf spring, namely:
V=2πf0A=0.4314m/s;V=2πf 0 A=0.4314m/s;
IV步骤:根据III步骤中所确定的V=0.4314m/s,I步骤中确定的钢板弹簧悬架系统的固有频率f0=1.3733Hz,及步骤(3)中计算得到的W=424.6296N.m,确定钢板弹簧的等效阻尼系数Cd,即:Step IV: According to V=0.4314m/s determined in step III, the natural frequency f 0 of the leaf spring suspension system determined in step I=1.3733Hz, and W=424.6296Nm calculated in step (3), Determine the equivalent damping coefficient C d of the leaf spring, namely:
(5)车辆钢板弹簧悬架系统阻尼比ξ0的计算:(5) Calculation of the damping ratio ξ0 of the vehicle leaf spring suspension system:
根据车辆单轮悬架的簧上质量m2=7800kg,步骤(2)中得到的K=580785N/m,及步骤(4)中所确定的钢板弹簧的等效阻尼系数Cd=6265.6N.s/m,对车辆钢板弹簧悬架系统的阻尼比ξ0进行计算,即:According to the sprung mass m 2 of the single-wheel suspension of the vehicle = 7800kg, K = 580785N/m obtained in step (2), and the equivalent damping coefficient C d of the leaf spring determined in step (4) = 6265.6Ns/ m, calculate the damping ratio ξ0 of the vehicle leaf spring suspension system, namely:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410446586.4A CN104156550A (en) | 2014-09-03 | 2014-09-03 | Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410446586.4A CN104156550A (en) | 2014-09-03 | 2014-09-03 | Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104156550A true CN104156550A (en) | 2014-11-19 |
Family
ID=51882048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410446586.4A Pending CN104156550A (en) | 2014-09-03 | 2014-09-03 | Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104156550A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105808872A (en) * | 2016-03-15 | 2016-07-27 | 合肥工业大学 | Vehicle suspension leaf spring frequency domain fatigue analysis method |
CN106650167A (en) * | 2017-01-03 | 2017-05-10 | 山东理工大学 | Simulated checking method for maximum limit deflection of high-strength level-one graded-stiffness leaf spring |
CN107045565A (en) * | 2017-01-12 | 2017-08-15 | 王炳超 | The design method of the maximum spacing amount of deflection of high intensity two-stage progressive rate leaf spring |
CN107808047A (en) * | 2017-10-25 | 2018-03-16 | 厦门大学 | A kind of design method of the unimolecule electrical measurement device of vibration isolation configuration |
CN108931362A (en) * | 2016-08-22 | 2018-12-04 | 安徽江淮汽车集团股份有限公司 | A kind of leaf spring bearing up-down force Bench test methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101175651A (en) * | 2005-04-27 | 2008-05-07 | 亨德里克森国际公司 | Vehicle suspensions having leaf springs and alternative clamp groups |
CN202827032U (en) * | 2012-08-07 | 2013-03-27 | 东莞市永强汽车制造有限公司 | Axle lifting appliance suspended by plate springs |
-
2014
- 2014-09-03 CN CN201410446586.4A patent/CN104156550A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101175651A (en) * | 2005-04-27 | 2008-05-07 | 亨德里克森国际公司 | Vehicle suspensions having leaf springs and alternative clamp groups |
CN202827032U (en) * | 2012-08-07 | 2013-03-27 | 东莞市永强汽车制造有限公司 | Axle lifting appliance suspended by plate springs |
Non-Patent Citations (5)
Title |
---|
丁能根 等: "钢板弹簧迟滞特性的有限元分析", 《汽车工程》 * |
于济业 等: "汽车钢板弹簧悬架的有限元分析与试验研究", 《农业装备与车辆工程》 * |
房月根: "高速叉车悬架系统研究及分析", 《万方数据学位论文库》 * |
李小龙 等: "多片钢板弹簧建模及悬架性能仿真", 《农业装备与车辆工程》 * |
路永婕 等: "钢板弹簧非线性刚度特性实验及参数识别", 《第十三届全国非线性振动会议暨第十届全国非线性动力学和运动稳定性学术会议摘要集》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105808872A (en) * | 2016-03-15 | 2016-07-27 | 合肥工业大学 | Vehicle suspension leaf spring frequency domain fatigue analysis method |
CN108931362A (en) * | 2016-08-22 | 2018-12-04 | 安徽江淮汽车集团股份有限公司 | A kind of leaf spring bearing up-down force Bench test methods |
CN106650167A (en) * | 2017-01-03 | 2017-05-10 | 山东理工大学 | Simulated checking method for maximum limit deflection of high-strength level-one graded-stiffness leaf spring |
CN106650167B (en) * | 2017-01-03 | 2019-12-27 | 山东理工大学 | Simulation verification algorithm for maximum limiting deflection of high-strength first-level gradient stiffness plate spring |
CN107045565A (en) * | 2017-01-12 | 2017-08-15 | 王炳超 | The design method of the maximum spacing amount of deflection of high intensity two-stage progressive rate leaf spring |
CN107808047A (en) * | 2017-10-25 | 2018-03-16 | 厦门大学 | A kind of design method of the unimolecule electrical measurement device of vibration isolation configuration |
CN107808047B (en) * | 2017-10-25 | 2020-10-09 | 厦门大学 | Design method of monomolecular electrical measuring device with vibration isolation structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104156547A (en) | Method for designing optimal damping characteristics of shock absorber of vehicle steel plate spring suspension system | |
CN105092261B (en) | Road load method of testing and system | |
CN113656943B (en) | A method for extracting fatigue load spectrum of chassis components of commercial vehicles | |
CN102519692B (en) | Rigid-body mode integration test method for automobile power assembly and suspension | |
CN111241706B (en) | Automobile suspension dynamic load performance evaluation method based on dynamic K & C test system | |
CN104309435B (en) | A kind of road roughness on-line identification method | |
CN104156550A (en) | Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system | |
CN104239734A (en) | Load analysis method for four-wheel six-component road spectrum of finished automobile | |
CN104239658A (en) | Inverse solution method for nonlinear stiffness characteristic parameters and curve of suspension of air spring seat | |
CN104175920A (en) | Design method for optimal control current of vehicle seat suspension magnetorheological damper | |
CN103308327A (en) | In-loop real-time simulation test system for suspension component | |
CN113609580B (en) | Automobile interior trim abnormal sound simulation analysis system and analysis method | |
CN113607392B (en) | A spring arm durability test method and device | |
CN104455157B (en) | Obtaining method of car seat suspension hydraulic buffer nonlinear speed characteristic parameter | |
CN113722814A (en) | Vehicle ride comfort analysis method based on virtual road test | |
CN111090959A (en) | Vehicle load spectrum acquisition method and system | |
Shinde et al. | Literature review on analysis of various Components of McPherson suspension | |
CN107505139A (en) | Finished automobile fatigue testing method and device | |
CN104166778B (en) | Automobile chair guide rail contact site rigidity and damping optimization method | |
CN114818110B (en) | Front suspension flutter optimization method, front suspension flutter control method and storage medium | |
CN108228994A (en) | The calculation method for stress of vehicle and equipment under cross-country road arbitrary excitation | |
CN119203632B (en) | Static and fatigue performance research method for transverse stabilizer bar | |
CN109858120B (en) | Method and device for optimizing dynamic parameters of bogie suspension system of motor train unit | |
CN102809470A (en) | Bending test method for ladder type frame assembly of heavy automobile | |
Pathare et al. | Design and development of quarter car suspension test rig model and it’s simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhou Changcheng Inventor after: Yu Yuewei Inventor after: Song Qun Inventor after: Pan Lijun Inventor after: Zhang Yunshan Inventor before: Yu Yuewei Inventor before: Zhou Changcheng Inventor before: Song Qun Inventor before: Pan Lijun Inventor before: Zhang Yunshan |
|
COR | Change of bibliographic data | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141119 |
|
WD01 | Invention patent application deemed withdrawn after publication |