CN102996504B - Centrifugal impeller flow passage design method for controlling slope distribution - Google Patents
Centrifugal impeller flow passage design method for controlling slope distribution Download PDFInfo
- Publication number
- CN102996504B CN102996504B CN201210545524.XA CN201210545524A CN102996504B CN 102996504 B CN102996504 B CN 102996504B CN 201210545524 A CN201210545524 A CN 201210545524A CN 102996504 B CN102996504 B CN 102996504B
- Authority
- CN
- China
- Prior art keywords
- line
- wheel cover
- centrifugal impeller
- hub
- curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
技术领域 technical field
本发明属于流体机械设计造型方法,具体涉及一种控制斜率分布的离心叶轮流道设计方法。The invention belongs to a fluid machine design modeling method, in particular to a centrifugal impeller flow path design method for controlling slope distribution.
背景技术 Background technique
离心式叶轮机械是喷气式航空发动机的一个核心部件,并广泛应用于各种流体压缩、或流体膨胀的功能转换领域。离心式叶轮机械的子午流道的设计对离心式叶轮机械性能影响很大。但子午流道设计一直没有明确的设计准则,一般依赖设计人员经验,设计主观随意性较大。目前常规的子午流道型线设计方法,一般通过圆弧加直线连接而成。这种设计方式很容易引起流动损失,降低离心式叶轮机械的做功效率。Centrifugal impeller machinery is a core component of jet aeroengines, and is widely used in the field of functional conversion of various fluid compressions or fluid expansions. The design of the meridian channel of the centrifugal impeller machinery has a great influence on the performance of the centrifugal impeller machinery. However, there is no clear design criterion for the design of the meridian flow channel. Generally, it depends on the experience of the designer, and the design is relatively subjective. At present, the conventional design method of meridian runner profile is generally formed by connecting arcs and straight lines. This design method is easy to cause flow loss and reduce the work efficiency of centrifugal impeller machinery.
发明内容 Contents of the invention
本发明提出了一种控制斜率分布的离心叶轮流道设计方法,具有良好的流动性能,能够提高离心式叶轮机械的功能做功效率。The invention proposes a centrifugal impeller channel design method for controlling slope distribution, which has good flow performance and can improve the functional work efficiency of centrifugal impeller machinery.
本发明采用的技术方案为:The technical scheme adopted in the present invention is:
该离心叶轮的子午流道由轮盖线、轮毂线、进口线、出口线包络而成,设计步骤为:The meridian channel of the centrifugal impeller is enveloped by the wheel cover line, hub line, inlet line, and outlet line. The design steps are:
(1)通过控制轮盖线、轮毂线斜率在轴向上的分布,来参数化形成;轮盖线和轮毂线的斜率分布规律,采用三次多项式S(x)=Ax3+Bx2+Cx+D来确定,其中S为曲线斜率,x为无量纲流向长度,A、B、C、D为无量纲系数,具体值如下表所示:(1) Parametrically formed by controlling the distribution of the slope of the wheel cover line and the hub line in the axial direction; the slope distribution of the wheel cover line and the hub line adopts the cubic polynomial S(x)=Ax 3 +Bx 2 +Cx +D to determine, where S is the slope of the curve, x is the length of the dimensionless flow direction, and A, B, C, and D are dimensionless coefficients. The specific values are shown in the following table:
;;
确定轮盖线和轮毂线的具体步骤为:The specific steps to determine the wheel cover line and hub line are:
(101)根据一维流动计算方法分别确定轮盖线和轮毂线的4个端点位置;(101) According to the one-dimensional flow calculation method, respectively determine the positions of the four endpoints of the wheel cover line and the hub line;
(102)将轮盖线均分为n(50≤n≤200)段,确定除两端点外的n-1个点的轴向坐标,根据第一个点的斜率k以及该点的坐标(Z1,R1),确定第二点的坐标(Z2,R2);然后以第二个点的斜率k以及该点坐标,确定第三个点的坐标(Z3,R3);以此类推,得到轮盖线所有点的坐标;(102) Divide the wheel cover line into n (50≤n≤200) segments, determine the axial coordinates of n-1 points except the two ends, according to the slope k of the first point and the coordinates of the point ( Z 1 , R 1 ), determine the coordinates of the second point (Z 2 , R 2 ); then use the slope k of the second point and the coordinates of this point to determine the coordinates of the third point (Z 3 , R 3 ); By analogy, the coordinates of all points of the wheel cover line are obtained;
(103)将得到的轮盖线上n+1个点用光滑曲线拟合,就可以得到光滑的轮盖曲线;(103) Fit n+1 points on the obtained wheel cover line with a smooth curve to obtain a smooth wheel cover curve;
(104)采用步骤(102)和(103)的方法,得到轮毂曲线;(104) Obtain the hub curve by adopting the methods of steps (102) and (103);
(2)由步骤(1)得到的轮盖曲线、轮毂曲线绕旋转轴转动360°,得到轮盖面和轮毂面。(2) The wheel cover curve and hub curve obtained in step (1) are rotated 360° around the rotation axis to obtain the wheel cover surface and hub surface.
本发明具有以下的有益效果:The present invention has following beneficial effect:
通过控制流道曲线的斜率,可以根据离心叶轮的流动做功情况,灵活选择合适的斜率分布规律,控制离心叶轮流动负荷在轴向的分布,提高了做功效率和离心叶轮的稳定工作边界,可广泛应用于各种离心式、斜流式叶轮机械的流动设计。By controlling the slope of the flow channel curve, the appropriate slope distribution law can be flexibly selected according to the flow and work of the centrifugal impeller, and the distribution of the flow load of the centrifugal impeller in the axial direction can be controlled, which improves the work efficiency and the stable working boundary of the centrifugal impeller, and can be widely used It is applied to the flow design of various centrifugal and oblique flow impeller machines.
附图说明 Description of drawings
图1是本发明的结构原理简图。Fig. 1 is a schematic diagram of the structure principle of the present invention.
图2是图1中子午流道的示意图。Fig. 2 is a schematic diagram of the meridian flow channel in Fig. 1 .
图3是本发明实施的典型的斜率分布图。Figure 3 is a graph of a typical slope profile for an implementation of the present invention.
图中标号:Labels in the figure:
1-轮盖线;2-轮毂线;3-进口线;4-出口线。1-Wheel cover line; 2-Hub line; 3-Inlet line; 4-Exit line.
具体实施方式 Detailed ways
本发明提供了一种控制斜率分布的离心叶轮流道设计方法,下面结合附图和具体实施方式对本发明做进一步说明。The present invention provides a centrifugal impeller flow path design method for controlling slope distribution. The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
离心式叶轮机械的轴向纵切面,一般称之为子午流道。该子午流道由轮盖线1、轮毂线2、进口线3和出口线4包络而成,如图1和图2所示。The axial longitudinal section of centrifugal impeller machinery is generally called meridian flow channel. The meridian flow channel is enveloped by the wheel cover line 1, the hub line 2, the inlet line 3 and the outlet line 4, as shown in Fig. 1 and Fig. 2 .
该子午流道的设计步骤为:The design steps of the meridian flow channel are:
(1) 轮盖线和轮毂线的斜率分布规律,采用三次多项式S(x)=Ax3+Bx2+Cx+D来确定,其中S为曲线斜率,x为无量纲流向长度,A、B、C、D为无量纲系数,具体值如下表所示:(1) The slope distribution of the wheel cover line and the hub line is determined by the cubic polynomial S(x)=Ax 3 +Bx 2 +Cx+D, where S is the slope of the curve, x is the dimensionless flow length, A, B , C, and D are dimensionless coefficients, and the specific values are shown in the following table:
确定轮盖线和轮毂线的具体步骤为:The specific steps to determine the wheel cover line and hub line are:
(101)根据一维流动计算分别确定轮盖线首尾端点坐标为(-75,78.5)(-8.4,118),轮毂线的首尾端点坐标为(-75,30)(0,118);(101) According to the one-dimensional flow calculation, determine the coordinates of the first and last endpoints of the wheel cover line as (-75,78.5) (-8.4,118), and the coordinates of the first and last endpoints of the hub line as (-75,30) (0,118);
(102)将轮盖线均分为100段,根据步骤(1)的公式确定共计101个离散点的曲率分布规律如下表所示:(102) Divide the wheel cover line into 100 segments, and determine the curvature distribution law of a total of 101 discrete points according to the formula in step (1), as shown in the following table:
(103)将轮盖线均分为100段,确定除两端点外的中间99个点的轴向坐标,根据第一个点的斜率k以及该点的坐标(Z1,R1),确定第二点的坐标(Z2,R2);然后以第二个点的斜率k以及该点坐标,确定第三个点的坐标(Z3,R3);以此类推,得到轮盖线所有点的坐标;下表列出前15个点坐标,余点以此类推获得。(103) Divide the wheel cover line into 100 segments, determine the axial coordinates of the middle 99 points except the two ends, and determine according to the slope k of the first point and the coordinates of this point (Z 1 , R 1 ). The coordinates of the second point (Z 2 , R 2 ); then use the slope k of the second point and the coordinates of this point to determine the coordinates of the third point (Z 3 , R 3 ); and so on, to get the wheel cover line The coordinates of all points; the following table lists the coordinates of the first 15 points, and the remaining points are obtained by analogy.
(104)将得到的轮盖线上101个点用光滑曲线拟合,就可以得到光滑的轮盖曲线;(104) Fit 101 points on the obtained wheel cover line with a smooth curve to obtain a smooth wheel cover curve;
(105)采用步骤(102)-(104)的方法,得到轮毂曲线;(105) Obtain the hub curve by adopting the method of steps (102)-(104);
(2)由步骤(1)得到的轮盖曲线、轮毂曲线绕旋转轴转动360°,得到轮盖面和轮毂面。(2) The wheel cover curve and hub curve obtained in step (1) are rotated 360° around the rotation axis to obtain the wheel cover surface and hub surface.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210545524.XA CN102996504B (en) | 2012-12-14 | 2012-12-14 | Centrifugal impeller flow passage design method for controlling slope distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210545524.XA CN102996504B (en) | 2012-12-14 | 2012-12-14 | Centrifugal impeller flow passage design method for controlling slope distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102996504A CN102996504A (en) | 2013-03-27 |
CN102996504B true CN102996504B (en) | 2015-06-10 |
Family
ID=47925485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210545524.XA Active CN102996504B (en) | 2012-12-14 | 2012-12-14 | Centrifugal impeller flow passage design method for controlling slope distribution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102996504B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101149061A (en) * | 2007-07-30 | 2008-03-26 | 北京航空航天大学 | A kind of centrifugal impeller suitable for working under the condition of high rotating speed |
CN201148995Y (en) * | 2008-01-16 | 2008-11-12 | 天津内燃机研究所 | Low noise cooling fan |
CN201176959Y (en) * | 2008-01-16 | 2009-01-07 | 天津内燃机研究所 | Double-vane cooling fan |
RU2354854C1 (en) * | 2007-12-20 | 2009-05-10 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Axial blower or compressor high-rpm impeller |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2811348A1 (en) * | 2010-08-12 | 2012-02-16 | Nuovo Pignone S.P.A. | Radial diffuser vane for centrifugal compressors |
-
2012
- 2012-12-14 CN CN201210545524.XA patent/CN102996504B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101149061A (en) * | 2007-07-30 | 2008-03-26 | 北京航空航天大学 | A kind of centrifugal impeller suitable for working under the condition of high rotating speed |
RU2354854C1 (en) * | 2007-12-20 | 2009-05-10 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Axial blower or compressor high-rpm impeller |
CN201148995Y (en) * | 2008-01-16 | 2008-11-12 | 天津内燃机研究所 | Low noise cooling fan |
CN201176959Y (en) * | 2008-01-16 | 2009-01-07 | 天津内燃机研究所 | Double-vane cooling fan |
Also Published As
Publication number | Publication date |
---|---|
CN102996504A (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104153820B (en) | A kind of big meridian expansion variable geometry turbine with stepped ramp type sphere end wall | |
CN105971931B (en) | A kind of design method of receded disk impeller splitterr vanes | |
CN104100305B (en) | A kind of large meridian expansion variable geometry turbine with orthogonal type adjustable stator blade | |
CN113958519B (en) | Automatic generation method for blades in different shapes of centrifugal impeller based on intermediate surface | |
CN105673558B (en) | A kind of centrifugal fan blade based on the design of load method | |
CN105805043A (en) | Design method for nonadjustable axial flow pump impeller with characteristic of long blades and short blades | |
CN114718659B (en) | Turbine blade tip clearance flow control method coupling radial ribs and circumferential grooves | |
CN103671254A (en) | Vane structure for weakening axial flow pump vane top leakage flow and leakage vortex | |
CN110657126A (en) | Non-axisymmetrical hub structure for controlling flow of centrifugal impeller and centrifugal impeller | |
CN113221264A (en) | Method for optimizing structural design of flow channel type guide vane of seawater desalination pump | |
CN103016398B (en) | Centrifugal impeller flow passage design method for controlling curvature distribution | |
CN106089808B (en) | A kind of blade diffuser and its formative method with trailing edge structures before swallow-tail form | |
CN104806571A (en) | Efficient centrifugal air blower based on computational fluid dynamic simulation | |
CN105179322B (en) | Blade root opens up the Profile For Compressor Stator leaf grating of wide straight-line groove | |
CN106382260B (en) | A kind of tangential groove water conservancy diversion chip treated casing method and device of compressor | |
CN104500452B (en) | A kind of vaneless diffuser structure and machining method with positive N prism side exit | |
CN104912604B (en) | A kind of have the spin-ended anti-rotating plate structure pressing down and bestirring oneself | |
CN102996504B (en) | Centrifugal impeller flow passage design method for controlling slope distribution | |
CN106567861A (en) | Axial flow pump guide vane hydraulic design method and device | |
CN103628926A (en) | The steam exhaust area is 3.0m2, and the final blade of the low pressure stage group of the variable speed industrial steam turbine | |
CN114186513A (en) | Modeling design method for axial flow compressor blade with reverse S-shaped front edge | |
CN101749052A (en) | The final stage moving blade of air-cooled feed pump steam turbine | |
CN202348525U (en) | Axial-flow rotary propeller type water turbine | |
CN105864099B (en) | A kind of design method of middle higher specific speed centrifugal pump impeller port of export edge folding blades structure | |
CN103806946A (en) | The steam exhaust area is 2.1m2, and the final blade of the low-pressure stage group of the variable-speed industrial steam turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |