CN103076836B - Low-power voltage complementary metal oxide semiconductor (CMOS) constant-voltage source circuit - Google Patents
Low-power voltage complementary metal oxide semiconductor (CMOS) constant-voltage source circuit Download PDFInfo
- Publication number
- CN103076836B CN103076836B CN201210590969.XA CN201210590969A CN103076836B CN 103076836 B CN103076836 B CN 103076836B CN 201210590969 A CN201210590969 A CN 201210590969A CN 103076836 B CN103076836 B CN 103076836B
- Authority
- CN
- China
- Prior art keywords
- mos transistor
- type mos
- metal oxide
- transistor
- type metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
本发明公开了一种低电源电压CMOS恒定电压源电路,包括第一级启动电路,第一级与电源电压无关但受温度影响的电流产生电路,第二级启动电路,第二级与电源电压无关但受温度影响的电流产生电路以及支路电流相减电路,利用支路电流相减电路的输出电流,通过负载电阻实现低温度系数的输出电压。本发明不含双极型器件,在低电源电压的环境下产生了具有低温度系数的参考电压。
The invention discloses a low power supply voltage CMOS constant voltage source circuit, which includes a first-stage start-up circuit, a first-stage current generating circuit that is independent of the power supply voltage but affected by temperature, a second-stage start-up circuit, and a second-stage start-up circuit that is connected to the power supply voltage The irrelevant but temperature-affected current generation circuit and the branch current subtraction circuit utilize the output current of the branch current subtraction circuit to realize an output voltage with a low temperature coefficient through a load resistance. The invention does not contain a bipolar device, and generates a reference voltage with a low temperature coefficient in the environment of a low power supply voltage.
Description
技术领域technical field
本发明涉及一种恒定电压源电路,具体来说,涉及一种工作在低电源电压下的纯CMOS恒定电压源电路。The invention relates to a constant voltage source circuit, in particular to a pure CMOS constant voltage source circuit working under low power supply voltage.
背景技术Background technique
在CMOS电路的应用中,常常会使用到与电源电压和温度都无关的恒定电压源。例如在某些放大器的偏置电路,或者一些比较器中。在这些情况下,常常需要比较精确的电压值。而我们知道,由于工艺等各种因素的影响,电压值常常会随着一种或者几种因素的变化而变化,其中比较重要的两个因素就是电源电压以及温度的影响。同时,随着CMOS工艺尺寸越来越小,温度等各种因素的影响也越来越大。因此,对于需要高精度电压值的电路而言,设计出不随电源电压和温度的变化而变化的恒定电压源电路就显得至关重要。In the application of CMOS circuits, a constant voltage source that is independent of the power supply voltage and temperature is often used. For example in the biasing circuits of some amplifiers, or in some comparators. In these cases, more accurate voltage values are often required. And we know that due to the influence of various factors such as technology, the voltage value often changes with the change of one or several factors, and the two more important factors are the influence of power supply voltage and temperature. At the same time, as the size of the CMOS process becomes smaller and smaller, the influence of various factors such as temperature is also increasing. Therefore, for circuits that require high-precision voltage values, it is very important to design a constant voltage source circuit that does not change with changes in power supply voltage and temperature.
传统的恒定电压源电路主要是利用双极型三极管的基极和发射极之间产生的具有负温度系数的电压和两个不同尺寸的双极型三极管的基极和发射极电压的差值所产生的正温度系数的电压求和,通过一定的系数匹配,可以得到具有零温度系数的电压。该恒定电压通过一些镜像以及和具有一定温度系数的匹配,可以在固定的电阻上产生恒定电压并输出。The traditional constant voltage source circuit is mainly based on the voltage with a negative temperature coefficient generated between the base and emitter of the bipolar transistor and the difference between the base and emitter voltages of two bipolar transistors of different sizes. The generated voltages with positive temperature coefficients are summed, and through certain coefficient matching, voltages with zero temperature coefficients can be obtained. The constant voltage can generate a constant voltage on a fixed resistance and output it through some mirror images and matching with a certain temperature coefficient.
在常用的高精度恒定电压源电路中,都需要用到双极型三极管的基极和发射极之间的电压。我们知道,基极和发射极之间的电压一般在0.7V左右.因此,这就限制了电源电压的大小最低也要大于1V。随着CMOS工艺尺寸越来越小,所提供的电源电压越来越低。同时,出于对功耗性能的要求,也需要尽可能的降低电源电压。因此,当遇到电源电压接近或者低于双极型三极管的基极和发射极之间的电压时,传统的高精度恒流源电路就完全失去了作用。In commonly used high-precision constant voltage source circuits, the voltage between the base and emitter of bipolar transistors is required. We know that the voltage between the base and the emitter is generally around 0.7V. Therefore, this limits the minimum power supply voltage to be greater than 1V. As the size of the CMOS process becomes smaller and smaller, the provided power supply voltage becomes lower and lower. At the same time, due to the requirement on power consumption performance, it is also necessary to reduce the power supply voltage as much as possible. Therefore, when the power supply voltage is close to or lower than the voltage between the base and emitter of the bipolar transistor, the traditional high-precision constant current source circuit will completely lose its function.
发明内容Contents of the invention
发明目的:针对上述现有技术存在的问题和不足,本发明的目的是提供一种低电源电压CMOS恒定电压源电路,全部由MOS管组成,工作在0.6V的电源电压环境下,具有低功耗的功能,同时大大减小了芯片的面积。Purpose of the invention: In view of the problems and deficiencies in the above-mentioned prior art, the purpose of the invention is to provide a low power supply voltage CMOS constant voltage source circuit, which is all composed of MOS tubes, works under a power supply voltage environment of 0.6V, and has low power Consumption of the function, while greatly reducing the area of the chip.
技术方案:为实现上述发明目的,本发明采用的技术方案为一种低电源电压CMOS恒定电压源电路,包括第一级启动电路,第一级与电源电压无关但受温度影响的电流产生电路,第二级启动电路,第二级与电源电压无关但受温度影响的电流产生电路,支路电流相减电路,所述支路电流相减电路用于将第一级与电源电压无关但受温度影响的电流与第二级与电源电压无关但受温度影响的电流相减;其中:Technical solution: In order to achieve the purpose of the above invention, the technical solution adopted in the present invention is a low power supply voltage CMOS constant voltage source circuit, including a first-stage startup circuit, a first-stage current generation circuit that is independent of the power supply voltage but affected by temperature, The second-stage start-up circuit, the second-stage current generating circuit that is independent of the power supply voltage but affected by temperature, the branch current subtraction circuit, the branch current subtraction circuit is used to generate the first-stage current that is independent of the power supply voltage but influenced by temperature The affected current is subtracted from that of the second stage, which is independent of supply voltage but temperature dependent; where:
第一级启动电路包括第一P型金属氧化物晶体管,第二P型金属氧化物晶体管,第一N型金属氧化物晶体管;The first-stage start-up circuit includes a first P-type metal oxide transistor, a second P-type metal oxide transistor, and a first N-type metal oxide transistor;
第一级与电源电压无关但受温度影响的电流产生电路包括第三P型金属氧化物晶体管,第四P型金属氧化物晶体管,第二N型金属氧化物晶体管,第三N型金属氧化物晶体管,第一电阻,第七N型金属氧化物晶体管;The first stage current generation circuit which is independent of the power supply voltage but is affected by temperature includes a third PMOS transistor, a fourth PMOS transistor, a second NMOS transistor, a third NMOS transistor a transistor, a first resistor, and a seventh N-type metal oxide transistor;
第二级启动电路包括第五P型金属氧化物晶体管,第六P型金属氧化物晶体管,第四N型金属氧化物晶体管;第二级与电源电压无关但受温度影响的电流产生电路包括第七P型金属氧化物晶体管,第八P型金属氧化物晶体管,第九P型金属氧化物晶体管,第二电阻,第五N型金属氧化物晶体管,第六N型金属氧化物晶体管;The second-stage start-up circuit includes the fifth P-type metal oxide transistor, the sixth P-type metal oxide transistor, and the fourth N-type metal oxide transistor; the second-stage current generation circuit that is independent of the power supply voltage but affected by temperature includes the first Seventh PMOS transistor, eighth PMOS transistor, ninth PMOS transistor, second resistor, fifth NMOS transistor, sixth NMOS transistor;
支路电流相减电路包括第十P型金属氧化物晶体管,第十一P型金属氧化物晶体管,第十二P型金属氧化物晶体管,第十三P型金属氧化物晶体管,第八N型金属氧化物晶体管,第九N型金属氧化物晶体管,第三电阻,第四电阻;The branch current subtraction circuit includes a tenth P-type metal oxide transistor, an eleventh P-type metal oxide transistor, a twelfth P-type metal oxide transistor, a thirteenth P-type metal oxide transistor, an eighth N-type a metal oxide transistor, a ninth N-type metal oxide transistor, a third resistor, and a fourth resistor;
其中:in:
第一P型金属氧化物晶体管的源极接电源,第一P型金属氧化物晶体管的栅极与第二P型金属氧化物晶体管的源极相连,第一P型金属氧化物晶体管的漏极与第一N型金属氧化物晶体管的漏极相连;第一N型金属氧化物晶体管的栅极和自身的漏极相连,并且和第二P型金属氧化物晶体管的栅极相连;第二P型金属氧化物晶体管的衬底和栅极分开,并接电源;第一N型金属氧化物晶体管的源极和第二P型金属氧化物晶体管的漏极接地;第三P型金属氧化物晶体管的源极和第四P型金属氧化物晶体管的源极接电源,第三P型金属氧化物晶体管的栅极和第四P型金属氧化物晶体管的栅极相连并和第三P型金属氧化物晶体管的漏极相连;第三P型金属氧化物晶体管的漏极和第二N型金属氧化物晶体管漏极相连并和第一P型金属氧化物晶体管的栅极相连;第四P型金属氧化物晶体管的漏极和第三N型金属氧化物晶体管的漏极相连;第三N型金属氧化物晶体管漏极和本身的栅极相连;第二N型金属氧化物晶体管的衬底和源极分开并接地;第二N型金属氧化物晶体管的源极和第一电阻的一段相连;第一电阻的另一段相连和第三N型金属氧化物晶体管的源极接地;第五P型金属氧化物晶体管的源极接电源,栅极和第六P型金属氧化物晶体管的源极相连,漏极和第四P型金属氧化物晶体管的漏极相连;第四N型金属氧化物晶体管的栅极和本身的漏极相连,并和第六P型金属氧化物晶体管的栅极相连;第六P型金属氧化物晶体管的衬底和源极分开并接电源;第六P型金属氧化物晶体管的漏极和第四N型金属氧化物晶体管的源极一同接地;第七P型金属氧化物晶体管的源极和第二电阻的一端相连,第二电阻的另一端和电源相连;第七P型金属氧化物晶体管的栅极和第八P型金属氧化物晶体管的栅极以及第九P型金属氧化物晶体管的栅极相连并和第八P型金属氧化物晶体管的漏极以及第五P型金属氧化物晶体管的栅极相连;第九P型金属氧化物晶体管的源极,漏极,衬底以及第八P型金属氧化物晶体管的源极都和电源相连;第五N型金属氧化物晶体管的栅极和本身的漏极相连,并和第六N型金属氧化物晶体管的栅极相连;第五N型金属氧化物晶体管的源极和第六N型金属氧化物晶体管的源极相连并接地;第十P型金属氧化物晶体管的栅极和第八P型金属氧化物晶体管的漏极相连,第十P型金属氧化物晶体管的源极接电源,漏极接第八N型金属氧化物晶体管的漏极;第八N型金属氧化物晶体管的栅极和第七N型金属氧化物晶体管的栅极以及第三N型金属氧化物晶体管的漏极相连;第八N型金属氧化物晶体管的源极和第七N型金属氧化物晶体管的源极、衬底、漏极都和地相连;第十一P型金属氧化物晶体管的栅极、漏极,第十二P型金属氧化物晶体的栅极以及第十三P型金属氧化物晶体管的栅极相连;第十一P型金属氧化物晶体管的源极,第十二P型金属氧化物晶体管的源极、漏极、衬底以及第十三P型金属氧化物晶体管的源极和电源相连;第十三P型金属氧化物晶体管的漏极和第三电阻一端相连,第三电阻的另一端和第四电阻的一端相连,第四电阻的另一端接地;第九N型金属氧化物晶体管的栅极连接在第三电阻和第四电阻的中间,第九N型金属氧化物晶体管的源极、衬底和漏极都接地。The source of the first P-type metal oxide transistor is connected to the power supply, the gate of the first P-type metal oxide transistor is connected to the source of the second P-type metal oxide transistor, and the drain of the first P-type metal oxide transistor It is connected to the drain of the first N-type metal oxide transistor; the gate of the first N-type metal oxide transistor is connected to its own drain, and is connected to the gate of the second P-type metal oxide transistor; the second P The substrate and the gate of the type metal oxide transistor are separated and connected to the power supply; the source of the first N type metal oxide transistor and the drain of the second P type metal oxide transistor are grounded; the third P type metal oxide transistor The source of the fourth P-type metal oxide transistor is connected to the power supply, the gate of the third P-type metal oxide transistor is connected to the gate of the fourth P-type metal oxide transistor and connected to the third P-type metal oxide transistor The drain of the material transistor is connected; the drain of the third P-type metal oxide transistor is connected with the drain of the second N-type metal oxide transistor and connected with the gate of the first P-type metal oxide transistor; the fourth P-type metal oxide transistor The drain of the oxide transistor is connected to the drain of the third N-type metal oxide transistor; the drain of the third N-type metal oxide transistor is connected to its own gate; the substrate and source of the second N-type metal oxide transistor The poles are separated and grounded; the source of the second N-type metal oxide transistor is connected to one section of the first resistor; the other section of the first resistor is connected to the source of the third N-type metal oxide transistor; the fifth P-type metal oxide transistor The source of the oxide transistor is connected to the power supply, the gate is connected to the source of the sixth P-type metal oxide transistor, and the drain is connected to the drain of the fourth P-type metal oxide transistor; the fourth N-type metal oxide transistor The gate is connected to its own drain and to the gate of the sixth P-type metal oxide transistor; the substrate and source of the sixth P-type metal oxide transistor are separated and connected to the power supply; the sixth P-type metal oxide transistor The drain of the transistor is grounded together with the source of the fourth N-type metal oxide transistor; the source of the seventh P-type metal oxide transistor is connected to one end of the second resistor, and the other end of the second resistor is connected to the power supply; the seventh The gate of the P-type metal oxide transistor is connected to the gate of the eighth P-type metal oxide transistor and the gate of the ninth P-type metal oxide transistor and is connected to the drain of the eighth P-type metal oxide transistor and the fifth The gate of the P-type metal oxide transistor is connected; the source of the ninth P-type metal oxide transistor, the drain, the substrate and the source of the eighth P-type metal oxide transistor are all connected to the power supply; the fifth N-type metal oxide transistor The gate of the oxide transistor is connected to its own drain and to the gate of the sixth N-type metal oxide transistor; the source of the fifth N-type metal oxide transistor is connected to the source of the sixth N-type metal oxide transistor The gate of the tenth P-type metal oxide transistor is connected to the drain of the eighth P-type metal oxide transistor, the source of the tenth P-type metal oxide transistor is connected to the power supply, and the drain is connected to the eighth N The drain of the type metal oxide transistor; the gate of the eighth N type metal oxide transistor and the gate of the seventh N type metal oxide transistor and the third N type metal oxide transistor The drain of the object transistor is connected; the source of the eighth N-type metal oxide transistor and the source, substrate, and drain of the seventh N-type metal oxide transistor are all connected to the ground; the eleventh P-type metal oxide transistor The gate and drain of the twelfth P-type metal oxide crystal are connected to the gate of the thirteenth P-type metal oxide transistor; the source of the eleventh P-type metal oxide transistor is connected to the gate of the twelfth P-type metal oxide transistor. The source, drain, and substrate of the P-type metal oxide transistor and the source of the thirteenth P-type metal oxide transistor are connected to the power supply; the drain of the thirteenth P-type metal oxide transistor is connected to one end of the third resistor , the other end of the third resistor is connected to one end of the fourth resistor, and the other end of the fourth resistor is grounded; the gate of the ninth N-type metal oxide transistor is connected between the third resistor and the fourth resistor, and the ninth N-type The source, substrate and drain of metal oxide transistors are all grounded.
本发明的恒定电压源电路不含双极型器件,在低电源电压的环境下产生了具有很高的电源电压抑制比和具有低温度系数的恒定电压。The constant voltage source circuit of the present invention does not contain bipolar devices, and generates a constant voltage with high power supply voltage rejection ratio and low temperature coefficient in the environment of low power supply voltage.
有益效果:与现有技术相比,本发明具有以下有益效果:Beneficial effects: compared with the prior art, the present invention has the following beneficial effects:
1.工作在低电源电压下,比如单块太阳能电池板。本发明的恒定电压源电路可以用于多种CMOS电路的基准电路以及偏置电路等需要恒定电压源的地方。本发明的恒定电压源电路可以工作在0.6V的低电源电压下。由于整个电路全部是由MOS器件组成,大大减小了芯片的面积。1. Work on low power supply voltage, such as a single solar panel. The constant voltage source circuit of the present invention can be used in reference circuits and bias circuits of various CMOS circuits where a constant voltage source is required. The constant voltage source circuit of the present invention can work under the low power supply voltage of 0.6V. Since the entire circuit is composed of MOS devices, the area of the chip is greatly reduced.
2.电流利用效率高,功耗低。随着CMOS工艺的发展,供电电压越来越小,这对含有双极型三极管器件的恒流源电路提出了挑战。本发明中不含有双极型器件,所以供电电压可以低于双极型三极管的导通电压。因此整个电路的功耗非常低。并且,为了产生精度较高的恒定电压源,本发明首先设计出工作在0.6V电源电压下的与温度和电压无关的电流。由于电阻所具有的温度系数与所产生的电流所具有的温度系数相反,则可以通过电流与电阻的组合来得到温度系数更低的恒定电压。2. High current utilization efficiency and low power consumption. With the development of CMOS technology, the power supply voltage is getting smaller and smaller, which poses a challenge to the constant current source circuit containing bipolar transistor devices. The present invention does not contain bipolar devices, so the power supply voltage can be lower than the conduction voltage of bipolar triodes. Therefore, the power consumption of the whole circuit is very low. Moreover, in order to generate a constant voltage source with high precision, the present invention first designs a current that is independent of temperature and voltage and works at a power supply voltage of 0.6V. Since the temperature coefficient of the resistance is opposite to that of the generated current, a constant voltage with a lower temperature coefficient can be obtained through the combination of the current and the resistance.
附图说明Description of drawings
图1为本发明的电路图;Fig. 1 is a circuit diagram of the present invention;
图2为本发明的电压随温度系数变化的波形图。Fig. 2 is a waveform diagram of the variation of voltage with temperature coefficient in the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with accompanying drawing and specific embodiment, further illustrate the present invention, should be understood that these embodiments are only for illustrating the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various aspects of the present invention Modifications in equivalent forms all fall within the scope defined by the appended claims of this application.
如图1所示,本发明的一种低电源电压CMOS恒定电压源电路,包括第一级启动电路,第一级与电源电压无关但受温度影响的电流产生电路,第二级启动电路,第二级与电源电压无关但受温度影响的电流产生电路以及支路电流相减电路,所述支路电流相减电路用于将第一级与电源电压无关但受温度影响的电流与第二级与电源电压无关但受温度影响的电流相减;其中:As shown in Figure 1, a low power supply voltage CMOS constant voltage source circuit of the present invention includes a first-stage start-up circuit, a first-stage current generation circuit that is independent of the power supply voltage but affected by temperature, a second-stage start-up circuit, and a second-stage start-up circuit. A secondary current generating circuit independent of supply voltage but temperature dependent and a branch current subtraction circuit for combining the first stage independent of supply voltage but temperature dependent current with the second stage Current subtraction independent of supply voltage but dependent on temperature; where:
第一级启动电路包括第一P型金属氧化物晶体管P1,第二P型金属氧化物晶体管P2,第一N型金属氧化物晶体管N1;The first-stage start-up circuit includes a first P-type metal oxide transistor P1, a second P-type metal oxide transistor P2, and a first N-type metal oxide transistor N1;
第一级与电源电压无关但受温度影响的电流产生电路包括第三P型金属氧化物晶体管P3,第四P型金属氧化物晶体管P4,第二N型金属氧化物晶体管N2,第三N型金属氧化物晶体管N3,第一电阻R1,第七N型金属氧化物晶体管N7;The first stage current generation circuit which has nothing to do with the power supply voltage but is affected by temperature includes a third P-type metal oxide transistor P3, a fourth P-type metal oxide transistor P4, a second N-type metal oxide transistor N2, a third N-type metal oxide transistor a metal oxide transistor N3, a first resistor R1, and a seventh N-type metal oxide transistor N7;
第二级启动电路包括第五P型金属氧化物晶体管P5,第六P型金属氧化物晶体管P6,第四N型金属氧化物晶体管N4;The second-stage startup circuit includes a fifth PMOS transistor P5, a sixth PMOS transistor P6, and a fourth NMOS transistor N4;
第二级与电源电压无关但受温度影响的电流产生电路包括第七P型金属氧化物晶体管P7,第八P型金属氧化物晶体管P8,第九P型金属氧化物晶体管P9,第二电阻R2,第五N型金属氧化物晶体管N5,第六N型金属氧化物晶体管N6;The second-stage current generation circuit that is independent of the supply voltage but affected by temperature includes a seventh PMOS transistor P7, an eighth PMOS transistor P8, a ninth PMOS transistor P9, and a second resistor R2 , the fifth N-type metal oxide transistor N5, the sixth N-type metal oxide transistor N6;
支路电流相减电路包括第十P型金属氧化物晶体管P10,第十一P型金属氧化物晶体管P11,第十二P型金属氧化物晶体管P12,第十三P型金属氧化物晶体管P13,第八N型金属氧化物晶体管N8,第九N型金属氧化物晶体管N9,第三电阻R3,第四电阻R4;The branch current subtraction circuit includes a tenth P-type metal oxide transistor P10, an eleventh P-type metal oxide transistor P11, a twelfth P-type metal oxide transistor P12, a thirteenth P-type metal oxide transistor P13, An eighth NMOS transistor N8, a ninth NMOS transistor N9, a third resistor R3, and a fourth resistor R4;
其中:in:
第一P型金属氧化物晶体管P1的源极接电源,第一P型金属氧化物晶体管P1的栅极与第二P型金属氧化物晶体管P2的源极相连,第一P型金属氧化物晶体管P1的漏极与第一N型金属氧化物晶体管N1的漏极相连;第一N型金属氧化物晶体管N1的栅极和自身的漏极相连,并且和第二P型金属氧化物晶体管P2的栅极相连;第二P型金属氧化物晶体管P2的衬底和栅极分开,并接电源;第一N型金属氧化物晶体管N1的源极和第二P型金属氧化物晶体管P2的漏极接地;第三P型金属氧化物晶体管P3的源极和第四P型金属氧化物晶体管P4的源极接电源,第三P型金属氧化物晶体管P3的栅极和第四P型金属氧化物晶体管P4的栅极相连并和第三P型金属氧化物晶体管P3的漏极相连;第三P型金属氧化物晶体管P3的漏极和第二N型金属氧化物晶体管N2漏极相连并和第一P型金属氧化物晶体管P1的栅极相连;第四P型金属氧化物晶体管P4的漏极和第三N型金属氧化物晶体管N3的漏极相连;第三N型金属氧化物晶体管N3漏极和本身的栅极相连;第二N型金属氧化物晶体管N2的衬底和源极分开并接地;第二N型金属氧化物晶体管N2的源极和第一电阻R1的一端相连;第一电阻R1的另一端和第三N型金属氧化物晶体管N3的源极相连并接地;第五P型金属氧化物晶体管P5的源极接电源,栅极和第六P型金属氧化物晶体管P6的源极相连,漏极和第四P型金属氧化物晶体管P4的漏极相连;第四N型金属氧化物晶体管N4的栅极和本身的漏极相连,并和第六P型金属氧化物晶体管P6的栅极相连;第六P型金属氧化物晶体管P6的衬底和源极分开并接电源;第六P型金属氧化物晶体管P6的漏极和第四N型金属氧化物晶体管N4的源极一同接地;第七P型金属氧化物晶体管P7的源极和第二电阻R2的一端相连,第二电阻R2的另一端和电源相连;第七P型金属氧化物晶体管P7的栅极和第八P型金属氧化物晶体管P8的栅极以及第九P型金属氧化物晶体管P9的栅极相连并和第八P型金属氧化物晶体管P8的漏极以及第五P型金属氧化物晶体管P5的栅极相连;第九P型金属氧化物晶体管P9的源极,漏极,衬底以及第八P型金属氧化物晶体管P8的源极都和电源相连;第五N型金属氧化物晶体管N5的栅极和本身的漏极相连,并和第六N型金属氧化物晶体管N6的栅极相连;第五N型金属氧化物晶体管N5的源极和第六N型金属氧化物晶体管N6的源极相连并接地;第十P型金属氧化物晶体管P10的栅极和第八P型金属氧化物晶体管P8的漏极相连,第十P型金属氧化物晶体管P10的源极接电源,漏极接第八N型金属氧化物晶体管N8的漏极;第八N型金属氧化物晶体管N8的栅极和第七N型金属氧化物晶体管N7的栅极以及第三N型金属氧化物晶体管N3的漏极相连;第八N型金属氧化物晶体管N8的源极和第七N型金属氧化物晶体管N7的源极、衬底、漏极都和地相连;第十一P型金属氧化物晶体管P11的栅极、漏极,第十二P型金属氧化物晶体管P12的栅极以及第十三P型金属氧化物晶体管P13的栅极相连;第十一P型金属氧化物晶体管P11的源极,第十二P型金属氧化物晶体管P12的源极、漏极、衬底以及第十三P型金属氧化物晶体管P13的源极和电源相连;第十三P型金属氧化物晶体管P13的漏极和第三电阻R3一端相连,第三电阻R3的另一端和第四电阻R4的一端相连,第四电阻R4的另一端接地;第九N型金属氧化物晶体管N9的栅极连接在第三电阻R3和第四电阻R4的中间,第九N型金属氧化物晶体管N9的源极、衬底和漏极都接地。The source of the first P-type metal oxide transistor P1 is connected to the power supply, the gate of the first P-type metal oxide transistor P1 is connected to the source of the second P-type metal oxide transistor P2, and the first P-type metal oxide transistor P2 The drain of P1 is connected to the drain of the first N-type metal oxide transistor N1; the gate of the first N-type metal oxide transistor N1 is connected to its own drain, and is connected to the drain of the second P-type metal oxide transistor P2 The gate is connected; the substrate and the gate of the second P-type metal oxide transistor P2 are separated, and connected to the power supply in parallel; the source of the first N-type metal oxide transistor N1 and the drain of the second P-type metal oxide transistor P2 Grounding; the source of the third PMOS transistor P3 and the source of the fourth PMOS transistor P4 are connected to the power supply, the gate of the third PMOS transistor P3 and the fourth PMOS transistor The gate of the transistor P4 is connected to the drain of the third PMOS transistor P3; the drain of the third PMOS transistor P3 is connected to the drain of the second NMOS transistor N2 and connected to the drain of the third PMOS transistor P3. The gate of a P-type metal oxide transistor P1 is connected; the drain of the fourth P-type metal oxide transistor P4 is connected to the drain of the third N-type metal oxide transistor N3; the drain of the third N-type metal oxide transistor N3 The pole is connected to its own gate; the substrate and source of the second N-type metal oxide transistor N2 are separated and grounded; the source of the second N-type metal oxide transistor N2 is connected to one end of the first resistor R1; the first The other end of the resistor R1 is connected to the source of the third N-type metal oxide transistor N3 and grounded; the source of the fifth P-type metal oxide transistor P5 is connected to the power supply, and the gate is connected to the source of the sixth P-type metal oxide transistor P6 The source is connected, and the drain is connected to the drain of the fourth P-type metal oxide transistor P4; the gate of the fourth N-type metal oxide transistor N4 is connected to its own drain, and connected to the sixth P-type metal oxide transistor The gate of P6 is connected; the substrate and source of the sixth PMOS transistor P6 are separated and connected to the power supply; the drain of the sixth PMOS transistor P6 and the source of the fourth NMOS transistor N4 poles are grounded together; the source of the seventh P-type metal oxide transistor P7 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is connected to the power supply; the gate of the seventh P-type metal oxide transistor P7 is connected to the first The gate of the eighth PMOS transistor P8 and the gate of the ninth PMOS transistor P9 are connected to the drain of the eighth PMOS transistor P8 and the drain of the fifth PMOS transistor P5 The gate is connected; the source of the ninth P-type metal oxide transistor P9, the drain, the substrate and the source of the eighth P-type metal oxide transistor P8 are all connected to the power supply; the fifth N-type metal oxide transistor N5 The gate is connected to its own drain and connected to the gate of the sixth NMOS transistor N6; the source of the fifth NMOS transistor N5 is connected to the source of the sixth NMOS transistor N6 Connected and grounded; the tenth PMOS transistor P10 The gate is connected to the drain of the eighth P-type metal oxide transistor P8, the source of the tenth P-type metal oxide transistor P10 is connected to the power supply, and the drain is connected to the drain of the eighth N-type metal oxide transistor N8; the eighth The gate of the NMOS transistor N8 is connected to the gate of the seventh NMOS transistor N7 and the drain of the third NMOS transistor N3; the source of the eighth NMOS transistor N8 The source, substrate, and drain of the seventh N-type metal oxide transistor N7 are all connected to the ground; the gate and drain of the eleventh P-type metal oxide transistor P11, and the twelfth P-type metal oxide transistor The gate of P12 is connected to the gate of the thirteenth PMOS transistor P13; the source of the eleventh PMOS transistor P11, and the source and drain of the twelfth PMOS transistor P12 , the substrate, and the source of the thirteenth P-type metal oxide transistor P13 are connected to the power supply; the drain of the thirteenth P-type metal oxide transistor P13 is connected to one end of the third resistor R3, and the other end of the third resistor R3 is connected to One end of the fourth resistor R4 is connected, and the other end of the fourth resistor R4 is grounded; the gate of the ninth N-type metal oxide transistor N9 is connected between the third resistor R3 and the fourth resistor R4, and the ninth N-type metal oxide transistor N9 The source, substrate and drain of transistor N9 are all grounded.
上述高精度恒定电压源电路全部由CMOS器件组成。由于不含双极型三极管器件,所以供电电压可以低于双极型三极管的导通电压,因此,整个恒流源电路可以工作在0.6V的低电源电压下,具有很低的功耗。并且,由于双极型三极管器件尺寸非常大,所以本发明大大减小了芯片的面积。本发明的主要思想是利用第一级与电源电压无关但受温度影响的电流产生电路和第二级与电源电压无关但受温度影响的电流产生电路所产生的具有同温度系数的两路电流,通过支路电流相减电路可以得到具有低温度系数的电流。同时,工艺中电阻所具有的温度系数和所产生的电流的温度系数相反,则可以利用电流与电阻的组合来得到温度系数更加低的恒定电压。The above-mentioned high-precision constant voltage source circuit is all composed of CMOS devices. Since there is no bipolar transistor device, the power supply voltage can be lower than the conduction voltage of the bipolar transistor, so the entire constant current source circuit can work at a low power supply voltage of 0.6V and has very low power consumption. Moreover, since the size of the bipolar triode device is very large, the present invention greatly reduces the area of the chip. The main idea of the present invention is to use the two currents with the same temperature coefficient generated by the first-stage current generation circuit that has nothing to do with the power supply voltage but is affected by temperature and the second-stage current generation circuit that has nothing to do with the power supply voltage but is affected by temperature, A current with a low temperature coefficient can be obtained by the branch current subtraction circuit. At the same time, the temperature coefficient of the resistance in the process is opposite to that of the generated current, so the combination of current and resistance can be used to obtain a constant voltage with a lower temperature coefficient.
第一级启动电路由第一P型金属氧化物晶体管,第二P型金属氧化物晶体管和第一N型金属氧化物晶体管组成。当第一级与电源电压无关但受温度影响的电流产生电路处于未启动状态的时候,第三P型金属氧化物晶体管P3的漏极电压很高,由于第三P型金属氧化物晶体管P3的漏极和第二P型金属氧化物晶体管P2的源极相连,所以第二P型金属氧化物晶体管P2的源极同样处于高电位。此时,第二P型金属氧化物晶体管P2的导通,导通后大量电流流过第二P型金属氧化物晶体管P2,可以使得第三P型金属氧化物晶体管P3的漏极电压降低,起到启动电路的功能。在工艺尺寸非常小的情况下,MOS管的阈值电压很大。为了更好的起到启动后续电路的目的,电路中把第二P型金属氧化物晶体管P2的衬底接电源。利用MOS管本身存在的衬底偏置效应来减小阈值电压。这样对于同样的漏极和源极电压差,第二P型金属氧化物晶体管P2的能够通过更大的电流,进而更大程度上降低第三P型金属氧化物晶体管P3的漏极电压,启动效果更好。当电路处于导通状态时,应使得第二P型金属氧化物晶体管P2处于截止状态,避免其对后面第一级与电源电压无关但受温度影响的电流产生电路的影响。电路正常工作时,由于第三P型金属氧化物晶体管P3的漏极电压较高,要使得第二P型金属氧化物晶体管P2的处于截止状态,则应该把第二P型金属氧化物晶体管P2的栅极电压抬高。第二P型金属氧化物晶体管P2的栅极和第一N型金属氧化物晶体管N1的漏极相连,所以可以通过抬高第一N型金属氧化物晶体管N1的漏极电压来相应的抬高第二P型金属氧化物晶体管P2的栅极电压。因此,在第一级启动电路中,把第一P型金属氧化物晶体管P1的宽长比设置的较大,而把第一N型金属氧化物晶体管设置成倒宽长比,即第一N型金属氧化物晶体管的宽的大小小于沟道长度。这样,在电路工作在正常情况下时,可以使得第二P型金属氧化物晶体管P2处于截止状态。同时,对于第一P型金属氧化物晶体管P1和第一N型金属氧化物晶体管N1的设置也可以大大减小电路正常工作时流过第一级启动电路的电流,从而进一步降低整个电路的功耗。后面的第二级启动电路的原理和第一级启动电路的原理一样。The first stage starting circuit is composed of a first P-type metal oxide transistor, a second P-type metal oxide transistor and a first N-type metal oxide transistor. When the current generating circuit of the first stage which has nothing to do with the power supply voltage but is affected by temperature is in the inactive state, the drain voltage of the third PMOS transistor P3 is very high, because the third PMOS transistor P3 The drain is connected to the source of the second PMOS transistor P2, so the source of the second PMOS transistor P2 is also at a high potential. At this time, the second PMOS transistor P2 is turned on, and a large amount of current flows through the second PMOS transistor P2 after it is turned on, which can reduce the drain voltage of the third PMOS transistor P3, Play the function of starting the circuit. In the case of a very small process size, the threshold voltage of the MOS transistor is very large. In order to better achieve the purpose of starting the subsequent circuit, the substrate of the second PMOS transistor P2 is connected to the power source in the circuit. The threshold voltage is reduced by utilizing the substrate bias effect existing in the MOS transistor itself. In this way, for the same drain and source voltage difference, the second PMOS transistor P2 can pass a larger current, thereby reducing the drain voltage of the third PMOS transistor P3 to a greater extent, and starting Better results. When the circuit is in the on state, the second PMOS transistor P2 should be in the off state to avoid its influence on the subsequent first stage current generation circuit which is independent of the power supply voltage but is affected by temperature. When the circuit works normally, since the drain voltage of the third PMOS transistor P3 is relatively high, to make the second PMOS transistor P2 in the cut-off state, the second PMOS transistor P2 should be turned off. The gate voltage rises. The gate of the second PMOS transistor P2 is connected to the drain of the first NMOS transistor N1, so the drain voltage of the first NMOS transistor N1 can be raised correspondingly The gate voltage of the second PMOS transistor P2. Therefore, in the first-stage start-up circuit, the width-to-length ratio of the first P-type metal oxide transistor P1 is set larger, and the first N-type metal-oxide transistor is set to an inverted width-to-length ratio, that is, the first N The width of the type metal oxide transistor is smaller than the channel length. In this way, when the circuit works normally, the second PMOS transistor P2 can be turned off. At the same time, the setting of the first PMOS transistor P1 and the first NMOS transistor N1 can also greatly reduce the current flowing through the first stage start-up circuit when the circuit is in normal operation, thereby further reducing the power of the entire circuit. consumption. The principle of the second-level start-up circuit is the same as that of the first-level start-up circuit.
为了得到与电源电压无关的电流值,我们采用第一级与电源电压无关但受温度影响的电流产生电路。在此电路中,若去掉第一电阻R1,则流过第三P型金属氧化物晶体管P3的电流是通过镜像第四P型金属氧化物晶体管P4的电流得到;流过第三N型金属氧化物晶体管N3的电流是通过镜像第二N型金属氧化物晶体管N2的电流得到。因此可知,流过整个支路的电流与电源电压无关。但是此时电路中的电流可以是任意值。只要电路有一个原始电流,那么电流就可以在两个支路中通过来回镜像而流动。为了得到所需要的具体大小的电流值。我们在第一N型金属氧化物晶体管N1的源端加上第一电阻R1。通过对各个MOS器件的宽长比以及第一电阻R1的大小的设置,我们可以得到想要的具体大小的电流值。第二级与电源电压无关但受温度影响的电流产生电路采用和第一级与电源电压无关但受温度影响的电流产生电路相同的原理。为了得到更加稳定的波形,利用第七N型金属氧化物晶体管N7和第四P型金属氧化物晶体管P4来分别作为第一级与电源电压无关但受温度影响的电流产生电路和第二级与电源电压无关但受温度影响的电流产生电路的滤波器件,来滤除第一级与电源电压无关但受温度影响的电流产生电路和第二级与电源电压无关但受温度影响的电流产生电路产生的电流中所含的杂波电流。In order to obtain the current value which has nothing to do with the power supply voltage, we adopt the first-stage current generation circuit which is independent of the power supply voltage but influenced by temperature. In this circuit, if the first resistor R1 is removed, the current flowing through the third PMOS transistor P3 is obtained by mirroring the current of the fourth PMOS transistor P4; The current of the transistor N3 is obtained by mirroring the current of the second NMOS transistor N2. Therefore, it can be seen that the current flowing through the whole branch has nothing to do with the power supply voltage. But at this time the current in the circuit can be any value. As long as the circuit has an original current, the current can flow in both branches by mirroring back and forth. In order to get the current value of the specific size required. We add a first resistor R1 to the source terminal of the first NMOS transistor N1. By setting the width-to-length ratio of each MOS device and the size of the first resistor R1, we can obtain a desired specific current value. The second level of supply voltage independent but temperature dependent current generating circuit uses the same principle as the first level of supply voltage independent but temperature dependent current generating circuit. In order to obtain a more stable waveform, the seventh N-type metal oxide transistor N7 and the fourth P-type metal oxide transistor P4 are used as the first-stage current generation circuit independent of the power supply voltage but affected by temperature and the second-stage and The filter device of the power supply voltage independent but temperature-affected current generating circuit to filter out the first stage current generating circuit independent of power supply voltage but temperature-affected and the second stage current generating circuit independent of power supply voltage but temperature-affected The clutter current contained in the current.
利用第一级与电源电压无关但受温度影响的电流产生电路,我们可以得到与电源电压无关的具体大小的电流值,但是该电流值仍然是工艺和温度的函数。为了得到与工艺和温度也无关的高精度的恒定电压,该发明采用了两路与电源电压无关但是具有同样的工艺和温度系数的支路电流相减来抵消工艺和温度对恒定电压值的影响。在该发明的电路图中,通过第八N型金属氧化物晶体管N8来镜像第一级与电源电压无关但受温度影响的电流产生电路中所产生的与电源电压无关但是是工艺和温度函数的支路电流;利用第十P型金属氧化物晶体管P10来镜像第二级与电源电压无关但受温度影响的电流产生电路中所产生的与电源电压无关但是是工艺和温度函数的支路电流;在由第十P型金属氧化物晶体管P10,第十一P型金属氧化物晶体管P11,第十二P型金属氧化物晶体管P12,第十三P型金属氧化物晶体管P13,第八N型金属氧化物晶体管N8,第九N型金属氧化物晶体管N9,第三电阻R3,第四电阻R4所组成的支路电流相减电路中,由于流过第八N型金属氧化物晶体管N8和第十P型金属氧化物晶体管P10的电流对温度和工艺具有相同的系数关系,所以通过一定系数的匹配,利用两个支路电流的相减可以得到既与电源电压无关,又与温度和工艺无关的高精度恒定电压。在电路图中可以看到,流过第十一P型金属氧化物晶体管P11的电流即为两支路电流通过系数匹配相减后得到的与电源电压和温度均无关的电流。Using the first-stage current generation circuit that is independent of the power supply voltage but affected by temperature, we can get a specific current value that has nothing to do with the power supply voltage, but the current value is still a function of process and temperature. In order to obtain a high-precision constant voltage that has nothing to do with process and temperature, the invention uses the subtraction of two branch currents that have nothing to do with the power supply voltage but have the same process and temperature coefficient to offset the influence of process and temperature on the constant voltage value . In the circuit diagram of the invention, the eighth N-type metal oxide transistor N8 is used to mirror the current generation circuit of the first stage that has nothing to do with the power supply voltage but is affected by the temperature. circuit current; use the tenth P-type metal oxide transistor P10 to mirror the branch current that is independent of the power supply voltage but is a function of process and temperature generated in the second-stage current generation circuit that has nothing to do with the power supply voltage but is affected by temperature; The tenth P-type metal oxide transistor P10, the eleventh P-type metal oxide transistor P11, the twelfth P-type metal oxide transistor P12, the thirteenth P-type metal oxide transistor P13, the eighth N-type metal oxide transistor transistor N8, the ninth N-type metal oxide transistor N9, the third resistor R3, and the branch current subtraction circuit composed of the fourth resistor R4, since the eighth N-type metal oxide transistor N8 and the tenth P The current of the type metal oxide transistor P10 has the same coefficient relationship with temperature and process, so through the matching of a certain coefficient, the subtraction of the two branch currents can obtain a high voltage that is not related to the power supply voltage, but also has nothing to do with temperature and process. precision constant voltage. It can be seen from the circuit diagram that the current flowing through the eleventh PMOS transistor P11 is the current independent of the power supply voltage and temperature obtained by subtracting the two branch currents through coefficient matching.
流过第十三P型金属氧化物晶体管P13的电流是镜像第十一P型金属氧化物晶体管P11的电流得到的。第四电阻R4与温度和工艺的系数和电流与温度和工艺的系数相反,所以可以通过电阻和电流的大小数值的匹配可以在第三电阻和第四电阻之间的Vout点得到精度更高的电压值。第十二P型金属氧化物晶体管P12和第九N型金属氧化物晶体管N9同样起到滤波的作用。The current flowing through the thirteenth PMOS transistor P13 is obtained by mirroring the current of the eleventh PMOS transistor P11. The coefficient of the fourth resistor R4 and temperature and process and the coefficient of current and temperature and process are opposite, so the Vout point between the third resistor and the fourth resistor can be obtained by matching the magnitude and value of the resistance and the current. Higher precision Voltage value. The twelfth PMOS transistor P12 and the ninth NMOS transistor N9 also function as filters.
下面通过仿真对比来说明本发明所产生的高精度恒定电压源与温度系数的影响。The influence of the high-precision constant voltage source and the temperature coefficient produced by the present invention will be illustrated below through simulation and comparison.
采用仿真软件进行高精度恒定电压源对温度系数的扫描分析。分析结果如图2所示。从图2中可以看出,输出参考电压在从-20度到80度范围内,体现出了一阶温度补偿特性,在整个温度变化范围内,输出电压的变化幅度被控制在1.5mV以内,可以满足大多数的应用需求。use The simulation software performs scanning analysis of the temperature coefficient of the high-precision constant voltage source. The analysis results are shown in Figure 2. It can be seen from Figure 2 that the output reference voltage is in the range from -20 degrees to 80 degrees, which reflects the first-order temperature compensation characteristics. In the entire temperature range, the variation range of the output voltage is controlled within 1.5mV. Can meet most application requirements.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210590969.XA CN103076836B (en) | 2012-12-31 | 2012-12-31 | Low-power voltage complementary metal oxide semiconductor (CMOS) constant-voltage source circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210590969.XA CN103076836B (en) | 2012-12-31 | 2012-12-31 | Low-power voltage complementary metal oxide semiconductor (CMOS) constant-voltage source circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103076836A CN103076836A (en) | 2013-05-01 |
CN103076836B true CN103076836B (en) | 2015-01-28 |
Family
ID=48153402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210590969.XA Expired - Fee Related CN103076836B (en) | 2012-12-31 | 2012-12-31 | Low-power voltage complementary metal oxide semiconductor (CMOS) constant-voltage source circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103076836B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104516391B (en) * | 2015-01-09 | 2016-06-01 | 中国科学技术大学 | The CMOS votage reference source of a kind of low-power consumption low temperature drift |
CN108919876B (en) * | 2018-09-29 | 2021-04-13 | 北京兆易创新科技股份有限公司 | Reference source |
CN109388172A (en) * | 2018-11-23 | 2019-02-26 | 西安电子科技大学 | A low-voltage and low-power CMOS voltage reference circuit |
CN111796624B (en) * | 2020-07-27 | 2022-02-18 | 东南大学 | A CMOS Voltage Reference Circuit with Ultra High Power Supply Ripple Rejection Ratio |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6342781B1 (en) * | 2001-04-13 | 2002-01-29 | Ami Semiconductor, Inc. | Circuits and methods for providing a bandgap voltage reference using composite resistors |
CN101470459A (en) * | 2007-12-26 | 2009-07-01 | 中国科学院微电子研究所 | CMOS voltage reference circuit with low voltage and low power consumption |
CN102073335A (en) * | 2011-01-21 | 2011-05-25 | 西安华芯半导体有限公司 | Pure metal-oxide-semiconductor (MOS) structure high-precision voltage reference source |
CN102253684A (en) * | 2010-06-30 | 2011-11-23 | 中国科学院电子学研究所 | Bandgap reference circuit employing current subtraction technology |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8344720B2 (en) * | 2009-09-24 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reference voltage generators, integrated circuits, and methods for operating the reference voltage generators |
-
2012
- 2012-12-31 CN CN201210590969.XA patent/CN103076836B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6342781B1 (en) * | 2001-04-13 | 2002-01-29 | Ami Semiconductor, Inc. | Circuits and methods for providing a bandgap voltage reference using composite resistors |
CN101470459A (en) * | 2007-12-26 | 2009-07-01 | 中国科学院微电子研究所 | CMOS voltage reference circuit with low voltage and low power consumption |
CN102253684A (en) * | 2010-06-30 | 2011-11-23 | 中国科学院电子学研究所 | Bandgap reference circuit employing current subtraction technology |
CN102073335A (en) * | 2011-01-21 | 2011-05-25 | 西安华芯半导体有限公司 | Pure metal-oxide-semiconductor (MOS) structure high-precision voltage reference source |
Also Published As
Publication number | Publication date |
---|---|
CN103076836A (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107340796B (en) | A kind of non-resistance formula high-precision low-power consumption a reference source | |
CN103513689B (en) | A kind of low-power reference source circuit | |
CN104199509B (en) | A kind of temperature-compensation circuit for band gap reference | |
CN102096436B (en) | Low-voltage low-power band gap reference voltage source implemented by MOS device | |
CN204462924U (en) | Reference voltage circuit | |
CN105786082A (en) | Band-gap reference voltage source without resistor or operational amplifier | |
US9323264B2 (en) | Voltage regulator apparatus with sensing modules and related operating method thereof | |
CN103399606B (en) | Low-voltage bandgap-free reference voltage source | |
CN105912064B (en) | A kind of band gap reference of high-precision high PSRR | |
CN102707755B (en) | A kind of linear voltage regulators of built-in compensation electric capacity | |
CN103760943B (en) | A kind of slew rate enhancing circuit being applied to LDO | |
CN103076836B (en) | Low-power voltage complementary metal oxide semiconductor (CMOS) constant-voltage source circuit | |
CN105974989A (en) | Low-power-consumption full-CMOS reference source circuit based on subthreshold value | |
TW201530285A (en) | Low-offset bandgap circuit and corrector | |
CN105099181B (en) | A kind of turn-on time generation circuit for BUCK converters | |
CN108415503A (en) | A kind of low-voltage and low-power dissipation reference circuit | |
CN107817860B (en) | Low-voltage bandgap reference circuit and voltage generating circuit | |
CN103412610A (en) | Low power consumption non-resistor full CMOS voltage reference circuit | |
CN103246311B (en) | Non-resistor band-gap reference voltage source with high-order curvature compensation | |
CN115185327B (en) | VGS-based CMOS reference voltage source | |
CN105224006B (en) | Low-voltage CMOS reference source | |
CN202711106U (en) | Linear voltage regulator with internally-installed compensation capacitor | |
CN101320279A (en) | current generator | |
CN208188713U (en) | A kind of low-voltage and low-power dissipation reference circuit | |
CN204536968U (en) | A kind of high power LD O circuit without external electric capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170406 Address after: 99 No. 214135 Jiangsu province Wuxi city Wuxi District Linghu Avenue Patentee after: Southeast University Wuxi branch Address before: 99 No. 214135 Jiangsu province Wuxi city Wuxi District Linghu Avenue Patentee before: Southeast University |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150128 Termination date: 20201231 |
|
CF01 | Termination of patent right due to non-payment of annual fee |