CN103102273B - A kind of purification process of organic amine electroplating additive - Google Patents
A kind of purification process of organic amine electroplating additive Download PDFInfo
- Publication number
- CN103102273B CN103102273B CN201210588714.XA CN201210588714A CN103102273B CN 103102273 B CN103102273 B CN 103102273B CN 201210588714 A CN201210588714 A CN 201210588714A CN 103102273 B CN103102273 B CN 103102273B
- Authority
- CN
- China
- Prior art keywords
- organic amine
- pole
- electroplating additive
- dense
- hydroecium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000654 additive Substances 0.000 title claims abstract description 68
- 238000009713 electroplating Methods 0.000 title claims abstract description 67
- 150000001412 amines Chemical class 0.000 title claims abstract description 65
- 238000000746 purification Methods 0.000 title claims abstract description 56
- 230000000996 additive effect Effects 0.000 title claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 106
- 238000009296 electrodeionization Methods 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000012528 membrane Substances 0.000 claims abstract description 39
- 239000012535 impurity Substances 0.000 claims abstract description 27
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000243 solution Substances 0.000 claims abstract description 21
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 17
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 15
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 15
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 8
- 238000011084 recovery Methods 0.000 claims abstract description 6
- 239000012266 salt solution Substances 0.000 claims abstract description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical group [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 69
- -1 polypropylene Polymers 0.000 claims description 24
- 229910021645 metal ion Inorganic materials 0.000 claims description 15
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 239000003014 ion exchange membrane Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 239000000706 filtrate Substances 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920001903 high density polyethylene Polymers 0.000 claims description 6
- 239000004700 high-density polyethylene Substances 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000001471 micro-filtration Methods 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- 239000012498 ultrapure water Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 3
- 229920001774 Perfluoroether Polymers 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims 8
- 235000011941 Tilia x europaea Nutrition 0.000 claims 8
- 239000004571 lime Substances 0.000 claims 8
- 238000005374 membrane filtration Methods 0.000 claims 2
- 238000005457 optimization Methods 0.000 claims 2
- 238000010926 purge Methods 0.000 claims 2
- 239000004793 Polystyrene Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- ZACYQVZHFIYKMW-UHFFFAOYSA-N iridium titanium Chemical compound [Ti].[Ir] ZACYQVZHFIYKMW-UHFFFAOYSA-N 0.000 claims 1
- 239000003607 modifier Substances 0.000 claims 1
- 229940061584 phosphoramidic acid Drugs 0.000 claims 1
- 229920002223 polystyrene Polymers 0.000 claims 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims 1
- 150000001450 anions Chemical class 0.000 abstract description 27
- 150000001768 cations Chemical class 0.000 abstract description 20
- 238000005341 cation exchange Methods 0.000 abstract description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000003957 anion exchange resin Substances 0.000 description 10
- 239000003729 cation exchange resin Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- 238000000909 electrodialysis Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002479 acid--base titration Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229940063583 high-density polyethylene Drugs 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- RJSCZBRDRBIRHP-UHFFFAOYSA-N n,n-diethylprop-1-yn-1-amine Chemical compound CCN(CC)C#CC RJSCZBRDRBIRHP-UHFFFAOYSA-N 0.000 description 2
- 238000013386 optimize process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- HBGPNLPABVUVKZ-POTXQNELSA-N (1r,3as,4s,5ar,5br,7r,7ar,11ar,11br,13as,13br)-4,7-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1h-cyclopenta[a]chrysen-9-one Chemical compound C([C@@]12C)CC(=O)C(C)(C)[C@@H]1[C@H](O)C[C@]([C@]1(C)C[C@@H]3O)(C)[C@@H]2CC[C@H]1[C@@H]1[C@]3(C)CC[C@H]1C(=C)C HBGPNLPABVUVKZ-POTXQNELSA-N 0.000 description 1
- PFRGGOIBYLYVKM-UHFFFAOYSA-N 15alpha-hydroxylup-20(29)-en-3-one Natural products CC(=C)C1CCC2(C)CC(O)C3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC34C)C12 PFRGGOIBYLYVKM-UHFFFAOYSA-N 0.000 description 1
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- JZTPOMIFAFKKSK-UHFFFAOYSA-N O-phosphonohydroxylamine Chemical compound NOP(O)(O)=O JZTPOMIFAFKKSK-UHFFFAOYSA-N 0.000 description 1
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 description 1
- SOKRNBGSNZXYIO-UHFFFAOYSA-N Resinone Natural products CC(=C)C1CCC2(C)C(O)CC3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC34C)C12 SOKRNBGSNZXYIO-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- BSXVKCJAIJZTAV-UHFFFAOYSA-L copper;methanesulfonate Chemical compound [Cu+2].CS([O-])(=O)=O.CS([O-])(=O)=O BSXVKCJAIJZTAV-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012905 visible particle Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明公开了一种有机胺类电镀添加剂的纯化方法,通过电去离子装置去除有机胺类电镀添加剂中的阴阳离子杂质;电去离子装置两端分别设有端板,端板上分别设有与直流电源相连的阴极或阳极,两块端板之间依次交替设置有若干平行的纯化室和浓水室,每个纯化室和浓水室之间分别通过阳离子交换膜或阴离子交换膜隔开;纯化室内填充有离子交换树脂,浓水室和极水室中分别加有0.3%-1%浓度的有机铵盐溶液;纯化室流量为1-100L/h,浓水室和极水室流量为1-100L/h;直流电源的电压为0-100V,纯化过程电压恒定并保持溶液温度为20-70℃;纯化后有机胺类电镀添加剂的回收率大于80%。本发明提供的有机胺类电镀添加剂的纯化方法,工艺简单易控,且纯化程度能够达到精细电子级标准。
The invention discloses a method for purifying organic amine electroplating additives. The anion and cation impurities in organic amine electroplating additives are removed through an electrodeionization device; The cathode or anode connected to the DC power supply, several parallel purification chambers and concentrated water chambers are arranged alternately between the two end plates, and each purification chamber and concentrated water chamber are separated by cation exchange membranes or anion exchange membranes ;The purification chamber is filled with ion exchange resin, and the concentrated water chamber and the extreme water chamber are respectively filled with organic ammonium salt solution with a concentration of 0.3%-1%; the flow rate of the purification chamber is 1-100L/h, and the flow rate of the concentrated water chamber and the extreme water chamber 1-100L/h; the voltage of the DC power supply is 0-100V, the voltage of the purification process is constant and the temperature of the solution is kept at 20-70°C; the recovery rate of organic amine electroplating additives after purification is greater than 80%. The purification method of the organic amine electroplating additive provided by the invention has a simple and easy-to-control process, and the purification degree can reach the fine electronic grade standard.
Description
技术领域 technical field
本发明涉及一种有机胺类化合物的提纯方法,具体地,涉及一种有机胺类电镀添加剂的纯化方法,主要针对工业级和电子级有机胺类电镀添加剂中金属离子杂质和阴离子杂质的去除。 The invention relates to a method for purifying organic amine compounds, in particular to a method for purifying organic amine electroplating additives, mainly aimed at the removal of metal ion impurities and anion impurities in industrial-grade and electronic-grade organic amine electroplating additives.
背景技术 Background technique
有机胺类电镀添加剂是指在高纯硫酸铜或高纯甲基磺酸铜电镀中所使用的关键添加剂,例如:三乙醇胺,三异丙醇胺,二甘醇胺,三亚乙基二胺,N,N-二乙基丙炔胺,四甲基氢氧化铵等。其通式如下所示: Organic amine electroplating additives refer to the key additives used in high-purity copper sulfate or high-purity copper methanesulfonate electroplating, such as: triethanolamine, triisopropanolamine, diglycolamine, triethylenediamine, N, N-diethylpropynylamine, tetramethylammonium hydroxide, etc. Its general formula is as follows:
R1-R3代表H或者1-10个碳链的烷基、烯基、炔基、烷氧基、烷醇基、乙酰基、苄基等。 R 1 -R 3 represent H or 1-10 carbon chain alkyl, alkenyl, alkynyl, alkoxy, alkanol, acetyl, benzyl, etc.
有机胺类电镀添加剂,以四甲基氢氧化铵(TMAH)、三乙醇胺等为例,属于有机碱,在工业科研领域有着极为广泛的用途,例如:四甲基氢氧化铵主要被用在有机硅系列产品的催化剂以及聚酯类聚合物、纺织、塑料制品、食品、皮革、木材加工等领域。随着电子产业的发展,这些有机胺类化合物也可以作为极优良的电镀添加剂应用于半导体产业。例如:中国专利CN10381313报道了一种电镀添加剂N,N-二乙基丙炔胺的合成方法,中国专利CN101298688A使用胺类化合物作为电子电镀液的主要添加剂。目前,国内生产的有机胺类化合物多以工业级为主,并且市售的工业级有机胺类化合物会含有较多的金属离子杂质和阴离子杂质,不适合应用于电子电镀领域,尤其是半导体晶圆的电镀中。以四甲基氢氧化铵为例,现对一种商业的工业级四甲基氢氧化铵样品进行微量金属分析,分析报告见表1.Na,K,Ca,Cr,Cu,Mn,Mg,Ni,Zn,Pb,Fe,Al,Ag金属离子含量采用ICP-AES法测定,并用ppb(1ppb=1μg/kg)表示。同时,工业级TMAH中的氯离子和碳酸根离子使用DIONEXDX120双通道离子色谱检测,结果参见表1,其中显示TMAH中金属离子浓度、氯离子和碳酸根离子浓度都超过了精细电子级(SEMIStandardC46-0306)级别的标准。 Organic amine electroplating additives, such as tetramethylammonium hydroxide (TMAH) and triethanolamine, belong to organic bases and have a very wide range of uses in the field of industrial scientific research. For example, tetramethylammonium hydroxide is mainly used in organic Catalysts for silicon series products and polyester polymers, textiles, plastic products, food, leather, wood processing and other fields. With the development of the electronics industry, these organic amine compounds can also be used as excellent electroplating additives in the semiconductor industry. For example: Chinese patent CN10381313 reports a method for synthesizing electroplating additive N,N-diethylpropynylamine, and Chinese patent CN101298688A uses amine compounds as the main additives of electronic electroplating solutions. At present, most of the domestically produced organic amine compounds are of industrial grade, and commercially available industrial-grade organic amine compounds contain more metal ion impurities and anion impurities, which are not suitable for application in the field of electronic electroplating, especially for semiconductor crystal Round plating. Taking tetramethylammonium hydroxide as an example, a commercial industrial-grade tetramethylammonium hydroxide sample is now analyzed for trace metals. The analysis report is shown in Table 1. Na, K, Ca, Cr, Cu, Mn, Mg, The contents of Ni, Zn, Pb, Fe, Al, Ag metal ions are determined by ICP-AES method and expressed in ppb (1ppb=1μg/kg). At the same time, chloride ions and carbonate ions in industrial-grade TMAH were detected using DIONEXDX120 dual-channel ion chromatography. The results are shown in Table 1, which shows that the concentration of metal ions, chloride ions and carbonate ions in TMAH exceeds that of fine electronic grade (SEMIStandardC46- 0306) level standards.
表1市售的一种工业级TMAH原料中的阴阳离子杂质含量。 Table 1 shows the content of anion and cation impurities in a commercially available technical-grade TMAH raw material.
众所周知,当IC晶片受到Fe、Cu、Na等金属离子污染时,会导致OISF(Oxidation-InducedStackingFaults,氧化诱生层错)的产生,因而增加p-n结合的漏电流,降低少数载流子的寿命。所以开发一种好的方法来提纯有机胺类电镀添加剂,以使其更符合高度精密的半导体器件的使用是迫切需要解决的问题。目前,对于有机胺类化合物的提纯研究多集中于精馏法或电解法,例如:U.S.Pat.NO.4,714,530就开发出一种利用电解法提纯TMAH的方法。但是都没有能很好的提出一种通用的,简便的,绿色环保的有机胺类化合物提纯方案。 As we all know, when IC chips are polluted by metal ions such as Fe, Cu, and Na, OISF (Oxidation-Induced Stacking Faults, Oxidation-Induced Stacking Faults) will be generated, thus increasing the leakage current of p-n combination and reducing the lifetime of minority carriers. Therefore, it is an urgent problem to develop a good method to purify organic amine electroplating additives to make them more suitable for the use of highly precise semiconductor devices. At present, most of the researches on the purification of organic amines focus on rectification or electrolysis. For example, U.S. Pat. No. 4,714,530 has developed a method for purifying TMAH by electrolysis. However, none of them have been able to propose a general, simple, green and environmentally friendly purification scheme for organic amine compounds.
电去离子技术(ElectroDeionization)简称EDI技术,能够将电渗析技术和离子交换树脂技术有机的结合在一起,兼具有电渗析技术的连续脱盐和离子交换树脂的深度脱盐的优点,还可以避免电渗析技术浓差极化和离子交换树脂的酸碱再生问题。通常,EDI技术都是用于高纯水的生产,中国专利CNCN201770477U中发明了一种制备超净高纯H2O2的EDI生产装置,此外,中国专利CN101993387A中使用精馏和EDI相结合的方法提纯电子级N,N-二甲基甲酰胺,但是把其应用于有机胺类电镀添加剂的提纯尚未有相关文献报道。 Electrodeionization technology (ElectroDeionization), referred to as EDI technology, can organically combine electrodialysis technology and ion exchange resin technology, and has the advantages of continuous desalination of electrodialysis technology and deep desalination of ion exchange resin, and can avoid electrolysis Concentration polarization of dialysis technology and acid-base regeneration of ion exchange resin. Usually, EDI technology is used for the production of high-purity water. In the Chinese patent CNCN201770477U, an EDI production device for preparing ultra-clean and high-purity H 2 O 2 was invented. In addition, in the Chinese patent CN101993387A, the method of combining rectification and EDI is used for purification Electronic grade N,N-dimethylformamide, but its application to the purification of organic amine electroplating additives has not been reported in the literature.
