CN103014711A - Aluminum alloy chemical-milling solution and milling method using same - Google Patents
Aluminum alloy chemical-milling solution and milling method using same Download PDFInfo
- Publication number
- CN103014711A CN103014711A CN201210534933XA CN201210534933A CN103014711A CN 103014711 A CN103014711 A CN 103014711A CN 201210534933X A CN201210534933X A CN 201210534933XA CN 201210534933 A CN201210534933 A CN 201210534933A CN 103014711 A CN103014711 A CN 103014711A
- Authority
- CN
- China
- Prior art keywords
- chemical milling
- solution
- aluminum alloy
- milling
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003801 milling Methods 0.000 title claims abstract description 127
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 59
- 239000000126 substance Substances 0.000 claims abstract description 102
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 238000003756 stirring Methods 0.000 claims abstract description 23
- 230000003746 surface roughness Effects 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000737 Duralumin Inorganic materials 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 84
- 239000000243 solution Substances 0.000 claims description 69
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 14
- 229910017604 nitric acid Inorganic materials 0.000 claims description 14
- 239000003599 detergent Substances 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 238000005238 degreasing Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 3
- 239000008367 deionised water Substances 0.000 abstract description 2
- 229910021641 deionized water Inorganic materials 0.000 abstract description 2
- 238000005406 washing Methods 0.000 description 22
- 238000007602 hot air drying Methods 0.000 description 12
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 11
- 238000005530 etching Methods 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000002791 soaking Methods 0.000 description 6
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 229910001008 7075 aluminium alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
- C23F1/04—Chemical milling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/32—Alkaline compositions
- C23F1/36—Alkaline compositions for etching aluminium or alloys thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Abstract
本发明公开了一种铝合金化铣溶液及其铣切方法,首先是利用适量的分析纯NaOH、Na2S、三乙醇胺、乙二胺四乙酸、Na2S2O3、工业纯Al和去离子水配制出化铣溶液;然后将经过前处理的硬铝或超硬铝合金放入到溶液中,在适当的温度、搅拌速度下进行铣切处理;达到化铣深度后、取出试件,检验化铣后铝合金表面的粗糙度并计算化铣速度。本发明的技术方案设计出的化铣溶液不仅适用于硬铝和超硬铝合金的铣切加工,而且具有化铣速度高、表面粗糙度小、工艺参数控制方便的优势。 The invention discloses an aluminum alloy chemical milling solution and a milling method thereof. Prepare a chemical milling solution with deionized water; then put the pretreated duralumin or superhard aluminum alloy into the solution, and carry out milling at an appropriate temperature and stirring speed; after reaching the depth of chemical milling, take out the test piece , to check the roughness of the aluminum alloy surface after chemical milling and calculate the chemical milling speed. The chemical milling solution designed by the technical scheme of the present invention is not only suitable for milling of hard aluminum and superhard aluminum alloy, but also has the advantages of high chemical milling speed, small surface roughness and convenient control of process parameters.
Description
技术领域technical field
本发明属于金属加工领域,更加具体的说,涉及一种新的铝合金化铣溶液和铣切工艺,主要用于对硬铝和超硬铝合金的化学铣切加工处理。The invention belongs to the field of metal processing, and more specifically relates to a new aluminum alloy chemical milling solution and milling process, which is mainly used for chemical milling processing of duralumin and superhard aluminum alloy.
背景技术Background technique
化学铣切是指将金属材料要加工的部位浸入到适当的化学介质(溶液)中,由于工件表面与化学溶液间发生腐蚀反应,使材料不断地被溶解去除,从而获得零件所需的形状和尺寸。由于化学铣切是一种无刀具、无切屑、无应力和无工件之间协调问题的特种加工工艺,可加工特薄、易变形、大面积的零件,并能减轻结构重量,减少工艺装备,缩短生产周期。因此化学铣切的应用范围越来越广泛,已成为制造飞机、宇宙飞船、火箭结构的低温贮箱与电子计算机大规模集成电路元件处理中不可替代的方法。Chemical milling refers to immersing the part of the metal material to be processed in an appropriate chemical medium (solution). Due to the corrosion reaction between the surface of the workpiece and the chemical solution, the material is continuously dissolved and removed, thereby obtaining the required shape and shape of the part. size. Since chemical milling is a special processing technology with no tools, no chips, no stress, and no coordination problems between workpieces, it can process extra-thin, easily deformed, and large-area parts, and can reduce structural weight and process equipment. Shorten the production cycle. Therefore, the application range of chemical milling is more and more extensive, and it has become an irreplaceable method in the manufacture of low-temperature storage tanks for aircraft, spacecraft, and rocket structures and the processing of large-scale integrated circuit components for electronic computers.
在航空与航天工业零件的成形过程中,铝合金构件(如飞机蒙皮、贮箱等)的化学铣切,已经成为比传统机械加工方法优越得多的可靠加工方法。铝合金的化学铣切效果(化铣速率、表面粗糙度、浸蚀比等),不仅与除油、出光、涂覆保护层等前处理过程有关,更重要的是与化铣溶液的组成和工艺控制密不可分。铝合金的化铣溶液,大致可分为酸性体系和碱性体系两大类。铝合金的酸性化铣溶液,常由1.25mol/LFeCl3([1]易慧芝,邓飞跃,张忠亭,2197铝锂合金化学铣切工艺研究,表面技术,2010,39(4):73-75;[2]Cakir O,Chemical etching of aluminum,Journal of Materials Processing Technology,2008,199(1-3):337-340)或FeCl3+HCl+HNO3+CuSO4体系([3]Lada H,Park L,Fishter R E,Method and composition for removing alumunide coatings from nickel superallloys,US PatentNo.4339282,1981)组成。虽然酸性体系的化铣温度较低(20-50℃或60-70℃),但化铣后铝合金的表面质量较差(表面粗糙度Ra约为7~10μm)。In the forming process of aviation and aerospace industry parts, chemical milling of aluminum alloy components (such as aircraft skins, storage tanks, etc.) has become a reliable processing method that is much superior to traditional mechanical processing methods. The chemical milling effect of aluminum alloys (chemical milling rate, surface roughness, etch ratio, etc.) is not only related to pretreatment processes such as degreasing, light emitting, and protective coating, but more importantly, it is related to the composition and composition of the chemical milling solution. Process control is inseparable. The chemical milling solution of aluminum alloy can be roughly divided into two categories: acidic system and alkaline system. The acidic chemical milling solution of aluminum alloy is usually composed of 1.25mol/LFeCl 3 ([1] Yi Huizhi, Deng Feiyue, Zhang Zhongting, Research on chemical milling process of 2197 Al-Li alloy, Surface Technology, 2010, 39(4): 73- 75; [2] Cakir O, Chemical etching of aluminum, Journal of Materials Processing Technology, 2008, 199 (1-3): 337-340) or FeCl 3 +HCl+HNO 3 +CuSO 4 system ([3]Lada H , Park L, Fishter R E, Method and composition for removing aluminum coatings from nickel superallloys, US Patent No.4339282, 1981) composition. Although the chemical milling temperature of the acidic system is low (20-50°C or 60-70°C), the surface quality of the aluminum alloy after chemical milling is poor (the surface roughness Ra is about 7-10 μm).
铝合金的碱性化铣溶液,常由NaOH和溶解Al组成;此外,还可添加Na2S、三乙醇胺(TEA)、乙二胺四乙酸(EDTA)、NaNO3、Na2CO3、乙二醇或丙三醇、及少许缓蚀剂或其他添加剂等。如易慧芝、李博、尹茂生、毛大恒、林翠等分别采用NaOH+Na2S+TEA+溶解Al体系对2197、5A90、LY12铝合金进行了化学铣切,并优化了溶液配比和铣切温度([1]易慧芝,邓飞跃,张忠亭,2197铝锂合金化学铣切工艺研究,表面技术,2010,39(4):73-75;[4]李博,一种铝锂合金化铣溶液,中国专利201110341285.1;[5]尹茂生,廖广其,文庆杰,程红霞,铝合金筒段化学铣切工艺研究,材料保护,2005,38(8):24-25;[6]毛大恒,韩德夫,周亚军,张灿,2197铝锂合金的化学铣切工艺,机械工程材料,2011,35(5):77-79;[7]林翠,蔡剑,曾丰光,黄茜,杜楠,赵晴,LY12铝合金化铣工艺及加工质量影响因素,失效分析与预防,2010,5(1):8-16)。在此基础上,谢春英和尹茂生还添加少许的HX缓蚀剂和添加剂来改善化铣后铝合金表面的粗糙度和均匀性([8]谢春英,刘敏,朱凯,文庆杰,铝合金化学铣切疲劳性能,腐蚀与防护,2008,29(4):185-188;[9]尹茂生,廖广其,蒋洪俊,铝合金化学铣切常见故障浅析,涂装与电镀,2008,(8):47-49)。此外,易慧芝和Gross则分别采用NaOH+Na2S+溶解Al+EDTA+Na2CO3、NaOH+NaNO3+乙二醇或丙三醇体系对2197、2219铝合金进行了化学铣切([1]易慧芝,邓飞跃,张忠亭,2197铝锂合金化学铣切工艺研究,表面技术,2010,39(4):73-75;[10]Gross D W,Chemical milling process and etchants therefor,US PatentNo.4588474,1984)。Alkaline chemical milling solutions for aluminum alloys are usually composed of NaOH and dissolved Al; in addition, Na 2 S, triethanolamine (TEA), ethylenediaminetetraacetic acid (EDTA), NaNO 3 , Na 2 CO 3 , ethyl Glycol or glycerin, and a little corrosion inhibitor or other additives, etc. For example, Yi Huizhi, Li Bo, Yin Maosheng, Mao Daheng, Lin Cui, etc. respectively used the NaOH+Na 2 S+TEA+dissolved Al system to chemically mill 2197, 5A90, and LY12 aluminum alloys, and optimized the solution ratio and milling process. Cutting temperature ([1] Yi Huizhi, Deng Feiyue, Zhang Zhongting, Research on Chemical Milling Process of 2197 Al-Li Alloy, Surface Technology, 2010, 39(4): 73-75; [4] Li Bo, An Al-Li Alloy Chemical milling solution, Chinese patent 201110341285.1; [5] Yin Maosheng, Liao Guangqi, Wen Qingjie, Cheng Hongxia, Research on chemical milling process of aluminum alloy barrel, Material Protection, 2005, 38(8): 24-25; [6] Mao Daheng , Han Defu, Zhou Yajun, Zhang Can, Chemical Milling Process of 2197 Al-Li Alloy, Mechanical Engineering Materials, 2011, 35(5): 77-79; [7] Lin Cui, Cai Jian, Zeng Fengguang, Huang Qian, Du Nan , Zhao Qing, LY12 aluminum alloy milling process and factors affecting processing quality, Failure Analysis and Prevention, 2010, 5(1):8-16). On this basis, Xie Chunying and Yin Maosheng also added a little HX corrosion inhibitor and additives to improve the roughness and uniformity of the aluminum alloy surface after chemical milling ([8] Xie Chunying, Liu Min, Zhu Kai, Wen Qingjie, Aluminum Alloy Chemical Milling Fatigue Performance, Corrosion and Protection, 2008, 29(4): 185-188; [9] Yin Maosheng, Liao Guangqi, Jiang Hongjun, Analysis of Common Faults in Aluminum Alloy Chemical Milling, Coating and Plating, 2008, (8): 47-49). In addition, Yi Huizhi and Gross respectively used NaOH+Na 2 S+dissolved Al+EDTA+Na 2 CO 3 , NaOH+NaNO 3 +ethylene glycol or glycerol system to carry out chemical milling on 2197 and 2219 aluminum alloys ( [1] Yi Huizhi, Deng Feiyue, Zhang Zhongting, Research on chemical milling process of 2197 Al-Li alloy, Surface Technology, 2010, 39(4): 73-75; [10] Gross D W, Chemical milling process and etchants therefor, US Patent No. 4588474, 1984).
利用以上的碱性化铣溶液虽然能对各种铝合金进行铣切加工处理,但存在化铣温度较高(75-110℃)、化铣速率范围大(0.010-0.070mm/min)、表面粗糙度差别较大(Ra=0.8~4.0μm)等问题,尤其是当化铣深度超过5mm后材料表面的粗糙度明显增大。Although the above alkaline chemical milling solution can be used for milling processing of various aluminum alloys, there are high chemical milling temperature (75-110°C), large chemical milling rate range (0.010-0.070mm/min), surface There are problems such as large difference in roughness (Ra=0.8~4.0μm), especially when the depth of chemical milling exceeds 5mm, the roughness of the material surface increases significantly.
随着航空工业的发展,对铝合金零件化铣工艺条件和表面质量的精度控制要求越来越高和苛刻,因此需要对铝合金化铣溶液组成和铣切工艺等进行优化组合、精确控制,以使铝合金的化铣过程具有化铣速度大、表面粗糙度小、工艺控制简单的特点,从而保证化铣零件的质量和生产交付工期。With the development of the aviation industry, the precision control requirements for the milling process conditions and surface quality of aluminum alloy parts are getting higher and higher. Therefore, it is necessary to optimize the combination and precise control of the composition of the aluminum alloy milling solution and the milling process. The chemical milling process of aluminum alloy has the characteristics of high chemical milling speed, small surface roughness, and simple process control, so as to ensure the quality of chemical milling parts and the production delivery schedule.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,通过化铣溶液的组成与配比的组合设计,使铝合金的化铣过程具有化铣速度高、表面粗糙度小的特点,且拥有工艺参数控制方便、简单的优势,并适用于对硬铝和超硬铝合金的化铣技术要求,以保证化铣铝合金的高质量和工艺控制。The purpose of the present invention is to overcome the deficiencies of the prior art, through the combined design of the composition and proportion of the chemical milling solution, the chemical milling process of aluminum alloy has the characteristics of high chemical milling speed and small surface roughness, and has process parameter control It is convenient and simple, and is suitable for the technical requirements of chemical milling of hard aluminum and superhard aluminum alloy, so as to ensure the high quality and process control of chemical milling aluminum alloy.
本发明的技术目的通过下述技术方案予以实现:Technical purpose of the present invention is achieved through the following technical solutions:
一种铝合金化铣溶液,各个组分如下:140-200g/L NaOH、6-30g/L Na2S、25-50g/LTEA、10-30g/L EDTA、10-40g/L Na2S2O3·5H2O、10-40g/L Al,溶剂为水;在制备时在化铣槽中先加入1/3体积的水,在搅拌条件下依次加入NaOH、Na2S、EDTA,然后再加入事先用水溶解的Na2S2O3·5H2O、TEA及纯铝,补足剩余的水,并充分搅拌。An aluminum alloy milling solution, each component is as follows: 140-200g/L NaOH, 6-30g/L Na 2 S, 25-50g/LTEA, 10-30g/L EDTA, 10-40g/L Na 2 S 2 O 3 ·5H 2 O, 10-40g/L Al, the solvent is water; when preparing, add 1/3 volume of water to the chemical milling groove, and then add NaOH, Na 2 S, EDTA under stirring conditions, Then add Na 2 S 2 O 3 ·5H 2 O, TEA and pure aluminum dissolved in water in advance to make up the remaining water, and stir well.
在使用上述溶液进行铣切应用,具体工艺如下:When using the above solutions for milling applications, the specific process is as follows:
加热化铣溶液至75-95℃,然后将经过200#-2000#水砂纸逐次研磨、清洁处理、化学除油(在70℃的10g/L NaOH+30g/L Na2SiO3·9H2O+664洗涤剂体系中清洗2min,该体系为水溶液体系)、流动水洗、出光(在室温、300g/L硝酸水溶液中浸泡5min)、流动水洗、60-80℃热风干燥等前处理后的硬铝或超硬铝试件放入到溶液中,在50-200rpm的溶液搅拌速度下进行铣切处理。达到化铣深度或浸蚀一定时间后,取出试件并进行出光(在室温、300g/L硝酸水溶液中浸泡5min)、流动水洗、热风干燥等处理。Heat the chemical milling solution to 75-95°C, then grind, clean and chemically degrease successively with 200#-2000# water sandpaper (10g/L NaOH+30g/L Na 2 SiO 3 9H 2 O at 70°C +664 detergent system for 2 minutes, the system is an aqueous solution), flowing water washing, light (soaking in room temperature, 300g/L nitric acid aqueous solution for 5 minutes), flowing water washing, hot air drying at 60-80°C and other pre-treated duralumin Or the super-duralumin test piece is put into the solution, and the milling process is carried out at the solution stirring speed of 50-200rpm. After reaching the depth of chemical milling or etching for a certain period of time, take out the specimen and perform treatments such as light extraction (immersion in 300g/L nitric acid aqueous solution at room temperature for 5min), flowing water washing, and hot air drying.
本发明的技术方案,首先是利用适量的分析纯NaOH、Na2S、三乙醇胺(TEA)、乙二胺四乙酸(EDTA)、Na2S2O3、工业纯Al和去离子水配制出化铣溶液;然后将经过前处理的硬铝或超硬铝合金放入到溶液中,在适当的温度、搅拌速度下进行铣切处理;达到化铣深度后、取出试件,检验化铣后铝合金表面的粗糙度并计算化铣速度。利用游标卡尺或精度为万分之一的天平测量化铣前后试件的厚度和重量,计算化铣速度。同时,通过表面粗糙度测量仪测定化铣后铝合金的表面粗糙度。本发明的有益效果在于,设计出的化铣溶液不仅适用于硬铝和超硬铝合金的铣切加工,而且具有化铣速度高、表面粗糙度小、工艺参数控制方便的优势。具体实验数据如下:The technical scheme of the present invention is first to utilize appropriate amount of analytically pure NaOH, Na 2 S, triethanolamine (TEA), ethylenediaminetetraacetic acid (EDTA), Na 2 S 2 O 3 , industrial pure Al and deionized water to prepare chemical milling solution; then put the pre-treated duralumin or superhard aluminum alloy into the solution, and carry out milling treatment at an appropriate temperature and stirring speed; after reaching the depth of chemical milling, take out the test piece, and inspect the The roughness of the aluminum alloy surface and calculate the chemical milling speed. Use a vernier caliper or a balance with an accuracy of one ten-thousandth to measure the thickness and weight of the specimen before and after chemical milling, and calculate the chemical milling speed. At the same time, the surface roughness of the aluminum alloy after chemical milling was measured by a surface roughness measuring instrument. The beneficial effect of the invention is that the designed chemical milling solution is not only suitable for milling of hard aluminum and superhard aluminum alloy, but also has the advantages of high chemical milling speed, small surface roughness and convenient control of process parameters. The specific experimental data are as follows:
(1)化铣速度高利用发明的化铣溶液对2219、LY12、2195、7075、7A60等铝合金进行了铣切处理;经计算化铣溶液对铝合金的化铣速度为0.030-0.060mm/min间变化。5mm的化铣深度,大约需要1.5~3.0小时。(1) High milling speed Using the invented milling solution to mill 2219, LY12, 2195, 7075, 7A60 and other aluminum alloys; the calculated milling speed of the milling solution for aluminum alloys is 0.030-0.060mm/ Changes between minutes. It takes about 1.5 to 3.0 hours for a chemical milling depth of 5mm.
(2)表面粗糙度小利用发明的化铣溶液对2219、LY12、2195、7075、7A60等铝合金进行了铣切处理;经表面粗糙度测量,化铣深度达5mm时铝合金的表面粗糙度Ra在0.8~2.0μm间变化,符合化铣零件的精度要求。(2) The surface roughness is small. Using the invented chemical milling solution, the aluminum alloys such as 2219, LY12, 2195, 7075, and 7A60 have been milled; after the surface roughness measurement, the surface roughness of the aluminum alloy when the chemical milling depth reaches 5mm Ra varies between 0.8 and 2.0 μm, which meets the precision requirements of chemical milling parts.
具体实施方式Detailed ways
下面结合具体实施例进一步说明本发明的技术方案Further illustrate technical scheme of the present invention below in conjunction with specific embodiment
实施方案一Implementation plan one
(1)按照配制溶液的体积及180g/L NaOH、20g/L Na2S、40g/LTEA、10g/L EDTA、20g/LNa2S2O3·5H2O、30g/L Al的量称取溶液各组分;在化铣槽中先加入1/3体积的水,在搅拌条件下依次加入NaOH、Na2S、EDTA,然后再加入事先用水溶解的Na2S2O3·5H2O、TEA及纯铝,补足剩余的水,并充分搅拌。(1) According to the volume of the prepared solution and the amount of 180g/L NaOH, 20g/L Na 2 S, 40g/LTEA, 10g/L EDTA, 20g/LNa 2 S 2 O 3 5H 2 O, 30g/L Al Take the components of the solution; first add 1/3 volume of water to the chemical milling tank, add NaOH, Na 2 S, EDTA in turn under stirring conditions, and then add Na 2 S 2 O 3 5H 2 dissolved in water in advance O, TEA and pure aluminum, make up the remaining water, and stir well.
(2)加热化铣溶液至85℃,然后将经过200#-2000#水砂纸逐次研磨、清洁处理、化学除油(在70℃的10g/L NaOH+30g/LNa2SiO3·9H2O+664洗涤剂体系中清洗2min)、流动水洗、出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、60-80℃热风干燥等前处理后的2219铝合金放入到溶液中,在100rpm的溶液搅拌速度下进行铣切处理。达到化铣深度或浸蚀一定时间后,取出试件并进行出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、热风干燥等处理。(2) Heat the chemical milling solution to 85°C, then grind, clean and degrease successively with 200#-2000# water sandpaper (10g/L NaOH+30g/LNa 2 SiO 3 9H 2 O at 70°C +664 detergent system for 2 minutes), flowing water washing, outlighting (soaking in room temperature, 300g/L nitric acid solution for 5 minutes), flowing water washing, hot air drying at 60-80°C, etc. After pretreatment, put the 2219 aluminum alloy into the solution , the milling treatment was performed at a solution stirring speed of 100 rpm. After reaching the depth of chemical milling or etching for a certain period of time, take out the specimen and perform treatments such as light extraction (immersion in room temperature, 300g/L nitric acid solution for 5min), flowing water washing, and hot air drying.
(3)经检验,2219铝合金的化铣速度为0.050mm/min;化铣深度达5mm时铝合金的表面粗糙度Ra为0.9μm。(3) After inspection, the chemical milling speed of 2219 aluminum alloy is 0.050mm/min; when the chemical milling depth reaches 5mm, the surface roughness Ra of aluminum alloy is 0.9μm.
实验方案二Experimental plan two
(1)按照配制溶液的体积及160g/L NaOH、15g/L Na2S、30g/LTEA、20g/L EDTA、15g/LNa2S2O3·5H2O、40g/L Al的量称取溶液各组分;在化铣槽中先加入1/3体积的水,在搅拌条件下依次加入NaOH、Na2S、EDTA,然后再加入事先用水溶解的Na2S2O3·5H2O、TEA及纯铝,补足剩余的水,并充分搅拌。(1) According to the volume of the prepared solution and the amount of 160g/L NaOH, 15g/L Na 2 S, 30g/LTEA, 20g/L EDTA, 15g/LNa 2 S 2 O 3 5H 2 O, 40g/L Al Take the components of the solution; first add 1/3 volume of water to the chemical milling tank, add NaOH, Na 2 S, EDTA in turn under stirring conditions, and then add Na 2 S 2 O 3 5H 2 dissolved in water in advance O, TEA and pure aluminum, make up the remaining water, and stir well.
(2)加热化铣溶液至90℃,然后将经过200#-2000#水砂纸逐次研磨、清洁处理、化学除油(在70℃的10g/L NaOH+30g/LNa2SiO3·9H2O+664洗涤剂体系中清洗2min)、流动水洗、出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、60-80℃热风干燥等前处理后的LY12铝合金放入到溶液中,在50rpm的溶液搅拌速度下进行铣切处理。达到化铣深度或浸蚀一定时间后,取出试件并进行出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、热风干燥等处理。(2) Heat the chemical milling solution to 90°C, then grind, clean and degrease successively with 200#-2000# water sandpaper (10g/L NaOH+30g/LNa 2 SiO 3 9H 2 O at 70°C LY12 aluminum alloy after pre-treatment such as washing in +664 detergent system for 2min), flowing water washing, light emitting (soaking in room temperature, 300g/L nitric acid solution for 5min), flowing water washing, hot air drying at 60-80°C, etc., was put into the solution , milling treatment was performed at a solution stirring speed of 50 rpm. After reaching the depth of chemical milling or etching for a certain period of time, take out the specimen and perform treatments such as light extraction (immersion in room temperature, 300g/L nitric acid solution for 5min), flowing water washing, and hot air drying.
(3)经检验,LY12铝合金的化铣速度为0.040mm/min;化铣深度达5mm时铝合金的表面粗糙度Ra为1.2μm。(3) After inspection, the chemical milling speed of LY12 aluminum alloy is 0.040mm/min; when the chemical milling depth reaches 5mm, the surface roughness Ra of aluminum alloy is 1.2μm.
实验方案三Experimental scheme three
(1)按照配制溶液的体积及200g/L NaOH、30g/L Na2S、50g/LTEA、25g/L EDTA、30g/LNa2S2O3·5H2O、20g/L Al的量称取溶液各组分;在化铣槽中先加入1/3体积的水,在搅拌条件下依次加入NaOH、Na2S、EDTA,然后再加入事先用水溶解的Na2S2O3·5H2O、TEA及纯铝,补足剩余的水,并充分搅拌。(1) According to the volume of the prepared solution and the amount of 200g/L NaOH, 30g/L Na 2 S, 50g/LTEA, 25g/L EDTA, 30g/LNa 2 S 2 O 3 5H 2 O, 20g/L Al Take the components of the solution; first add 1/3 volume of water to the chemical milling tank, add NaOH, Na 2 S, EDTA in turn under stirring conditions, and then add Na 2 S 2 O 3 5H 2 dissolved in water in advance O, TEA and pure aluminum, make up the remaining water, and stir well.
(2)加热化铣溶液至95℃,然后将经过200#-2000#水砂纸逐次研磨、清洁处理、化学除油(在70℃的10g/L NaOH+30g/LNa2SiO3·9H2O+664洗涤剂体系中清洗2min)、流动水洗、出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、60-80℃热风干燥等前处理后的2195铝合金放入到溶液中,在150rpm的溶液搅拌速度下进行铣切处理。达到化铣深度或浸蚀一定时间后,取出试件并进行出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、热风干燥等处理。(2) Heat the chemical milling solution to 95°C, then grind, clean, and chemically degrease successively with 200#-2000# water sandpaper (10g/L NaOH+30g/LNa 2 SiO 3 ·9H 2 O at 70°C 2195 aluminum alloy after pretreatment such as washing in +664 detergent system for 2 minutes), flowing water washing, light emitting (soaking in room temperature, 300g/L nitric acid solution for 5 minutes), flowing water washing, hot air drying at 60-80°C, etc., was put into the solution , milling treatment was performed at a solution stirring speed of 150 rpm. After reaching the depth of chemical milling or etching for a certain period of time, take out the specimen and perform treatments such as light extraction (immersion in room temperature, 300g/L nitric acid solution for 5min), flowing water washing, and hot air drying.
(3)经检验,2195铝合金的化铣速度为0.060mm/min;化铣深度达5mm时铝合金的表面粗糙度Ra为1.6μm。(3) After inspection, the chemical milling speed of 2195 aluminum alloy is 0.060mm/min; when the chemical milling depth reaches 5mm, the surface roughness Ra of aluminum alloy is 1.6μm.
实验方案四Experimental plan four
(1)按照配制溶液的体积及140g/L NaOH、10g/L Na2S、35g/LTEA、18g/L EDTA、25g/LNa2S2O3·5H2O、25g/L Al的量称取溶液各组分;在化铣槽中先加入1/3体积的水,在搅拌条件下依次加入NaOH、Na2S、EDTA,然后再加入事先用水溶解的Na2S2O3·5H2O、TEA及纯铝,补足剩余的水,并充分搅拌。(1) According to the volume of the prepared solution and the amount of 140g/L NaOH, 10g/L Na 2 S, 35g/LTEA, 18g/L EDTA, 25g/LNa 2 S 2 O 3 5H 2 O, 25g/L Al Take the components of the solution; first add 1/3 volume of water to the chemical milling tank, add NaOH, Na 2 S, EDTA in turn under stirring conditions, and then add Na 2 S 2 O 3 5H 2 dissolved in water in advance O, TEA and pure aluminum, make up the remaining water, and stir well.
(2)加热化铣溶液至80℃,然后将经过200#-2000#水砂纸逐次研磨、清洁处理、化学除油(在70℃的10g/L NaOH+30g/LNa2SiO3·9H2O+664洗涤剂体系中清洗2min)、流动水洗、出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、60-80℃热风干燥等前处理后的7075铝合金放入到溶液中,在120rpm的溶液搅拌速度下进行铣切处理。达到化铣深度或浸蚀一定时间后,取出试件并进行出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、热风干燥等处理。(2) Heat the chemical milling solution to 80°C, then grind, clean and degrease successively with 200#-2000# water sandpaper (10g/L NaOH+30g/LNa 2 SiO 3 9H 2 O at 70°C 7075 aluminum alloy after pretreatment such as washing in +664 detergent system for 2 minutes), flowing water washing, light emitting (soaking in room temperature, 300g/L nitric acid solution for 5 minutes), flowing water washing, hot air drying at 60-80°C, etc., was put into the solution , Milling treatment was performed at a solution stirring speed of 120 rpm. After reaching the depth of chemical milling or etching for a certain period of time, take out the specimen and perform treatments such as light extraction (immersion in room temperature, 300g/L nitric acid solution for 5min), flowing water washing, and hot air drying.
(3)经检验,7075铝合金的化铣速度为0.045mm/min;化铣深度达5mm时铝合金的表面粗糙度Ra为1.3μm。(3) After inspection, the chemical milling speed of 7075 aluminum alloy is 0.045mm/min; when the chemical milling depth reaches 5mm, the surface roughness Ra of aluminum alloy is 1.3μm.
实验方案五Experimental scheme five
(1)按照配制溶液的体积及150g/L NaOH、20g/L Na2S、45g/LTEA、15g/L EDTA、20g/LNa2S2O3·5H2O、30g/L Al的量称取溶液各组分;在化铣槽中先加入1/3体积的水,在搅拌条件下依次加入NaOH、Na2S、EDTA,然后再加入事先用水溶解的Na2S2O3·5H2O、TEA及纯铝,补足剩余的水,并充分搅拌。(1) According to the volume of the prepared solution and the amount of 150g/L NaOH, 20g/L Na 2 S, 45g/LTEA, 15g/L EDTA, 20g/LNa 2 S 2 O 3 5H 2 O, 30g/L Al Take the components of the solution; first add 1/3 volume of water to the chemical milling tank, add NaOH, Na 2 S, EDTA in turn under stirring conditions, and then add Na 2 S 2 O 3 5H 2 dissolved in water in advance O, TEA and pure aluminum, make up the remaining water, and stir well.
(2)加热化铣溶液至75℃,然后将经过200#-2000#水砂纸逐次研磨、清洁处理、化学除油(在70℃的10g/L NaOH+30g/LNa2SiO3·9H2O+664洗涤剂体系中清洗2min)、流动水洗、出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、60-80℃热风干燥等前处理后的7A60铝合金放入到溶液中,在80rpm的溶液搅拌速度下进行铣切处理。达到化铣深度或浸蚀一定时间后,取出试件并进行出光(在室温、300g/L硝酸溶液中浸泡5min)、流动水洗、热风干燥等处理。(2) Heat the chemical milling solution to 75°C, then grind, clean and degrease successively with 200#-2000# water sandpaper (10g/L NaOH+30g/LNa 2 SiO 3 9H 2 O at 70°C 7A60 aluminum alloy after pretreatment such as washing in +664 detergent system for 2 minutes), flowing water washing, light emitting (soaking in room temperature, 300g/L nitric acid solution for 5 minutes), flowing water washing, hot air drying at 60-80°C, etc., was put into the solution , Milling treatment was performed at a solution stirring speed of 80 rpm. After reaching the depth of chemical milling or etching for a certain period of time, take out the specimen and perform treatments such as light extraction (immersion in room temperature, 300g/L nitric acid solution for 5min), flowing water washing, and hot air drying.
(3)经检验,7A60铝合金的化铣速度为0.035mm/min;化铣深度达5mm时铝合金的表面粗糙度Ra为1.1μm。(3) After inspection, the chemical milling speed of 7A60 aluminum alloy is 0.035mm/min; when the chemical milling depth reaches 5mm, the surface roughness Ra of aluminum alloy is 1.1μm.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention has been described as an example above, and it should be noted that, without departing from the core of the present invention, any simple deformation, modification or other equivalent replacements that can be made by those skilled in the art without creative labor all fall within the scope of this invention. protection scope of the invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210534933XA CN103014711A (en) | 2012-12-10 | 2012-12-10 | Aluminum alloy chemical-milling solution and milling method using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210534933XA CN103014711A (en) | 2012-12-10 | 2012-12-10 | Aluminum alloy chemical-milling solution and milling method using same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103014711A true CN103014711A (en) | 2013-04-03 |
Family
ID=47963816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210534933XA Pending CN103014711A (en) | 2012-12-10 | 2012-12-10 | Aluminum alloy chemical-milling solution and milling method using same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103014711A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103774146A (en) * | 2014-01-09 | 2014-05-07 | 南昌航空大学 | Deoxidation treatment method for chemical milling pretreatment of aluminum alloy |
CN104928679A (en) * | 2015-07-08 | 2015-09-23 | 天津航天长征火箭制造有限公司 | Chemical milling solution and chemical milling method thereof |
CN105349997A (en) * | 2015-12-12 | 2016-02-24 | 云南煤化工应用技术研究院 | Chemical milling solution applicable to environment-friendly water-based strippable coating and preparation method and application thereof |
CN108588718A (en) * | 2018-04-23 | 2018-09-28 | 中国航发哈尔滨东安发动机有限公司 | A kind of chemical milling method of titanium alloy precision forged blade |
CN112410787A (en) * | 2020-11-03 | 2021-02-26 | 哈尔滨哈飞航空工业有限责任公司 | Chemical milling solution and method for sheet aluminum alloy part |
CN115679328A (en) * | 2022-10-14 | 2023-02-03 | 湖北兴福电子材料股份有限公司 | Preparation method of aluminum etching solution with high etching rate and depth-to-width ratio |
CN115852369A (en) * | 2022-12-09 | 2023-03-28 | 四川航天长征装备制造有限公司 | Chemical milling processing method for aluminum-lithium alloy |
EP4491764A1 (en) * | 2023-07-12 | 2025-01-15 | The Boeing Company | Surface preparation for electrolytic inorganic finish coating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2339992A1 (en) * | 1972-08-09 | 1974-02-21 | Pennwalt Corp | ALUMINUM ETCHING PROCESS |
-
2012
- 2012-12-10 CN CN201210534933XA patent/CN103014711A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2339992A1 (en) * | 1972-08-09 | 1974-02-21 | Pennwalt Corp | ALUMINUM ETCHING PROCESS |
US3802973A (en) * | 1972-08-09 | 1974-04-09 | Pennwalt Corp | Aluminum etching process |
Non-Patent Citations (4)
Title |
---|
JAMES T.PURDHAM 等: ""用含三乙醇胺(TEA)及EDTA的碱性溶液采集H2S"", 《国外医学(卫生学分册)》, no. 1, 31 March 1991 (1991-03-31), pages 53 - 54 * |
尹茂生 等: ""铝合金筒段化学铣切工艺研究"", 《材料保护》, vol. 38, no. 8, 31 August 2005 (2005-08-31) * |
张宗义: ""铝-铜系铝合金化铣附加剂的研究"", 《宇航材料工艺》, no. 6, 31 December 1982 (1982-12-31), pages 6 - 10 * |
易慧芝 等: ""2197铝锂合金化学铣切工艺研究"", 《表面技术》, vol. 39, no. 4, 31 August 2010 (2010-08-31), pages 73 - 76 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103774146A (en) * | 2014-01-09 | 2014-05-07 | 南昌航空大学 | Deoxidation treatment method for chemical milling pretreatment of aluminum alloy |
CN103774146B (en) * | 2014-01-09 | 2016-05-18 | 南昌航空大学 | A kind of deoxidation treatment method in Aluminium Alloy after Chemical Milling pre-treatment |
CN104928679A (en) * | 2015-07-08 | 2015-09-23 | 天津航天长征火箭制造有限公司 | Chemical milling solution and chemical milling method thereof |
CN104928679B (en) * | 2015-07-08 | 2017-08-01 | 天津航天长征火箭制造有限公司 | A kind of chemical milling solution and its chemical milling method |
CN105349997A (en) * | 2015-12-12 | 2016-02-24 | 云南煤化工应用技术研究院 | Chemical milling solution applicable to environment-friendly water-based strippable coating and preparation method and application thereof |
CN105349997B (en) * | 2015-12-12 | 2018-04-06 | 云南煤化工应用技术研究院 | It is a kind of suitable for chemical milling solution of environment-protective water fundamental mode stripping lacquer and preparation method and application |
CN108588718A (en) * | 2018-04-23 | 2018-09-28 | 中国航发哈尔滨东安发动机有限公司 | A kind of chemical milling method of titanium alloy precision forged blade |
CN112410787A (en) * | 2020-11-03 | 2021-02-26 | 哈尔滨哈飞航空工业有限责任公司 | Chemical milling solution and method for sheet aluminum alloy part |
CN115679328A (en) * | 2022-10-14 | 2023-02-03 | 湖北兴福电子材料股份有限公司 | Preparation method of aluminum etching solution with high etching rate and depth-to-width ratio |
CN115679328B (en) * | 2022-10-14 | 2023-08-25 | 湖北兴福电子材料股份有限公司 | Preparation method of aluminum etching liquid with high etching rate and depth-to-width ratio |
CN115852369A (en) * | 2022-12-09 | 2023-03-28 | 四川航天长征装备制造有限公司 | Chemical milling processing method for aluminum-lithium alloy |
EP4491764A1 (en) * | 2023-07-12 | 2025-01-15 | The Boeing Company | Surface preparation for electrolytic inorganic finish coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103014711A (en) | Aluminum alloy chemical-milling solution and milling method using same | |
CN102260461A (en) | Smoke-free polishing treatment solution for high-gloss aluminum sectional material and use method thereof | |
CN101768747B (en) | Method for carrying out surface activating treatment on surface of titanium alloy | |
CN107502892B (en) | Alkaline chemical milling and polishing method of aluminum alloy | |
KR102464850B1 (en) | How to prepare a graphene coating layer on a metal surface | |
CN105473821B (en) | From the method for ceramic matrix composite removal barrier coat, adhesive coatings and oxide skin(coating) | |
CN107779713B (en) | A kind of beryllium alumin(i)um alloy and preparation method thereof | |
CN105887056A (en) | Chemical nickel plating method for surface of magnesium alloy | |
CN104762622A (en) | A treatment method for brightening surfaces of copper nickel alloy tubes | |
CN110904404B (en) | Technological method and device based on titanium alloy surface laser nitriding and shot blasting synchronous compounding technology | |
CN103668132B (en) | A kind of activation solution and its application in electroless nickel plating layer of magnesium alloy | |
CN102286734A (en) | Pretreatment technology of surface metal plating of titanium alloy and metal plating method | |
CN102586833A (en) | Surface treatment method of titanium alloy before glue joint | |
CN101760714B (en) | Method for immersion-plating titanium alloy parts | |
CN108588718A (en) | A kind of chemical milling method of titanium alloy precision forged blade | |
CN103614713B (en) | Method for preparing high-temperature composite coating on niobium-based surface by utilizing sol-gel method | |
CN109023333A (en) | Magnesium alloy moisture-proof thermal conducting-anti-corrosion chemical composition coating preparation process | |
CN104032343A (en) | Novel electroplating pre-treatment technology for titanium and titanium alloy | |
CN109280922A (en) | A kind of process of steel part chemical plating nickel-phosphorus alloy film layer chemistry strip | |
CN109183094B (en) | Preparation method of magnesium alloy surface high-emissivity coating | |
CN100569999C (en) | Chromium-free Pretreatment Process and Corrosion Inhibition Treatment Solution for Magnesium Alloy Electroless Nickel Plating | |
CN102400119B (en) | Chemical nickel plating method on magnesium alloy | |
CN103774146B (en) | A kind of deoxidation treatment method in Aluminium Alloy after Chemical Milling pre-treatment | |
CN104458495B (en) | Method for measuring particle volume fraction of reinforced body in particle-reinforced metal-based composite material | |
CN104278263A (en) | Second passivation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130403 |