CN102969454A - High-contrast organic light-emitting device (OLED) with band-pass filter film and top-emitted green ray - Google Patents
High-contrast organic light-emitting device (OLED) with band-pass filter film and top-emitted green ray Download PDFInfo
- Publication number
- CN102969454A CN102969454A CN2012105208238A CN201210520823A CN102969454A CN 102969454 A CN102969454 A CN 102969454A CN 2012105208238 A CN2012105208238 A CN 2012105208238A CN 201210520823 A CN201210520823 A CN 201210520823A CN 102969454 A CN102969454 A CN 102969454A
- Authority
- CN
- China
- Prior art keywords
- layer
- contrast
- filter film
- bandpass filters
- green light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000005401 electroluminescence Methods 0.000 claims abstract description 13
- 238000002347 injection Methods 0.000 claims abstract description 10
- 239000007924 injection Substances 0.000 claims abstract description 10
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000004020 luminiscence type Methods 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 claims description 3
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 claims description 2
- 230000031700 light absorption Effects 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 3
- 230000005540 biological transmission Effects 0.000 claims 3
- 230000027756 respiratory electron transport chain Effects 0.000 claims 3
- 239000000203 mixture Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 39
- 239000002346 layers by function Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 230000005525 hole transport Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 230000000903 blocking effect Effects 0.000 abstract description 4
- 238000001704 evaporation Methods 0.000 description 15
- 230000008020 evaporation Effects 0.000 description 14
- 238000002310 reflectometry Methods 0.000 description 13
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000001883 metal evaporation Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- -1 ITO Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 235000009161 Espostoa lanata Nutrition 0.000 description 1
- 240000001624 Espostoa lanata Species 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
本发明属于有机电致发光领域,具体涉及一种结合滤光膜高对比度顶发射绿光有机电致发光器件。由衬底、金属阳极、有机功能层,金属阴极和带通滤光膜组成。有机功能层中依次包括空穴注入层、空穴传输层、电子阻挡层、绿光发光层、电子传输层和电子注入层组成。滤光膜的引入能够削弱环境光对显示器件对比度的影响,从而实现高对比度的有机电致发光器件。本发明的高对比有机电致发光器件,克服了以往顶发射器件为实现高对比度,所带来的器件结构复杂化,工艺难度大的缺点,同时这一发明在提高对比度的同时,对器件的效率几乎没有影响。本发明制备的顶发射有机电致发光器件具有高对比度,效率损耗低,工艺简单,成本低廉的优点。
The invention belongs to the field of organic electroluminescence, and in particular relates to a high-contrast top-emitting green light organic electroluminescence device combined with a filter film. It consists of a substrate, a metal anode, an organic functional layer, a metal cathode and a band-pass filter film. The organic functional layer sequentially comprises a hole injection layer, a hole transport layer, an electron blocking layer, a green light emitting layer, an electron transport layer and an electron injection layer. The introduction of the filter film can weaken the influence of ambient light on the contrast of the display device, thereby realizing a high-contrast organic electroluminescent device. The high-contrast organic electroluminescent device of the present invention overcomes the shortcomings of complicated device structure and difficult process brought about by the previous top-emitting device in order to achieve high contrast. At the same time, this invention improves the contrast. Efficiency has little effect. The top emission organic electroluminescent device prepared by the invention has the advantages of high contrast, low efficiency loss, simple process and low cost.
Description
技术领域technical field
本发明属于有机电致发光领域,具体涉及一种具有带通滤光膜的高对比度顶发射绿光有机电致发光器件。The invention belongs to the field of organic electroluminescence, in particular to a high-contrast top-emitting green light organic electroluminescence device with a band-pass filter film.
背景技术Background technique
传统的有机电致发光器件(OLED)是生长在玻璃衬底上,以ITO作为阳极的光由衬底一侧出射的底发射器件。但是将器件应该用到有源驱动有机电致发光显示时,遇到显示器件像素驱动电路和显示发光面积相互竞争的问题,直接影响到显示器件的开口率。而顶发射有机电致发光器件(TEOLED的光从顶电极一侧出射,可将像素驱动电路等制作在有机发光器件下方,这就解决了器件像素驱动电路等和显示发光面积相互竞争的问题,提高了显示器件的开口率,理论上开口率可达到100%。此外,硅基OLED微显示也必须采用顶发射结构。传统的顶发射有机电致发光器件的底电极为高反射率的金属电极如Ag,Al等。这些电极的引入极大的降低了有机电致发光显示器件的对比度,尤其为户外强环境光下的显示带来了严重的问题。The traditional organic electroluminescent device (OLED) is a bottom-emitting device that grows on a glass substrate and uses ITO as an anode to emit light from one side of the substrate. However, when the device is used to actively drive the organic electroluminescent display, the pixel drive circuit of the display device and the display light-emitting area compete with each other, which directly affects the aperture ratio of the display device. For the top-emitting organic electroluminescent device (TEOLED, the light is emitted from the side of the top electrode, and the pixel drive circuit can be fabricated under the organic light-emitting device, which solves the problem of competition between the device pixel drive circuit and the display light-emitting area. The aperture ratio of the display device has been improved, and the aperture ratio can reach 100% in theory. In addition, the silicon-based OLED microdisplay must also adopt a top emission structure. The bottom electrode of a traditional top emission organic electroluminescent device is a metal electrode with high reflectivity Such as Ag, Al, etc. The introduction of these electrodes greatly reduces the contrast of organic electroluminescent display devices, especially for the display under strong outdoor ambient light, which brings serious problems.
基于上述原因,高对比度顶发射有机电致发光器件的研制成为近年来的一个研究热点。传统的有机电致发光器件采用透明的衬底如ITO,和具有高反射率的金属电极Mg、Ag等。电极能将内部产生的光发射到玻璃衬底,以此提高发光亮度。然而这一高反射率电极也会将进入到器件内部的环境光反射,导致器件对比度的降低。对于实用化的有机电致发光器件,如有机微显示器件,要求在环境光从非常黑暗到太阳光亮度下,器件所显示的内容都能被观察者很容易看到。因此制备高对比度的有机电致发光器件十分重要。一个减少环境发射光的方法是采用偏振片,尤其是圆形偏振片。这一偏振片通常放置于光传输衬底外表面。但是偏振片的引入在很大程度上减低了器件本身的亮度和效率。这为提高器件的寿命带来了不利的影响。Based on the above reasons, the development of high-contrast top-emitting organic electroluminescent devices has become a research hotspot in recent years. Traditional organic electroluminescent devices use transparent substrates such as ITO, and metal electrodes such as Mg and Ag with high reflectivity. The electrodes can emit internally generated light to the glass substrate, thereby increasing the luminosity of light emission. However, this high-reflectivity electrode will also reflect the ambient light entering the device, resulting in a decrease in the contrast of the device. For practical organic electroluminescent devices, such as organic microdisplay devices, it is required that the content displayed by the device can be easily seen by the observer under ambient light ranging from very dark to sunlight brightness. Therefore, it is very important to prepare organic electroluminescent devices with high contrast. One way to reduce ambient light emission is to use polarizers, especially circular polarizers. This polarizer is usually placed on the outer surface of the light transmissive substrate. But the introduction of the polarizer greatly reduces the brightness and efficiency of the device itself. This has an adverse effect on improving the lifetime of the device.
对于底发射有机电致发光器件,对比度的提高主要集中在研究低反射率、高导电特性的底电极上。香港城市大学物理及材料科学系的Liang-sun Hung等人(Liang-sun Hung,Joseph Madathil,Adv.Mater.2001,13,23.)提出了在器件高反射率电极和电子传输层之间生长一层环境光减反层,这一功能层具有光学吸收和导电特性。Liang-sun Hung组制备了基于Alq3的有机电致发光器件,并利用90nm厚的氧化锌作为环境光减反层,极大的削弱了金属电极的高反射率。410nm~690nm波长处的复合底电极反射率低于10%,出色的增大了器件的对比度。但是,从器件的光电特性来看,器件的亮度减低了50%之多,器件的效率也随之减低,从这方面看,虽然增大了器件的对比度但是器件的性能牺牲很大。2006年,香港大学的S.T.Lee教授等人(K.C.Lau,W.F.Xie,H.Y.Sun,C.S.Lee,and S.T.Lee,Appl.Phys.Letts,2006,88,083507.)提出利用Sm和Ag的合金作为底电极其反射率在波长范围400nm~700nm范围反射率低于20%,而Mg、Ag合金电极的反射率则维持在90%。器件的反射率在10V驱动电压下,140勒克斯的环境光照射下,对比度能达到390∶1,比传统的器件对比度提高了8倍之多。然而器件的电致发光效率(对应电流100mA/cm2)却从3.36降低到2.56cd/A。For bottom-emitting organic electroluminescent devices, the improvement of contrast mainly focuses on the bottom electrode with low reflectivity and high conductivity. Liang-sun Hung et al. (Liang-sun Hung, Joseph Madathil, Adv. Mater. 2001, 13, 23.) from the Department of Physics and Materials Science, City University of Hong Kong proposed to grow between the high reflectivity electrode and the electron transport layer of the device A layer of anti-reflection layer for ambient light, this functional layer has optical absorption and conductive properties. Liang-sun Hung's group prepared an organic electroluminescent device based on Alq 3 , and used 90nm thick zinc oxide as the ambient light anti-reflection layer, which greatly weakened the high reflectivity of the metal electrode. The reflectivity of the composite bottom electrode at the wavelength of 410nm-690nm is lower than 10%, which greatly increases the contrast of the device. However, from the perspective of the photoelectric characteristics of the device, the brightness of the device is reduced by as much as 50%, and the efficiency of the device is also reduced. From this point of view, although the contrast of the device is increased, the performance of the device is greatly sacrificed. In 2006, Professor STLee of the University of Hong Kong et al. (KCLau, WFXie, HYSun, CSLee, and STLee, Appl.Phys.Letts, 2006, 88, 083507.) proposed to use an alloy of Sm and Ag as the bottom electrode, and its reflectivity varies in wavelength The reflectivity in the range of 400nm to 700nm is lower than 20%, while the reflectivity of Mg and Ag alloy electrodes is maintained at 90%. The reflectivity of the device can reach 390:1 under the ambient light of 140 lux under the driving voltage of 10V, which is 8 times higher than that of the traditional device. However, the electroluminescent efficiency of the device (corresponding to a current of 100mA/cm 2 ) decreased from 3.36 to 2.56cd/A.
在顶发射有机电致发光器件中,Yang C.J.等人(Yang C J,Lin C L,Wu C C,Yeh Y H,Cheng C C,Kuo Y H and Chen T H.Appl.Phys.Lett.2005,87,143507.)利用调制反射金属层钼作为反射电极结合TeO2/LiF双层作为减反膜(AR),实现了高对比度的顶发射有机电致发光器件。2010年,Shufen Chen等人(Shufen Chen,Jun Xie,Yang Yang,Chunyan Chen andWei Huang,J.Phys.D:Appl.Phys.2010,43,365101.)利用Ni/ZnS/CuPc/Ni作为对比度增强层,ZnS作为减反层,实现了器件在140lx环境光下,300和1000cd/m2的开态亮度下,对比度分别为139.4:1和462.3:1的高对比度。但是工艺的复杂性(光学计算、高温材料的生长等)限制了成本和成品率。In top-emitting organic electroluminescent devices, Yang CJ et al. A high-contrast top-emitting organic electroluminescent device was realized by using the modulated reflective metal layer Mo as the reflective electrode combined with TeO 2 /LiF bilayer as the anti-reflective coating (AR). In 2010, Shufen Chen et al. (Shufen Chen, Jun Xie, Yang Yang, Chunyan Chen and Wei Huang, J.Phys.D: Appl.Phys.2010, 43, 365101.) used Ni/ZnS/CuPc/Ni as contrast enhancement layer, ZnS is used as the anti-reflection layer, and the high contrast ratio of the device is 139.4:1 and 462.3:1 under 140lx ambient light, 300 and 1000cd/m 2 on-state brightness, respectively. But the complexity of the process (optical calculations, growth of high-temperature materials, etc.) limits cost and yield.
发明内容Contents of the invention
发明的目的是提供一种具有带通滤光膜的高对比度、低效率损耗的绿光顶发射有机电致发光器件。The object of the invention is to provide a green top-emitting organic electroluminescent device with high contrast and low efficiency loss with a band-pass filter film.
本发明采用了在顶发射有机电致发光外部增加带通滤光膜的方法,克服了采用低反射率的底电极以牺牲器件的效率为代价的缺点,以及复杂的器件制备工艺引入的产率下降的弊端,从而制备了高对比度的单色顶发射有机电致发光器件。通过选择合适的有机电致发光材料和适当透过率范围的滤光膜,实现了高对比度、低效率损耗的顶发射绿光器件。The present invention adopts the method of adding a band-pass filter film outside the top-emitting organic electroluminescence, which overcomes the disadvantage of using the bottom electrode with low reflectivity at the expense of the efficiency of the device, and the production rate introduced by the complicated device preparation process Reduce the drawbacks, thereby preparing a high-contrast monochromatic top-emitting organic electroluminescent device. By selecting a suitable organic electroluminescent material and a filter film with a suitable transmittance range, a top-emitting green light device with high contrast and low efficiency loss is realized.
本发明所述结构的器件,依次由衬底、金属阳极、有机功能层、金属阴极和带通滤光膜组成,有机功能层中依次由空穴传输层、电子阻挡层、绿光发光层和电子传输层组成。The device with the structure described in the present invention consists of a substrate, a metal anode, an organic functional layer, a metal cathode and a band-pass filter film in sequence, and the organic functional layer is sequentially composed of a hole transport layer, an electron blocking layer, a green light-emitting layer and a electron transport layer.
本发明是在金属阴极上覆盖一层厚度为1~2mm的带通滤光膜,带通滤光膜的带通波长范围与绿光发光层的发光波长范围相对应,对环境光中其他波段的光吸收。不会影响有机电致发光器件本身的性能,不存在对有机层的损伤。In the present invention, a band-pass filter film with a thickness of 1-2mm is covered on the metal cathode, and the band-pass wavelength range of the band-pass filter film corresponds to the light-emitting wavelength range of the green light-emitting layer. light absorption. The performance of the organic electroluminescence device itself is not affected, and there is no damage to the organic layer.
绿光发光层的发光峰值位于500nm~540nm,因此要求上述带通滤光膜的中心波长为500nm~540nm,在中心波长±20nm范围具有良好的透过率(>80%)。The luminescence peak of the green light-emitting layer is located at 500nm-540nm, so it is required that the center wavelength of the above-mentioned bandpass filter film is 500nm-540nm, and have good transmittance (>80%) in the range of center wavelength ±20nm.
为了优化上述器件的发光效率和驱动电压,在金属阳极和空穴传输层间增加空穴注入层。为了优化上述器件的发光效率和驱动电压,在电子传输层和金属阴极之间增加电子注入层。In order to optimize the luminous efficiency and driving voltage of the above device, a hole injection layer is added between the metal anode and the hole transport layer. In order to optimize the luminous efficiency and driving voltage of the above devices, an electron injection layer is added between the electron transport layer and the metal cathode.
本发明提出的高对比度顶发射有机电致发光器件,克服了以往需要制备低反射电极造成器件制备工艺复杂,产率低,同时还克服了采用低反射率底电极以牺牲效率为代价实现高对比度的顶发射器件的缺点。本发明制备的顶发射白光有机电致发光器件既有高亮度、高效率、弱角度效应的优点。通过选择合适的有机电致发光材料和适当透过率范围的滤光膜,实现了高对比度,低效率损耗的顶发射绿光器件。The high-contrast top-emitting organic electroluminescent device proposed by the present invention overcomes the complicated device preparation process and low yield caused by the need to prepare low-reflection electrodes in the past, and also overcomes the need to use low-reflectivity bottom electrodes to achieve high contrast at the expense of efficiency. disadvantages of top-emitting devices. The top-emitting white light organic electroluminescent device prepared by the invention has the advantages of high brightness, high efficiency and weak angle effect. By selecting a suitable organic electroluminescent material and a filter film with a suitable transmittance range, a top-emitting green light device with high contrast and low efficiency loss is realized.
附图说明Description of drawings
图1:结合滤光膜的顶发射有机电致发光器件的结构示意图;Figure 1: Schematic diagram of the structure of a top-emitting organic electroluminescent device combined with a filter film;
图2:带通滤光膜的带通特性;Figure 2: Bandpass characteristics of the bandpass filter film;
图3:引入带通滤光膜后的太阳光光谱变化比较;Figure 3: Comparison of sunlight spectrum changes after introducing band-pass filter film;
图4:实施例1制备的高对比度顶发射有机电致发光器件与未加带通滤光膜的有机电致发光器件发光光谱的对比曲线;Fig. 4: The comparison curve of the luminescence spectra of the high-contrast top-emitting organic electroluminescent device prepared in Example 1 and the organic electroluminescent device without a band-pass filter film;
图5:实施例1制备的高对比度顶发射有机电致发光器件和未加带通滤光膜的有机电致发光器件电流效率-电流密度曲线;Figure 5: Current efficiency-current density curves of the high-contrast top-emitting organic electroluminescent device prepared in Example 1 and the organic electroluminescent device without a band-pass filter film;
图6:实施例1制备的高对比度顶发射有机电致发光器件与未加带通滤光膜的有机电致发光器件不同开态亮度下的对比度曲线;Figure 6: Contrast curves of the high-contrast top-emitting organic electroluminescent device prepared in Example 1 and the organic electroluminescent device without a band-pass filter film under different on-state brightness;
如图1所示,其中1为衬底,可以是玻璃或带有绝缘层的硅等材料,本发明优选带有绝缘层的硅衬底;2是金属阳极,可以是Ag或Al,本发明优选Al;3是空穴注入层,可以是MoO3、H2PC、F4-TCNQ或ZnPC掺杂的TAPC或m-MTDATA,本发明优选MoO3掺杂的m-MTDATA(掺杂浓度为15wt%);4是空穴传输层,可以是TAPC或m-MTDATA;5是电子阻挡层,可以是Ir(ppz)3;6是绿光发光层,可以是绿光磷光Ir(ppy)3或Ir(ppy)2acac掺入双极性母体CBP中构成的绿光发光单元,本发明优选Ir(ppy)3掺入双极性母体CBP中产生绿(掺杂浓度为8wt%);7是电子传输层,本发明采用BPhen;8是电子注入层,可以采用Liq、LiF或者CsF,本发明优选LiF;9是金属阴极,本发明采用Al(1nm)/Ag(180~300nm)的复合阴极;10是带通滤光膜;11是直流驱动电源。As shown in Figure 1, wherein 1 is a substrate, which can be materials such as glass or silicon with an insulating layer, the present invention preferably has a silicon substrate with an insulating layer; 2 is a metal anode, which can be Ag or Al, the present invention Al is preferred; 3 is the hole injection layer, which can be MoO 3 , H 2 PC, F4-TCNQ or ZnPC doped TAPC or m-MTDATA, and the present invention preferably MoO 3 doped m-MTDATA (the doping concentration is 15wt %); 4 is the hole transport layer, which can be TAPC or m-MTDATA; 5 is the electron blocking layer, which can be Ir(ppz) 3 ; 6 is the green light emitting layer, which can be green phosphorescent Ir(ppy) 3 or Ir(ppy) 2 acac is incorporated into the bipolar matrix CBP to form a green light-emitting unit. In the present invention, Ir(ppy) 3 is preferably incorporated into the bipolar matrix CBP to produce green (doping concentration is 8wt%); 7 is Electron transport layer, the present invention uses BPhen; 8 is an electron injection layer, Liq, LiF or CsF can be used, and LiF is preferred in the present invention; 9 is a metal cathode, and the present invention adopts a composite cathode of Al (1nm)/Ag (180-300nm) ; 10 is a band-pass filter film; 11 is a DC drive power supply.
具体实施方式Detailed ways
本说明书中涉及的有机材料缩写、全称及分子结构式如下所示:The abbreviations, full names and molecular structural formulas of the organic materials involved in this manual are as follows:
实施例1:Example 1:
制备了结构为Si/SiO2/Al/m-MTDATA:MoO3/m-MTDATA/Ir(ppz)3/CBP:Ir(ppy)3/BPhen/LiF/Al/Ag/带通滤光膜的顶发射绿光有机电致发光器件,器件的制备在多源有机分子气相沉积系统中进行,详细制备过程如下:The structure is Si/SiO 2 /Al/m-MTDATA:MoO 3 /m-MTDATA/Ir(ppz) 3 /CBP:Ir(ppy) 3 /BPhen/LiF/Al/Ag/bandpass filter film Top-emitting green organic electroluminescent device, the preparation of the device is carried out in a multi-source organic molecular vapor deposition system, and the detailed preparation process is as follows:
[1]表面覆盖有340nm厚二氧化硅的硅衬底依次用丙酮、乙醇棉球反复擦洗,然后依次用丙酮、乙醇、去离子水超声,之后烘干。[1] The silicon substrate covered with silicon dioxide with a thickness of 340 nm was scrubbed repeatedly with acetone and ethanol cotton balls in sequence, then ultrasonicated with acetone, ethanol, and deionized water in sequence, and then dried.
[2]将处理好的衬底置于金属蒸镀系统中,该系统的真空腔体中包含4个金属蒸发源和每两个蒸发源共用一套控制系统,可同时进行2种金属材料的蒸镀,为保证蒸镀均匀性便于金属材料蒸镀,衬底距离蒸发源25cm,可以自转和公转以保证金属膜的均匀性,将所用金属材料置于不同蒸发源内,然后抽真空度至4×10-4Pa。[2] Place the treated substrate in the metal evaporation system. The vacuum chamber of the system contains 4 metal evaporation sources and every two evaporation sources share a set of control systems, which can simultaneously carry out the deposition of two metal materials. Evaporation, in order to ensure the uniformity of evaporation and facilitate the evaporation of metal materials, the substrate is 25cm away from the evaporation source, which can rotate and revolve to ensure the uniformity of the metal film. The metal materials used are placed in different evaporation sources, and then vacuumed to 4 ×10 -4 Pa.
[3]维持上述真空条件不变,在硅衬底上生长金属阳极Al,厚度为80nm,蒸发速率为1nm/s。[3] Maintaining the above vacuum conditions unchanged, a metal anode Al was grown on a silicon substrate with a thickness of 80nm and an evaporation rate of 1nm/s.
[4]将生长好金属Al阳极的硅衬底在氮气氛围下转移至多源有机分子气相沉积系统中,系统的真空腔体中包含12个有机源,为了避免相互污染,各蒸发源之间加有金属隔离罩,衬底距离蒸发源25cm,可以自转和公转以保证金属膜的均匀性,将所用金属材料置于不同蒸发源内,每三个蒸发源共用一套温度控制系统,然后抽真空度至4×10-4Pa。[4] Transfer the silicon substrate with grown metal Al anode to a multi-source organic molecule vapor deposition system in a nitrogen atmosphere. The vacuum chamber of the system contains 12 organic sources. There is a metal isolation cover, and the substrate is 25cm away from the evaporation source. It can rotate and revolve to ensure the uniformity of the metal film. The metal materials used are placed in different evaporation sources. Every three evaporation sources share a set of temperature control system, and then the vacuum to 4×10 -4 Pa.
[5]维持上述真空不变,在上述Al阳极上依次蒸镀MoO3掺杂的m-MTDATA、m-MTDATA、Ir(ppz)3、Ir(ppy)3掺杂的CBP、BPhen、LiF,分别作为空穴注入层、空穴传输层、电子阻挡层、绿光发光层、电子传输层、电子注入层,厚度分别为28、10、10、20、48、1nm。M-MTDATA、Ir(ppz)3、CBP、BPhen的蒸发速率为0.1~0.2nm/s,Ir(ppy)3、LiF、MoO3的蒸发速率为0.01nm/s。[5] Keeping the above vacuum constant, sequentially vapor-deposit MoO 3 doped m-MTDATA, m-MTDATA, Ir(ppz) 3 , Ir(ppy) 3 doped CBP, BPhen, LiF on the above Al anode, They are respectively used as hole injection layer, hole transport layer, electron blocking layer, green light emitting layer, electron transport layer, and electron injection layer, with thicknesses of 28, 10, 10, 20, 48, and 1 nm, respectively. The evaporation rates of M-MTDATA, Ir(ppz) 3 , CBP, and BPhen are 0.1-0.2nm/s, and the evaporation rates of Ir(ppy) 3 , LiF, and MoO 3 are 0.01nm/s.
[6]蒸镀完有机功能层后将衬底再一次在氮气氛围内转移至金属蒸镀系统中,维持上述真空条件不变,在LiF上继续依次蒸发Al和Ag作为金属阴极,Al层的厚度为1nm,蒸发速率为0.1~0.2nm/s,Ag层的厚度为20nm,蒸发速率为0.5nm/s。[6] After evaporating the organic functional layer, the substrate was transferred to the metal evaporation system in a nitrogen atmosphere again, and the above vacuum conditions were kept unchanged, and Al and Ag were sequentially evaporated on LiF as the metal cathode. The thickness is 1nm, the evaporation rate is 0.1-0.2nm/s, the thickness of the Ag layer is 20nm, and the evaporation rate is 0.5nm/s.
[7]蒸镀完金属阴极后,在上述Al/Ag复合阴极上覆盖一层滤光膜。对比器件不覆盖滤光膜。[7] After vapor-depositing the metal cathode, cover a layer of filter film on the above-mentioned Al/Ag composite cathode. The comparative device was not covered with a filter film.
该带通滤光膜购自美国马里兰州的evaporated coating inc公司,型号为ECI#1020,中心波长为500nm,在480nm~520nm透过率>90%,峰值透过率为100%,通带波动低于0.05%,整体厚度为1mm。The bandpass filter film is purchased from evaporated coating inc company in Maryland, USA, the model is ECI#1020, the center wavelength is 500nm, the transmittance at 480nm~520nm is >90%, the peak transmittance is 100%, and the passband fluctuates Less than 0.05%, the overall thickness is 1mm.
以上衬底、有机材料、P型掺杂剂MoO3均购自长春市阪和科技有限公司,所述材料生长的厚度和生长速率有美国产MATEX-400膜厚控制仪监控,制备所得的器件光电性能用PR655亮度光谱仪和Keithley2400电压电流源在室温大气环境下进行测试。器件的效率-电流密度、光谱、对比度特性参见附图4、图5和图6。The above substrates, organic materials, and P-type dopant MoO3 were all purchased from Changchun Hanhe Technology Co., Ltd. The thickness and growth rate of the material growth were monitored by the MATEX-400 film thickness controller made in the United States. The prepared device photoelectric The performance is tested with PR655 brightness spectrometer and Keithley2400 voltage and current source at room temperature and atmospheric environment. The efficiency-current density, spectrum, and contrast characteristics of the device are shown in Figure 4, Figure 5 and Figure 6.
由图2可以看出带通滤光膜中心波长为500nm,在500nm±20nm波长范其透过率>90%,具有很小的带通波动。It can be seen from Figure 2 that the central wavelength of the bandpass filter film is 500nm, and its transmittance is >90% in the wavelength range of 500nm±20nm, and has a small bandpass fluctuation.
由图3可以看出:曲线1为没有滤光膜下,太阳光的归一化光谱强度,太阳光在可见光范围(380nm~780nm)均有各个波长的光发射。曲线2为通过滤光膜后的太阳光光谱,可以看出,对应波长范围为380nm~470nm、530nm~780nm的可见光,基本被滤光膜吸收。而处于带通范围内的光线(480nm~520nm)谱线形状基本没有变化。滤光膜具有良好的带通特性。It can be seen from Figure 3 that
由图4可以看出:曲线1为未加滤光膜的顶发射有机电致发光器件的发射光谱,曲线2为覆盖了滤光膜后的顶发射有机电致发光器件的发射光谱。从两者的对比来看,增加滤光膜后,器件的光谱变化微弱,仅减弱了520nm~600nm处的发光。从这一点可以看出,我们所选择的磷光发光材料Ir(ppy)3(峰值波长512nm,半峰宽~30nm)经过带通滤光膜后(通带480nm-520nm)光损耗很小。It can be seen from Fig. 4 that
由图5可以看出:曲线1为没有滤光膜的器件电流效率。曲线2为增加滤光膜后器件的电流效率。可以看出滤光膜的引入对器件光电性能的影响很小。没有滤光膜器件的最大电流效率为46.1cd/A,而覆盖滤光膜后器件的最大电流效率仅降低到43.5cd/A。滤光膜的引入对器件的光电特性影响微弱。It can be seen from Fig. 5 that
由图6可以看出:曲线1为没有滤光膜器件的对比度特性,曲线2为覆盖滤光膜后器件的对比度特性。环境光为140lux,滤光膜的引入显著增大了顶发射有机电致发光器件的对比度。在开态亮度为500cd/m2、1000cd/m2、2000cd/m2未加滤光膜和覆盖滤光膜后器件的对比度分别为28:1和195:1、51:1和388:1、108:1和775:1。It can be seen from FIG. 6 that
以上所述,仅为本发明的较佳实施例,不能以其限定本发明实施范围,大凡依本发明申请范围所进行的均等变化和改进,均应仍属于本发明涵盖的范围。The above descriptions are only preferred embodiments of the present invention, and should not be used to limit the implementation scope of the present invention. Generally, all equivalent changes and improvements made according to the application scope of the present invention should still fall within the scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105208238A CN102969454A (en) | 2012-12-06 | 2012-12-06 | High-contrast organic light-emitting device (OLED) with band-pass filter film and top-emitted green ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105208238A CN102969454A (en) | 2012-12-06 | 2012-12-06 | High-contrast organic light-emitting device (OLED) with band-pass filter film and top-emitted green ray |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102969454A true CN102969454A (en) | 2013-03-13 |
Family
ID=47799460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105208238A Pending CN102969454A (en) | 2012-12-06 | 2012-12-06 | High-contrast organic light-emitting device (OLED) with band-pass filter film and top-emitted green ray |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102969454A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107195797A (en) * | 2017-06-28 | 2017-09-22 | 京东方科技集团股份有限公司 | A kind of display base plate and display device |
CN114994932A (en) * | 2018-07-18 | 2022-09-02 | 精工爱普生株式会社 | Image display module and image display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000003786A (en) * | 1998-06-12 | 2000-01-07 | Idemitsu Kosan Co Ltd | Organic EL display |
JP2000021570A (en) * | 1998-06-30 | 2000-01-21 | Idemitsu Kosan Co Ltd | EL display device |
CN1469330A (en) * | 2002-06-12 | 2004-01-21 | ��˹���´﹫˾ | Organic light emitting diode display with color filters for improved contrast |
CN1604696A (en) * | 2003-10-03 | 2005-04-06 | 株式会社半导体能源研究所 | Light emitting device |
US20070123135A1 (en) * | 2005-11-29 | 2007-05-31 | Nam-Choul Yang | Method of fabricating Organic Light Emitting Diode (OLED) |
CN101094543A (en) * | 2007-07-19 | 2007-12-26 | 中国科学院长春应用化学研究所 | Color organic electroluminescence device with emission structure at top, and preparation method |
-
2012
- 2012-12-06 CN CN2012105208238A patent/CN102969454A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000003786A (en) * | 1998-06-12 | 2000-01-07 | Idemitsu Kosan Co Ltd | Organic EL display |
JP2000021570A (en) * | 1998-06-30 | 2000-01-21 | Idemitsu Kosan Co Ltd | EL display device |
CN1469330A (en) * | 2002-06-12 | 2004-01-21 | ��˹���´﹫˾ | Organic light emitting diode display with color filters for improved contrast |
CN1604696A (en) * | 2003-10-03 | 2005-04-06 | 株式会社半导体能源研究所 | Light emitting device |
US20070123135A1 (en) * | 2005-11-29 | 2007-05-31 | Nam-Choul Yang | Method of fabricating Organic Light Emitting Diode (OLED) |
CN101094543A (en) * | 2007-07-19 | 2007-12-26 | 中国科学院长春应用化学研究所 | Color organic electroluminescence device with emission structure at top, and preparation method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107195797A (en) * | 2017-06-28 | 2017-09-22 | 京东方科技集团股份有限公司 | A kind of display base plate and display device |
CN107195797B (en) * | 2017-06-28 | 2019-11-01 | 京东方科技集团股份有限公司 | A kind of display base plate and display device |
US11251409B2 (en) | 2017-06-28 | 2022-02-15 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Display substrate and display device |
CN114994932A (en) * | 2018-07-18 | 2022-09-02 | 精工爱普生株式会社 | Image display module and image display device |
CN114994932B (en) * | 2018-07-18 | 2024-01-02 | 精工爱普生株式会社 | Image display module and image display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI335681B (en) | White light organic electroluminescent element device | |
JP4895742B2 (en) | White organic electroluminescence device | |
CN102184938B (en) | Organic electroluminescent device and manufacturing method thereof | |
CN101359721A (en) | Spectrum Tunable Top-Emission Organic Electroluminescent Devices | |
US20190006627A1 (en) | Top-emitting woled display device | |
Liu et al. | Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness | |
CN103219471A (en) | Top-emitting organic electroluminescent device based on semi-transparent composite negative electrode and preparation method for top-emitting organic electroluminescent device | |
CN102983284A (en) | Top transmitting white light organic electroluminescent device with weak perspective effect | |
CN102034935A (en) | High-contrast top light-emitting type organic light-emitting diode | |
CN104124391A (en) | White light top emission type OLED (organic light emitting diodes) and preparation method thereof | |
CN108807701A (en) | White organic light emitting diode comprising thermally activated delayed fluorescent material and preparation method thereof | |
Liu et al. | Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness | |
CN102945928A (en) | White-light organic electroluminescent device with adjustable optical spectrum and stable chromaticity coordinate | |
Chang et al. | Fabrication of centimeter-scale MAPbBr3 light-emitting device with high color purity | |
Liu et al. | The effect of spacer in hybrid white organic light emitting diodes | |
US20200235317A1 (en) | Organic light emitting diodes and compositions therefor comprising phthalocyanine derivatives | |
CN109852378A (en) | A kind of dark red luminescent material of thermal activation delayed fluorescence and its electroluminescent device | |
CN102969454A (en) | High-contrast organic light-emitting device (OLED) with band-pass filter film and top-emitted green ray | |
CN110660923B (en) | Fluorescence/phosphorescence mixed white light OLEDs based on AIE material and preparation method thereof | |
CN109860404B (en) | White organic light emitting diode and preparation method thereof | |
Zhang et al. | High performance top-emitting and transparent white organic light-emitting diodes based on Al/Cu/TcTa transparent electrodes for active matrix displays and lighting applications | |
Xie et al. | Blue top-emitting organic light-emitting devices based on wide-angle interference enhancement and suppression of multiple-beam interference | |
CN203225281U (en) | Inverted top-emitting organic light-emitting device provided with micro-cavity structure and having slightly view-varying spectrums | |
TWI518958B (en) | Top emitting blue OLED and fabrication method thereof | |
CN107293645A (en) | A kind of white light top luminous organic diode and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130313 |