发明内容 Contents of the invention
本发明的目的是提供一种用于去除工业级有机胺类电镀添加剂中的金属离子和氯离子杂质,提供一种工艺简单,条件易于控制,环保绿色的提纯方法,所得的有机胺添加剂溶液中每种金属离子和阴离子杂质含量能够达到精细电子级标准,以克服现有技术杂质含量高,质量控制不稳定等缺点。 The purpose of the present invention is to provide a method for removing metal ions and chloride ion impurities in industrial-grade organic amine electroplating additives, and to provide a purification method with simple process, easy control of conditions, and environmental protection and greenness. In the obtained organic amine additive solution, The impurity content of each metal ion and anion can reach the fine electronic grade standard, so as to overcome the shortcomings of the prior art such as high impurity content and unstable quality control.
为了达到上述目的,本发明提供了一种有机胺类电镀添加剂的纯化方法,其中,该方法是通过电去离子装置去除有机胺类电镀添加剂中的阴阳离子杂质;所述的电去离子装置两端分别设有端板,一块端板上设有与直流电源相连的阴极,另一块端板上设有与直流电源相连的阳极,两块端板的内侧分别设有一个极水室,两个极水室之间依次交替设置有若干平行的纯化室和浓水室,每个纯化室和浓水室之间分别通过阳离子交换膜或阴离子交换膜隔开;所述的阳离子交换膜和阴离子交换膜交替设置使每个纯化室靠近阳极端板的一侧为阳离子交换膜、靠近阴极端板的一侧为阴离子交换膜;所述的纯化室内填充有阴离子交换树脂和阳离子交换树脂的混合物;所述的浓水室和极水室中分别加有0.3%-1%浓度的有机铵盐溶液作为电解质;所述的纯化室的液体流量为1-100L/h,浓水室和极水室流量为1-100L/h;直流电源的初始电压为0-100V,纯化过程中电压恒定并保持溶液温度为20-70℃;纯化后的有机胺类电镀添加剂的回收率大于80%。 In order to achieve the above object, the present invention provides a method for purifying organic amine electroplating additives, wherein the method is to remove anion and cation impurities in organic amine electroplating additives through an electrodeionization device; End plates are respectively provided at one end plate, a cathode connected to a DC power supply is provided on one end plate, an anode connected to a DC power supply is provided on the other end plate, an electrode water chamber is provided on the inner side of the two end plates, and two A number of parallel purification chambers and concentrated water chambers are arranged alternately between the extreme water chambers, and each purification chamber and concentrated water chamber are separated by a cation exchange membrane or an anion exchange membrane; the cation exchange membrane and the anion exchange The membranes are arranged alternately so that the side of each purification chamber near the anode end plate is a cation exchange membrane, and the side near the cathode end plate is an anion exchange membrane; the purification chamber is filled with a mixture of anion exchange resin and cation exchange resin; The concentrated water chamber and the polar water chamber are respectively added with 0.3%-1% organic ammonium salt solution as the electrolyte; the liquid flow rate of the purification chamber is 1-100L/h, and the flow rate of the concentrated water chamber and the polar water chamber is 1-100L/h; the initial voltage of the DC power supply is 0-100V, the voltage is constant during the purification process and the solution temperature is kept at 20-70°C; the recovery rate of the purified organic amine electroplating additive is greater than 80%.
在电场作用下,阴阳离子分别通过离子交换膜进行迁移,使纯化室中的杂质离子减少,从而达到提纯有机胺类化合物的效果。同时对于有机铵盐类化合物,由于有机铵盐的浓度是杂质离子浓度的105-106倍,少量的有机铵盐在电场的作用下的解离损失,可以忽略不计,同时进入浓水室中的有机铵盐可以在进入工业生产系统进行回收利用,从而降低成本。 Under the action of an electric field, anions and cations migrate through the ion exchange membrane, reducing impurity ions in the purification chamber, thereby achieving the effect of purifying organic amine compounds. At the same time, for organic ammonium salt compounds, since the concentration of organic ammonium salt is 10 5 -10 6 times the concentration of impurity ions, the dissociation loss of a small amount of organic ammonium salt under the action of electric field can be ignored, and at the same time enter the concentrated water chamber The organic ammonium salt in it can be recycled after entering the industrial production system, thereby reducing the cost.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的阴离子交换膜为聚乙烯、聚丙烯、聚氯乙烯、聚醚或含氟高聚合物其中之一的异相或均相离子交换膜,所述的阳离子交换膜为异相离子交换膜、聚乙烯均相离子交换膜、磺酸膜或全氟磺酸膜的其中之一。 The above-mentioned method for purifying organic amine electroplating additives, wherein the anion exchange membrane is a heterogeneous or homogeneous ion exchange membrane of one of polyethylene, polypropylene, polyvinyl chloride, polyether or fluorine-containing high polymer , the cation exchange membrane is one of heterogeneous ion exchange membrane, polyethylene homogeneous ion exchange membrane, sulfonic acid membrane or perfluorosulfonic acid membrane.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的阴离子交换树脂和阳离子交换树脂包括苯乙烯系的离子交换树脂,聚丙烯酸系的离子交换树脂,氨基磷酸或亚氨基二乙酸螯合树脂中的一种。 The purification method of the above-mentioned organic amine electroplating additive, wherein, described anion exchange resin and cation exchange resin comprise styrene-based ion-exchange resin, polyacrylic acid-based ion-exchange resin, aminophosphoric acid or iminodiacetic acid chelating resin One of.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的阴交换树脂和阳离子交换树脂的比例为10:1至1:10,优选为1:4至2:3。 The above-mentioned method for purifying organic amine electroplating additives, wherein the ratio of the anion exchange resin to the cation exchange resin is 10:1 to 1:10, preferably 1:4 to 2:3.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的阴极和阳极采用石墨、316L不锈钢、钛、铂或镀铱钛板中的一种,优选镀铱钛丝网板。在直流电场作用下,工业级有机胺类电镀添加剂中的阴阳离子杂质分别通过二侧的阴阳离子膜进入浓水室,从而达到提纯目的。 The method for purifying the above-mentioned organic amine electroplating additives, wherein the cathode and the anode use one of graphite, 316L stainless steel, titanium, platinum or iridium-plated titanium plate, preferably iridium-plated titanium wire mesh plate. Under the action of a DC electric field, the anion and cation impurities in the industrial-grade organic amine electroplating additives enter the concentrated water chamber through the anion and cation membranes on both sides respectively, so as to achieve the purpose of purification.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的浓水室和极水室的四周外侧分别设有隔板,并通过隔板与整个电去离子装置固定;所述的电去离子装置的各个连接处分别通过硅橡胶垫片密封。 The above-mentioned method for purifying organic amine electroplating additives, wherein, the outside of the concentrated water chamber and the polar water chamber are respectively provided with partitions, and are fixed with the entire electrodeionization device through the partitions; the electrodeionization Each joint of the device is sealed with a silicone rubber gasket.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的电去离子装置还包含有机胺类电镀添加剂的进料口与出料口、浓水/极水入口、浓水出口以及极水出口,分别与纯化室上方与下方、极水室和浓水室的上方、浓水室的下方以及极水室的下方相连。 The above-mentioned method for purifying organic amine electroplating additives, wherein, the electrodeionization device further includes a feed port and a discharge port of organic amine electroplating additives, a concentrated water/polar water inlet, a concentrated water outlet, and a polar water outlet , are respectively connected with the upper and lower parts of the purification chamber, the upper part of the polar water chamber and the concentrated water chamber, the lower part of the concentrated water chamber and the lower part of the polar water chamber.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的电去离子装置的浓水/极水入口、浓水出口、极水出口以及有机胺类电镀添加剂的进料口与出料口上分别连有输送管,输送管上分别设有闸阀;与进料口相连的输送管上由进料口向外还依次设有第一压力表、安全阀、第一流量计以及原料泵;与浓水/极水入口相连的输送管上由浓水/极水入口向外依次还设有第二压力表、第二流量计以及浓水/极水泵;与出料口相连的输送管上由出料口向外还依次设有第三压力表、第三流量计以及取样阀;与浓水出口相连的输送管上由浓水出口向外还依次设有第四压力表、闸阀以及浓水循环泵,该输送管的另一端分别与第二流量计和浓水/极水泵之间的输送管以及浓水排放槽相连。 The method for purifying the above-mentioned organic amine electroplating additives, wherein, the concentrated water/polar water inlet, the concentrated water outlet, the polar water outlet, and the inlet and outlet of the organic amine electroplating additives of the electrodeionization device are respectively It is connected with a conveying pipe, and gate valves are respectively arranged on the conveying pipe; the conveying pipe connected with the feed inlet is also provided with a first pressure gauge, a safety valve, a first flow meter and a raw material pump in sequence from the feed inlet to the outside; A second pressure gauge, a second flow meter, and a concentrated water/polar water pump are provided on the delivery pipe connected to the water/polar water inlet from the concentrated water/polar water inlet to the outside; A third pressure gauge, a third flow meter and a sampling valve are arranged in sequence outward from the feed port; a fourth pressure gauge, a gate valve and a concentrated water circulation pump are arranged in sequence from the concentrated water outlet outward on the conveying pipe connected to the concentrated water outlet. , the other end of the conveying pipe is respectively connected with the conveying pipe between the second flow meter and the concentrated water/polar water pump and the concentrated water discharge tank.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的方法包含:步骤1,进行电去离子装置组装以及离子交换树脂的填充;步骤2,过滤有机胺类电镀添加剂原料溶液,滤去颗粒物、纤维状杂质等,滤液里透明清亮状,无肉眼可见颗粒物,然后将滤液稀释至pH值为10-13.5,泵入电去离子装置;步骤3,浓水室和极水室中加入0.3%-1%浓度的有机铵盐溶液做电解质;步骤4,原料泵、浓水/极水泵以及浓水循环泵同时启动运行,进行循环式电去离子过程;步骤5,改变装置材料和反应条件,记录电去离子装置达到稳态运行时的纯化室内有机胺类电镀添加剂溶液中杂质金属离子和阴离子浓度,以确定优化的工艺条件,例如以10伏为一个梯度,从0伏逐级增加操作电压至100V,记录每个操作电压下的纯化室内杂质的离子浓度,还可以考察电流以及浓水中金属离子浓度等参数值;步骤6,以步骤5确定的优化工艺条件进行有机胺类电镀添加剂纯化,在该纯化过程中通过测温仪检测原料溶液温度,控制温度不高于20℃-70℃,优选45℃-60℃;同时每隔15分钟对出料取样一次,检测其中杂质的阴阳离子浓度,当样品中的阴阳离子浓度达到精细电子级的标准要求后,对纯化后的有机胺类电镀添加剂溶液进行收集;步骤7,纯化后的有机胺类电镀添加剂溶液再经0.1-0.22μm微滤膜过滤获得最终产品,为了保证产品质量不受到空气等环境的影响,该过滤过程在100级超净环境中进行。浓水室中的有机铵盐溶液可以回收重复利用。该方法还可以进一步包含步骤8,纯化后的有机胺类电镀添加剂通过减压蒸馏的方式脱水浓缩。 The above method for purifying organic amine electroplating additives, wherein the method includes: step 1, assembling an electrodeionization device and filling ion exchange resin; step 2, filtering the raw material solution of organic amine electroplating additives, and filtering out particulate matter , fibrous impurities, etc., the filtrate is transparent and clear, without visible particles, and then the filtrate is diluted to a pH value of 10-13.5, and pumped into the electrodeionization device; Step 3, add 0.3% Organic ammonium salt solution with a concentration of -1% is used as electrolyte; step 4, the raw material pump, concentrated water/polar water pump and concentrated water circulation pump are started at the same time, and a cyclic electrodeionization process is performed; step 5, change the device material and reaction conditions, and record The concentration of impurity metal ions and anions in the organic amine electroplating additive solution in the purification chamber when the electrodeionization device reaches a steady state operation is used to determine the optimized process conditions, for example, with a gradient of 10 volts, the operating voltage is gradually increased from 0 volts to 100V, record the ion concentration of impurities in the purification chamber under each operating voltage, and also investigate the current and the concentration of metal ions in the concentrated water and other parameter values; step 6, carry out the purification of organic amine electroplating additives with the optimized process conditions determined in step 5. During the purification process, the temperature of the raw material solution is detected by a thermometer, and the temperature is controlled not to be higher than 20°C-70°C, preferably 45°C-60°C; at the same time, the discharge is sampled every 15 minutes to detect the anion and cation concentrations of impurities in it. When the concentration of anions and cations in the sample reaches the standard requirements of the fine electronic grade, the purified organic amine electroplating additive solution is collected; step 7, the purified organic amine electroplating additive solution is then passed through a 0.1-0.22 μm microfiltration membrane The final product is obtained by filtration. In order to ensure that the product quality is not affected by the environment such as air, the filtration process is carried out in a 100-level ultra-clean environment. The organic ammonium salt solution in the concentrated water chamber can be recycled and reused. The method may further include step 8, wherein the purified organic amine electroplating additive is dehydrated and concentrated by vacuum distillation.
上述的有机胺类电镀添加剂的纯化方法,其中,所述的电去离子装置为厚室混床电去离子装置,薄室混床电去离子装置,分层床电去离子装置,分床电去离子装置或双极膜电去离子装置的其中一种。 The above purification method of organic amine electroplating additives, wherein, the electrodeionization device is a thick chamber mixed bed electrodeionization device, a thin chamber mixed bed electrodeionization device, a layered bed electrodeionization device, a separate bed electrodeionization device One of a deionization unit or a bipolar membrane electrodeionization unit.
本发明提供的有机胺类电镀添加剂的纯化方法具有以下优点: The purification method of the organic amine electroplating additive provided by the invention has the following advantages:
本发明提供了一种提纯效果好,能耗低,能连续化生产电子级纯度有机胺类电镀添加剂的生产工艺。可以很好降低有机胺类电镀添加剂中金属离子含量和阴离子含量,提纯后的有机胺类电镀添加剂达到精细电子级标准。 The invention provides a production process with good purification effect, low energy consumption and continuous production of electronic-grade purity organic amine electroplating additives. It can well reduce the content of metal ions and anions in the organic amine electroplating additives, and the purified organic amine electroplating additives can reach the standard of fine electronic grade.
利用电去离子技术把电渗析与离子交换有机地结合起来的特点,既保留了电渗析法可以连续去除阴阳离子杂质离子和离子交换树脂可以深度去除阴阳离子杂质的优点,又克服了电渗析法不能深度去除阴阳离子杂质以及浓度极化所造成的不良影响。 The characteristics of organically combining electrodialysis and ion exchange by using electrodeionization technology not only retains the advantages of electrodialysis can continuously remove anion and cation impurity ions and ion exchange resin can deeply remove anion and cation impurities, but also overcomes electrodialysis. It cannot deeply remove anion and cation impurities and adverse effects caused by concentration polarization.
该提纯方法不仅可以有效的将工业级有机胺类电镀添加剂提纯到电子级,并且能耗低、绿色环保,占地面积,可以有效减少工业三废的排放,适合大规模工业化生产。因此本发明有良好的适应性及市场前景。 The purification method can not only effectively purify industrial-grade organic amine electroplating additives to electronic grade, but also has low energy consumption, is green and environmentally friendly, occupies an area, can effectively reduce the discharge of industrial three wastes, and is suitable for large-scale industrial production. Therefore the present invention has good adaptability and market prospect.
附图说明 Description of drawings
图1为本发明的有机胺类电镀添加剂的纯化方法的电去离子装置示意图。 Fig. 1 is the schematic diagram of the electrodeionization device of the purification method of the organic amine electroplating additive of the present invention.
图2为本发明的有机胺类电镀添加剂的纯化方法的设备连接示意图。 Fig. 2 is a schematic diagram of equipment connection of the purification method of the organic amine electroplating additive of the present invention.
具体实施方式 detailed description
以下结合附图对本发明的具体实施方式作进一步地说明。 The specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
本发明提供的有机胺类电镀添加剂的纯化方法,通过电去离子装置15去除有机胺类电镀添加剂中的阴阳离子杂质。 The method for purifying organic amine electroplating additives provided by the present invention uses an electrodeionization device 15 to remove anion and cation impurities in organic amine electroplating additives.
电去离子(EDI)装置15含2对电极,30对离子交换膜,膜尺寸为200mm×100mm。阴离子交换膜12为聚乙烯、聚丙烯、聚氯乙烯、聚醚或含氟高聚合物等异相或均相离子交换膜,阳离子交换膜11为异相离子交换膜,聚乙烯均相离子交换膜,磺酸膜或全氟磺酸膜。设计生产流量为1-100L/h。 Electrodeionization (EDI) device 15 includes 2 pairs of electrodes and 30 pairs of ion exchange membranes, the size of which is 200mm×100mm. The anion exchange membrane 12 is a heterogeneous or homogeneous ion exchange membrane such as polyethylene, polypropylene, polyvinyl chloride, polyether or fluorine-containing high polymer, and the cation exchange membrane 11 is a heterogeneous ion exchange membrane. membrane, sulfonic acid membrane or perfluorosulfonic acid membrane. The designed production flow is 1-100L/h.
如图1所示,EDI装置15两端分别设有端板8,一块端板8上设有与直流电源相连的阴极1,另一块端板8上设有与直流电源相连的阳极2,两块端板8的内侧分别设有一个极水室9,两个极水室9之间依次交替设置有平行的纯化室7和浓水室10,每个纯化室7和浓水室10之间分别通过阳离子交换膜11或阴离子交换膜12隔开。阳离子交换膜11和阴离子交换膜12交替设置使每个纯化室7靠近阳极2端板8的一侧为阳离子交换膜11、靠近阴极1端板8的一侧为阴离子交换膜12。 As shown in Figure 1, the two ends of the EDI device 15 are respectively provided with end plates 8, one end plate 8 is provided with a cathode 1 connected with a DC power supply, and the other end plate 8 is provided with an anode 2 connected with a DC power supply, both The inner side of the block end plate 8 is respectively provided with a polar water chamber 9, between the two polar water chambers 9, parallel purification chambers 7 and concentrated water chambers 10 are arranged alternately in sequence, between each purification chamber 7 and concentrated water chamber 10 Separated by cation exchange membrane 11 or anion exchange membrane 12 respectively. Cation exchange membranes 11 and anion exchange membranes 12 are arranged alternately so that the side of each purification chamber 7 close to the end plate 8 of the anode 2 is the cation exchange membrane 11 and the side close to the end plate 8 of the cathode 1 is the anion exchange membrane 12 .
纯化室7内混合或分层填充阴离子交换树脂和阳离子交换树脂,所用的树脂包括苯乙烯系的离子交换树脂,聚丙烯酸系的离子交换树脂,氨基膦酸和亚氨基二乙酸螯合树脂。混床树脂中阴离子交换树脂和阳离子交换树脂的比例为10:1至1:10,优选1:4至2:3。 The anion exchange resin and cation exchange resin are mixed or layered in the purification chamber 7, and the used resins include styrene-based ion-exchange resin, polyacrylic acid-based ion-exchange resin, aminophosphonic acid and iminodiacetic acid chelating resin. The ratio of anion exchange resin to cation exchange resin in the mixed bed resin is 10:1 to 1:10, preferably 1:4 to 2:3.
使用石墨、316L不锈钢、钛、铂、镀铱钛板中的一种作为阳极2和阴极1,优选镀铱钛丝网板。在直流电场作用下,工业级有机胺类电镀添加剂中的阴阳离子杂质分别通过两侧的阳离子交换膜11或阴离子交换膜12进入浓水室10,从而达到提纯目的。 One of graphite, 316L stainless steel, titanium, platinum, and iridium-plated titanium plate is used as the anode 2 and the cathode 1, preferably an iridium-plated titanium wire mesh plate. Under the action of a DC electric field, anion and cation impurities in industrial-grade organic amine electroplating additives enter the concentrated water chamber 10 through the cation exchange membrane 11 or anion exchange membrane 12 on both sides respectively, so as to achieve the purpose of purification.
浓水室10和阳离子交换膜11或阴离子交换膜12之间使用PP(Polypropylene,聚丙烯)材质的隔板13隔开,隔板13通过螺丝等方式与整个EDI装置15固定。整个EDI装置15的结合部位均使用硅橡胶垫片进行密封,防止料液的渗漏。 The concentrated water chamber 10 is separated from the cation exchange membrane 11 or anion exchange membrane 12 by a PP (Polypropylene, polypropylene) partition 13, and the partition 13 is fixed to the entire EDI device 15 by means of screws or the like. The joints of the entire EDI device 15 are sealed with silicon rubber gaskets to prevent leakage of the feed liquid.
EDI装置15还包含有机胺类电镀添加剂的进料口3与出料口4、浓水/极水入口5、浓水出口6以及极水出口14,分别与纯化室7上方与下方、极水室9和浓水室10的上方、浓水室10的下方以及极水室9的下方相连。 The EDI device 15 also includes a feed port 3 and a discharge port 4 of organic amine electroplating additives, a concentrated water/polar water inlet 5, a concentrated water outlet 6, and a polar water outlet 14, respectively connected to the upper and lower parts of the purification chamber 7, the polar water The upper part of the chamber 9 and the concentrated water chamber 10 , the lower part of the concentrated water chamber 10 and the lower part of the polar water chamber 9 are connected.
如图2所示,EDI装置15的浓水/极水入口5、浓水出口6、极水出口14以及有机胺类电镀添加剂的进料口3与出料口4上分别连有输送管16,输送管16上分别设有闸阀17;与进料口3相连的输送管16上由进料口3向外还依次设有第一压力表18、安全阀19、第一流量计20以及原料泵21;与浓水/极水入口5相连的输送管16上由浓水/极水入口5向外依次还设有第二压力表22、第二流量计23以及浓水/极水泵24;与出料口4相连的输送管16上由出料口4向外还依次设有第三压力表25、第三流量计26以及取样阀27;与浓水出口6相连的输送管16上由浓水出口6向外还依次设有第四压力表28以及浓水循环泵29,该输送管16的另一端分别与第二流量计23和浓水/极水泵24之间的输送管16以及浓水排放槽30相连。 As shown in Figure 2, the concentrated water/polar water inlet 5, the concentrated water outlet 6, the polar water outlet 14 of the EDI device 15, and the feed port 3 and the discharge port 4 of the organic amine electroplating additive are respectively connected with a delivery pipe 16 , the delivery pipe 16 is respectively provided with a gate valve 17; the delivery pipe 16 connected to the feed port 3 is also provided with a first pressure gauge 18, a safety valve 19, a first flow meter 20 and a raw material Pump 21; a second pressure gauge 22, a second flow meter 23 and a concentrated water/polar water pump 24 are provided on the delivery pipe 16 connected to the concentrated water/polar water inlet 5 outwardly from the concentrated water/polar water inlet 5; A third pressure gauge 25, a third flowmeter 26 and a sampling valve 27 are also arranged in sequence from the outlet 4 outwards on the delivery pipe 16 connected to the discharge port 4; Concentrated water outlet 6 is also provided with a fourth pressure gauge 28 and a concentrated water circulation pump 29 in sequence. The water discharge tanks 30 are connected.
现以四甲基氢氧化铵提纯为例,对提纯工艺进行说明。将工业级TMAH使用超纯水配制成浓度1%-25%的溶液,浓度优选2.38%-25%。然后使用0.22-5μm孔径的微滤膜过滤溶液,微滤膜的材质为PP,PFA(Polyfluoroalkoxy,全氟烷氧基树脂),PTFE(Polytetrafluoroethene,聚四氟乙烯),HDPE(HighDensityPolyethylene,高密度聚乙烯)等耐酸碱的材料,优选PP。通过原料泵21控制TMAH流量为6-100L/h,整个输送管16系统的材质为PP、PFA、PTFE、HDPE等耐酸碱的材料,优选PP。EDI装置15安装好阳离子交换膜11和阴离子交换膜12,纯化室7按混床或分层床方式填充阴离子交换树脂和阳离子交换树脂,打开浓水/极水泵24以及浓水循环泵29,纯化室7流量设为1-100L/h,浓水室10和极水室9流量设为1-100L/h,设定初始电压为0-100V,优选30-90V,打开直流电源,进行电去离子操作,操作最佳温度在45℃-60℃,大约运行60-300min后,打开取样阀27取样使用电感耦合原子发射光谱仪ICP-AES(ThermoFisher公司)和DIONEXDX120双通道离子色谱检测检测提纯后的TMAH中的阴阳离子杂质(金属离子,氯离子和碳酸根离子)的浓度。当检测结果达到SEMI标准后,即可停止EDI操作,收集样品,否则,继续进行EDI操作,直至阴阳离子杂质的浓度达到电子级标准。在生产过程中,浓水室10的液体定期进行阴阳离子浓度监控和TMAH浓度监控,必要时进行新鲜液体的替换补充。最后,提纯的TMAH再经0.1μm-0.22μm微滤膜过滤获得最终产品,如果TMAH浓度经酸碱滴定后小于25%,可进行减压蒸馏除水操作来浓缩TMAH达到25%浓度。 Now take the purification of tetramethylammonium hydroxide as an example to illustrate the purification process. The industrial grade TMAH is prepared into a solution with a concentration of 1%-25% using ultrapure water, and the concentration is preferably 2.38%-25%. Then use a microfiltration membrane with a pore size of 0.22-5 μm to filter the solution. The material of the microfiltration membrane is PP, PFA (Polyfluoroalkoxy, perfluoroalkoxy resin), PTFE (Polytetrafluoroethene, polytetrafluoroethylene), HDPE (HighDensityPolyethylene, high-density polyethylene) Ethylene) and other acid and alkali resistant materials, preferably PP. The TMAH flow rate is controlled to be 6-100L/h by the raw material pump 21, and the material of the whole delivery pipe 16 system is acid and alkali resistant materials such as PP, PFA, PTFE, HDPE, preferably PP. EDI device 15 is equipped with cation exchange membrane 11 and anion exchange membrane 12, and the purification chamber 7 is filled with anion exchange resin and cation exchange resin according to the mixed bed or layered bed mode, and the concentrated water/polar water pump 24 and the concentrated water circulation pump 29 are turned on, and the purification chamber 7 Set the flow rate to 1-100L/h, set the flow rate of concentrated water chamber 10 and electrode water chamber 9 to 1-100L/h, set the initial voltage to 0-100V, preferably 30-90V, turn on the DC power supply, and perform electrodeionization Operation, the optimal temperature for operation is 45°C-60°C, after running for about 60-300min, open the sampling valve 27 to take samples Use inductively coupled atomic emission spectrometer ICP-AES (ThermoFisher company) and DIONEXDX120 dual-channel ion chromatography to detect and detect the purified TMAH Concentrations of anion and cation impurities (metal ions, chloride ions and carbonate ions) in the When the test result reaches the SEMI standard, the EDI operation can be stopped and the samples can be collected; otherwise, the EDI operation can be continued until the concentration of anion and cation impurities reaches the electronic grade standard. During the production process, the liquid in the concentrated water chamber 10 is regularly monitored for anion and cation concentration and TMAH concentration, and replacement and supplementation of fresh liquid is performed when necessary. Finally, the purified TMAH is filtered through a 0.1μm-0.22μm microfiltration membrane to obtain the final product. If the TMAH concentration is less than 25% after acid-base titration, vacuum distillation can be performed to remove water to concentrate TMAH to a concentration of 25%.
实施例1 Example 1
取100kg工业级五水合TMAH,使用超纯水配制25%浓度的TMAH溶液,使用2μm孔径的微滤膜过滤溶液,得澄清透明液体,将滤液装入PP材质的储液槽,使用原料泵21将TMAH输入电去离子装置15,纯化室7装有商品牌号D261强碱性苯乙烯系阴离子交换树脂和Amberlite252Na强酸性苯乙烯系阳离子交换树脂,阴、阳离子交换树脂的比例2:3(V:V),阳离子交换膜11和阴离子交换膜12分别是聚乙烯磺酸型阳离子膜3361W聚乙烯叔氨型阴离子膜3362W(上海化工水处理厂),打开直流电源,恒电压操作,设定初始电压为70V,进行电去离子操作,控制体系温度在45摄氏度以下,在EDI操作到90min时,监控到样品的阴阳离子浓度,达到SEMI标准,如表2所示,经浓度换算后,所有金属离子浓度都低于2-10ppb,氯离子浓度低于0.1ppm,碳酸根离子低于100ppm。经酸碱滴定测定得到的TMAH浓度为20.07%,不考虑水的电解分离,计算TMAH的回收率可达80.3%。 Take 100kg of industrial-grade TMAH pentahydrate, use ultrapure water to prepare a 25% concentration of TMAH solution, use a microfiltration membrane with a pore size of 2 μm to filter the solution to obtain a clear and transparent liquid, put the filtrate into a PP material storage tank, and use a raw material pump 21 The TMAH is input into the electrodeionization device 15, and the purification chamber 7 is equipped with a commercial brand D261 strong basic styrene-based anion exchange resin and Amberlite252Na strong acidic styrene-based cation exchange resin, and the ratio of the anion and cation exchange resins is 2:3 (V: V), cation exchange membrane 11 and anion exchange membrane 12 are polyethylene sulfonic acid type cation membrane 3361W polyethylene tertiary ammonia type anion membrane 3362W (Shanghai Chemical Water Treatment Plant), turn on the DC power supply, operate at constant voltage, and set the initial voltage 70V, conduct electrodeionization operation, control the temperature of the system below 45 degrees Celsius, and monitor the anion and cation concentration of the sample when the EDI operation lasts for 90 minutes, reaching the SEMI standard. As shown in Table 2, after concentration conversion, all metal ions The concentrations are all lower than 2-10ppb, the chloride ion concentration is lower than 0.1ppm, and the carbonate ion is lower than 100ppm. The concentration of TMAH obtained by acid-base titration is 20.07%, and the recovery rate of TMAH can reach 80.3% without considering the electrolytic separation of water.
实施例2 Example 2
工艺条件和设备同实施例1,不同的是EDI装置15的中的阳离子交换膜11和阴离子交换膜12改为乙丙橡胶均相阳离子膜KM乙丙橡胶均相阴离子膜AM(山东天维膜有限公司),在EDI操作到60min时,监控到样品的阴阳离子浓度,达到SEMI标准,如表2所示,所有金属离子浓度都低于2-10ppb,氯离子浓度低于0.1ppm,碳酸根离子低于100ppm。经酸碱滴定测定得到的TMAH浓度为21.67%,不考虑水的电解分离等其他因素,计算TMAH的回收率可达86.7%。 Process conditions and equipment are the same as in Example 1, except that the cation-exchange membrane 11 and anion-exchange membrane 12 in the EDI device 15 are changed into ethylene-propylene rubber homogeneous cationic membrane KM ethylene-propylene rubber homogeneous anion membrane AM (Shandong Tianwei membrane Co., Ltd.), when the EDI operation reaches 60 minutes, the anion and cation concentration of the sample is monitored and meets the SEMI standard. As shown in Table 2, the concentration of all metal ions is lower than 2-10ppb, the concentration of chloride ion is lower than 0.1ppm, and the concentration of carbonate Ions below 100ppm. The concentration of TMAH obtained by acid-base titration is 21.67%. Without considering other factors such as electrolytic separation of water, the recovery rate of TMAH can reach 86.7%.
实施例3: Example 3:
工艺条件和设备同实施例2,不同的是EDI装置15的中的离子交换树脂改为使用JK204强碱凝胶型阴离子交换树脂和D001大孔强酸性苯乙烯阳离子交换树脂以混床方式装于纯化室7,纯化室7中阴离子交换树脂和阳离子交换树脂的比例为2:3(V:V)。反应达到60min时,取样送检,经检测,如表2所示,经浓度换算后,所有金属离子浓度都低于2-10ppb,氯离子浓度低于0.1ppm,碳酸根离子低于100ppm,达到SEMI标准。经酸碱滴定测定此时的TMAH浓度为21.34%,不考虑水的电解分离等其它因素,计算得TMAH的回收率达85.4%。 Process condition and equipment are the same as embodiment 2, the difference is that the ion exchange resin in the EDI unit 15 uses JK204 strong base gel type anion exchange resin and D001 macroporous strongly acidic styrene cation exchange resin to be packed in the mixed bed mode instead Purification chamber 7, the ratio of anion exchange resin and cation exchange resin in purification chamber 7 is 2:3 (V:V). When the reaction reaches 60min, take a sample for inspection. After testing, as shown in Table 2, after concentration conversion, all metal ion concentrations are lower than 2-10ppb, chloride ion concentrations are lower than 0.1ppm, and carbonate ions are lower than 100ppm. SEMI standard. The concentration of TMAH at this time was determined to be 21.34% by acid-base titration. Without considering other factors such as electrolytic separation of water, the recovery rate of TMAH was calculated to reach 85.4%.
从上述实施例的结果可见,实施例1中TMAH达到SEMI标准所耗时间长于实施例2和实施例3,并且收率也较低,这是由于异相膜没有均相膜致密,使得浓水室中的阴阳离子容易反渗,造成操作时间延长。此外,由于均相膜的致密性好,耐压力强,不容易造成纯化室7中的TMAH渗漏,从而减少了TMAH损失率,所以在此发明中采用均相膜EDI提纯TMAH速度更快,收率更高。同时,从实施例2和实施例3的对比结果看,离子交换树脂型号的变更对实验结果影响较小。 From the results of the above examples, it can be seen that the time spent by TMAH reaching the SEMI standard in Example 1 is longer than that of Example 2 and Example 3, and the yield is also lower. The negative and positive ions in the chamber are easy to reverse osmosis, resulting in prolonged operation time. In addition, because the homogeneous membrane has good compactness and strong pressure resistance, it is not easy to cause TMAH leakage in the purification chamber 7, thereby reducing the loss rate of TMAH. Therefore, in this invention, the homogeneous membrane EDI is used to purify TMAH faster. The yield is higher. At the same time, from the comparative results of Example 2 and Example 3, the change of the ion exchange resin model has little influence on the experimental results.
表2:EDI提纯的TMAH中的阴阳离子杂质含量。 Table 2: Anion and cation impurity content in EDI purified TMAH.
表2的数据表明,通过本发明提供的TMAH纯化方法提纯的TMAH完全可以达到SEMI的电子级标准。该方法也可以很好的应用于其它有机胺类添加剂的提纯。 The data in Table 2 shows that the TMAH purified by the TMAH purification method provided by the present invention can fully meet the electronic grade standard of SEMI. This method can also be well applied to the purification of other organic amine additives.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。 Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210588714.XA CN103102273B (en) | 2012-12-29 | 2012-12-29 | A kind of purification process of organic amine electroplating additive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210588714.XA CN103102273B (en) | 2012-12-29 | 2012-12-29 | A kind of purification process of organic amine electroplating additive |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103102273A CN103102273A (en) | 2013-05-15 |
CN103102273B true CN103102273B (en) | 2016-04-27 |
Family
ID=48310508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210588714.XA Active CN103102273B (en) | 2012-12-29 | 2012-12-29 | A kind of purification process of organic amine electroplating additive |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103102273B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108176233A (en) * | 2018-03-01 | 2018-06-19 | 天津城建大学 | Novel three Room electrodialysis desalination device |
CN108392986A (en) * | 2018-05-11 | 2018-08-14 | 梁小朝 | A kind of purifying plant of tetramethyl ammonium carbonate |
CN109433279A (en) * | 2018-10-24 | 2019-03-08 | 南京元亨化工科技有限公司 | Diffusive separation device for tetramethylammonium hydroxide purifying |
CN109761818A (en) * | 2019-03-13 | 2019-05-17 | 东莞市乔科化学有限公司 | A kind of electron level polyethylene polyamine fine work, preparation method and application |
KR20230034935A (en) * | 2020-04-08 | 2023-03-10 | 다우 글로벌 테크놀로지스 엘엘씨 | Purification method of organic amines |
CA3218563A1 (en) * | 2021-05-19 | 2022-11-24 | Qi JIANG | Processes for purifying organic amines |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4925541A (en) * | 1984-07-09 | 1990-05-15 | Millipore Corporation | Electodeionization apparatus and method |
CN2375625Y (en) * | 1999-04-23 | 2000-04-26 | 徐茂豫 | Continuous electric deionizing device |
CN2402668Y (en) * | 1999-08-18 | 2000-10-25 | 中国人民解放军军事医学科学院卫生装备研究所 | Electric deionizing device |
CN101993387A (en) * | 2010-11-03 | 2011-03-30 | 天津大学 | Purifying method for electronic-grade N,N-dimethylformamide |
CN102745782A (en) * | 2012-06-20 | 2012-10-24 | 江苏科技大学 | Electrodeionization method and electrodeionization apparatus for treating low concentration ionic solution |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7658828B2 (en) * | 2005-04-13 | 2010-02-09 | Siemens Water Technologies Holding Corp. | Regeneration of adsorption media within electrical purification apparatuses |
-
2012
- 2012-12-29 CN CN201210588714.XA patent/CN103102273B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4925541A (en) * | 1984-07-09 | 1990-05-15 | Millipore Corporation | Electodeionization apparatus and method |
US4925541B1 (en) * | 1984-07-09 | 1994-08-02 | Millipore Corp | Electrodeionization apparatus and method |
CN2375625Y (en) * | 1999-04-23 | 2000-04-26 | 徐茂豫 | Continuous electric deionizing device |
CN2402668Y (en) * | 1999-08-18 | 2000-10-25 | 中国人民解放军军事医学科学院卫生装备研究所 | Electric deionizing device |
CN101993387A (en) * | 2010-11-03 | 2011-03-30 | 天津大学 | Purifying method for electronic-grade N,N-dimethylformamide |
CN102745782A (en) * | 2012-06-20 | 2012-10-24 | 江苏科技大学 | Electrodeionization method and electrodeionization apparatus for treating low concentration ionic solution |
Non-Patent Citations (4)
Title |
---|
双极膜电去离子过程制备四甲基氢氧化铵;边艳芳 等;《水处理技术》;20110228;第37卷(第2期);第35-38页 * |
电去离子过程的传质机理及其集成膜过程的研究;王建友;《天津大学博士学位论文》;20021231;正文第2-6章 * |
电去离纯水制备技术;刘红斌 等;《净水技术》;20040131;第32卷(第1期);第30-33页 * |
电去离过程膜和树脂污染特性及其控制研究;田甜;《河北工程大学硕士学位论文》;20071231;正文第2.2.1节第2-5行,第11页倒数第7-10行 * |
Also Published As
Publication number | Publication date |
---|---|
CN103102273A (en) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103102273B (en) | A kind of purification process of organic amine electroplating additive | |
CN105642121B (en) | Crude Desalting System and method | |
CN102153166B (en) | Electrodeionization (EDI) method and system dispensing with ion exchange membranes | |
CN103526224B (en) | A kind of continuous electrolysis prepares the method for high-purity tetraethyl ammonium hydroxide | |
CN205773547U (en) | A kind of Self-cleaning type electrodialysis system | |
CN203419806U (en) | Water treatment device for providing high-purity water for laboratory | |
CN105154908B (en) | Bipolar Membrane method reclaims lithium hydroxide technique from solution | |
CN109607705B (en) | Industrial water dechlorination method | |
CN103949160A (en) | Method and apparatus for resourceful treatment of glyphosate mother liquor by bipolar membrane electrodialysis integrated nanofiltration and reverse osmosis technology | |
CN110721553A (en) | System and method for removing heat-stable salt from organic amine liquid | |
CN109809964A (en) | A kind of method that adopts bipolar membrane electrodialysis system to purify neopentyl glycol | |
KR101427563B1 (en) | Seawater electrolytic apparatus | |
US3752749A (en) | Electrodialytic removal of acid from aqueous effluent | |
JP7520815B2 (en) | High-recovery electrodialysis | |
CN106582293B (en) | A carbon dioxide-assisted bipolar membrane electrodialysis system and production method for amino acid production | |
CN109641764A (en) | Regenerative ion interchange unit and its method of operation | |
CN104909503B (en) | A kind of integrated membrane process method for desalting seawater | |
KR20190079851A (en) | Electrodeionization with excellent boron removal efficiency | |
CN104630818B (en) | The method that the film continuous electrolysis of three Room two prepares high-purity benzyltrimethylammonium hydroxide | |
CN212151922U (en) | System for utilize electrodialysis utilization strong brine | |
CN104370349B (en) | For purifying the device of the waste water and gas that contains low-concentration heavy metal ions | |
CN203079724U (en) | Industrial deionized water treatment device | |
CN211896158U (en) | Mixed horizontal type ion exchange water purification system and water purifier | |
CN204174025U (en) | Multi-functional pure water treatment unit | |
Korngold | Electrodialysis unit: Optimization and calculation of energy requirement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |