CN114814261A - Automatic chemiluminescence immunoassay chip and detection method thereof - Google Patents
Automatic chemiluminescence immunoassay chip and detection method thereof Download PDFInfo
- Publication number
- CN114814261A CN114814261A CN202210425284.3A CN202210425284A CN114814261A CN 114814261 A CN114814261 A CN 114814261A CN 202210425284 A CN202210425284 A CN 202210425284A CN 114814261 A CN114814261 A CN 114814261A
- Authority
- CN
- China
- Prior art keywords
- pool
- reagent
- quantitative
- reaction
- microchannel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 118
- 238000003018 immunoassay Methods 0.000 title claims abstract description 17
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 130
- 238000006243 chemical reaction Methods 0.000 claims abstract description 98
- 239000000523 sample Substances 0.000 claims abstract description 87
- 238000009826 distribution Methods 0.000 claims abstract description 59
- 238000012545 processing Methods 0.000 claims abstract description 38
- 238000000926 separation method Methods 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims description 72
- 239000002699 waste material Substances 0.000 claims description 38
- 239000006249 magnetic particle Substances 0.000 claims description 19
- 239000012488 sample solution Substances 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 16
- 108010048233 Procalcitonin Proteins 0.000 claims description 14
- 230000005284 excitation Effects 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 14
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 claims description 14
- 108090000623 proteins and genes Proteins 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 238000005119 centrifugation Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 10
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- -1 acridine ester Chemical class 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 102000004889 Interleukin-6 Human genes 0.000 claims description 4
- 108090001005 Interleukin-6 Proteins 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 4
- 229940100601 interleukin-6 Drugs 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 3
- 102000055006 Calcitonin Human genes 0.000 claims 1
- 108060001064 Calcitonin Proteins 0.000 claims 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 claims 1
- 229960004015 calcitonin Drugs 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 13
- 239000012472 biological sample Substances 0.000 abstract description 3
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 13
- 102100032752 C-reactive protein Human genes 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 238000000703 high-speed centrifugation Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000011002 quantification Methods 0.000 description 7
- RXNXLAHQOVLMIE-UHFFFAOYSA-N phenyl 10-methylacridin-10-ium-9-carboxylate Chemical group C12=CC=CC=C2[N+](C)=C2C=CC=CC2=C1C(=O)OC1=CC=CC=C1 RXNXLAHQOVLMIE-UHFFFAOYSA-N 0.000 description 5
- 239000012491 analyte Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000000464 low-speed centrifugation Methods 0.000 description 3
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- GDALETGZDYOOGB-UHFFFAOYSA-N Acridone Natural products C1=C(O)C=C2N(C)C3=CC=CC=C3C(=O)C2=C1O GDALETGZDYOOGB-UHFFFAOYSA-N 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- FZEYVTFCMJSGMP-UHFFFAOYSA-N acridone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3NC2=C1 FZEYVTFCMJSGMP-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00495—Centrifuges
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及微流控快速检测领域,具体地,涉及一种自动化化学发光免疫分析芯片及其检测方法,特别公开了一种离心式自动化快速检测芯片,用于样本中分析物的高灵敏度自动化定量快速分析检测。The invention relates to the field of microfluidic rapid detection, in particular to an automated chemiluminescence immunoassay chip and a detection method thereof, and particularly discloses a centrifugal automated rapid detection chip, which is used for high-sensitivity automated quantification of analytes in samples Rapid analysis detection.
背景技术Background technique
床旁快速检测是现代检测技术总体趋势之一,目前大部分生物样本中的分析物包括基因、蛋白、糖、元素等基本可以利用大型仪器或繁杂的手工操作进行分析检测,但是因为其制造成本高,专业技术要求高,环境要求高而限制了这些检测技术的推广,导致许多分析物不能被及时检测分析而限制了科学的发展;许多样本由于保存条件较高,又不能进行现场分析检测,就导致了生物安全隐患不能被及时发现,而造成严重后果;另一方面随着昂贵检测技术的发展,同样增加了医疗、公共卫生、科学研究、患者等体系或个人的经济负担。Point-of-care rapid detection is one of the general trends of modern detection technology. At present, most of the analytes in biological samples, including genes, proteins, sugars, elements, etc., can be analyzed and detected by large-scale instruments or complicated manual operations. However, due to their manufacturing costs High, professional and technical requirements, and high environmental requirements limit the promotion of these detection technologies, resulting in many analytes that cannot be detected and analyzed in time, which limits the development of science; many samples cannot be analyzed and tested on-site due to high storage conditions. As a result, the hidden dangers of biosafety cannot be detected in time, resulting in serious consequences; on the other hand, with the development of expensive detection technology, it also increases the economic burden of medical, public health, scientific research, patients and other systems or individuals.
微流控分析技术是指把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,并且能够自动完成分析全过程的一项技术。微流控芯片相比于一般的检测技术,具有高分析效率、高精确度、集成化、通量灵活化、自动化和节能环保等优势。微流控检测芯片一般具有样品消耗少、检测速度快、操作简便、多功能集成、体小和便于携带等优点,因此在降低整体检测成本上具有较大的潜在能力,非常适合床旁快速检测的发展。特别是离心式微流控芯片借助离心力对流体的控制,可以很好地简化仪器设备,同时在圆盘式芯片内设计各种阀门控制结构。但是精细的微阀结构在批量加工制造容易产生批间差,影响重复性,更为重要的是,离心式微流控芯片中科氏力及欧拉力的存在会使流体引流方向产生偏差而影响最终的检测结构。Microfluidic analysis technology refers to a technology that integrates basic operation units such as sample preparation, reaction, separation, and detection in biological, chemical, and medical analysis processes into a micron-scale chip, and can automatically complete the entire analysis process. Compared with general detection technology, microfluidic chip has the advantages of high analysis efficiency, high accuracy, integration, flexible throughput, automation, energy saving and environmental protection. Microfluidic detection chips generally have the advantages of less sample consumption, fast detection speed, simple operation, multi-function integration, small size and easy portability, so they have great potential to reduce the overall detection cost, and are very suitable for rapid bedside detection. development of. In particular, the centrifugal microfluidic chip uses centrifugal force to control the fluid, which can simplify the instrument and equipment, and at the same time design various valve control structures in the disc chip. However, the fine micro-valve structure is prone to batch-to-batch differences in batch processing and manufacturing, which affects repeatability. More importantly, the existence of Coriolis and Euler forces in centrifugal microfluidic chips will cause deviations in the direction of fluid drainage and affect the final detection structure.
因此,目前大多数微流控芯片应用床旁快速检测都还处于理论研究及专利申请阶段,商业化的微流控检测芯片就更加少了。目前微流控检测芯片的主要挑战有以下几点:Therefore, most of the microfluidic chip applications for bedside rapid detection are still in the stage of theoretical research and patent application, and there are even fewer commercialized microfluidic detection chips. The main challenges of current microfluidic detection chips are as follows:
1.芯片内实现试剂的顺序释放;1. Realize the sequential release of reagents in the chip;
2.芯片结构复杂需要进行局部的修饰,增加了芯片加工成本及难度,同时降低了芯片的稳定性;2. The complex structure of the chip requires local modification, which increases the cost and difficulty of chip processing and reduces the stability of the chip;
3.单个芯片内实现多样本多靶标的同时定量检测,需要更加巧妙的芯片设计,目前还处于单样本多靶标或单靶标的快速检测,同时不能很好地完成样本的分配定量,因此难于实现分析物的定量检测;3. The simultaneous quantitative detection of multiple samples and multiple targets in a single chip requires a more ingenious chip design. At present, it is still in the rapid detection of single sample multiple targets or single targets, and at the same time, the distribution and quantification of samples cannot be well completed, so it is difficult to achieve Quantitative detection of analytes;
4.多种试剂的难于同时定量分配及对分配定量好的试剂在微流体通道上难于实现充分的混合;4. It is difficult to quantitatively distribute multiple reagents at the same time, and it is difficult to achieve sufficient mixing of the well-distributed reagents on the microfluidic channel;
5.离心芯片引流过程中科氏力及欧拉力对流体方向产生偏差。5. During the drainage process of the centrifugal chip, the Coriolis force and the Euler force have deviations in the direction of the fluid.
发明内容SUMMARY OF THE INVENTION
基于此,本发明公开一种微流控自动化快速检测芯片,其具有加工制造简单,可以实现检测所需试剂的顺序释放,同时在单个芯片内完成多个样本的多靶标定量快速检测,而且检测过程完全自动化完成,不需要专业技术人员进行操作,配套仪器便携简单,非常适合于床旁快速检测。Based on this, the present invention discloses a microfluidic automated rapid detection chip, which has the advantages of simple processing and manufacturing, can realize the sequential release of reagents required for detection, and simultaneously completes multi-target quantitative rapid detection of multiple samples in a single chip. The process is completely automated and does not require professional and technical personnel to operate. The supporting instruments are portable and simple, which is very suitable for rapid bedside detection.
根据本发明第一方面,提供了一种自动化化学发光免疫分析芯片,包括至少一个检测单元,各个所述检测单元包括样本处理层和试剂处理层;According to the first aspect of the present invention, an automated chemiluminescence immunoassay chip is provided, comprising at least one detection unit, each of which includes a sample processing layer and a reagent processing layer;
所述样本处理层包括加样口、样本分离池、第一定量分配单元、定量区、第一微通道引流单元和反应池;所述加样口、样本分离池、第一定量分配单元和定量区依次连接,所述第一微通道引流单元用于将定量区中的液体引流至反应池中;所述第一微通道引流单元上有腔室,所述腔室用于包埋反应所需物质;The sample processing layer includes a sample injection port, a sample separation pool, a first quantitative distribution unit, a quantitative area, a first microchannel drainage unit and a reaction pool; the sample injection port, the sample separation pool, and the first quantitative distribution unit Connected to the quantitative area in sequence, the first microchannel drainage unit is used to drain the liquid in the quantitative area into the reaction tank; the first microchannel drainage unit has a chamber, and the chamber is used for embedding the reaction required substance;
所述试剂处理层包括第一试剂池和第二试剂池,所述第一试剂池和第二试剂池均与反应池连接;所述第一试剂池和第二试剂池用于预封装反应所需试剂。The reagent treatment layer includes a first reagent pool and a second reagent pool, both of which are connected to the reaction pool; the first reagent pool and the second reagent pool are used for pre-packaging the reaction chamber. Reagents are required.
优选地,所述第一试剂池和第二试剂池分别通过第二定量分配单元与第一定量腔室和第二定量腔室连接,所述第一定量腔室和第二定量腔室分别与第二微通道引流单元和第三微通道引流单元连接,所述第二微通道引流单元通过第二定量腔室与第三微通道引流单元连接,所述第三微通道引流单元与反应池连接;所述第一试剂池和第二试剂池用于预封装反应所需试剂。Preferably, the first reagent pool and the second reagent pool are respectively connected to the first quantitative chamber and the second quantitative chamber through a second quantitative distribution unit, and the first quantitative chamber and the second quantitative chamber are respectively connected with the second microchannel drainage unit and the third microchannel drainage unit, the second microchannel drainage unit is connected with the third microchannel drainage unit through the second quantitative chamber, and the third microchannel drainage unit is connected with the reaction Pool connection; the first reagent pool and the second reagent pool are used for pre-packaged reagents required for the reaction.
优选地,所述第一试剂池通过第二定量分配单元与第一定量腔室连接,所述第一定量腔室与第二微通道引流单元连接,所述第二微通道引流单元与反应池连接;所述第二试剂池直接与反应池连接;所述第一试剂池和第二试剂池用于预封装反应所需试剂。Preferably, the first reagent pool is connected to a first quantitative chamber through a second quantitative distribution unit, the first quantitative chamber is connected to a second microchannel drainage unit, and the second microchannel drainage unit is connected to The reaction pool is connected; the second reagent pool is directly connected to the reaction pool; the first reagent pool and the second reagent pool are used for pre-packaged reagents required for the reaction.
优选地,所述检测单元还包括阀门、废液池和气孔;所述阀门分别与反应池和废液池连接;所述废液池与第一定量分配单元和第二定量分配单元连接;所述废液池用于收集反应池、第一定量分配单元和第二定量分配单元中的废液;所述气孔与废液池连接,用于平衡芯片内部气压。Preferably, the detection unit further comprises a valve, a waste liquid pool and an air hole; the valve is respectively connected with the reaction pool and the waste liquid pool; the waste liquid pool is connected with the first quantitative distribution unit and the second quantitative distribution unit; The waste liquid pool is used to collect waste liquid in the reaction pool, the first quantitative distribution unit and the second quantitative distribution unit; the air hole is connected to the waste liquid pool and is used to balance the air pressure inside the chip.
优选地,所述第一微通道引流单元具有蜿蜒微通道组合,所述蜿蜒微通道组合用于借助芯片离心过程中科氏力及欧拉力的对流体偏转的效果来增加液体的混合效果及控制流体流速。Preferably, the first microchannel drainage unit has a serpentine microchannel combination, and the serpentine microchannel combination is used to increase the mixing effect of the liquid by means of the effect of Coriolis force and Euler force on fluid deflection during the chip centrifugation process and control fluid flow rate.
根据本发明另一方面,提供了任一所述的自动化化学发光免疫分析芯片的检测方法,包括以下步骤:According to another aspect of the present invention, there is provided any of the automated chemiluminescence immunoassay chip detection methods, comprising the following steps:
S1:将信号分子标记的靶标抗体预埋在第一微通道引流单元上的腔室中,将磁微粒标记的靶标抗体预埋在反应池中;S1: pre-embed the target antibody labeled with signal molecules in the chamber on the first microchannel drainage unit, and pre-embed the target antibody labeled with magnetic particles in the reaction pool;
S2:在加样口处加入待检测样本,在离心力作用下,待检测样本在样本分离池中沉淀杂质;随后,样本溶液进入第一定量分配单元进行分配,通过定量区进入第一微通道引流单元中,并复溶信号分子标记的靶标抗体,样本溶液中的靶标蛋白与信号分子标记的靶标抗体形成第一复合物,该第一复合物进入反应池中,并与磁微粒标记的靶标抗体反应形成第二复合物;S2: Add the sample to be tested at the sample injection port. Under the action of centrifugal force, the sample to be tested precipitates impurities in the sample separation tank; then, the sample solution enters the first quantitative distribution unit for distribution, and enters the first microchannel through the quantitative area In the drainage unit, the target antibody labeled with the signal molecule is reconstituted, and the target protein in the sample solution and the target antibody labeled with the signal molecule form a first complex, and the first complex enters the reaction pool and is combined with the magnetic particle-labeled target. The antibody reacts to form a second complex;
S3:启动磁铁吸附,使第二复合物固定在反应池中,随后开放阀门,启动离心,将未形成第二复合物的的信号分子标记的靶标抗体排入废液池中,随后关闭阀门;S3: start the magnet adsorption to fix the second complex in the reaction tank, then open the valve, start centrifugation, and discharge the target antibody labeled with the signal molecule that does not form the second complex into the waste liquid tank, and then close the valve;
S4:去除磁铁吸附,释放第一试剂池和第二试剂池中的试剂进入反应池中,使所述第二复合物中捕获的发光分子反应发光,对光信号进行检测,并计算得到待检测样本中靶标蛋白的含量。S4: remove the magnet adsorption, release the reagents in the first reagent pool and the second reagent pool into the reaction pool, make the luminescent molecules captured in the second complex react to emit light, detect the light signal, and calculate the to-be-detected The amount of target protein in the sample.
优选地,所述信号分子为吖啶酯、吖啶酮或辣根过氧化物酶。Preferably, the signal molecule is acridinium ester, acridone or horseradish peroxidase.
优选地,所述靶标蛋白为急性时效反应蛋白、降钙素原或白介素-6;所述靶标抗体为急性时效反应蛋白抗体、降钙素原抗体或白介素-6抗体。Preferably, the target protein is acute response protein, procalcitonin or interleukin-6; the target antibody is acute response protein antibody, procalcitonin antibody or interleukin-6 antibody.
优选地,所述第一试剂池和第二试剂池中的试剂分别为预激发液和激发液。Preferably, the reagents in the first reagent pool and the second reagent pool are pre-excitation liquid and excitation liquid, respectively.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:In general, compared with the prior art, the above technical solutions conceived by the present invention mainly have the following technical advantages:
(1)本发明的自动化快速检测芯片可以和生物化学,免疫,化学发光等检测技术的结合,应用于生物样本中分析物的高灵敏度定量快速检测分析,在生物医学、生物化学、床旁快速检测等领域都具有巨大的潜在应用价值。(1) The automated rapid detection chip of the present invention can be combined with detection technologies such as biochemistry, immunity, and chemiluminescence, and is applied to the high-sensitivity, quantitative and rapid detection and analysis of analytes in biological samples. Detection and other fields have huge potential application value.
(2)本发明的自动化快速检测芯片可以完成多种试剂的高通量分配定量,并实现多种试剂的分步充分混合反应,提高检测灵敏度及精确度。(2) The automated rapid detection chip of the present invention can complete the high-throughput distribution and quantification of various reagents, and realize the step-by-step and full mixing reaction of various reagents, thereby improving the detection sensitivity and accuracy.
(3)本发明的自动化快速检测芯片可以实现化学发光检测过程中激发液与预激发液的顺序混合,同时可以控制激发液进入反应腔室的顺序,便携信号的精准采集及分析。(3) The automatic rapid detection chip of the present invention can realize the sequential mixing of the excitation liquid and the pre-excitation liquid in the chemiluminescence detection process, and can control the sequence of the excitation liquid entering the reaction chamber, and accurately collect and analyze portable signals.
(4)本发明的自动化快速检测芯片通过引流通道可以克服科氏力及欧拉力的对流体偏转的影响,实现多种试剂的定量分配及顺序混合反应;同时通过垂直或平行于圆心延伸线的蜿蜒微通道组合,可以借助科氏力及欧拉力对流体偏转的控制,提高液体混合程度。(4) The automatic rapid detection chip of the present invention can overcome the influence of Coriolis force and Euler force on fluid deflection through the drainage channel, and realize the quantitative distribution and sequential mixing reaction of various reagents; The combination of meandering microchannels can control the deflection of the fluid by the Coriolis force and the Euler force, and improve the mixing degree of the liquid.
附图说明Description of drawings
图1为本发明自动化快速检测芯片的整体结构图;Fig. 1 is the overall structure diagram of the automatic rapid detection chip of the present invention;
图2为本发明自动化快速检测芯片的分层结构示意图;2 is a schematic diagram of a layered structure of an automated rapid detection chip of the present invention;
图3为本发明自动化快速检测芯片的一个检测单元示意图;Fig. 3 is a schematic diagram of a detection unit of the automatic rapid detection chip of the present invention;
图4为本发明自动化快速检测芯片一个检测单元的样本处理层示意图;4 is a schematic diagram of a sample processing layer of a detection unit of an automated rapid detection chip of the present invention;
图5为本发明自动化快速检测芯片一个检测单元的试剂处理层示意图;5 is a schematic diagram of a reagent processing layer of a detection unit of the automated rapid detection chip of the present invention;
图6为本发明自动化快速检测芯片一个检测单元的试剂处理层一种实施例示意图;6 is a schematic diagram of an embodiment of a reagent processing layer of a detection unit of an automated rapid detection chip of the present invention;
图7为本发明自动化快速检测芯片的部分结构示意图;Fig. 7 is the partial structural schematic diagram of the automatic rapid detection chip of the present invention;
图8为本发明微流通道引流单元在离心引流过程中克服科氏力及欧拉力的影响的效果;Fig. 8 is the effect that the microfluidic channel drainage unit of the present invention overcomes the influence of Coriolis force and Euler force in the centrifugal drainage process;
图9为本发明自动化快速检测芯片的整体结构图的另一种形式;Fig. 9 is another form of the overall structure diagram of the automatic rapid detection chip of the present invention;
图10为本发明自动化快速检测芯片的整体结构图的另一种形式的分层结构示意图;10 is a schematic diagram of another form of layered structure of the overall structure diagram of the automated rapid detection chip of the present invention;
图11为本发明自动化快速检测芯片的一个检测单元另一种形式的示意图;11 is a schematic diagram of another form of a detection unit of the automated rapid detection chip of the present invention;
图12为为本发明自动化快速检测芯片的一个检测单元另一种形式的部分结构图;12 is a partial structural diagram of another form of a detection unit of an automated rapid detection chip of the present invention;
图13为在离心引流过程中的力学分析图。Figure 13 is a diagram of mechanical analysis during centrifugal drainage.
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:200-检测单元、51-样本处理层、52-试剂处理层、11-加样口、12-样本分离池、13-第一定量分配单元、14-定量区、15-第一微通道引流单元、16-反应池、17-腔室、21-第一试剂池、22-第二试剂池、23-第二定量分配单元、24-第一定量腔室、25-第二定量腔室、26-第二微通道引流单元、27-第三微通道引流单元、31-阀门、32-废液池、53-中间层、54-上盖、55-下盖。In all drawings, the same reference numerals are used to represent the same elements or structures, wherein: 200-detection unit, 51-sample processing layer, 52-reagent processing layer, 11-sample injection port, 12-sample separation pool , 13-first quantitative distribution unit, 14-quantitative area, 15-first microchannel drainage unit, 16-reaction pool, 17-chamber, 21-first reagent pool, 22-second reagent pool, 23- Second quantitative distribution unit, 24-first quantitative chamber, 25-second quantitative chamber, 26-second microchannel drainage unit, 27-third microchannel drainage unit, 31-valve, 32-waste pool , 53 - middle layer, 54 - upper cover, 55 - lower cover.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
本发明一种自动化快速检测芯片400,包括至少一个检测单元200,各个所述检测单元包括样本处理层51和试剂处理层52;An automated
图4本发明自动化快速检测芯片的样本处理层的示意图。本发明样本处理层51包括加样口11、样本分离池12、第一定量分配单元13、定量区14、第一微通道引流单元15和反应池16;所述加样口11、样本分离池12、第一定量分配单元13和定量区14依次连接,所述第一微通道引流单元15用于将定量区14中的液体引流至反应池16中;所述第一微通道引流单元15上有腔室17,所述腔室17用于包埋反应所需物质;FIG. 4 is a schematic diagram of the sample processing layer of the automated rapid detection chip of the present invention. The
所述试剂处理层52包括第一试剂池21和第二试剂池22,所述第一试剂池21和第二试剂池22分别通过第二定量分配单元23与第一定量腔室24和第二定量腔室25连接,所述第一定量腔室24和第二定量腔室25分别与第二微通道引流单元26和第三微通道引流单元27连接,所述第二微通道引流单元26通过第二定量腔室25与第三微通道引流单元27连接,所述第三微通道引流单元27与反应池16连接;所述第一试剂池21和第二试剂池22用于预封装反应所需试剂。The
所述检测单元200还包括阀门31和废液池32;所述阀门31分别与反应池16和废液池32连接;所述废液池32与第一定量分配单元13和第二定量分配单元23连接;所述废液池32用于收集反应池16、第一定量分配单元13和第二定量分配单元23中的废液。图3为本发明自动化快速检测芯片的一个检测单元示意图。The
所述第一微通道引流单元15、第二微通道引流单元26和第三微通道引流单元27具有混合和微阀门的作用,所述自动化快速检测芯片具有旋转中心。The first
具体地,本发明芯片内各个检测单元200是互相独立的,芯片的结构可以一致可以不一致,可以按检测需求进行调整;Specifically, each
具体地,在其中一个实施例中芯片为5层结构,包括上盖54、下盖55、样本处理层51,试剂处理层52及中间层53,所述样本处理层51与试剂处理层52为不在同一平面,同时只通过反应池16相互连通;Specifically, in one embodiment, the chip has a five-layer structure, including an
所述检测芯片在另一种形式中(图8),样本处理层与试剂处理层位于同一层(图9),在其中一个实施例中芯片为3层结构,包括上盖54、下盖55及中间层53(图10)。图11为本发明自动化快速检测芯片的一个检测单元另一种形式的示意图;图12为为本发明自动化快速检测芯片的一个检测单元另一种形式的部分结构图。本发明另一种形式中,第一试剂池21通过第二定量分配单元23与第一定量腔室24连接,第一定量腔室24与第二微通道引流单元26连接,第二微通道引流单元26与反应池16连接;第二试剂池22直接与反应池16连接;第一试剂池21和第二试剂池22用于预封装反应所需试剂。In another form of the detection chip (Fig. 8), the sample processing layer and the reagent processing layer are located on the same layer (Fig. 9). In one embodiment, the chip has a 3-layer structure, including an
具体地,所述加样口11与样本分离池12连通,将样本从加样口11加入,样本可为全血、血浆、血清、尿液等各种样本;Specifically, the
具体地,所述样本分离池12与第一定量分配单元13连通,连接口设计为样本分离池12中部,芯片离心时,样本中的固相杂质会由于离心力及离心速度较大而优先沉降在样本分离池12底部,上清会随着持续的离心力而进入第一定量分配单元13,连接口可以进行多种设计防止杂质进入第一定量分配单元13,例如微柱,生物膜,微阀门等;Specifically, the
具体地,所述第一定量分配单元13与第一微通道引流单元15连通,所述第一定量分配单元13包含多个定量区14,当芯片低速离心时,样本溶液会进入定量区14,并随着离心力的持续,多余的样本溶液会被排入废液池32,因此可以完成样本溶液的分配定量,为后续的多靶标定量检测提供一定体积的样本溶液;Specifically, the first
具体地,所述第一微通道引流单元15的微通道尺寸为宽10~100μm,高10~100μm,但不限于此;Specifically, the size of the microchannel of the first
具体地,所述第一微通道引流单元15在其中一个实施例中包含三处蜿蜒通道,在靠近定量区14的微通道为疏水区,其余通道可以进行任何修饰或不修饰改性,蜿蜒通道可以对流体的流速进行控制;Specifically, the first
具体地,芯片高速离心时,定量区14的样本溶液会突破微通道的疏水阻力,进入第一微通道单元15的第一个蜿蜒通道,蜿蜒通道可以降低样本溶液的流速使其与第一微通道单元15中预埋的试剂进行充分的接触,随后进入第二蜿蜒通道及第三个蜿蜒通道进行充分的混合反应,同时,这种蜿蜒微通道设计为与圆心向外延申线相垂直或平行的微通道,在离心引流过程中,可以借助科氏力及欧拉力对流体的产生偏转的影响而提高混合效果,在不考虑流体挤压力的情况下,其力学分析如图13所示;Specifically, when the chip is centrifuged at high speed, the sample solution in the
具体地,所述的第一蜿蜒通道较第二蜿蜒通道更靠近圆心,第二蜿蜒通道较第三蜿蜒通道更靠近圆心,蜿蜒通道之前的距离可以根据检测需求而进行调整,结构不限于此;Specifically, the first meandering channel is closer to the center of the circle than the second meandering channel, the second meandering channel is closer to the center of the circle than the third meandering channel, and the distance before the meandering channel can be adjusted according to detection requirements, The structure is not limited to this;
具体地,芯片高速离心之后,样本与试剂的混合液会进入反应池16,所述反应池16中可预先包埋试剂,或进行表面改性修饰,对样本中的检测靶标进行捕获;Specifically, after the chip is centrifuged at high speed, the mixture of the sample and the reagent will enter the
具体地,所述阀门31与反应池16及废液池32连通,开放阀门31,启动高速离心,可以将反应池16中多余的废液完全排入废液池32,使反应池16中只存留检测所需的分析物,随后关闭阀门31;Specifically, the
具体地,所述第一试剂池21和第二试剂池22用于溶液试剂存储,第一试剂池21和第二试剂池22分别连通一个第二定量分配单元23,用于试剂的分配定量,定量过程与以上所述的样本定量过程一样;Specifically, the
具体地,所述第一试剂池21与第二微通道引流单元26连通,第二微通道引流单元26与第一定量腔室24连通,所述第三微通道引流单元27较第二微通道引流单元26更远离圆心,同时,第二微通道引流单元26设有蜿蜒通道,可以通过控制微通道的阻力大小及长度来控制试剂进入反应池16的时间,最终使第二试剂池22中的试剂先进入反应池16之后,第一试剂池21处的试剂才有序地快速进入反应池16中进行反应,最终获得每个反应池16中检测信号,同时在另一种形式中,可以通过将最终反应试剂预存在第二试剂池22中(图9),通过按压或注射的方式将溶液注入反应池中,按需完成信号采集,检测信号的强弱与一定溶液体积内的分析物含量的高低相关,因此可以对样本的分析物进行定量检测。Specifically, the
本发明中,微通道引流单元具有混合及引流的效果。In the present invention, the microchannel drainage unit has the effects of mixing and drainage.
本发明中,微通道引流单元可以通过微通道长短及微通道阻力的大小来控制液体进入反应池的顺序及时间长短。In the present invention, the microchannel drainage unit can control the sequence and time duration of the liquid entering the reaction tank through the length of the microchannel and the resistance of the microchannel.
本发明中,定量分配单元与微通道引流单元为相互连通但不在同一平面上,微通道引流单元的微通道尺寸可为宽10~100μm,高10~300μm,但不限于此范围,用于在芯片低速离心时,限制液体进入微通道,在芯片高速离心时,使液体流入微通道进行引流及混合;定量分配单元在芯片低速离心时液体可以自由流动,并对液体进行分配定量,多余的液体将进入与其连通的废液池,在芯片高速离心时,将定量的液体通过微通道引流单元导入相应的反应池。In the present invention, the quantitative distribution unit and the microchannel drainage unit are connected to each other but not on the same plane. When the chip is centrifuged at a low speed, the liquid is restricted from entering the microchannel. When the chip is centrifuged at a high speed, the liquid flows into the microchannel for drainage and mixing; the quantitative distribution unit can freely flow the liquid when the chip is centrifuged at a low speed, and distribute the liquid quantitatively, and the excess liquid It will enter the waste liquid pool connected with it, and when the chip is centrifuged at high speed, the quantitative liquid will be introduced into the corresponding reaction pool through the microchannel drainage unit.
本发明中,所述反应池与微阀连通,在需要存储液体时,阀门关闭,在需要排除废液时关闭。In the present invention, the reaction tank is communicated with the microvalve, and the valve is closed when the liquid needs to be stored, and is closed when the waste liquid needs to be discharged.
本发明中,所述定量分配单元可以在同一水平面上实现多种液体的单独分配定量,用于多样本多靶标的检测。In the present invention, the quantitative distribution unit can realize the independent distribution and quantification of multiple liquids on the same level, which is used for the detection of multiple samples and multiple targets.
本发明中的芯片可用于各种生化检测以及免疫分析检测等,但不限于此。The chip in the present invention can be used for various biochemical detection and immunoassay detection, etc., but is not limited thereto.
本发明中的检测方法包括以下步骤:The detection method in the present invention comprises the following steps:
将样本液从所述加样孔加至所述样本分离池,将芯片放入配套的离心检测仪器中;Add the sample solution from the sample addition hole to the sample separation pool, and put the chip into the matching centrifugal detection instrument;
低速离心芯片,样本中的杂质会由于离心力较大而快速沉降在样本分离池的底部,上清会由于持续的离心力进入定量分配单元,对样本液体进行分配定量,为后面的定量分析检测提供基础,多余的液体将排入废液池;In the low-speed centrifugation chip, the impurities in the sample will quickly settle at the bottom of the sample separation tank due to the large centrifugal force, and the supernatant will enter the quantitative distribution unit due to the continuous centrifugal force to distribute and quantify the sample liquid, providing a basis for subsequent quantitative analysis and detection. , the excess liquid will be discharged into the waste pool;
高速离心芯片将定量的样本溶液注入微通道引流单元,通过控制离心速度及微通道来控制液体流速,复溶通道内预埋的试剂,通过微通道引流单元使样本与试剂进行充分的混合及反应,最后进入反应池中;The high-speed centrifugal chip injects a quantitative sample solution into the microchannel drainage unit, controls the liquid flow rate by controlling the centrifugal speed and the microchannel, redissolves the pre-embedded reagent in the channel, and fully mixes and reacts the sample and the reagent through the microchannel drainage unit , and finally enter the reaction tank;
反应池中预先包埋的试剂会与进入的样本混合液进行充分的混合反应,反应后形成的目标复合物,随后开放阀门,高速离心芯片,使多余的废液排入废液池中,而所需要的目标复合物仍然存留在反应池中;The pre-embedded reagent in the reaction tank will be fully mixed with the incoming sample mixture, and the target complex formed after the reaction will then open the valve and centrifuge the chip at a high speed, so that the excess waste liquid is discharged into the waste liquid tank, while the The desired target complex remains in the reaction cell;
释放所述所有试剂池中的试剂,低速离心芯片至所述定量分配单元进行定量分配,多余的试剂排入所述废液池中,随后高速离心将定量分配的试剂通过微通道引流单元导入反应池中,由于微通道的长短及阻力的大小不同,试剂会先后进入反应池中进行反应,最后依次获取每个反应池中的检测信号。Release the reagents in all the reagent pools, centrifuge the chip at low speed to the quantitative distribution unit for quantitative distribution, discharge the excess reagents into the waste liquid pool, and then introduce the quantitatively distributed reagents into the reaction through the microchannel drainage unit by high-speed centrifugation In the pool, due to the different lengths and resistances of the microchannels, the reagents will enter the reaction pools for reaction successively, and finally the detection signals in each reaction pool will be obtained in turn.
本发明自动化化学发光免疫分析芯片的检测方法,包括以下步骤:The detection method of the automated chemiluminescence immunoassay chip of the present invention comprises the following steps:
S1:将信号分子标记的靶标抗体(一抗)预埋在第一微通道引流单元15上的腔室17中,将磁微粒标记的靶标抗体(二抗)预埋在反应池16中;S1: Pre-embedding the target antibody (primary antibody) labeled with signal molecules in the
S2:在加样口11处加入待检测样本,在离心力作用下,待检测样本在样本分离池12中沉淀杂质;随后,样本溶液进入第一定量分配单元13进行分配,通过定量区14进入第一微通道引流单元15中,并复溶信号分子标记的靶标抗体(一抗),样本溶液中的靶标蛋白与信号分子标记的靶标抗体形成第一复合物,该第一复合物进入反应池16中,并与磁微粒标记的靶标抗体(二抗)反应形成第二复合物;S2: Add the sample to be detected at the
S3:启动磁铁吸附,使第二复合物固定在反应池16中,随后开放阀门31,启动离心,将未形成第二复合物的的信号分子标记的靶标抗体(一抗)排入废液池中,随后关闭阀门31。S3: Start the magnet adsorption to fix the second complex in the
S4:去除磁铁吸附,释放第一试剂池21和第二试剂池22中的试剂进入反应池16中,使所述第二复合物中捕获的发光分子反应发光,对光信号进行检测,并计算得到待检测样本中靶标蛋白的含量。S4: remove the magnet adsorption, release the reagents in the
实施例1Example 1
本发明提供的实施例为将芯片应用于吖啶酯化学发光免疫分析,免疫分析原理为免疫夹心原理用于全血中C-反应蛋白的检测,具体技术方案如下:The embodiment provided by the present invention is that the chip is applied to acridinium ester chemiluminescence immunoassay, and the immunoassay principle is that the immunosandwich principle is used for the detection of C-reactive protein in whole blood. The specific technical scheme is as follows:
1.抗体修饰1. Antibody Modification
将吖啶酯通过EDC和NHS体系与抗CRP抗体结合,制备信号标记抗体复合物,同样地,将磁微粒通过EDC和NHS系统与抗CRP单抗结合,制备捕获抗体复合物;The acridine ester is combined with the anti-CRP antibody through the EDC and NHS systems to prepare a signal-labeled antibody complex. Similarly, the magnetic particles are combined with the anti-CRP monoclonal antibody through the EDC and NHS systems to prepare the capture antibody complex;
2.芯片加工2. Chip processing
芯片加工方式采用CNC数控加工,对芯片的每一层进行单独加工,样本处理层及试剂处理层进行双面加工,形成微通道引流单元在下表面,定量分配单元在上表面,相互连接处雕刻连通,芯片加工材料为PMMA材料;The chip processing method adopts CNC numerical control processing. Each layer of the chip is processed separately, and the sample processing layer and the reagent processing layer are processed on both sides to form a microchannel drainage unit on the lower surface and a quantitative distribution unit on the upper surface. , the chip processing material is PMMA material;
可以理解地,芯片的加工工艺可以为激光雕刻技术、CNC数控技术、软光刻技术等芯片加工工艺,但不限于此;It can be understood that the processing technology of the chip can be a chip processing technology such as laser engraving technology, CNC numerical control technology, soft lithography technology, etc., but is not limited to this;
可以理解地,芯片的加工材料可以为PMMA、PC、PDMS等有机玻璃或聚合物,但不限于此。It can be understood that the processing material of the chip can be PMMA, PC, PDMS and other plexiglass or polymers, but is not limited thereto.
3.芯片组装3. Chip assembly
如图2所示,芯片总共有五层,包括上盖54、下盖55、样本处理层51,试剂处理层52及中间层53,芯片组装采用双面胶黏贴的方式进行密封组合,在组合之前首先将吖啶酯标记CRP抗体预包埋在第一微通道引流单元15的腔室17中(如图7),将磁微粒标记CRP单抗预包埋在反应池16中;在进行上盖54密封相片之前在第一试剂池21中预封装激发液(NaOH)试剂包,在第一试剂池22中预封装预激发液(H2O2),随后进行芯片密封,形成完整的检测芯片。As shown in FIG. 2 , the chip has five layers in total, including an
4.样本检测4. Sample detection
具体地,在加样口11处加入全血样本100~200μl,密封将芯片放入配套检测仪器中;Specifically, 100-200 μl of the whole blood sample is added to the
具体地,芯片在仪器中,首先进行低速离心,将全血样本中的细胞及杂质沉淀在样本分离池12底部,完全全血中血浆及血细胞及杂质的分离,提高离心速度,全血上清会由于持续的离心力作用进入第一定量分配单元13内进行分配定,样本最终体积通过定量区14的大小进行精确定量,多余的废液会进入废液池32中,随后离心结束;Specifically, in the instrument, the chip is firstly centrifuged at a low speed, and the cells and impurities in the whole blood sample are precipitated at the bottom of the
具体地,启动芯片高速离心,将定量的样本溶液注入第一微通道引流单元13中,样本溶液会复溶吖啶酯标记CRP抗体于样本中的CRP抗原进行反应形成吖啶酯标记CRP抗体-CRP复合物,通过蜿蜒的微通道可以实现对流体流速的控制,同时使反应更加充分,最后在持续高速离心的作用下,垂直或平行于圆心延伸线的蜿蜒微通组合,可以借助科氏力及欧拉力对流体的产生偏转的影响而提高混合效果,最终所有液体将被排入反应池16中,此时阀门31为关闭状态;Specifically, high-speed centrifugation of the chip is started, and a quantitative sample solution is injected into the first
具体地,高速离心停止过程会使反应池16中的溶液产生震荡,并完成磁微粒标记CRP单抗与吖啶酯标记CRP抗体-CRP复合物的反应,使反应更加快速,缩短反应时间,反应形成吖啶酯标记CRP抗体-CRP-磁微粒标记CRP单抗复合物,此时启动磁铁吸附,使磁微粒固定在反应池16中,开放阀门31,启动芯片离心,将所有液体排入废液池32中,停止离心;随后关闭阀门31,撤去磁铁对磁微粒的吸附,同时释放第一试剂池21及第二试剂池22中的预激发液及激发液,启动低速离心对试剂进行精确定量,随后高速离心,预激发液优先快速进入反应池16中重悬磁微粒,随后激发液通过蜿蜒的第三微通道引流单元27,如图5和图6所示,通过控制微通道的长度及阻力的大小,使激发液同时或依次快速进入反应池16中,使捕获的吖啶酯完成快速反应发光,仪器对光信号进行检测,完成样本中CRP含量的精确定量检测。Specifically, the high-speed centrifugation stop process will cause the solution in the
可以理解地,如图1所示,每个芯片可以完成三个不同样本的同时检测,芯片内每个检测单元可以完成7中目标检测物的分析检测,同时也可以牺牲其终一个检测单元,设置阳性对照检测,完成单个芯片的质量控制。Understandably, as shown in Figure 1, each chip can complete the simultaneous detection of three different samples, and each detection unit in the chip can complete the analysis and detection of 7 target detection objects, and at the same time, it can sacrifice the last detection unit. Set up a positive control assay to complete the quality control of a single chip.
实施例2Example 2
本发明提供的另一实施例为将芯片应用于基于辣根过氧化物酶(HRP)的鲁米诺化学发光免疫分析,免疫分析原理为免疫夹心原理用于全血中降钙素原(PCT)的检测,具体技术方案如下:Another embodiment provided by the present invention is to apply the chip to the luminol chemiluminescence immunoassay based on horseradish peroxidase (HRP), and the immunoassay principle is the principle of immunosandwich for procalcitonin (PCT) ) detection, the specific technical scheme is as follows:
1.抗体修饰1. Antibody Modification
将HRP通过EDC和NHS体系与抗PCT抗体结合,制备信号标记抗体复合物,同样地,将磁微粒通过EDC和NHS系统与抗PCT单抗结合,制备捕获抗体复合物;Combine HRP with anti-PCT antibody through EDC and NHS systems to prepare signal-labeled antibody complexes, and similarly, combine magnetic particles with anti-PCT monoclonal antibodies through EDC and NHS systems to prepare capture antibody complexes;
2.芯片加工方式与具体具体实施例1类似;2. The chip processing method is similar to the
3.芯片组装3. Chip assembly
如图10所示,芯片总共有3层,包括上盖54、下盖55、中间层53,芯片组装采用双面胶黏贴的方式进行密封组合,在组合之前首先将HRP标记PCT抗体预包埋在第一微通道引流单元15的起始端(即与定量单元14连接端),将磁微粒标记PCT单抗预包埋在反应池16中;在进行上盖54密封相片之前在第一试剂池21中中预封装鲁米诺试剂包,在第二试剂池22中预封装预过氧化氢(H2O2),随后进行芯片密封,形成完整的检测芯片。As shown in Figure 10, the chip has a total of 3 layers, including an
4.样本检测4. Sample detection
具体地,在加样口11处加入全血样本100~200μl,密封将芯片放入配套检测仪器中;Specifically, 100-200 μl of the whole blood sample is added to the
具体地,芯片在仪器中,首先进行低速离心,将全血样本中的细胞及杂质沉淀在样本分离池12底部,完全全血中血浆及血细胞及杂质的分离,提高离心速度,全血上清会由于持续的离心力作用进入第一定量分配单元13内进行分配定量,样本最终体积通过定量区14的大小进行精确定量,多余的废液会进入废液池32中,随后离心结束;Specifically, in the instrument, the chip is firstly centrifuged at a low speed, and the cells and impurities in the whole blood sample are precipitated at the bottom of the
具体地,启动芯片高速离心,将定量的样本溶液注入第一微通道引流单元15中,样本溶液会复溶HRP标记PCT抗体于样本中的PCT抗原进行反应形成HRP标记PCT抗体-PCT复合物,通过蜿蜒的微通道可以实现对流体流速的控制,同时使反应更加充分,最后在持续高速离心的作用下,垂直或平行于圆心延伸线的蜿蜒微通组合,可以借助科氏力及欧拉力对流体的产生偏转的影响而提高混合效果,最终所有液体将被排入反应池16中,此时阀门31为关闭状态;Specifically, high-speed centrifugation of the chip is started, and a quantitative sample solution is injected into the first
具体地,高速离心停止过程会使反应池16中的溶液产生震荡,并完成磁微粒标记PCT单抗与HRP标记PCT抗体-PCT复合物的反应,使反应更加快速,缩短反应时间,反应形成HRP标记PCT抗体-PCT-磁微粒标记PCT单抗复合物,此时启动磁铁吸附,使磁微粒固定在反应池16中,开放阀门31,启动芯片离心,将所有液体排入废液池中,停止离心;随后关闭阀门31,撤去磁铁对磁微粒的吸附,同时释放第一试剂池21中的鲁米诺,启动低速离心对试剂进行精确定量,随后高速离心,使试剂进入反应池16中,随后通过同时或顺序按压或注射的方式将第二试剂池中的过氧化氢溶液快速注入反应池16中,与捕获的HRP酶完成快速反应发光,仪器对光信号进行检测,完成样本中PCT含量的精确定量检测。Specifically, the high-speed centrifugation stop process will cause the solution in the
可以理解地,如图1和图9所示,每个芯片可以完成三个不同样本的同时检测,芯片内每个检测单元可以完成7种目标检测物的分析检测,同时也可以牺牲其终一个检测单元,设置阳性对照检测,完成单个芯片的质量控制。Understandably, as shown in Figure 1 and Figure 9, each chip can complete the simultaneous detection of three different samples, and each detection unit in the chip can complete the analysis and detection of 7 kinds of target detection substances, and can also sacrifice the last one. Detection unit, set up positive control detection, complete the quality control of a single chip.
本发明提供的引流通道克服科氏力及欧拉力的效果验证如图8所示:设计不同延伸长度的引流通道,最终结果验证从左至右,液体的偏向越来越大,通道延伸到一定长度时,液体的偏向基本不受科氏力及欧拉力的影响,进一步保证分析检测结构的可靠性及可重复性。The verification of the effect of the drainage channel provided by the present invention overcoming the Coriolis force and Euler force is shown in Figure 8: drainage channels with different extension lengths are designed, and the final result is verified that from left to right, the deflection of the liquid becomes larger and the channel extends to a certain When the length is longer, the deflection of the liquid is basically not affected by the Coriolis force and the Euler force, which further ensures the reliability and repeatability of the analysis and detection structure.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210425284.3A CN114814261B (en) | 2022-04-21 | 2022-04-21 | Automatic chemiluminescent immunoassay chip and detection method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210425284.3A CN114814261B (en) | 2022-04-21 | 2022-04-21 | Automatic chemiluminescent immunoassay chip and detection method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114814261A true CN114814261A (en) | 2022-07-29 |
CN114814261B CN114814261B (en) | 2024-07-16 |
Family
ID=82506443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210425284.3A Active CN114814261B (en) | 2022-04-21 | 2022-04-21 | Automatic chemiluminescent immunoassay chip and detection method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114814261B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115646563A (en) * | 2022-10-14 | 2023-01-31 | 广州迪澳医疗科技有限公司 | A kind of microfluidic chip and preparation method thereof |
CN115920987A (en) * | 2022-12-30 | 2023-04-07 | 华中科技大学 | A drug sensitivity detection chip based on bacterial enrichment |
CN116139959A (en) * | 2023-04-14 | 2023-05-23 | 杭州霆科生物科技有限公司 | Microfluidic chip with reagent pre-storing function for chemiluminescence detection |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311834A (en) * | 1997-05-13 | 1998-11-24 | Horiba Ltd | Chemiluminescence detecting part of chemiluminescence immunoassay device |
CN106018784A (en) * | 2016-07-05 | 2016-10-12 | 深圳普门科技有限公司 | Small electrochemical luminescence immunoassay analyzer and analysis method thereof |
WO2019006978A1 (en) * | 2017-07-03 | 2019-01-10 | 南京岚煜生物科技有限公司 | Single-channel chemiluminescence microfluidic chip and detection method thereof |
CN109870582A (en) * | 2019-02-27 | 2019-06-11 | 华中科技大学 | A multi-target magnetic immunochemiluminescence microfluidic chip detection platform and method |
CN110954699A (en) * | 2019-12-11 | 2020-04-03 | 北京柏兆嘉业科技有限公司 | A microfluidic disk and a method for detecting using the microfluidic disk |
CN113088446A (en) * | 2021-04-30 | 2021-07-09 | 华中科技大学 | Full-automatic nucleic acid rapid detection device and detection method |
WO2021237396A1 (en) * | 2020-05-25 | 2021-12-02 | 杭州梓晶生物有限公司 | Integrated self-service nucleic acid detection device and use method thereor |
WO2022052787A1 (en) * | 2020-09-08 | 2022-03-17 | 深圳市亚辉龙生物科技股份有限公司 | Microfluidic immunodetection chip and microfluidic linear immunodetection method |
-
2022
- 2022-04-21 CN CN202210425284.3A patent/CN114814261B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311834A (en) * | 1997-05-13 | 1998-11-24 | Horiba Ltd | Chemiluminescence detecting part of chemiluminescence immunoassay device |
CN106018784A (en) * | 2016-07-05 | 2016-10-12 | 深圳普门科技有限公司 | Small electrochemical luminescence immunoassay analyzer and analysis method thereof |
WO2019006978A1 (en) * | 2017-07-03 | 2019-01-10 | 南京岚煜生物科技有限公司 | Single-channel chemiluminescence microfluidic chip and detection method thereof |
CN109870582A (en) * | 2019-02-27 | 2019-06-11 | 华中科技大学 | A multi-target magnetic immunochemiluminescence microfluidic chip detection platform and method |
CN110954699A (en) * | 2019-12-11 | 2020-04-03 | 北京柏兆嘉业科技有限公司 | A microfluidic disk and a method for detecting using the microfluidic disk |
WO2021237396A1 (en) * | 2020-05-25 | 2021-12-02 | 杭州梓晶生物有限公司 | Integrated self-service nucleic acid detection device and use method thereor |
WO2022052787A1 (en) * | 2020-09-08 | 2022-03-17 | 深圳市亚辉龙生物科技股份有限公司 | Microfluidic immunodetection chip and microfluidic linear immunodetection method |
CN113088446A (en) * | 2021-04-30 | 2021-07-09 | 华中科技大学 | Full-automatic nucleic acid rapid detection device and detection method |
Non-Patent Citations (1)
Title |
---|
吕东川;贺敏;: "吖啶酯直接标记测定血清总T_3化学发光免疫分析方法的建立和初步验证", 标记免疫分析与临床, no. 12, 25 December 2019 (2019-12-25) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115646563A (en) * | 2022-10-14 | 2023-01-31 | 广州迪澳医疗科技有限公司 | A kind of microfluidic chip and preparation method thereof |
CN115920987A (en) * | 2022-12-30 | 2023-04-07 | 华中科技大学 | A drug sensitivity detection chip based on bacterial enrichment |
CN115920987B (en) * | 2022-12-30 | 2024-04-05 | 华中科技大学 | A drug sensitivity detection chip based on bacterial enrichment |
CN116139959A (en) * | 2023-04-14 | 2023-05-23 | 杭州霆科生物科技有限公司 | Microfluidic chip with reagent pre-storing function for chemiluminescence detection |
Also Published As
Publication number | Publication date |
---|---|
CN114814261B (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108686721B (en) | Micro-fluidic chip for separating and detecting whole blood sample and detection method thereof | |
AU2011211319B2 (en) | Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen | |
CN114814261B (en) | Automatic chemiluminescent immunoassay chip and detection method thereof | |
CN102933968B (en) | Centrifugal micro-fluidic device and the method for immunoassay | |
Sasso et al. | Automated microfluidic processing platform for multiplexed magnetic bead immunoassays | |
Shi et al. | Application of centrifugal microfluidics in immunoassay, biochemical analysis and molecular diagnosis | |
CN109212201A (en) | A kind of centrifugal type microfludic chip for hepatitis B five detections in serum | |
CN112074739B (en) | Immunoassays for automated systems | |
CN101034064A (en) | Microfluidic chip and application thereof | |
CN110935497A (en) | Integrated microfluidic immunodetection chip and application thereof | |
JP2021502570A (en) | Integrated fluid circuits and devices for droplet manipulation and methods thereof | |
Min et al. | An automated microfluidic chemiluminescence immunoassay platform for quantitative detection of biomarkers | |
CN103170378A (en) | Micro fluidic chip apparatus used for immunization analysis | |
WO2021068913A1 (en) | Magnetic particle luminescence micro-fluidic chip for multi-marker detection, and detection device | |
WO2021068912A1 (en) | Magnetic particle luminescence micro-fluidic chip for multi-marker detection, and detection device | |
CN209727963U (en) | Immunofluorescence test system based on micro-fluidic chip | |
Sun et al. | Design and fabrication of a microfluidic chip to detect tumor markers | |
CN106198499A (en) | A kind of micro-fluidic chip for chemiluminescence detection and detection method thereof | |
CN207913802U (en) | A microfluidic chip for whole blood detection and its detection device | |
CN109939751B (en) | Microfluidic chip, detection device and detection method for whole blood detection | |
US7858047B2 (en) | Fluidic device | |
Yoo et al. | Bead packing and release using flexible polydimethylsiloxane membrane for semi‐continuous biosensing | |
Cho et al. | Fully Integrated Immunoassays on a Disc | |
Chen et al. | A centrifugal microfluidics platform for potential application on immobilization-free bead-based immunoassays | |
CN120254293A (en) | Micro-fluidic detection chip for tuberculosis specific cellular immunity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |