[go: up one dir, main page]

CN103016398A - Centrifugal impeller flow passage design method for controlling curvature distribution - Google Patents

Centrifugal impeller flow passage design method for controlling curvature distribution Download PDF

Info

Publication number
CN103016398A
CN103016398A CN2012105463975A CN201210546397A CN103016398A CN 103016398 A CN103016398 A CN 103016398A CN 2012105463975 A CN2012105463975 A CN 2012105463975A CN 201210546397 A CN201210546397 A CN 201210546397A CN 103016398 A CN103016398 A CN 103016398A
Authority
CN
China
Prior art keywords
line
curvature
wheel
wheel hub
centrifugal impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105463975A
Other languages
Chinese (zh)
Other versions
CN103016398B (en
Inventor
徐全勇
黄旭东
周明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210546397.5A priority Critical patent/CN103016398B/en
Publication of CN103016398A publication Critical patent/CN103016398A/en
Application granted granted Critical
Publication of CN103016398B publication Critical patent/CN103016398B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention belongs to a fluid mechanical design modeling method and particularly relates to a centrifugal impeller flow passage design method for controlling the curvature distribution. A meridional flow passage of a centrifugal impeller comprises the following design steps that the parametric forming is realized through controlling the axial distribution of the curvature of a wheel cover line and a wheel hub line; and then, an obtained wheel cover and an obtained wheel hub curve rotate for 360 degrees around a rotating shaft, and a wheel cover surface and a wheel hub surface are obtained. The design method has the advantages that the proper curvature distribution rule can be flexibly selected according to the flowing work applying condition of the centrifugal impeller through controlling the curvature of the flow passage curves, the work apply efficiency and the stable work boundary of the centrifugal impeller are improved, and the design method can be widely applied to various kinds of centrifugal and inclined flow type impeller mechanical flowing designs.

Description

一种控制曲率分布的离心叶轮流道设计方法A Design Method of Centrifugal Impeller Flow Channel by Controlling Curvature Distribution

技术领域 technical field

本发明属于流体机械设计造型方法,具体涉及一种控制曲率分布的离心叶轮流道设计方法。The invention belongs to a fluid machine design modeling method, in particular to a centrifugal impeller flow path design method for controlling curvature distribution.

背景技术 Background technique

离心式叶轮机械是喷气式航空发动机的一个核心部件,并广泛应用于各种流体压缩、或流体膨胀的功能转换领域。离心式叶轮机械的子午流道的设计对离心式叶轮机械性能影响很大。但子午流道设计一直没有明确的设计准则,一般依赖设计人员经验,设计主观随意性较大。目前常规的轮盖线、轮毂线设计方法,一般通过圆弧加直线方法连接而成。这种设计方式很容易引起流动损失,降低离心式叶轮机械的做功效率。Centrifugal impeller machinery is a core component of jet aeroengines, and is widely used in the field of functional conversion of various fluid compressions or fluid expansions. The design of the meridian channel of the centrifugal impeller machinery has a great influence on the performance of the centrifugal impeller machinery. However, there is no clear design criterion for the design of the meridian flow channel, which generally depends on the experience of the designer, and the design is relatively subjective and arbitrary. At present, the conventional design method of the wheel cover line and the wheel hub line is generally formed by connecting arcs and straight lines. This design method is easy to cause flow loss and reduce the work efficiency of centrifugal impeller machinery.

发明内容 Contents of the invention

本发明的目的是提供一种控制曲率分布的离心叶轮流道设计方法,具有良好的流动性能,能够提高离心式叶轮机械的功能做功效率。The purpose of the present invention is to provide a centrifugal impeller channel design method that controls the curvature distribution, has good flow performance, and can improve the functional work efficiency of centrifugal impeller machinery.

本发明采用的技术方案为:The technical scheme adopted in the present invention is:

该离心叶轮的子午流道由轮盖线、轮毂线、进口线、出口线包络而成,设计步骤为:The meridian channel of the centrifugal impeller is enveloped by the wheel cover line, hub line, inlet line, and outlet line. The design steps are:

(1)通过控制轮盖线、轮毂线曲率在轴向上的分布,来参数化形成;轮盖线和轮毂线的曲率分布规律,采用如下公式确定:(1) Parametrically formed by controlling the curvature distribution of the wheel cover line and the hub line in the axial direction; the curvature distribution law of the wheel cover line and the hub line is determined by the following formula: ,

其中,C(m)为轮盖线或轮毂线的曲率,m是轮盖线或轮毂线的无量纲长度;μ是最大曲率所在流向无量纲位置,μ的优选值为0.4~0.6;A是轮盖线或轮毂线曲率的无量纲幅值,且

Figure BDA0000259022242
,其中R2是离心叶轮的出口半径;Among them, C(m) is the curvature of the wheel cover line or the hub line, m is the dimensionless length of the wheel cover line or the wheel hub line; μ is the dimensionless position of the maximum curvature, and the optimal value of μ is 0.4~0.6; A is the dimensionless magnitude of the curvature of the crown line or hub line, and
Figure BDA0000259022242
, where R 2 is the outlet radius of the centrifugal impeller;

确定轮盖线和轮毂线的具体步骤为:The specific steps to determine the wheel cover line and hub line are:

(101)根据一维流动计算方法分别确定轮盖线和轮毂线的4个端点位置;(101) According to the one-dimensional flow calculation method, respectively determine the positions of the four endpoints of the wheel cover line and the hub line;

(102)将轮盖线均分为n(50≤n≤200)段,确定除两端点外的n-1个点的轴向坐标,根据第一个点的曲率k以及该点的坐标(Z1,R1),确定第二点的坐标(Z2,R2);然后以第二个点的曲率k以及该点坐标,确定第三个点的坐标(Z3,R3);以此类推,得到轮盖线所有点的坐标;(102) Divide the wheel cover line into n (50≤n≤200) segments, determine the axial coordinates of n-1 points except the two ends, according to the curvature k of the first point and the coordinates of the point ( Z 1 , R 1 ), determine the coordinates of the second point (Z 2 , R 2 ); then use the curvature k of the second point and the coordinates of this point to determine the coordinates of the third point (Z 3 , R 3 ); By analogy, the coordinates of all points of the wheel cover line are obtained;

(103)将得到的轮盖线上n+1个点用光滑曲线拟合,就可以得到光滑的轮盖曲线;(103) Fit n+1 points on the obtained wheel cover line with a smooth curve to obtain a smooth wheel cover curve;

(104)采用步骤(102)和(103)的方法,得到轮毂曲线;(104) Obtain the hub curve by adopting the methods of steps (102) and (103);

(2)由步骤(1)得到的轮盖曲线、轮毂曲线绕旋转轴转动360°,得到轮盖面和轮毂面。(2) The wheel cover curve and hub curve obtained in step (1) are rotated 360° around the rotation axis to obtain the wheel cover surface and hub surface.

所述轮毂线最大曲率半径幅值A为轮盖线最大曲率的0.3~0.8倍。The maximum curvature radius amplitude A of the hub line is 0.3-0.8 times of the maximum curvature of the wheel cover line.

本发明具有以下的有益效果:The present invention has following beneficial effect:

通过控制流道曲线的曲率,可以根据离心叶轮的流动做功情况,灵活选择合适的曲率分布规律,控制离心叶轮流动负荷在轴向的分布,提高了做功效率和离心叶轮的稳定工作边界,可广泛应用于各种离心式、斜流式叶轮机械的流动设计。By controlling the curvature of the flow path curve, the appropriate curvature distribution law can be flexibly selected according to the flow and work of the centrifugal impeller, and the distribution of the flow load of the centrifugal impeller in the axial direction can be controlled, which improves the work efficiency and the stable working boundary of the centrifugal impeller, and can be widely used It is applied to the flow design of various centrifugal and oblique flow impeller machines.

附图说明 Description of drawings

图1是本发明的结构原理简图。Fig. 1 is a schematic diagram of the structure principle of the present invention.

图2是图1中子午流道的示意图。Fig. 2 is a schematic diagram of the meridian flow channel in Fig. 1 .

图3是本发明实施的典型的曲率分布图。Figure 3 is a graph of a typical curvature profile for an implementation of the present invention.

图中标号:Labels in the figure:

1-轮盖线;2-轮毂线;3-进口线;4-出口线。1-Wheel cover line; 2-Hub line; 3-Inlet line; 4-Exit line.

具体实施方式 Detailed ways

本发明提供了一种控制曲率分布的离心叶轮流道设计方法,下面结合附图和具体实施方式对本发明做进一步说明。The present invention provides a centrifugal impeller flow channel design method for controlling curvature distribution. The present invention will be further described below in conjunction with the accompanying drawings and specific implementation methods.

离心式叶轮机械的轴向纵切面,一般称之为子午流道。该子午流道由轮盖线1、轮毂线2、进口线3和出口线4包络而成,如图1和图2所示。The axial longitudinal section of centrifugal impeller machinery is generally called meridian flow channel. The meridian flow channel is enveloped by the wheel cover line 1, the hub line 2, the inlet line 3 and the outlet line 4, as shown in Fig. 1 and Fig. 2 .

该子午流道的设计步骤为:The design steps of the meridian flow channel are:

(1)根据公式

Figure BDA0000259022243
确定轮盖线曲率分布曲线,取μ=0.5,A=0.03,m在区间[0,1]内,e为自然常数2.718,因此获得C的分布曲线如图3中轮盖曲率所示。(1) According to the formula
Figure BDA0000259022243
To determine the curvature distribution curve of the wheel cover line, take μ=0.5, A=0.03, m is in the interval [0,1], and e is the natural constant 2.718, so the distribution curve of C obtained is shown in Figure 3 as shown in the wheel cover curvature.

(101)在曲率分布线上取n=100个点,作为下一步确定曲线点所需的曲率值,如下表所示。(101) Take n=100 points on the curvature distribution line as the curvature value required for determining the curve points in the next step, as shown in the table below.

m% m% C C m% m% C C 1 1 0.011088 0.011088 51 51 1.347303 1.347303 2 2 0.013462 0.013462 52 52 1.339243 1.339243 3 3 0.016279 0.016279 53 53 1.325917 1.325917 4 4 0.019606 0.019606 54 54 1.307484 1.307484 5 5 0.02352 0.02352 55 55 1.28416 1.28416 6 6 0.028103 0.028103 56 56 1.256217 1.256217 7 7 0.033444 0.033444 57 57 1.223976 1.223976 8 8 0.039641 0.039641 58 58 1.187802 1.187802 9 9 0.046799 0.046799 59 59 1.148096 1.148096 10 10 0.055029 0.055029 60 60 1.105287 1.105287 11 11 0.064448 0.064448 61 61 1.059826 1.059826 12 12 0.075178 0.075178 62 62 1.012178 1.012178 13 13 0.087344 0.087344 63 63 0.962814 0.962814 14 14 0.101075 0.101075 64 64 0.912201 0.912201 15 15 0.116496 0.116496 65 65 0.860798 0.860798 16 16 0.133735 0.133735 66 66 0.809049 0.809049 17 17 0.152912 0.152912 67 67 0.757376 0.757376 18 18 0.17414 0.17414 68 68 0.706173 0.706173 19 19 0.197524 0.197524 69 69 0.655803 0.655803 20 20 0.223153 0.223153 70 70 0.606594 0.606594 21 twenty one 0.251102 0.251102 71 71 0.558838 0.558838 22 twenty two 0.281423 0.281423 72 72 0.512787 0.512787 23 twenty three 0.314147 0.314147 73 73 0.468652 0.468652 24 twenty four 0.349275 0.349275 74 74 0.426606 0.426606 25 25 0.386781 0.386781 75 75 0.386781 0.386781 26 26 0.426606 0.426606 76 76 0.349275 0.349275 27 27 0.468652 0.468652 77 77 0.314147 0.314147

28 28 0.512787 0.512787 78 78 0.281423 0.281423 29 29 0.558838 0.558838 79 79 0.251102 0.251102 30 30 0.606594 0.606594 80 80 0.223153 0.223153 31 31 0.655803 0.655803 81 81 0.197524 0.197524 32 32 0.706173 0.706173 82 82 0.17414 0.17414 33 33 0.757376 0.757376 83 83 0.152912 0.152912 34 34 0.809049 0.809049 84 84 0.133735 0.133735 35 35 0.860798 0.860798 85 85 0.116496 0.116496 36 36 0.912201 0.912201 86 86 0.101075 0.101075 37 37 0.962814 0.962814 87 87 0.087344 0.087344 38 38 1.012178 1.012178 88 88 0.075178 0.075178 39 39 1.059826 1.059826 89 89 0.064448 0.064448 40 40 1.105287 1.105287 90 90 0.055029 0.055029 41 41 1.148096 1.148096 91 91 0.046799 0.046799 42 42 1.187802 1.187802 92 92 0.039641 0.039641 43 43 1.223976 1.223976 93 93 0.033444 0.033444 44 44 1.256217 1.256217 94 94 0.028103 0.028103 45 45 1.28416 1.28416 95 95 0.02352 0.02352 46 46 1.307484 1.307484 96 96 0.019606 0.019606 47 47 1.325917 1.325917 97 97 0.016279 0.016279 48 48 1.339243 1.339243 98 98 0.013462 0.013462 49 49 1.347303 1.347303 99 99 0.011088 0.011088 50 50 1.35 1.35 100 100 0.009096 0.009096

(102)根据一维流动计算方法分别确定轮盖线首尾端点坐标为(-75,78.5)(-8.4,118),轮毂线的首尾端点坐标为(-75,30)(0,118);(102) According to the one-dimensional flow calculation method, determine the coordinates of the first and last endpoints of the wheel cover line as (-75,78.5) (-8.4,118), and the coordinates of the first and last endpoints of the hub line as (-75,30) (0,118);

(103)将轮盖线均分为100段,确定除两端点外的99个点的轴向坐标,根据第一个点的曲率C以及该点的坐标(Z1,R1),确定第二点的坐标(Z2,R2);然后以第二个点的曲率C以及该点坐标,确定第三个点的坐标(Z3,R3);以此类推,得到轮盖线所有点的坐标;(103) Divide the wheel cover line into 100 segments, determine the axial coordinates of 99 points except the two ends, and determine the first point according to the curvature C of the first point and the coordinates of this point (Z 1 , R 1 ). The coordinates of the second point (Z 2 , R 2 ); then use the curvature C of the second point and the coordinates of this point to determine the coordinates of the third point (Z 3 , R 3 ); and so on, to get all the wheel cover lines the coordinates of the point;

Z Z R R -75 -75 78.5 78.5 -73.43502035 -73.43502035 78.49837151 78.49837151 -71.87004041 -71.87004041 78.49723887 78.49723887 -70.30506015 -70.30506015 78.49660208 78.49660208 -68.81463966 -68.81463966 78.4964566 78.4964566 -67.36149893 -67.36149893 78.49674775 78.49674775 -65.90835897 -65.90835897 78.49794052 78.49794052 -64.49041769 -64.49041769 78.50043056 78.50043056 -63.1428718 -63.1428718 78.50401094 78.50401094

-61.79532991 -61.79532991 78.50902705 78.50902705 -60.4478 -60.4478 78.5163 78.5163 -59.19965419 -59.19965419 78.52510629 78.52510629 -57.95152095 -57.95152095 78.53598324 78.53598324 -56.70342316 -56.70342316 78.54997346 78.54997346 -55.51736745 -55.51736745 78.56645111 78.56645111 -54.36234894 -54.36234894 78.58547891 78.58547891 -53.2074032 -53.2074032 78.6083379 78.6083379 -52.0814135 -52.0814135 78.63517143 78.63517143 -51.01321625 -51.01321625 78.66477902 78.66477902 -49.94514409 -49.94514409 78.69888829 78.69888829 -48.8773 -48.8773 78.739 78.739 -47.88962662 -47.88962662 78.781556 78.781556 -46.90216959 -46.90216959 78.82948334 78.82948334 -45.91511564 -45.91511564 78.88454202 78.88454202 -44.97727118 -44.97727118 78.943993 78.943993 -44.06420693 -44.06420693 79.00856366 79.00856366 -43.1517497 -43.1517497 79.08104449 79.08104449 -42.26209545 -42.26209545 79.16068784 79.16068784 -41.41715175 -41.41715175 79.24455363 79.24455363 -40.57306032 -40.57306032 79.33702157 79.33702157 -39.7303 -39.7303 79.4402 79.4402 -38.9472264 -38.9472264 79.54598906 79.54598906 -38.16539107 -38.16539107 79.66136073 79.66136073 -37.38548975 -37.38548975 79.78847279 79.78847279 -36.64120868 -36.64120868 79.92172112 79.92172112 -35.91558782 -35.91558782 80.06294656 80.06294656 -35.19249573 -35.19249573 80.21645047 80.21645047 -34.4864099 -34.4864099 80.38031078 80.38031078 -33.81092076 -33.81092076 80.55015465 80.55015465 -33.13862012 -33.13862012 80.73273475 80.73273475 -32.4707 -32.4707 80.9299 80.9299 -31.83930479 -31.83930479 81.13118307 81.13118307 -31.21206294 -31.21206294 81.34590452 81.34590452 -30.59032841 -30.59032841 81.57541667 81.57541667 -29.98947406 -29.98947406 81.81398306 81.81398306 -29.40166698 -29.40166698 82.06376927 82.06376927 -28.82032767 -28.82032767 82.3281936 82.3281936 -28.25072259 -28.25072259 82.60561671 82.60561671 -27.69692694 -27.69692694 82.89342318 82.89342318 -27.15061213 -27.15061213 83.19571583 83.19571583 -26.613 -26.613 83.5125 83.5125 -26.08805929 -26.08805929 83.84127543 83.84127543 -25.57185361 -25.57185361 84.18427962 84.18427962 -25.06526527 -25.06526527 84.54086465 84.54086465

-24.56604623 -24.56604623 84.91276126 84.91276126 -24.07558341 -24.07558341 85.29917647 85.29917647 -23.59542853 -23.59542853 85.69835262 85.69835262 -23.12251306 -23.12251306 86.11245916 86.11245916 -22.65380903 -22.65380903 86.5448392 86.5448392 -22.19610716 -22.19610716 86.98921534 86.98921534 -21.7493 -21.7493 87.4441 87.4441 -21.29927336 -21.29927336 87.92480732 87.92480732 -20.86081588 -20.86081588 88.41647846 88.41647846 -20.43337189 -20.43337189 88.91751556 88.91751556 -20.00551642 -20.00551642 89.44151307 89.44151307 -19.58363389 -19.58363389 89.98204787 89.98204787 -19.17292295 -19.17292295 90.5311522 90.5311522 -18.76671878 -18.76671878 91.09641676 91.09641676 -18.35960455 -18.35960455 91.68695539 91.68695539 -17.96377109 -17.96377109 92.28530572 92.28530572 -17.5782 -17.5782 92.8901 92.8901 -17.18476376 -17.18476376 93.53120341 93.53120341 -16.80244892 -16.80244892 94.17918998 94.17918998 -16.43021125 -16.43021125 94.83290251 94.83290251 -16.05606746 -16.05606746 95.51357865 95.51357865 -15.68666375 -15.68666375 96.21087025 96.21087025 -15.32729414 -15.32729414 96.91340328 96.91340328 -14.97182242 -14.97182242 97.63167977 97.63167977 -14.61541408 -14.61541408 98.37716362 98.37716362 -14.2689692 -14.2689692 99.12742719 99.12742719 -13.9316 -13.9316 99.8817 99.8817 -13.58902351 -13.58902351 100.6733133 100.6733133 -13.25620892 -13.25620892 101.4691852 101.4691852 -12.93245342 -12.93245342 102.268717 102.268717 -12.60924113 -12.60924113 103.0932455 103.0932455 -12.29132488 -12.29132488 103.9322472 103.9322472 -11.98257072 -11.98257072 104.7746709 104.7746709 -11.6791764 -11.6791764 105.6299164 105.6299164 -11.37815372 -11.37815372 106.5078659 106.5078659 -11.08641924 -11.08641924 107.3890091 107.3890091 -10.8037 -10.8037 108.273 108.273 -10.52216891 -10.52216891 109.185579 109.185579 -10.25015068 -10.25015068 110.1011232 110.1011232 -9.987505226 -9.987505226 111.0193485 111.0193485 -9.730545926 -9.730545926 111.9536834 111.9536834 -9.481440164 -9.481440164 112.8974661 112.8974661 -9.242291884 -9.242291884 113.8437931 113.8437931 -9.012212468 -9.012212468 114.7971747 114.7971747 -8.790301913 -8.790301913 115.7623325 115.7623325

-8.578864424 -8.578864424 116.7299409 116.7299409 -8.4 -8.4 118.0 118.0

(104)将上表的轮盖线上101个点用光滑曲线拟合,就可以得到光滑的轮盖曲线,如图2所示;(104) Fit the 101 points on the wheel cover line in the above table with a smooth curve to obtain a smooth wheel cover curve, as shown in Figure 2;

(105)采用步骤(102)-(104)的方法,得到轮毂曲线,如图2所示;(105) Adopt the method of steps (102)-(104) to obtain the hub curve, as shown in Figure 2;

(2)由步骤(1)得到的轮盖曲线、轮毂曲线绕旋转轴转动360°,得到轮盖面和轮毂面。(2) The wheel cover curve and hub curve obtained in step (1) are rotated 360° around the rotation axis to obtain the wheel cover surface and hub surface.

Claims (2)

1. centrifugal impeller runner design method of controlling curvature distribution, the meridional channel of this centrifugal impeller is formed by wheel cap line, wheel hub line, inlet line, egress line envelope, it is characterized in that, and design procedure is:
(1) by control wheel cap line, the distribution in the axial direction of wheel hub line curvature, come parametrization to form; Wheel cap line and the wheel hub curvature of a curve regularity of distribution, adopt following formula to determine: ,
Wherein, C (m) is wheel cap line or wheel hub curvature of a curve, and m is the dimensionless length of wheel cap line or wheel hub line; μ is that the maximum curvature place flows to the position percent value, and the preferred value of μ is 0.4 ~ 0.6; A is the dimensionless amplitude of wheel cap line or wheel hub line curvature, and
Figure FDA0000259022232
, R wherein 2It is the port radius that of centrifugal impeller;
The concrete steps of determining wheel cap line and wheel hub line are:
(101) determine respectively 4 endpoint locations of wheel cap line and wheel hub line according to the one dimension computational methods that flow;
(102) the wheel cap line is divided into n(50≤n≤200) section, determine n-1 the axial coordinate of putting except two-end-point, according to the curvature k of first point and this coordinate (Z 1, R 1), determine the coordinate (Z of second point 2, R 2); Then with curvature k and this point coordinates of second point, determine the coordinate (Z of the 3rd point 3, R 3); By that analogy, obtain the coordinate that the wheel cap line is had a few;
(103) n+1 point on the wheel cap line that obtains used smooth curve, just can obtain smooth wheel cap curve;
(104) method of employing step (102) and (103) obtains the wheel hub curve;
(2) the wheel cap curve that is obtained by step (1), wheel hub curve rotate 360 ° around running shaft, obtain taking turns capping and wheel hub surface.
2. a kind of centrifugal impeller runner design method of controlling curvature distribution according to claim 1 is characterized in that, wheel hub line maximum curvature radius value A is 0.3 ~ 0.8 times of wheel cap line maximum curvature value.
CN201210546397.5A 2012-12-14 2012-12-14 Centrifugal impeller flow passage design method for controlling curvature distribution Active CN103016398B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210546397.5A CN103016398B (en) 2012-12-14 2012-12-14 Centrifugal impeller flow passage design method for controlling curvature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210546397.5A CN103016398B (en) 2012-12-14 2012-12-14 Centrifugal impeller flow passage design method for controlling curvature distribution

Publications (2)

Publication Number Publication Date
CN103016398A true CN103016398A (en) 2013-04-03
CN103016398B CN103016398B (en) 2015-06-10

Family

ID=47965369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210546397.5A Active CN103016398B (en) 2012-12-14 2012-12-14 Centrifugal impeller flow passage design method for controlling curvature distribution

Country Status (1)

Country Link
CN (1) CN103016398B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593943A (en) * 2016-12-06 2017-04-26 大连理工大学 Nuclear main pump runner forming method based on intermediate line control
CN110374900A (en) * 2019-08-09 2019-10-25 西安交通大学 A kind of flow-mixing blower fan with sinusoidal pattern meridional channel
CN111120400A (en) * 2019-12-24 2020-05-08 哈尔滨工程大学 A centrifugal compressor for micro gas turbine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106230A (en) * 1995-12-14 2000-08-22 Warman International Limited Centrifugal pump
EP2261510A2 (en) * 2009-06-10 2010-12-15 Mitsubishi Heavy Industries, Ltd. Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
CN102062118A (en) * 2011-01-07 2011-05-18 江苏大学 Design method for centrifugal pump impeller with high specific revolution number
US20110158795A1 (en) * 2008-05-27 2011-06-30 Kevin Edward Burgess Centrifugal pump impellers
CN102146933A (en) * 2010-02-09 2011-08-10 上海东方泵业(集团)有限公司 Method for designing inlet edge of impeller of centrifugal pump
CN102434489A (en) * 2011-11-18 2012-05-02 江苏国泉泵业制造有限公司 Three-flow-channel impeller design method of cutting pump
DE102011007907B3 (en) * 2011-04-21 2012-06-21 Ksb Aktiengesellschaft Impeller for centrifugal pumps
CN102691671A (en) * 2012-03-08 2012-09-26 江苏大学 Designing method of impeller core main pump wheel
CN102734209A (en) * 2012-06-29 2012-10-17 江苏国泉泵业制造有限公司 Design method of efficient screw centrifugal pump impeller

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106230A (en) * 1995-12-14 2000-08-22 Warman International Limited Centrifugal pump
US20110158795A1 (en) * 2008-05-27 2011-06-30 Kevin Edward Burgess Centrifugal pump impellers
EP2261510A2 (en) * 2009-06-10 2010-12-15 Mitsubishi Heavy Industries, Ltd. Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
CN102146933A (en) * 2010-02-09 2011-08-10 上海东方泵业(集团)有限公司 Method for designing inlet edge of impeller of centrifugal pump
CN102062118A (en) * 2011-01-07 2011-05-18 江苏大学 Design method for centrifugal pump impeller with high specific revolution number
DE102011007907B3 (en) * 2011-04-21 2012-06-21 Ksb Aktiengesellschaft Impeller for centrifugal pumps
CN102434489A (en) * 2011-11-18 2012-05-02 江苏国泉泵业制造有限公司 Three-flow-channel impeller design method of cutting pump
CN102691671A (en) * 2012-03-08 2012-09-26 江苏大学 Designing method of impeller core main pump wheel
CN102734209A (en) * 2012-06-29 2012-10-17 江苏国泉泵业制造有限公司 Design method of efficient screw centrifugal pump impeller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593943A (en) * 2016-12-06 2017-04-26 大连理工大学 Nuclear main pump runner forming method based on intermediate line control
CN106593943B (en) * 2016-12-06 2019-01-04 大连理工大学 A kind of core main pump runner forming method based on intermediate line traffic control
CN110374900A (en) * 2019-08-09 2019-10-25 西安交通大学 A kind of flow-mixing blower fan with sinusoidal pattern meridional channel
CN111120400A (en) * 2019-12-24 2020-05-08 哈尔滨工程大学 A centrifugal compressor for micro gas turbine

Also Published As

Publication number Publication date
CN103016398B (en) 2015-06-10

Similar Documents

Publication Publication Date Title
CN101769266B (en) Centrifugal fan blade
CN105805043B (en) A kind of design method of the non-adjustable axial-flow pump impeller with deviated splitter vane feature
CN110321660B (en) Design method of large-scale mixed-flow pump impeller capable of discharging water radially
CN105971931B (en) A kind of design method of receded disk impeller splitterr vanes
CN105673558B (en) A kind of centrifugal fan blade based on the design of load method
CN104100305B (en) A kind of large meridian expansion variable geometry turbine with orthogonal type adjustable stator blade
CN104153820A (en) Large meridional expansion variable-geometry turbine with stepped spherical end wall
CN107503978A (en) A kind of high-lift higher specific speed mixed-flow pump
CN103016398B (en) Centrifugal impeller flow passage design method for controlling curvature distribution
CN101900134A (en) A new type of circular arc chute processing casing
CN107092763A (en) The three-dimensional design method of turbomachinery impeller with Castability
CN100458179C (en) Wheel hub shaping method for improving end area blocking
CN107202032A (en) A kind of centrifugal permanent lift impeller of pump Hydraulic Design Method
CN104500452A (en) Vaneless diffusion section structure with regular N-prism side outlet and machining method
CN106382260B (en) A kind of tangential groove water conservancy diversion chip treated casing method and device of compressor
CN106567861A (en) Axial flow pump guide vane hydraulic design method and device
CN104912604B (en) A kind of have the spin-ended anti-rotating plate structure pressing down and bestirring oneself
CN103628926A (en) The steam exhaust area is 3.0m2, and the final blade of the low pressure stage group of the variable speed industrial steam turbine
CN108205607B (en) Hydraulic design method for high-specific-speed centrifugal pump impeller
CN103644141B (en) A kind of method obtaining load distribution curve of blade of double-suction centrifugal pump
CN102996504B (en) Centrifugal impeller flow passage design method for controlling slope distribution
CN105864099B (en) A kind of design method of middle higher specific speed centrifugal pump impeller port of export edge folding blades structure
CN202348525U (en) Axial-flow rotary propeller type water turbine
CN104165156B (en) A kind of axial-flow pump impeller method for designing not waiting outlet circulation distribution
CN103806946A (en) The steam exhaust area is 2.1m2, and the final blade of the low-pressure stage group of the variable-speed industrial steam turbine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant