CN103018224B - Based on rare cells separation detecting system and the method for centrifugal microfluidic control techniques - Google Patents
Based on rare cells separation detecting system and the method for centrifugal microfluidic control techniques Download PDFInfo
- Publication number
- CN103018224B CN103018224B CN201210545205.9A CN201210545205A CN103018224B CN 103018224 B CN103018224 B CN 103018224B CN 201210545205 A CN201210545205 A CN 201210545205A CN 103018224 B CN103018224 B CN 103018224B
- Authority
- CN
- China
- Prior art keywords
- chip
- layer
- separation
- elastic
- centrifugal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000007788 liquid Substances 0.000 claims abstract description 63
- 238000001514 detection method Methods 0.000 claims abstract description 61
- 238000003860 storage Methods 0.000 claims abstract description 33
- 239000000523 sample Substances 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 239000012528 membrane Substances 0.000 claims abstract description 21
- 239000004005 microsphere Substances 0.000 claims abstract description 18
- 239000002699 waste material Substances 0.000 claims abstract description 14
- 238000005516 engineering process Methods 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 239000012488 sample solution Substances 0.000 claims abstract description 7
- 239000000872 buffer Substances 0.000 claims abstract description 6
- 239000012530 fluid Substances 0.000 claims description 13
- 239000004793 Polystyrene Substances 0.000 claims description 8
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 8
- 239000004417 polycarbonate Substances 0.000 claims description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 7
- -1 polydimethylsiloxane Polymers 0.000 claims description 7
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 7
- 229920000515 polycarbonate Polymers 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- 229920001486 SU-8 photoresist Polymers 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- 238000011534 incubation Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 239000002390 adhesive tape Substances 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229920006254 polymer film Polymers 0.000 claims description 2
- 230000008676 import Effects 0.000 claims 1
- 239000011325 microbead Substances 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 92
- 239000000243 solution Substances 0.000 description 11
- 210000005266 circulating tumour cell Anatomy 0.000 description 8
- 239000011324 bead Substances 0.000 description 7
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 6
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 230000001605 fetal effect Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 210000005259 peripheral blood Anatomy 0.000 description 5
- 239000011886 peripheral blood Substances 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000000432 density-gradient centrifugation Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000008774 maternal effect Effects 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 101000835093 Homo sapiens Transferrin receptor protein 1 Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000003793 prenatal diagnosis Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
Landscapes
- Centrifugal Separators (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本发明公开了一种基于离心微流控技术的稀少细胞分离检测系统及方法,所述系统包含一个类似光盘的微流控芯片、一个离心驱动模块和一个光学检测模块。其中微流控芯片包含多组辐射状排列的微管道和微腔,芯片整体结构由弹性微柱导轨层、可变形薄膜层、管道/腔体层、过滤膜层和废液收集层组成。使用时,首先将样品液和免疫修饰的微球通过微流控芯片进样口导入其储液腔中,并将其置于离心驱动模块的离心平台上,装配好弹性微柱,低速旋转,实现储液腔中样品液和免疫修饰的微珠液体的充分混合和反应,然后高速旋转芯片分离;然后在各分离细胞收集区滴加特异识别的荧光标记抗体溶液,温育反应,加入缓冲液并离心;最后,通过光学检测模块进行鉴定和分析。
The invention discloses a rare cell separation and detection system and method based on centrifugal microfluidic technology. The system includes a microfluidic chip similar to an optical disc, a centrifugal drive module and an optical detection module. Among them, the microfluidic chip includes multiple sets of radially arranged micropipes and microcavities. The overall structure of the chip consists of an elastic micropillar guide rail layer, a deformable film layer, a pipe/cavity layer, a filter membrane layer and a waste liquid collection layer. When in use, first introduce the sample solution and immunomodified microspheres into its liquid storage chamber through the microfluidic chip inlet, and place them on the centrifugal platform of the centrifugal drive module, assemble the elastic microcolumn, and rotate at a low speed. Realize the full mixing and reaction of the sample liquid and the immunomodified microbead liquid in the liquid storage chamber, and then rotate the chip at high speed for separation; then drop the specifically recognized fluorescently labeled antibody solution in the collection area of each separated cell, incubate the reaction, and add the buffer and centrifuged; finally, identified and analyzed by an optical detection module.
Description
技术领域 technical field
本发明涉及一种基于离心微流控技术的稀少细胞分离检测系统及使用方法,可应用于无创产前诊断、肿瘤早期诊断和预后监测以及干细胞研究等领域。The invention relates to a rare cell separation and detection system based on centrifugal microfluidic technology and its application method, which can be applied to the fields of non-invasive prenatal diagnosis, early tumor diagnosis and prognosis monitoring, stem cell research and the like.
背景技术 Background technique
从复杂混合物中选择性地分离稀少细胞在细胞生物学和临床方面都具有重要意义,比如从母体外周血中分离胎儿红细胞、患者外周血中分离循环肿瘤细胞(Circulating Tumor Cell,CTC)以及骨髓或组织中分离干细胞等,这些细胞的分析往往能给临床诊断和疾病的治疗提供非常有价值的信息,但是这类细胞在样品中的含量非常稀少,通常仅为1~10个/mL,分离提取非常困难,因此大大限制了其临床应用。传统的稀少细胞分离富集技术主要有密度梯度离心法、过滤分离法和免疫磁珠分选法等。其中密度梯度离心法和过滤分离法均是借助各种细胞的物理特性差异(比如密度、大小)来筛选和富集目标细胞,但是这类基于细胞物理特性来进行分离富集的方法特异性较差,所得样品纯度较低,其风险在于经常会导致疾病诊断的错误。免疫磁珠分选法是目前最为常用的稀少细胞分离富集方法,其基本原理是利用稀少细胞表面抗原与连有免疫磁珠的单克隆抗体特异性结合,在外加磁场作用下实现稀少细胞的分离富集。这种方法将抗原抗体反应的高度特异性和免疫磁珠的富集分离作用相结合,具有简便、灵敏、快速的特点,且分离纯度高,产率大,不影响被分离细胞的活性。但是这种方法应用于稀少细胞的富集方面,仍有许多不足。一方面,传统的基于磁力的分离方法,往往采用离心管操作,由于相对于磁珠所受磁力,其平均沉降路径较长(几个mm~1cm),因此磁珠-细胞复合物完全沉降所需时间较长,分离效率较低,且因磁珠所受磁场作用力相对较弱,基本与流体剪切力一个量级,容易导致部分磁珠或磁珠-细胞复合物被洗涤液一起带走,影响检测结果的准确性;另外,在检测过程中,分离富集的细胞往往需要转移到新的容器或平板上进行检测,往往容易导致部分靶细胞因转移损失被遗漏。因此,为了提高并改善稀少细胞分离检测的特异性及敏感性,国内外很多研究机构及企业都致力于研究新的稀少细胞分离富集方法和设备,尤其是基于微流控技术的稀少细胞分离方法近年来得到迅速发展。其中最引人注目的是哈佛医学院报道的基于微流控技术的CTC分离方法,该方法利用微流体芯片技术成功地分离检测到肿瘤病人体内的少量CTC[Nagrath S,Sequist LV,Maheswaran S,et al.Isolation of rare circulatingtumour cells in cancer patients by microchip technology.Nature.2007,450:1235-1241.],肿瘤细胞捕获效率高达99%,分离纯度约为50%。所用微流控芯片以硅为基片,采用光刻、等离子体深刻蚀、键合等工艺加工制作,该芯片包含了78,000个硅基微柱,通过在微柱上包被抗EpCAM抗体,使得当血液流经微柱时其中所含的CTC被免疫捕获,最后再用免疫荧光方法原位标记CTC并对其计数,实现CTC的检测。由于该方法无需全血标本的预处理,同时操作过程简单温和,对细胞损伤比较小,避免了分离纯化及反复离心洗涤的繁琐步骤,且检测灵敏度高,显示了很好的应用前景。尽管如此,该方法仍存在较大不足:一方面,为了保证细胞的捕获效率,考虑流体剪切力、流体流形空间分布等因素影响,血液样本在芯片中必须维持较慢的速度(~1mL/h),因此该方法检测过程耗时较长(5~7小时),效率较低。另一方面,所用芯片采用不透明的硅基制作,不利于光学检测,且芯片中微柱的等离子体刻蚀加工,需要昂贵仪器,制作成本较高,限制了其临床的大规模应用。虽然,最近有人力图改进这一方法[Wang S,Liu K,Liu J,et al.Highly EfficientCapture of Circulating Tumor Cells by Using Nanostructured Silicon Substrateswith Integrated Chaotic Micromixers.Angew.Chem.Int.Ed.2011,50:3084–3088.],比如通过调节免疫捕获微柱间距和排列或在微管道中增加斜纹脊形微结构优化微流控芯片中CTC捕获效率,但改进效果有限,仍然无法同时满足高效捕获和快速分离的要求。因此,急需发展一种易于操作、可实现稀少细胞快速高效分离的系统。从而成为本发明的构思。Selective isolation of rare cells from complex mixtures is of great significance in both cell biology and clinical aspects, such as isolation of fetal red blood cells from maternal peripheral blood, isolation of circulating tumor cells (Circulating Tumor Cell, CTC) from peripheral blood of patients, and bone marrow or Separation of stem cells in tissues, etc. The analysis of these cells can often provide very valuable information for clinical diagnosis and treatment of diseases, but the content of such cells in samples is very rare, usually only 1-10 cells/mL, separation and extraction very difficult, thus greatly limiting its clinical application. Traditional rare cell separation and enrichment techniques mainly include density gradient centrifugation, filtration separation, and immunomagnetic bead sorting. Among them, the density gradient centrifugation method and the filtration separation method both use the differences in the physical characteristics of various cells (such as density and size) to screen and enrich target cells, but this type of separation and enrichment method based on the physical characteristics of cells is relatively specific. Poor, the purity of the obtained samples is low, and the risk is that it often leads to errors in disease diagnosis. Immunomagnetic bead sorting is currently the most commonly used method for the separation and enrichment of rare cells. Its basic principle is to use the specific binding of rare cell surface antigens to monoclonal antibodies connected to immunomagnetic beads, and realize the separation of rare cells under the action of an external magnetic field. Separation and enrichment. This method combines the high specificity of antigen-antibody reaction with the enrichment and separation of immunomagnetic beads. It is simple, sensitive and fast, and has high separation purity and high yield without affecting the activity of the separated cells. However, there are still many deficiencies in the application of this method to the enrichment of rare cells. On the one hand, traditional separation methods based on magnetic force often use centrifuge tubes. Compared with the magnetic force on the magnetic beads, the average sedimentation path is longer (several mm~1cm), so the complete sedimentation of the magnetic bead-cell complex It takes a long time, the separation efficiency is low, and because the magnetic field force on the magnetic beads is relatively weak, which is basically the same order of magnitude as the fluid shear force, it is easy to cause some magnetic beads or magnetic bead-cell complexes to be carried by the washing solution. In addition, during the detection process, the isolated and enriched cells often need to be transferred to a new container or plate for detection, which often easily causes some target cells to be missed due to transfer loss. Therefore, in order to increase and improve the specificity and sensitivity of rare cell separation detection, many research institutions and enterprises at home and abroad are committed to researching new rare cell separation and enrichment methods and equipment, especially rare cell separation based on microfluidic technology. The method has developed rapidly in recent years. The most striking of these is the CTC separation method based on microfluidic technology reported by Harvard Medical School, which successfully separated and detected a small amount of CTC in tumor patients using microfluidic chip technology [Nagrath S, Sequist LV, Maheswaran S, et al.Isolation of rare circulating tumor cells in cancer patients by microchip technology.Nature.2007,450:1235-1241.], the capture efficiency of tumor cells is as high as 99%, and the separation purity is about 50%. The microfluidic chip used uses silicon as the substrate, and is processed by photolithography, plasma deep etching, bonding and other processes. The chip contains 78,000 silicon-based microcolumns. , so that when the blood flows through the microcolumn, the CTCs contained in it are immunocaptured, and finally the CTCs are labeled and counted in situ by the immunofluorescence method to realize the detection of the CTCs. Since this method does not require pretreatment of whole blood samples, and the operation process is simple and gentle, the damage to cells is relatively small, and the cumbersome steps of separation and purification and repeated centrifugation and washing are avoided, and the detection sensitivity is high, showing a good application prospect. Nevertheless, this method still has major deficiencies: on the one hand, in order to ensure the capture efficiency of cells, the blood sample must maintain a relatively slow speed (~1mL /h), so the detection process of this method takes a long time (5-7 hours), and the efficiency is low. On the other hand, the chip used is made of opaque silicon base, which is not conducive to optical detection, and the plasma etching process of the micropillars in the chip requires expensive instruments and high manufacturing costs, which limits its large-scale clinical application. Although, some people have tried to improve this method recently [Wang S, Liu K, Liu J, et al.Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers.Angew.Chem.Int.Ed.2011,50: 3084–3088.], such as optimizing the capture efficiency of CTCs in microfluidic chips by adjusting the spacing and arrangement of immune capture microcolumns or adding oblique ridge microstructures in microchannels, but the improvement effect is limited, and it still cannot meet the requirements of efficient capture and fast capture at the same time. Separation requirements. Therefore, it is urgent to develop a system that is easy to operate and can achieve rapid and efficient isolation of rare cells. Thereby become the conception of the present invention.
发明内容 Contents of the invention
本发明的目的是提供一种基于离心微流控技术的稀少细胞分离检测系统及使用方法,所提供的分离检测系统具有操作简单、自动化程度高、可实现稀少细胞快速高效分离的特点,可望应用于母体外周血中胎儿红细胞、患者外周血中循环肿瘤细胞和人体组织中干细胞等稀少细胞的高效分离。The purpose of the present invention is to provide a rare cell separation and detection system based on centrifugal microfluidic technology and its use method. The separation and detection system provided has the characteristics of simple operation, high degree of automation, and rapid and efficient separation of rare cells. It is applied to the efficient separation of rare cells such as fetal red blood cells in maternal peripheral blood, circulating tumor cells in peripheral blood of patients, and stem cells in human tissues.
本发明提供的一种基于离心微流控技术的稀少细胞分离检测系统,其特征在于:所述系统包含一个类似光盘的微流控芯片1、一个离心驱动模块2和一个分离检测系统的光学检测模块3。该系统利用离心模块2上离心平台4的旋转,使得固定于其固定基座5上的压缩弹性微柱6周期性地挤压芯片上与储液腔7相通的形变腔9上橡胶薄膜15,实现储液腔中样品液和免疫修饰微球的充分混合和快速反应,同时利用芯片高速旋转产生的离心力结合芯片分离腔8区域集成的过滤膜层17,实现免疫捕获细胞的高效分离。The present invention provides a rare cell separation and detection system based on centrifugal microfluidic technology, which is characterized in that: the system includes a microfluidic chip 1 similar to an optical disc, a centrifugal drive module 2 and an optical detection system of a separation detection system Module 3. This system utilizes the rotation of the centrifugal platform 4 on the centrifugal module 2, so that the compressed elastic microcolumn 6 fixed on its fixed base 5 periodically squeezes the rubber film 15 on the deformation chamber 9 on the chip that communicates with the liquid storage chamber 7, Fully mixing and rapid reaction of the sample solution and immunomodified microspheres in the liquid storage chamber are realized. At the same time, the centrifugal force generated by the high-speed rotation of the chip is combined with the filter membrane layer 17 integrated in the separation chamber 8 of the chip to achieve efficient separation of immune capture cells.
具体而言,分离检测系统的微流控芯片外观为圆盘形,如图4所示,由多个结构层组成,依次包含弹性微柱导轨层14、可变形薄膜层15、管道/腔体层16、过滤膜层17和废液收集层18;其中芯片的管道/腔体层16包含一个储液腔7和一组分离腔8,且每个分离腔围绕储液腔呈辐射状周期性排布;每个分离腔均呈扇形,远离芯片中心的一端收缩为一个半圆形微腔,作为分离细胞收集区10,这种将分离细胞聚集在若干特定区域的设计,避免了后续检测过程中繁琐耗时的大面积显微搜索操作;且每个细胞收集区上方均开有进样口,用于细胞鉴定过程中加载荧光标记的特异抗体溶液,芯片旋转过程及温育反应过程中,各细胞收集区上方进样口均以胶带13密封,防止芯片旋转过程和温育过程样品液的损失。而且这种直接于分离细胞收集区加载鉴定反应液的方式,可大大减少鉴定过程中所需珍贵的荧光标记抗体溶液体积,降低检测成本;储液腔和每个分离腔之间由一组微管道连通,微管道一方面作为流体通道保证流体和细胞从储液腔转移至分离腔,同时也作为毛细阀在低驱动压情况下暂时限制样品液于储液腔中;储液腔连接一组通孔包括一个进样口11、一个通气口12和至少一个形变腔9;形变腔顶层为橡胶薄膜15,该薄膜层夹持于芯片弹性微柱导轨层14和管道/腔体层16之间,在压力作用下可发生弹性形变,因而通过机械挤压形变腔上的橡胶薄膜可改变形变腔体积;如图5所示,安装于离心模块固定基座上的压缩弹性微柱6可以提供此机械压力,由于芯片上弹性微柱导轨层14导轨槽的限制作用,压缩弹性微柱仅在垂直方向发生位移,即其与芯片接触时仅施加垂直方向的压力,当芯片随离心平台旋转时,压缩弹性微柱周期性地与各形变腔9上橡胶薄膜15接触,从而周期性挤压形变腔,导致与形变腔相通的储液腔中流体发生振荡运动,加速其中的流体混合反应过程;微流控芯片的过滤膜层17为一层加工有微孔阵列的聚合物薄膜,夹持于芯片管道/腔体层和废液收集层之间,孔径大小为8~12μm,保证可阻挡结合免疫微球后的目标细胞;微流控芯片的废液收集层18包含一个加工有微柱阵列的环形微腔,微柱阵列用作支撑结构,防止过滤薄膜的塌陷;为了保证废液收集腔能完全收纳分离和反应废液,微腔外径应大于芯片的管道/腔体层细胞收集区距离芯片中心的距离;上述微流控芯片的弹性微柱导轨层、管道/腔体层和废液收集层的制作材料可以为玻璃、PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)、PS(polystyrene,聚苯乙烯)、PC(Polycarbonate,聚碳酸酯)、COC(Cyclic olefin copolymer,环烯烃共聚物)、PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)、SU-8中的任意一种。另外,微流控芯片的过滤膜层材料可以为PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)、PS(polystyrene,聚苯乙烯)、PC(Polycarbonate,聚碳酸酯)、COC(Cyclic olefin copolymer,环烯烃共聚物)、PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)、PI(Polyimide,聚酰亚胺)、PA(Parylene,聚对二甲苯)、SU-8中的任意一种。Specifically, the appearance of the microfluidic chip of the separation detection system is disc-shaped, as shown in Figure 4, and consists of multiple structural layers, including elastic micropillar guide rail layer 14, deformable film layer 15, pipe/cavity Layer 16, filter membrane layer 17 and waste liquid collection layer 18; wherein the pipe/cavity layer 16 of the chip includes a liquid storage chamber 7 and a group of separation chambers 8, and each separation chamber is radially periodic around the liquid storage chamber Arrangement; each separation chamber is fan-shaped, and the end far away from the center of the chip shrinks into a semicircular microcavity, which serves as the separation cell collection area 10. This design of gathering the separation cells in several specific areas avoids the subsequent detection process The tedious and time-consuming large-area microscopic search operation; and each cell collection area has an injection port above it, which is used for loading fluorescently-labeled specific antibody solution during cell identification, during chip rotation and incubation reaction, The sample inlet above each cell collection area is sealed with adhesive tape 13 to prevent the loss of sample solution during chip rotation and incubation. Moreover, this method of directly loading the identification reaction solution in the separation cell collection area can greatly reduce the volume of the precious fluorescently labeled antibody solution required in the identification process and reduce the detection cost; a set of micro The pipe is connected. On the one hand, the micropipe serves as a fluid channel to ensure the transfer of fluid and cells from the liquid storage chamber to the separation chamber. At the same time, it also serves as a capillary valve to temporarily restrict the sample liquid in the liquid storage chamber under low driving pressure; the liquid storage chamber is connected to a set of The through hole includes a sample inlet 11, a vent 12 and at least one deformation chamber 9; the top layer of the deformation chamber is a rubber film 15, which is clamped between the chip elastic microcolumn guide rail layer 14 and the pipeline/cavity layer 16 , elastic deformation can occur under pressure, so the volume of the deformation chamber can be changed by mechanically squeezing the rubber film on the deformation chamber; as shown in Figure 5, the compressive elastic microcolumn 6 installed on the fixed base of the centrifugal module can provide Mechanical pressure, due to the limitation of the elastic micro-column guide layer 14 guide groove on the chip, the compressed elastic micro-column only displaces in the vertical direction, that is, it only exerts vertical pressure when it contacts the chip. When the chip rotates with the centrifugal platform, The compressed elastic micropillars periodically contact the rubber film 15 on each deformation cavity 9, thereby periodically squeezing the deformation cavity, causing the fluid in the liquid storage cavity connected to the deformation cavity to undergo an oscillating motion, and accelerating the fluid mixing reaction process therein; The filter membrane layer 17 of the fluidic chip is a layer of polymer film processed with a micropore array, sandwiched between the chip pipeline/cavity layer and the waste liquid collection layer, with a pore size of 8-12 μm to ensure that it can block the binding immune Target cells behind the microspheres; the waste liquid collection layer 18 of the microfluidic chip includes an annular microcavity processed with a microcolumn array, and the microcolumn array is used as a support structure to prevent the filter membrane from collapsing; in order to ensure that the waste liquid collection chamber can Completely accommodate the separation and reaction waste liquid, the outer diameter of the microcavity should be greater than the distance between the cell collection area of the pipe/cavity layer of the chip and the center of the chip; the elastic microcolumn guide rail layer, pipe/cavity layer and waste liquid The collection layer can be made of glass, PDMS (Polydimethylsiloxane, polydimethylsiloxane), PS (polystyrene, polystyrene), PC (Polycarbonate, polycarbonate), COC (Cyclic olefin copolymer, cycloolefin copolymer ), PMMA (Polymethyl methacrylate), any one of SU-8. In addition, the filter membrane material of the microfluidic chip can be PDMS (Polydimethylsiloxane, polydimethylsiloxane), PS (polystyrene, polystyrene), PC (Polycarbonate, polycarbonate), COC (Cyclic olefin copolymer, Any one of cycloolefin copolymer), PMMA (Polymethyl methacrylate, polymethyl methacrylate), PI (Polyimide, polyimide), PA (Parylene, polyparaxylylene), SU-8.
分离检测系统的离心驱动模块由一个旋转马达4、一个固定基座5和一组弹性微柱6组成。其中旋转马达4为程控调速马达;固定基座5用于给一组弹性微柱结构6提供支撑;弹性微柱下端为光滑球面形状,保证旋转过程中弹性微柱与导轨槽和可形变膜的接触不会阻碍芯片的转动;在垂直方向力的作用下,弹性微柱可上下移动,并通过适当调整其高度,弹性微柱自身弹簧形变产生的压力可保证其下端与芯片导轨层凹槽面直接接触,当芯片旋转至形变腔9垂直对准弹性微柱时,压缩的弹性微柱会对形变腔顶层的可形变膜15施加压力,使其发生形变;弹性微柱通过一个可升降支架固定于固定基座上,当支架上升时,弹性微柱不会对芯片的形变腔施加挤压,而当支架下降时,弹性微柱则通过弹性力对芯片的形变腔施加挤压,辅助储液腔的流体快速混合。The centrifugal drive module of the separation detection system consists of a rotary motor 4 , a fixed base 5 and a group of elastic microcolumns 6 . Among them, the rotating motor 4 is a program-controlled speed-regulating motor; the fixed base 5 is used to provide support for a group of elastic micro-column structures 6; the lower end of the elastic micro-column is a smooth spherical shape, which ensures that the elastic micro-column and the guide rail groove and the deformable membrane during the rotation process The contact will not hinder the rotation of the chip; under the action of vertical force, the elastic micro-column can move up and down, and by properly adjusting its height, the pressure generated by the spring deformation of the elastic micro-column can ensure that the lower end of the elastic micro-column is in contact with the groove of the chip guide rail layer. When the chip rotates until the deformation chamber 9 is vertically aligned with the elastic micro-pillar, the compressed elastic micro-pillar will exert pressure on the deformable membrane 15 on the top layer of the deformation chamber to deform it; the elastic micro-pillar passes through a liftable support Fixed on a fixed base, when the support rises, the elastic micro-pillars will not squeeze the deformation cavity of the chip, but when the support descends, the elastic micro-pillars will squeeze the deformation cavity of the chip through elastic force, assisting storage The fluid in the liquid chamber mixes rapidly.
分离检测系统的光学检测模块由一组可激发和检测荧光的透镜3组成,这些透镜分别位于芯片上下方,透镜距离离心平台中心轴距离等于芯片分离细胞收集区距离离心平台中心轴距离,通过离心驱动模块驱动芯片的旋转,实现分离细胞的原位自动检测,避免了传统方法中从分离区至鉴定区转移过程对所捕获的稀少细胞造成的损失,进一步提高了稀少细胞分离检测的灵敏度。The optical detection module of the separation detection system is composed of a group of lenses 3 that can excite and detect fluorescence. These lenses are respectively located on the top and bottom of the chip. The drive module drives the rotation of the chip to realize in-situ automatic detection of isolated cells, avoiding the loss of captured rare cells during the transfer process from the separation area to the identification area in the traditional method, and further improving the sensitivity of rare cell separation and detection.
使用过程中,首先将样品液和免疫修饰的微球通过微流控芯片进样口导入其储液腔中,由于微管道的毛细阀作用,样品液和免疫修饰的微球会局限于储液腔中,不会通过连接微管道直接进入分离腔中;完成进样后,将芯片置于离心平台上,并降下弹性微柱支架,使微柱下端接触导轨槽,并使弹性微柱弹簧处于压缩状态;完成弹性微柱装配后,低速旋转离心平台,利用旋转过程中弹性微柱对芯片形变腔上表面变形薄膜的周期性挤压,使得储液腔中流体发生振荡运动,实现储液腔中样品液和免疫修饰微球的快速充分混合和反应;反应结束后,高速旋转离心平台,较大的离心力将驱动储液腔中的流体和细胞混合物克服微管道毛细阀的作用进入分离腔,在分离腔区域,由于离心力的作用,流体将透过过滤膜流向下层废液腔,粒径较小的细胞也将透过膜孔随流体一起进入废液腔,而一般稀少细胞(如胎儿红细胞、CTC和干细胞)直径较大,且结合免疫微球后,其复合体的尺度更大,因此将被过滤膜阻挡在分离腔上层,从而实现稀少细胞与其他绝大多数细胞的分离。在离心力的作用下,分离腔上层的细胞(包括免疫捕获的细胞)最终聚集于芯片收集区。分离完成后,将各收集区对应加液口上密封胶带除去,加入可特异识别待检测细胞的荧光标记抗体溶液,并再次贴上密封胶带,温育反应。反应结束后,在芯片进样口加入缓冲液并高速离心,利用缓冲液的洗涤清除未反应的荧光标记抗体分子,最后通过自动旋转定位操控离心平台,利用光学检测模块对各收集区细胞进行原位鉴定和分析。During use, the sample solution and immunomodified microspheres are first introduced into the storage chamber through the microfluidic chip inlet. Due to the capillary valve action of the microchannel, the sample solution and immunomodified microspheres will be confined to the storage solution. It will not directly enter the separation chamber through connecting micropipes; after the sample injection is completed, place the chip on the centrifugal platform, and lower the elastic microcolumn support so that the lower end of the microcolumn touches the groove of the guide rail, and the elastic microcolumn spring is in the Compressed state: After the assembly of the elastic microcolumns is completed, the centrifugal platform is rotated at a low speed, and the elastic microcolumns are used to periodically squeeze the deformed film on the upper surface of the chip deformation cavity during the rotation process, so that the fluid in the liquid storage chamber oscillates and realizes the liquid storage chamber. Rapid and sufficient mixing and reaction of the sample solution and immunomodified microspheres; after the reaction, the centrifugal platform is rotated at high speed, and the large centrifugal force will drive the fluid and cell mixture in the liquid storage chamber to overcome the action of the micropipe capillary valve and enter the separation chamber. In the separation chamber area, due to centrifugal force, the fluid will pass through the filter membrane and flow to the lower waste liquid chamber, and cells with smaller particle sizes will also enter the waste liquid chamber through the membrane pores together with the fluid, while generally rare cells (such as fetal red blood cells) , CTC and stem cells) have a larger diameter, and after combining with immune microspheres, the scale of the complex is larger, so it will be blocked by the filter membrane on the upper layer of the separation chamber, thereby achieving the separation of rare cells from most other cells. Under the action of centrifugal force, the cells in the upper layer of the separation chamber (including immunocaptured cells) finally gather in the collection area of the chip. After the separation is completed, the sealing tape on the corresponding liquid inlet of each collection area is removed, the fluorescently labeled antibody solution that can specifically recognize the cells to be detected is added, and the sealing tape is affixed again, and the reaction is incubated. After the reaction is over, add buffer to the sample inlet of the chip and centrifuge at high speed, use the buffer to wash to remove unreacted fluorescently labeled antibody molecules, and finally control the centrifuge platform through automatic rotation and positioning, and use the optical detection module to detect cells in each collection area. bit identification and analysis.
由此可见,本发明特征在于:This shows that the present invention is characterized in that:
①每个分离腔远离芯片中心的一端收缩为一个分离细胞收集区,且每个细胞收集区对应一个加载鉴定反应液的进样口,芯片旋转时每个鉴定反应液进样口均以透明胶带密封;① The end of each separation chamber away from the center of the chip shrinks into a separation cell collection area, and each cell collection area corresponds to a sample inlet loaded with identification reaction solution. When the chip rotates, each identification reaction solution injection port is covered with transparent tape. seal;
②所述微流控芯片的弹性微柱导轨层为凹面环形结构,用以限制芯片旋转过程中弹性微柱仅发生纵向位移;其对应形变腔区域开有通孔,通过此通孔压缩的弹性微柱可施加压力于形变腔顶层的可变形薄膜上;②The elastic microcolumn guide rail layer of the microfluidic chip is a concave ring structure, which is used to limit the longitudinal displacement of the elastic microcolumn during the rotation of the chip; there is a through hole in the corresponding deformation cavity area, and the elastic microcolumn compressed through the through hole The micropillars can exert pressure on the deformable membrane on the top layer of the deformation chamber;
③所述微流控芯片的可变形薄膜层夹持于芯片弹性微柱导轨层和管道/腔体层之间,在压力作用下可发生弹性形变;③The deformable film layer of the microfluidic chip is clamped between the chip elastic micropillar guide rail layer and the pipe/cavity layer, and can be elastically deformed under pressure;
④所述系统包含一个类似光盘的微流控芯片、一个离心驱动模块和一个分离检测系统的光学检测模块;其中微流控芯片由多个结构层组成,依次为包含弹性微柱导轨层、可变形薄膜层、管道/腔体层、过滤膜层和废液收集层;离心驱动模块由一个旋转马达、一个固定基座和一组弹性微柱组成;分离检测系统的光学检测模块由一组可激发和检测荧光的透镜组成;④ The system includes a microfluidic chip similar to an optical disc, a centrifugal drive module and an optical detection module of a separation detection system; wherein the microfluidic chip is composed of multiple structural layers, which are sequentially composed of elastic microcolumn guide rail layers, which can be Deformable membrane layer, pipe/cavity layer, filter membrane layer and waste liquid collection layer; the centrifugal drive module consists of a rotating motor, a fixed base and a group of elastic micropillars; the optical detection module of the separation detection system consists of a group of movable Lens composition for excitation and detection of fluorescence;
⑤本发明提供的系统使用时首先将样品液和免疫修饰的微球通过微流控芯片进样口导入其储液腔中,并将其置于离心驱动模块的离心平台上,装配好弹性微柱,低速旋转,利用旋转过程中弹性微柱对芯片表面变形薄膜的周期性挤压,实现储液腔中样品液和免疫修饰的微珠液体的充分混合和反应,然后高速旋转芯片,通过离心力结合过滤膜实现免疫捕获细胞的快速高效分离;分离后,在各分离细胞收集区滴加可特异识别待检测细胞的荧光标记抗体溶液,温育反应,然后加入缓冲液并离心,清除未反应的荧光标记抗体分子;最后,通过光学检测模块进行鉴定和分析。⑤ When the system provided by the present invention is used, firstly, the sample liquid and immunomodified microspheres are introduced into the liquid storage chamber through the microfluidic chip inlet, and placed on the centrifugal platform of the centrifugal drive module, and the elastic microspheres are assembled. The column rotates at a low speed. During the rotation process, the elastic micro-column periodically squeezes the deformed film on the surface of the chip to realize the full mixing and reaction of the sample liquid and the immunomodified micro-bead liquid in the liquid storage chamber, and then rotates the chip at a high speed. Combined with the filter membrane to realize the rapid and efficient separation of immune capture cells; after separation, drop the fluorescently labeled antibody solution that can specifically recognize the cells to be detected in each separated cell collection area, incubate the reaction, then add buffer and centrifuge to remove unreacted cells Fluorescently labeled antibody molecules; finally, identified and analyzed by an optical detection module.
本发明将免疫微球、微孔膜过滤和离心平台相结合构建稀少细胞分离检测系统,大大提高了稀少细胞的分离纯度,加快了稀少细胞的分离检测速度和效率。与现有基于微流控技术的稀少细胞分离检测系统相比,本发明提供的稀少细胞分离检测系统在分离检测速度和成本方面具有明显的优势,一方面通过结合免疫微球和离心过滤方法实现稀有细胞特异性分离,避免了制作集成免疫修饰微柱微流控芯片的复杂加工过程和昂贵成本;另一方面,从混合反应角度来看,免疫微球悬浮于样品液中,可以视为近似均相的反应,相对于现有的基于微柱阵列的微流控稀少细胞分离检测系统而言(其免疫反应为异相反应体系),具有更快的反应速率,且周期性机械挤压产生的流体振荡运动可进一步提高免疫微球与样品液中目标细胞的反应结合效率。此外,本发明提供的稀少细胞分离检测系统可将免疫分离后的细胞聚集于特定微区,避免了检测过程中繁琐耗时的大面积显微搜索操作,大大降低了稀少细胞分离检测实验操作的劳动强度,提高了稀少细胞分离检测效率。The invention combines immune microspheres, microporous membrane filtration and a centrifugal platform to construct a rare cell separation and detection system, which greatly improves the separation purity of rare cells and accelerates the speed and efficiency of separation and detection of rare cells. Compared with the existing rare cell separation and detection system based on microfluidic technology, the rare cell separation and detection system provided by the present invention has obvious advantages in terms of separation and detection speed and cost. The specific separation of rare cells avoids the complicated processing and expensive cost of making integrated immune-modified microcolumn microfluidic chips; Homogeneous reaction, compared with the existing microfluidic rare cell separation detection system based on microcolumn array (its immune reaction is a heterogeneous reaction system), it has a faster reaction rate, and periodic mechanical extrusion produces The fluid oscillating motion can further improve the reaction binding efficiency of the immune microspheres and the target cells in the sample liquid. In addition, the rare cell separation and detection system provided by the present invention can gather immune-separated cells in a specific micro-area, avoiding the tedious and time-consuming large-area microscopic search operation in the detection process, and greatly reducing the experimental operation cost of rare cell separation and detection. Labor intensity, improving the efficiency of rare cell separation and detection.
附图说明Description of drawings
图1为本发明基于离心微流控技术的稀少细胞分离检测系统结构示意图。Fig. 1 is a schematic diagram of the structure of the rare cell separation and detection system based on the centrifugal microfluidic technology of the present invention.
图2为图1所示分离检测系统结构组装示意图。FIG. 2 is a schematic diagram of the structure and assembly of the separation and detection system shown in FIG. 1 .
图3为本发明稀少细胞分离检测系统微流控芯片结构俯视示意图。Fig. 3 is a schematic top view of the microfluidic chip structure of the rare cell separation and detection system of the present invention.
图4为本发明稀少细胞分离检测系统微流控芯片结构组装示意图。Fig. 4 is a schematic diagram of the structure and assembly of the microfluidic chip of the rare cell separation and detection system of the present invention.
图5为本发明稀少细胞分离检测系统执行混合反应时芯片形变腔区域剖面示意图。Fig. 5 is a schematic cross-sectional view of the chip deformation chamber area when the rare cell separation and detection system of the present invention performs a mixed reaction.
具体实施方式 Detailed ways
下面结合实施例进一步说明本发明的实质性特点和显著的进步。Further illustrate substantive characteristics and remarkable progress of the present invention below in conjunction with embodiment.
实施例1Example 1
收集约5mL肿瘤病人外周血,并在血样中加入可与肿瘤细胞结合的EpCAM标记的免疫微球,然后注入稀少细胞分离检测系统微流控芯片的储液腔中;将加样后的芯片置于离心平台上,并装配好弹性微柱,以60~100转/分钟旋转离心平台,实现自动快速混合反应;5分钟后,提高旋转离心平台转速至500转/分钟,实现目标细胞分离;10分钟后,关闭离心平台运转,并撕开各细胞收集区上方加样口密封胶带,将可识别血液细胞的CD45-FITC及特异标记肿瘤细胞的CK-PE抗体依次加入细胞收集区,加液完成后再次以胶带封闭各加样口;温育20分钟,在芯片进样口注入磷酸缓冲液(PBS),并以600转/分钟旋转离心平台,洗涤清除细胞收集区未结合的荧光标记抗体分子。最后,调节旋转平台,将芯片各细胞收集区依次置于光学检测模块镜头处,对分离细胞进行鉴定分析。Collect about 5mL of peripheral blood from tumor patients, add EpCAM-labeled immune microspheres that can bind to tumor cells into the blood sample, and then inject it into the liquid storage cavity of the microfluidic chip of the rare cell separation detection system; place the chip after adding the sample Put it on the centrifugal platform, and assemble the elastic micro-column, rotate the centrifugal platform at 60~100 rpm to realize automatic and rapid mixing reaction; after 5 minutes, increase the rotational speed of the rotating centrifugal platform to 500 rpm to achieve the separation of target cells; 10 After 10 minutes, turn off the centrifugal platform, tear off the sealing tape of the sample port above each cell collection area, and add CD45-FITC that can identify blood cells and CK-PE antibody that specifically marks tumor cells into the cell collection area in turn, and the liquid addition is complete. Then seal each sample port with tape again; incubate for 20 minutes, inject phosphate buffered solution (PBS) into the sample port of the chip, and rotate the centrifuge platform at 600 rpm to wash and remove unbound fluorescently labeled antibody molecules in the cell collection area . Finally, adjust the rotating platform, place each cell collection area of the chip at the lens of the optical detection module in turn, and identify and analyze the isolated cells.
实施例2Example 2
收集约100mL人体骨髓,并在血样中加入可与胎儿红细胞结合的CD71标记的免疫微球,然后注入稀少细胞分离检测系统微流控芯片的储液腔中;将加样后的芯片置于离心平台上,并装配好弹性微柱,以60~100转/分钟旋转离心平台,实现自动快速混合反应;5分钟后,提高旋转离心平台转速至500转/分钟,实现目标细胞分离;10分钟后,关闭离心平台运转,并撕开各细胞收集区上方加样口密封胶带,将可识别胎儿红细胞血红蛋白的荧光标记抗体溶液加入细胞收集区,加液完成后再次以胶带封闭各加样口;温育20分钟,在芯片进样口注入磷酸缓冲液(PBS),并以600转/分钟旋转离心平台,洗涤清除细胞收集区未结合的荧光标记抗体分子。最后,调节旋转平台,将芯片各细胞收集区依次置于光学检测模块镜头处,对分离细胞进行鉴定分析。Collect about 100mL of human bone marrow, add CD71-labeled immune microspheres that can bind to fetal red blood cells into the blood sample, and then inject it into the liquid storage chamber of the microfluidic chip of the rare cell separation detection system; place the chip after adding the sample in a centrifuge On the platform, assemble the elastic micro-column, rotate the centrifuge platform at 60~100 rpm to realize automatic and rapid mixing reaction; after 5 minutes, increase the speed of the rotating centrifugal platform to 500 rpm to achieve the separation of target cells; after 10 minutes , turn off the operation of the centrifugal platform, and tear off the sealing tape of the sample port above each cell collection area, add the fluorescently labeled antibody solution that can recognize fetal red blood cell hemoglobin into the cell collection area, and seal the sample port again with tape after the liquid addition is completed; Incubate for 20 minutes, inject phosphate buffered solution (PBS) into the chip inlet, and rotate the centrifuge platform at 600 rpm to wash and remove unbound fluorescently labeled antibody molecules in the cell collection area. Finally, adjust the rotating platform, place each cell collection area of the chip at the lens of the optical detection module in turn, and identify and analyze the isolated cells.
实施例3Example 3
收集约1mL人体脐带血,并在血样中加入可与造血干细胞选择性结合的免疫微球,然后注入稀少细胞分离检测系统微流控芯片的储液腔中;将加样后的芯片置于离心平台上,并装配好弹性微柱,以60~100转/分钟旋转离心平台,实现自动快速混合反应;5分钟后,提高旋转离心平台转速至500转/分钟,实现目标细胞分离;10分钟后,关闭离心平台运转,并撕开各细胞收集区上方加样口密封胶带,将可识别造血干细胞的CD45-FITC溶液加入细胞收集区,加液完成后再次以胶带封闭各加样口;温育20分钟,在芯片进样口注入磷酸缓冲液(PBS),并以600转/分钟旋转离心平台,洗涤清除细胞收集区未结合的荧光标记抗体分子。最后,调节旋转平台,将芯片各细胞收集区依次置于光学检测模块镜头处,对分离细胞进行鉴定分析。Collect about 1mL of human umbilical cord blood, add immune microspheres that can selectively bind to hematopoietic stem cells into the blood sample, and then inject it into the liquid storage chamber of the microfluidic chip of the rare cell separation detection system; place the added chip in a centrifuge On the platform, assemble the elastic micro-column, rotate the centrifuge platform at 60~100 rpm to realize automatic and rapid mixing reaction; after 5 minutes, increase the speed of the rotating centrifugal platform to 500 rpm to achieve the separation of target cells; after 10 minutes , turn off the operation of the centrifugal platform, and tear off the sealing tape of the sample port above each cell collection area, add the CD45-FITC solution that can identify hematopoietic stem cells into the cell collection area, and seal the sample port again with tape after the liquid addition is completed; For 20 minutes, inject phosphate buffer solution (PBS) into the chip inlet, and rotate the centrifuge platform at 600 rpm to wash and remove unbound fluorescently labeled antibody molecules in the cell collection area. Finally, adjust the rotating platform, place each cell collection area of the chip at the lens of the optical detection module in turn, and identify and analyze the isolated cells.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210545205.9A CN103018224B (en) | 2012-12-14 | 2012-12-14 | Based on rare cells separation detecting system and the method for centrifugal microfluidic control techniques |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210545205.9A CN103018224B (en) | 2012-12-14 | 2012-12-14 | Based on rare cells separation detecting system and the method for centrifugal microfluidic control techniques |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103018224A CN103018224A (en) | 2013-04-03 |
CN103018224B true CN103018224B (en) | 2015-07-29 |
Family
ID=47967073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210545205.9A Active CN103018224B (en) | 2012-12-14 | 2012-12-14 | Based on rare cells separation detecting system and the method for centrifugal microfluidic control techniques |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103018224B (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103389371A (en) * | 2013-08-07 | 2013-11-13 | 苏州扬清芯片科技有限公司 | Disc-type multi-index analysis chip |
CN104251810B (en) * | 2013-12-18 | 2016-08-17 | 中国科学院电子学研究所 | Characterize unicellular Young's modulus and the cell membrane system than electric capacity simultaneously |
NO337444B1 (en) * | 2014-06-19 | 2016-04-11 | Spinchip Diagnostics As | Analysis Method |
CN104178413B (en) * | 2014-07-04 | 2016-05-25 | 宁波美晶医疗技术有限公司 | A kind of plastic packaging box packaging structure of rare cell separator |
CN105400679B (en) * | 2014-09-10 | 2017-10-31 | 清华大学 | A kind of micro flow control chip device for cell separation |
CN105158492B (en) * | 2015-10-22 | 2017-03-08 | 东南大学 | An automatic pipetting device |
US20170205404A1 (en) * | 2016-01-19 | 2017-07-20 | General Electric Company | Multifunctional beads and methods of use for capturing rare cells |
CN106124388B (en) * | 2016-06-12 | 2020-02-11 | 中国科学院电子学研究所 | Capillary tube sample injection system, sample injection method and single cell electrical characteristic detection system |
CN106754344B (en) * | 2016-11-24 | 2017-11-28 | 大连医科大学附属第二医院 | The combined sorting purification devices and sorting detection method of circulating tumour cell |
GB201700340D0 (en) * | 2017-01-09 | 2017-02-22 | Gsg Tech Ltd | fluid manipulation cartridge and controller mechanism |
CN108686722B (en) * | 2017-04-07 | 2024-06-18 | 苏州含光微纳科技有限公司 | Centrifugal immunomagnetic bead sorting micro-fluidic chip and device |
CN107044972A (en) * | 2017-05-25 | 2017-08-15 | 沈阳优宁生物科技有限公司 | A kind of micro-fluidic chip fluorescence immunoassay quick detection kit and its preparation and detection method |
CN107702973B (en) * | 2017-09-08 | 2024-07-26 | 深圳市太赫兹科技创新研究院有限公司 | Whole blood plasma separation system and method |
US11099202B2 (en) * | 2017-10-20 | 2021-08-24 | Tecan Genomics, Inc. | Reagent delivery system |
CN107703981B (en) * | 2017-11-03 | 2020-09-25 | 北京工业大学 | Micro-fluidic chip outlet pressure adjusting device |
CN107802293A (en) * | 2017-11-10 | 2018-03-16 | 湘潭大学 | The flexible microfluidic body equipment and the sweat collection and detection method of the equipment that a kind of human sweat collects |
CN108660060B (en) * | 2018-08-13 | 2023-12-08 | 苏州绘真医学检验有限公司 | Microfluidic chip for enriching and purifying circulating tumor cells |
CN109158136B (en) * | 2018-10-19 | 2023-10-13 | 上海快灵生物工程有限公司 | Micro-fluid chip intercepted by microporous membrane and solution flow path control method thereof |
CN111068798A (en) * | 2018-10-19 | 2020-04-28 | 上海快灵生物工程有限公司 | Micro-fluidic chip with micro-porous membrane for intercepting aggregated microspheres and detection method thereof |
CN111077325A (en) * | 2018-10-19 | 2020-04-28 | 上海快灵生物科技有限公司 | Microporous membrane retention and aggregation biochemical detection device and detection method |
WO2020122916A1 (en) * | 2018-12-13 | 2020-06-18 | Tissue Genesis, Llc | Cell separation apparatus and methods of use |
CN110044838B (en) * | 2019-05-09 | 2021-06-25 | 青岛大学附属医院 | A kind of secretion optical detection device |
CN112076806B (en) * | 2019-06-14 | 2022-12-30 | 中国科学院青岛生物能源与过程研究所 | Centrifugal enrichment microfluidic chip for low-concentration liquid sample |
CN110982882B (en) * | 2019-12-20 | 2023-06-20 | 南通大学 | Microfluidic chip for single cell immobilization-isolation and in-situ nucleic acid amplification and application thereof |
CN110951587A (en) * | 2019-12-24 | 2020-04-03 | 南通大学 | Chip and method for cell filtration, fixation and in-situ fluorescence nucleic acid hybridization experiment |
CN113544489B (en) * | 2020-02-20 | 2024-08-02 | 京东方科技集团股份有限公司 | Mixing device, driving method thereof and detection assembly |
CN111537708A (en) * | 2020-06-11 | 2020-08-14 | 烟台芥子生物技术有限公司 | Microfluidic detection structure and application thereof |
CN112694969A (en) * | 2020-09-22 | 2021-04-23 | 深圳汇芯生物医疗科技有限公司 | Separation detection chip, separation detection device and separation detection method |
CN112538415B (en) * | 2020-12-23 | 2024-08-13 | 深圳市呈晖医疗科技有限公司 | Single-disc type automatic nucleic acid analysis device |
CN114994346B (en) * | 2022-08-04 | 2022-10-04 | 天津长和生物技术有限公司 | Cell detection device and detection method thereof |
CN115469094B (en) * | 2022-08-30 | 2024-09-06 | 杭州申昊科技股份有限公司 | Luminous detection microfluidic analysis kit and detection method |
CN115920987B (en) * | 2022-12-30 | 2024-04-05 | 华中科技大学 | A drug sensitivity detection chip based on bacterial enrichment |
CN117347350B (en) * | 2023-11-03 | 2024-09-06 | 厦门宝太和瑞生物技术有限公司 | Improved device applied to chemiluminescent whole blood detection |
CN118059969A (en) * | 2024-01-11 | 2024-05-24 | 杭州联川生物技术股份有限公司 | Oscillation method for reagent oscillation of microfluidic chip |
CN118518454B (en) * | 2024-07-23 | 2024-09-13 | 天津医科大学第二医院 | A sample pretreatment device suitable for mass spectrometry detection |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4692200B2 (en) * | 2005-10-06 | 2011-06-01 | 横河電機株式会社 | Chemical treatment cartridge and method of use thereof |
US8741136B2 (en) * | 2006-02-10 | 2014-06-03 | Boehringer Ingelheim Microparts Gmbh | Device and method for treating or cleaning sample material, in particular nucleic acids |
KR101343034B1 (en) * | 2006-09-05 | 2013-12-18 | 삼성전자 주식회사 | Centrifugal microfluidic device for target protein detection and microfluidic system comprising the same |
CN101850231B (en) * | 2009-07-03 | 2012-08-29 | 中国科学院上海微系统与信息技术研究所 | Micro-fluid reactor, using method and application thereof |
-
2012
- 2012-12-14 CN CN201210545205.9A patent/CN103018224B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103018224A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103018224B (en) | Based on rare cells separation detecting system and the method for centrifugal microfluidic control techniques | |
Sasso et al. | Automated microfluidic processing platform for multiplexed magnetic bead immunoassays | |
CN113088446B (en) | Full-automatic nucleic acid rapid detection device and detection method | |
CN107603859B (en) | Full-automatic integrated nucleic acid extraction, amplification and detection system | |
CN102671729B (en) | Micro-fluidic chip for multi-index biochemical detection | |
Wu et al. | Microfluidic technologies in cell isolation and analysis for biomedical applications | |
CN104762193B (en) | Nucleic acid automatically extracts micro fluidic device | |
WO2021254518A1 (en) | Sample treatment and testing apparatus | |
CN114280314B (en) | Microfluidic chip, analysis system and analysis method for chemiluminescence immunoassay | |
EP2715357A1 (en) | Microfluidic disc for use in with bead-based immunoassays | |
KR20110088746A (en) | Centrifugal force-based microfluidic device and method for detecting analytes in fluid samples using the same | |
CN106947683A (en) | A kind of nucleic acid extraction purification devices and method | |
CN114618600B (en) | Microfluidic Centrifugal Disc | |
CN102175840A (en) | Whole blood centrifugal separation chip and preparation method thereof | |
CN109682962A (en) | Immunofluorescence test system and detection method based on micro-fluidic chip | |
CN108499619A (en) | A kind of integrated micro-fluidic filtrating chip of film and its preparation method and application | |
CN115254219B (en) | Centrifugal microfluidic detection system and detection control method thereof | |
US12253447B2 (en) | Isolation method for isolating target particles from liquid samples | |
CN111073811B (en) | A microfluidic chip and detection method for real-time fluorescent nucleic acid amplification detection | |
CN114814261A (en) | Automatic chemiluminescence immunoassay chip and detection method thereof | |
CN213447072U (en) | Exosome separation, detection micro-fluidic device | |
CN113522380A (en) | Disc type micro-fluidic chip for nucleic acid detection and application | |
CN209727963U (en) | Immunofluorescence test system based on micro-fluidic chip | |
CN102998472B (en) | Automatic device for heterogeneous immunization rapid analysis and use method of automatic device | |
CN106031889B (en) | A kind of protein quick detecting system based on centrifugal platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |