CN102963907A - Pentasil type zeolite molecular sieve synthetic method - Google Patents
Pentasil type zeolite molecular sieve synthetic method Download PDFInfo
- Publication number
- CN102963907A CN102963907A CN2012105094326A CN201210509432A CN102963907A CN 102963907 A CN102963907 A CN 102963907A CN 2012105094326 A CN2012105094326 A CN 2012105094326A CN 201210509432 A CN201210509432 A CN 201210509432A CN 102963907 A CN102963907 A CN 102963907A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- zeolite molecular
- source compound
- type zeolite
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 115
- 239000010457 zeolite Substances 0.000 title claims abstract description 51
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 46
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000010189 synthetic method Methods 0.000 title claims 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000011541 reaction mixture Substances 0.000 claims abstract description 37
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 35
- 239000010703 silicon Substances 0.000 claims abstract description 35
- 239000003513 alkali Substances 0.000 claims abstract description 32
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 26
- 229920000570 polyether Polymers 0.000 claims abstract description 24
- 239000000654 additive Substances 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 14
- 230000000996 additive effect Effects 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims description 52
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 29
- 239000003292 glue Substances 0.000 claims description 24
- 239000000741 silica gel Substances 0.000 claims description 18
- 229910002027 silica gel Inorganic materials 0.000 claims description 18
- 239000011734 sodium Substances 0.000 claims description 18
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 15
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 14
- 229910052708 sodium Inorganic materials 0.000 claims description 14
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 5
- 229910052681 coesite Inorganic materials 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910052682 stishovite Inorganic materials 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- -1 polyoxyethylene Polymers 0.000 claims description 4
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000009415 formwork Methods 0.000 claims 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- 229910002796 Si–Al Inorganic materials 0.000 claims 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 1
- 150000001412 amines Chemical class 0.000 claims 1
- 150000004985 diamines Chemical class 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 239000008279 sol Substances 0.000 claims 1
- 238000002425 crystallisation Methods 0.000 abstract description 30
- 230000008025 crystallization Effects 0.000 abstract description 30
- 238000005216 hydrothermal crystallization Methods 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 7
- 230000002194 synthesizing effect Effects 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 87
- 229920001223 polyethylene glycol Polymers 0.000 description 85
- 239000000243 solution Substances 0.000 description 55
- 239000008367 deionised water Substances 0.000 description 35
- 229910021641 deionized water Inorganic materials 0.000 description 35
- 239000007787 solid Substances 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 23
- 238000003786 synthesis reaction Methods 0.000 description 23
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 10
- 239000012065 filter cake Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000000084 colloidal system Substances 0.000 description 4
- 238000010907 mechanical stirring Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- PHIQPXBZDGYJOG-UHFFFAOYSA-N sodium silicate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-][Si]([O-])=O PHIQPXBZDGYJOG-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- KMWBBMXGHHLDKL-UHFFFAOYSA-N [AlH3].[Si] Chemical group [AlH3].[Si] KMWBBMXGHHLDKL-UHFFFAOYSA-N 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000003983 crown ethers Chemical class 0.000 description 2
- 239000003966 growth inhibitor Substances 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
本发明属于分子筛催化材料领域,公开了一种pentasil型沸石分子筛的合成方法,将铝源化合物、碱源化合物、硅源化合物、添加剂、有机模板剂和水混合,搅拌均匀,形成反应混合物;经水热晶化,过滤、洗涤、干燥得到所述pentasil型沸石分子筛。其中,所述添加剂是聚醚类化合物。本发明方法具有晶化速度快、成本低、模板剂用量小等优点,所合成的pentasil型沸石分子筛结晶度和纯度较高。The invention belongs to the field of molecular sieve catalytic materials, and discloses a method for synthesizing pentasil-type zeolite molecular sieves. Aluminum source compounds, alkali source compounds, silicon source compounds, additives, organic templates and water are mixed and stirred evenly to form a reaction mixture; hydrothermal crystallization, filtration, washing and drying to obtain the pentasil type zeolite molecular sieve. Wherein, the additive is a polyether compound. The method of the invention has the advantages of fast crystallization speed, low cost, small amount of template agent, etc., and the synthesized pentasil type zeolite molecular sieve has high crystallinity and purity.
Description
技术领域technical field
本发明属于分子筛催化材料领域,具体涉及一种pentasil型沸石分子筛的合成方法,采用聚醚类化合物作为添加剂进行分子筛的合成。The invention belongs to the field of molecular sieve catalytic materials, and in particular relates to a method for synthesizing a pentasil type zeolite molecular sieve. Polyether compounds are used as additives to synthesize the molecular sieve.
背景技术Background technique
由于沸石分子筛具有良好的热稳定性、水热稳定性;可调控的酸性;及独特的孔道结构等特征,已被广泛应用于吸附分离、离子交换、多相催化等领域(徐如人,庞文琴,屠昆岗沸石分子筛的结构与合成;吉林大学出版社,1987.;徐如人,庞文琴,于吉红,霍启升,陈接胜分子筛与多孔材料化学,2004.;中国科学院大连物化所著沸石分子筛,科学出版社,1978.)。在分子筛的合成中除了硅源、铝源、钛源、碱源及水之外,模板剂也是必不可缺的。现有技术中,常常依靠昂贵的模板剂调控分子筛晶体形貌结构、调变体系硅铝比或硅钛比及分子筛其他特性,较大程度地增加了分子筛合成成本及可调性的难度。同时,大多模板剂为含氮或者较长碳链的有机物,在一定程度上增加了分子筛合成成本,并且焙烧去除模板剂时会产生氮氧化合物,对环境造成污染。Because zeolite molecular sieves have good thermal stability, hydrothermal stability; controllable acidity; Structure and Synthesis of Zeolite Molecular Sieves; Jilin University Press, 1987.; Xu Ruren, Pang Wenqin, Yu Jihong, Huo Qisheng, Chen Jiesheng Molecular Sieves and Porous Materials Chemistry, 2004.; Zeolite Molecular Sieves by Dalian Institute of Physics and Chemistry, Chinese Academy of Sciences, Science Press, 1978. .). In addition to silicon source, aluminum source, titanium source, alkali source and water in the synthesis of molecular sieve, template agent is also indispensable. In the prior art, expensive templates are often used to regulate the crystal morphology of molecular sieves, to adjust the ratio of silicon to aluminum or silicon to titanium and other characteristics of molecular sieves, which greatly increases the synthesis cost and difficulty of adjustability of molecular sieves. At the same time, most of the templates are nitrogen-containing or long carbon chain organic compounds, which increases the synthesis cost of molecular sieves to a certain extent, and nitrogen oxides are produced when the templates are removed by roasting, causing pollution to the environment.
聚乙二醇的一般通式为H(OCH2CH2)nOH,简称PEG。由于聚乙二醇(PEG)存在不同分子聚合度使其分子量可控,从而调控聚乙二醇分子链在不同溶液环境中的状态:在无水状态时是锯齿形的长链分子,但溶于水后则形成曲折形。因此,利用分子链的不同状态与溶液中各主客体分子间相互作用,能够改变各种材料合成的机理和结果。The general formula of polyethylene glycol is H(OCH 2 CH 2 ) n OH, PEG for short. Because polyethylene glycol (PEG) has different molecular polymerization degrees, its molecular weight can be controlled, thereby regulating the state of polyethylene glycol molecular chains in different solution environments: in anhydrous state, it is a zigzag long chain molecule, but in solution After water, it forms a zigzag shape. Therefore, the mechanism and results of various material synthesis can be changed by using the different states of molecular chains and the interaction between host and guest molecules in solution.
目前对于聚乙二醇(PEG)在多孔材料合成中的影响研究主要包括以下几个方面:(1)聚乙二醇的类冠醚性。PEG结构中含有醚氧键,具有类冠醚性质,能和金属离子发生络合作用。Jiao等人将PEG加入含硅钛前驱体溶液中制备含孔结构的TiO2/SiO2材料(Jiao,J.;Xu,Q.;Li,L.;Tsubasa,T.;Kobayashi,T.Colloid & Polymer Science 2008,286,1485.;Jiao,J.;Xu,Q.;Li,L.Journal of Colloid and Interface Science 2007,316,596.)。(2)聚乙二醇的还原性。聚合物与金属相互作用形成胶束从而作为金属离子的稳定剂,阻止金属离子的堆积和沉淀。PEG分子可以和金属离子相互作用形成类冠醚孔穴并充当还原剂(Krishnan,C.V.;Chen,J.;Burger,C.;Chu,B.The Journal of Physical Chemistry B 2006,110,20182.;Chen,D.-H.;Huang,Y.-W.Journal of Colloid and Interface Science 2002,255,299.)。(3)对分子筛结构硅铝比的控制。Delprato小组了通过加入有机模板剂冠醚分子而不通过后处理脱铝等过程直接合成出Si/Al大于3的FAU结构的分子筛。类似地,在Y型沸石的合成过程中加入-OCH2CH2-有机物种,有利于合成高SiO2/Al2O3沸石(Delprato,F.;Delmotte,L.;Guth,J.L.;Huve,L.Zeolites,10,546.;Dougnier,F.;Patarin,J.;Guth,J.L.;Anglerot,D.Zeolites 1992,12,160.)。(4)对形貌控制和剪裁。晶体形貌是由晶面生长速率决定的,不同晶面有不同表面能,因此添加有机物或者无机物可以改变不同晶面的相对表面能而可改变晶体形貌。聚乙二醇PEG可以作为共溶剂控制过渡金属取代AIPO4-5(AFI)分子筛的形貌。加入聚乙二醇明显地抑制了Me-AFI晶体在c轴方向生长;且随着PEG/H2O比值的增加,Cr-AFI晶体的横纵比降低(Tian,D.;Yan,W.;Cao,X.;Yu,J.;Xu,R.Chemistry of Materials 2008,20,2160.)。同时,聚乙二醇被用作晶体生长抑制剂(crystal growth inhibitors,CGIs)控制合成SAPO-34晶体形貌,晶体抑制剂首先与铝磷物种相互作用,缩短成核时间,增加成核数量(Venna,S.R.;Carreon,M.A.The Journal of PhysicalChemistry B 2008,112,16261.)。(5)聚乙二醇对晶体粒径的影响。正是由于纳米沸石具有较多暴露的酸性位点、高比表面及较短的扩散路径等特性使其受到广泛的关注。Wang等人在合成IM-5纳米沸石的体系中加入聚乙二醇及CTAB,试图通过表面活性剂加入来调变分子筛粒径(Wang,L.;Yang,W.;Xin,C.;Ling,F.;Sun,W.;Fang,X.;Yang,R.Materials Letters 2012,69,16.)。(6)聚乙二醇在多级复合孔道合成中的应用。Tanaka等人溶胶-凝胶法结合相分离过程制备多级复合孔道结构材料(Tanaka,N.;Kobayashi,H.;Ishizuka,N.;Minakuchi,H.;Nakanishi,K.;Hosoya,K.;Ikegami,T.Journal of Chromatography A 2002,965,35.;Ishizuka,N.;Minakuchi,H.;Nakanishi,K.;Soga,N.;Tanaka,N.Journal of Chromatography A 1998,797,133.;Ishizuka,N.;Minakuchi,H.;Nakanishi,K.;Hirao,K.;Tanaka,N.Colloids and Surfaces A:Physicochemical andEngineering Aspects 2001,187-188,273.)。将PEG加入到TMOS溶液中,通过水解和缩合得到交联的大孔结构的硅材料,由于PEG影响硅物种从溶胶到凝胶过程中的相分离,通过调变PEG的量可以控制大孔的直径;而介孔尺寸主要是以氨水溶液后处理得到的。The current research on the influence of polyethylene glycol (PEG) in the synthesis of porous materials mainly includes the following aspects: (1) The crown ether-like properties of polyethylene glycol. The structure of PEG contains ether oxygen bonds, which has the properties of crown ethers and can complex with metal ions. Jiao et al. added PEG to silicon-containing titanium precursor solution to prepare TiO 2 /SiO 2 materials with porous structure (Jiao, J.; Xu, Q.; Li, L.; Tsubasa, T.; Kobayashi, T. Colloid & Polymer Science 2008, 286, 1485.; Jiao, J.; Xu, Q.; Li, L. Journal of Colloid and Interface Science 2007, 316, 596.). (2) The reducibility of polyethylene glycol. The polymer interacts with the metal to form micelles to act as a stabilizer for metal ions, preventing the accumulation and precipitation of metal ions. PEG molecules can interact with metal ions to form crown-like holes and act as reducing agents (Krishnan, CV; Chen, J.; Burger, C.; Chu, B. The Journal of Physical Chemistry B 2006, 110, 20182.; Chen , D.-H.; Huang, Y.-W. Journal of Colloid and Interface Science 2002, 255, 299.). (3) Control of the silicon-aluminum ratio of the molecular sieve structure. Delprato's group directly synthesized molecular sieves with FAU structure with Si/Al greater than 3 by adding organic template crown ether molecules without post-treatment dealumination and other processes. Similarly, the addition of -OCH2CH2 - organic species during the synthesis of Y-type zeolites favors the synthesis of high SiO2 / Al2O3 zeolites (Delprato, F.; Delmotte, L.; Guth, JL; Huve, L. Zeolites, 10, 546.; Dougnier, F.; Patarin, J.; Guth, JL; Anglerot, D. Zeolites 1992, 12, 160.). (4) Shape control and tailoring. The crystal morphology is determined by the growth rate of crystal planes. Different crystal planes have different surface energies. Therefore, the addition of organic or inorganic substances can change the relative surface energy of different crystal planes and change the crystal morphology. Polyethylene glycol PEG can be used as a co-solvent to control the morphology of transition metal substituted AIPO 4 -5 (AFI) molecular sieves. The addition of polyethylene glycol significantly inhibited the growth of Me-AFI crystals in the c-axis direction; and with the increase of PEG/H 2 O ratio, the aspect ratio of Cr-AFI crystals decreased (Tian, D.; Yan, W. ; Cao, X.; Yu, J.; Xu, R. Chemistry of
此外,聚醚类化合物的相对亲水性和亲油性可以通过取代基团进行调整,并具有价格低廉、易合成、毒性小等特点。现有技术中尚未提出将聚醚类化合物用于pentasil型沸石分子筛的合成制备。In addition, the relative hydrophilicity and lipophilicity of polyether compounds can be adjusted by substituting groups, and they have the characteristics of low price, easy synthesis, and low toxicity. The use of polyether compounds in the synthesis and preparation of pentasil-type zeolite molecular sieves has not been proposed in the prior art.
发明内容Contents of the invention
本发明提供了一种骨架结构中含碱金属离子的分子筛及其合成方法。本发明采用绿色环保的不含氮元素的聚乙二醇和聚丙二醇型聚醚类化合物进行pentasil型沸石分子筛合成,可以加速分子筛的晶化,减少模板剂的用量;实现了在较低有机模板剂用量下合成相对结晶度较高的纯硅分子筛或硅铝分子筛。The invention provides a molecular sieve containing alkali metal ions in a framework structure and a synthesis method thereof. The present invention adopts polyethylene glycol and polypropylene glycol-type polyether compounds that do not contain nitrogen elements to synthesize the pentasil-type zeolite molecular sieve, which can accelerate the crystallization of the molecular sieve and reduce the dosage of the template agent; Synthesize pure silica molecular sieves or silica-alumina molecular sieves with relatively high crystallinity.
本发明旨在提供一种采用聚醚化合物添加剂合成纯硅分子筛或含硅铝结构的沸石分子筛的创新方法,将铝源化合物、碱源化合物、硅源化合物、添加剂、有机模板剂和水混合,搅拌均匀,形成反应混合物;对所述反应混合物进行水热晶化,经过滤、洗涤、干燥得到所述pentasil型沸石分子筛;其中,所述添加剂是聚醚类化合物。The present invention aims to provide an innovative method for synthesizing pure silicon molecular sieves or zeolite molecular sieves with a silicon-aluminum structure by using polyether compound additives, mixing aluminum source compounds, alkali source compounds, silicon source compounds, additives, organic templates and water, stirring evenly to form a reaction mixture; performing hydrothermal crystallization on the reaction mixture, filtering, washing and drying to obtain the pentasil type zeolite molecular sieve; wherein the additive is a polyether compound.
所述铝源包括偏铝酸钠、硫酸铝、硝酸铝和异丙醇铝。所述碱源包括氢氧化钾和氢氧化钠。所述硅源包括硅溶胶、硅胶、水玻璃和白炭黑。所述聚醚类化合物包括聚乙二醇[HO(CH2CH2O)nH,PEO]、聚丙二醇[HO(CH(CH3)CH2O)nH,PPO]及含EO和PO结构单元的聚合物。其中,含EO和PO结构单元的聚合物的结构式为EOmPOnEOt,其中,m、n、t可为从0至∞。The aluminum source includes sodium metaaluminate, aluminum sulfate, aluminum nitrate and aluminum isopropoxide. The alkali source includes potassium hydroxide and sodium hydroxide. The silicon source includes silica sol, silica gel, water glass and white carbon black. The polyether compounds include polyethylene glycol [HO(CH 2 CH 2 O) n H, PEO], polypropylene glycol [HO(CH(CH 3 )CH 2 O) n H, PPO] and EO and PO A polymer of structural units. Wherein, the structural formula of the polymer containing EO and PO structural units is EO m PO n EO t , wherein m, n, t can be from 0 to ∞.
本发明中,所述聚醚类化合物在整个合成体系中SiO2:聚醚类化合物质量比为1∶(5-100%)。In the present invention, the mass ratio of SiO 2 : polyether compound in the whole synthesis system of the polyether compound is 1: (5-100%).
本发明中,在所述反应混合物中还可以加入硅铝分子筛或导向胶作为晶种,整个合成体系中SiO2∶晶种中SiO2质量比为1∶(0-10%)。In the present invention, silica-alumina molecular sieves or guiding glue can also be added as seed crystals in the reaction mixture, and the mass ratio of SiO 2 : SiO2 in seed crystals in the whole synthesis system is 1: (0-10%).
本发明中,所述铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶有机模板剂∶水的摩尔比为(0-0.05)∶1∶(0.05-0.5)∶(0-0.5)∶(5-100)。In the present invention, the molar equivalent of Al2O3 in the aluminum source compound: the molar equivalent of SiO2 : alkali source compound: organic template agent: the molar ratio of water is (0-0.05): 1: (0.05-0.5) :(0-0.5):(5-100).
本发明中,所述水热晶化的温度为100-200℃,时间为5-48小时。In the present invention, the temperature of the hydrothermal crystallization is 100-200° C., and the time is 5-48 hours.
具体地,本发明中铝源、碱源、硅源、聚醚类化合物和水的添加及混合的顺序不受限制。Specifically, the order of adding and mixing aluminum source, alkali source, silicon source, polyether compound and water in the present invention is not limited.
本发明中,铝源可添加亦可不添加。在反应混合物中可选择加入硅铝分子筛或导向胶作为晶种。In the present invention, the aluminum source may or may not be added. In the reaction mixture, silica-alumina molecular sieves or guiding glue can be optionally added as crystal seeds.
本发明中,作为晶种的导向胶的配方为SiO2∶0.10-0.35TPAOH∶6-35H2O∶4EtOH,在80-185℃下晶化2-72h后直接使用。作为晶种的分子筛可以与目标合成的分子筛结构相同或不同。In the present invention, the formula of the guiding glue used as the seed crystal is SiO 2 : 0.10-0.35TPAOH: 6-35H 2 O: 4EtOH, which is used directly after crystallization at 80-185°C for 2-72h. The molecular sieve used as the seed crystal may have the same or different structure as the target synthesized molecular sieve.
根据本发明方法可制备得到pentasil型沸石分子筛,是具有MFI或MEL结构的分子筛。本发明中,采用聚醚类化合物作为添加剂合成纯硅及硅铝结构的分子筛,通过加入聚乙醚类化合物降低合成成本,同时减少含氮有机物对环境的污染。本发明中利用聚醚类化合物对碱金属离子较强的络合作用,促进分子筛晶化,缩短晶化时间;同时,通过加入聚乙二醇降低有机模板剂的用量。本发明中通过降低有机模板剂用量及缩短晶化时间两个方面降低了合成工艺的成本。According to the method of the invention, a pentasil type zeolite molecular sieve can be prepared, which is a molecular sieve with an MFI or MEL structure. In the present invention, polyether compounds are used as additives to synthesize molecular sieves with pure silicon and silicon-aluminum structures, and the synthesis cost is reduced by adding polyether compounds, while reducing environmental pollution by nitrogen-containing organic compounds. In the present invention, the strong complexation effect of polyether compounds on alkali metal ions is used to promote the crystallization of molecular sieves and shorten the crystallization time; at the same time, the dosage of organic templates is reduced by adding polyethylene glycol. In the present invention, the cost of the synthesis process is reduced by reducing the dosage of the organic template agent and shortening the crystallization time.
本发明方法具有晶化速度快、成本低、模板剂用量小等优点,所合成的pentasil型沸石分子筛结晶度和纯度较高。The method of the invention has the advantages of fast crystallization speed, low cost, small amount of template agent, etc., and the synthesized pentasil type zeolite molecular sieve has high crystallinity and purity.
附图说明Description of drawings
图1所示为本发明中将聚乙二醇作为添加剂合成纯硅ZSM-5分子筛的XRD对比图。Fig. 1 shows the XRD comparison chart of the pure silicon ZSM-5 molecular sieve synthesized by using polyethylene glycol as an additive in the present invention.
图2所示为本发明中将聚乙二醇作为添加合成纯硅ZSM-5分子筛的晶化曲线图。Fig. 2 shows the crystallization curve of the pure silicon ZSM-5 molecular sieve synthesized with polyethylene glycol as an addition in the present invention.
图3所示为本发明中将聚乙二醇作为添加合成纯硅ZSM-5分子筛的形貌图。Figure 3 shows the topography of pure silicon ZSM-5 molecular sieve synthesized with polyethylene glycol as an addition in the present invention.
图4所示为本发明中将聚乙二醇作为添加剂合成ZSM-5分子筛的XRD对比图(SiO2/Al2O3为30)。Fig. 4 shows the XRD comparison diagram of ZSM-5 molecular sieve synthesized by using polyethylene glycol as an additive in the present invention (SiO 2 /Al 2 O 3 is 30).
图5所示为本发明中将聚乙二醇作为添加剂合成ZSM-5分子筛的晶化曲线图(SiO2/Al2O3为30)。Fig. 5 shows the crystallization curve of ZSM-5 molecular sieve synthesized by using polyethylene glycol as an additive in the present invention (SiO 2 /Al 2 O 3 is 30).
具体实施方式Detailed ways
结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。The present invention will be further described in detail in conjunction with the following specific embodiments and accompanying drawings. The process, conditions, reagents, experimental methods, etc. for implementing the present invention are general knowledge and common knowledge in the art except for the content specifically mentioned below, and the present invention has no special limitation content.
本发明pentasil型沸石分子筛的合成方法,是将铝源化合物、碱源化合物、硅源化合物、添加剂、有机模板剂和水混合,搅拌均匀,形成反应混合物;对反应混合物进行水热晶化,经过滤、洗涤、干燥得到pentasil型沸石分子筛;其中,添加剂是聚醚类化合物。The synthesis method of the pentasil type zeolite molecular sieve of the present invention is to mix the aluminum source compound, the alkali source compound, the silicon source compound, the additive, the organic template agent and water, and stir evenly to form a reaction mixture; the reaction mixture is hydrothermally crystallized, and the filtering, washing and drying to obtain pentasil type zeolite molecular sieve; wherein, the additive is a polyether compound.
(1)将铝源化合物、碱源化合物、硅源化合物、添加剂、有机模板剂、水和聚醚类化合物混合,搅拌均匀,形成反应混合物。其中加料的顺序不受限制。(1) Mix aluminum source compound, alkali source compound, silicon source compound, additive, organic template, water and polyether compound, and stir evenly to form a reaction mixture. The order of addition is not limited.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,控制晶化温度和时间分别在100-200℃和0-48小时,晶化后的反应混合物经过滤、去离子水洗涤、干燥等得到含硅铝结构的沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, control the crystallization temperature and time at 100-200°C and 0-48 hours, respectively, and filter the crystallized reaction mixture with deionized water Washing, drying, etc. to obtain a zeolite molecular sieve with a silicon-aluminum structure.
其中,铝源包括偏铝酸钠、硫酸铝、硝酸铝、异丙醇铝。碱源包括氢氧化钾、氢氧化钠。Wherein, the aluminum source includes sodium metaaluminate, aluminum sulfate, aluminum nitrate, and aluminum isopropoxide. Alkali sources include potassium hydroxide and sodium hydroxide.
硅源包括硅溶胶、硅胶、水玻璃、白炭黑。聚醚类化合物包括聚乙二醇[HO(CH2CH2O)nH,PEO]、聚丙二醇[HO(CH(CH3)CH2O)nH,PPO]及含EO和PO结构单元的聚合物。其中,含EO和PO结构单元的聚合物的结构式为EOmPOnEOt,其中,m、n、t可为从0至∞。Silicon sources include silica sol, silica gel, water glass, and white carbon black. Polyether compounds include polyethylene glycol [HO(CH 2 CH 2 O) n H, PEO], polypropylene glycol [HO(CH(CH 3 )CH 2 O) n H, PPO] and structural units containing EO and PO of polymers. Wherein, the structural formula of the polymer containing EO and PO structural units is EO m PO n EO t , wherein m, n, t can be from 0 to ∞.
本发明中,聚醚类化合物在整个合成体系中SiO2∶聚醚类化合物质量比为1∶(5-100%)。In the present invention, the mass ratio of SiO 2 : polyether compound in the whole synthesis system of the polyether compound is 1: (5-100%).
本发明中,在反应混合物中还可以加入硅铝分子筛或导向胶作为晶种,整个合成体系中SiO2∶晶种量质量比为1∶(0-10%)。In the present invention, silica-alumina molecular sieves or guiding glue can also be added as seed crystals in the reaction mixture, and the mass ratio of SiO 2 : seed crystals in the whole synthesis system is 1: (0-10%).
本发明中,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶有机模板剂∶水的摩尔比为(0-0.05)∶1∶(0.05-0.5)∶(0-0.5)∶(5-100)。In the present invention, the molar equivalent of Al2O3 in the aluminum source compound: the molar equivalent of SiO2 : alkali source compound: organic template agent: the molar ratio of water is (0-0.05): 1: (0.05-0.5): ( 0-0.5): (5-100).
本发明中,水热晶化的温度为100-200℃,时间为5-48小时。In the present invention, the temperature of hydrothermal crystallization is 100-200° C., and the time is 5-48 hours.
本发明中,作为晶种的导向胶的配方为SiO2∶0.10-0.35TPAOH∶6-35H2O∶4EtOH,在80-185℃下晶化2-72h后直接使用。作为晶种的分子筛可以与目标合成的分子筛结构相同或不同。本发明中的“导向胶”是经50-150℃下晶化所得到的具有结构导向作用的含硅或硅铝的溶胶或分子筛浆液。In the present invention, the formula of the guiding glue used as the seed crystal is SiO 2 : 0.10-0.35TPAOH: 6-35H 2 O: 4EtOH, which is used directly after crystallization at 80-185°C for 2-72h. The molecular sieve used as the seed crystal may have the same or different structure as the target synthesized molecular sieve. The "guiding gel" in the present invention is a silicon or silicon-aluminum-containing sol or molecular sieve slurry obtained by crystallization at 50-150°C and having a structure-guiding effect.
实施例1Example 1
一种纯硅Silicalite-1分子筛的制备方法,其具体步骤如下:A kind of preparation method of pure silicon Silicalite-1 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH,搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,最后加入含TPA+导向胶,搅拌均匀。上述反应混合物中,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶H2O的摩尔比为0∶1∶0.055∶12。其中SiO2∶导向胶∶PEG400的质量比为1∶5%∶20%。(1) Dissolve solid NaOH with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear solution; add solid silica gel to the above solution, stir for 30-60 minutes, finally add TPA + guide gel, stir uniform. In the above reaction mixture, the molar ratio of the molar equivalent of Al 2 O 3 in the aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: H 2 O is 0:1:0.055:12. The mass ratio of SiO 2 : guiding glue: PEG400 is 1:5%:20%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon containing MFI structure Zeolite molecular sieve.
对比例1Comparative example 1
一种纯硅Silicalite-1分子筛的制备方法,其具体步骤如下:A kind of preparation method of pure silicon Silicalite-1 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH,搅拌澄清溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,最后加入含TPA+导向胶,搅拌均匀。上述反应混合物中,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶H2O的摩尔比为0∶1∶0.055∶12。其中SiO2∶导向胶的质量比为1∶5%。(1) Dissolve solid NaOH with deionized water, stir to clarify the solution; add solid silica gel to the above solution, stir for 30-60 minutes, and finally add TPA + guide gel, stir evenly. In the above reaction mixture, the molar ratio of the molar equivalent of Al 2 O 3 in the aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: H 2 O is 0:1:0.055:12. The mass ratio of SiO 2 :guiding glue is 1:5%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon containing MFI structure Zeolite molecular sieve.
根据实验结果可知,未加入PEG所制备的分子筛样品在12h其结晶度为85%,而根据本实施例方法添加PEG之后,同样晶化时间后,纯硅Silicalite-1分子筛的结晶度达到100%。结合图1可见,添加PEG的Silicalite-1是纯相的MFI结构,无任何杂相出现。如图2所示,比较两样品的晶化曲线可见,PEG的加入可明显促进Silicalite-1的晶化。以上样品的形貌如图3所示,两样品都是100-200nm大小棺材状晶体,但未加PEG所制备的分子筛样品存在较多更小晶粒或无定形物;PEG的加入促进晶化,晶粒分散较均一。According to the experimental results, it can be seen that the crystallinity of the molecular sieve sample prepared without adding PEG was 85% in 12 hours, and after adding PEG according to the method of this example, after the same crystallization time, the crystallinity of pure silicon Silicalite-1 molecular sieve reached 100%. . It can be seen from Figure 1 that Silicalite-1 with PEG added has a pure-phase MFI structure without any impurity phases. As shown in Figure 2, comparing the crystallization curves of the two samples shows that the addition of PEG can significantly promote the crystallization of Silicalite-1. The morphology of the above samples is shown in Figure 3. Both samples are coffin-shaped crystals with a size of 100-200nm, but the molecular sieve samples prepared without PEG have more smaller crystal grains or amorphous substances; the addition of PEG promotes crystallization , the grain dispersion is more uniform.
实施例2Example 2
一种含硅铝ZSM-11分子筛的制备方法,其具体步骤如下:A kind of preparation method of silicon-aluminum ZSM-11 molecular sieve, its specific steps are as follows:
(1)用去离子水溶解固体NaOH,搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,最后加入四丁基氢氧化铵(TBAOH),搅拌均匀。上述反应混合物中,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TBAOH∶H2O的摩尔比为0∶1∶0.055∶0.2∶12。其中SiO2∶PEG400的质量比为1∶20%。(1) Dissolve solid NaOH with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear solution; add solid silica gel to the above solution, stir for 30-60 minutes, and finally add tetrabutylammonium hydroxide (TBAOH) , stir well. In the above reaction mixture, the molar ratio of the molar equivalent of Al 2 O 3 in the aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: TBAOH: H 2 O is 0:1:0.055:0.2:12. Wherein the mass ratio of SiO 2 :PEG400 is 1:20%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化24小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MEL结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 24 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon with MEL structure Zeolite molecular sieve.
对比例2Comparative example 2
一种含硅铝ZSM-11分子筛的制备方法,其具体步骤如下:A kind of preparation method of silicon-aluminum ZSM-11 molecular sieve, its specific steps are as follows:
(1)用去离子水溶解固体NaOH,搅拌澄清溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,最后加入TBAOH,搅拌均匀。上述反应混合物中,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TBAOH∶H2O的摩尔比为0∶1∶0.055∶0.2∶12。(1) Dissolve solid NaOH with deionized water, stir to clarify the solution; add solid silica gel to the above solution, stir for 30-60 minutes, finally add TBAOH, and stir evenly. In the above reaction mixture, the molar ratio of the molar equivalent of Al 2 O 3 in the aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: TBAOH: H 2 O is 0:1:0.055:0.2:12.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化24小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MEL结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 24 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon with MEL structure Zeolite molecular sieve.
实施例3Example 3
一种纯硅Silicalite-1分子筛的制备方法,其具体步骤如下:A kind of preparation method of pure silicon Silicalite-1 molecular sieve, its concrete steps are as follows:
(1)把浓硫酸稀释形成硫酸稀溶液A;同时,用热水溶解九水硅酸钠(Na2SiO3·9H2O)形成澄清B溶液。在机械搅拌下,将澄清溶液A逐滴滴加到B溶液中,待酸完全滴加完毕后,将上述浊液过滤得到无定形滤饼,将该滤饼按如下配方进行投料,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶H2O的摩尔比为0∶1∶0.055∶35,最后加入含TPA+导向胶,搅拌30-60分钟至均匀即可。其中SiO2∶导向胶∶PEG400的质量比为1∶5%∶20%。(1) Dilute concentrated sulfuric acid to form dilute sulfuric acid solution A; at the same time, dissolve sodium silicate nonahydrate (Na 2 SiO 3 ·9H 2 O) with hot water to form clear solution B. Under mechanical stirring, add the clear solution A dropwise to the solution B. After the acid is completely added dropwise, filter the above turbid solution to obtain an amorphous filter cake, and feed the filter cake according to the following formula. Aluminum source compound The molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : the molar ratio of alkali source compound: H 2 O is 0:1:0.055:35, and finally add TPA + guide glue, stir for 30-60 minutes until uniform Can. The mass ratio of SiO 2 : guiding glue: PEG400 is 1:5%:20%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon containing MFI structure Zeolite molecular sieve.
对比例3Comparative example 3
一种纯硅Silicalite-1分子筛的制备方法,其具体步骤如下:A kind of preparation method of pure silicon Silicalite-1 molecular sieve, its concrete steps are as follows:
(1)把浓硫酸稀释形成硫酸稀溶液A;同时,用热水溶解九水硅酸钠(Na2SiO3·9H2O)形成澄清B溶液。在机械搅拌下,将澄清溶液A逐滴滴加到B溶液中,待酸完全滴加完毕后,将上述浊液过滤得到无定形滤饼,将该滤饼按如下配方进行投料,铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶H2O的摩尔比为0∶1∶0.055∶35,最后加入含TPA+导向胶,搅拌30-60分钟至均匀即可。其中SiO2∶导向胶的质量比为1∶5%。(1) Dilute concentrated sulfuric acid to form dilute sulfuric acid solution A; at the same time, dissolve sodium silicate nonahydrate (Na 2 SiO 3 ·9H 2 O) with hot water to form clear solution B. Under mechanical stirring, add the clear solution A dropwise to the solution B. After the acid is completely added dropwise, filter the above turbid solution to obtain an amorphous filter cake, and feed the filter cake according to the following formula. Aluminum source compound The molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : the molar ratio of alkali source compound: H 2 O is 0:1:0.055:35, and finally add TPA + guide glue, stir for 30-60 minutes until uniform Can. The mass ratio of SiO 2 :guiding glue is 1:5%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化24小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 24 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon containing MFI structure Zeolite molecular sieve.
通过实施例3和对比例4的对比,在相同合成体系中,且产晶结晶度约为99%的条件下,加入定量的PEG可以将晶化时间从24小时直接缩短至12小时,在较大程度地降低了生产成本消耗。Through the comparison of Example 3 and Comparative Example 4, in the same synthesis system, and the crystallinity of the produced crystal is about 99%, adding quantitative PEG can directly shorten the crystallization time from 24 hours to 12 hours. Reduce production cost consumption to a great extent.
实施例4Example 4
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)将固体NaOH和偏铝酸钠溶解在去离子水,搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,最后加入含TPA+的导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶导向胶∶PEG400∶H2O的摩尔比为0.033∶1∶0.055∶12;其中SiO2∶导向胶∶PEG400的质量比为1∶5%∶20%。(1) Dissolve solid NaOH and sodium metaaluminate in deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear solution; add solid silica gel to the above solution, stir for 30-60 minutes, and finally add TPA + guide glue, stir well. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: the guiding gel: PEG400: H 2 O The molar ratio is 0.033:1:0.055:12; wherein SiO 2 :guiding gel The mass ratio of :PEG400 is 1:5%:20%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
对比例4Comparative example 4
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)将固体NaOH和偏铝酸钠溶解在去离子水形成澄清溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,最后加入含TPA+的导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶H2O的摩尔比为0.033∶1∶0.055∶12;其中SiO2∶导向胶的质量比为1∶5%。(1) Dissolve solid NaOH and sodium metaaluminate in deionized water to form a clear solution; add solid silica gel to the above solution, stir for 30-60 minutes, and finally add guide gel containing TPA + , stir evenly. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: H 2 O is 0.033:1:0.055:12; wherein the mass ratio of SiO 2 :guiding glue is 1 : 5%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
相比于纯硅体系,硅铝分子筛的诱导期明显增加,PEG的加入进一步显著促进分子筛的成核和晶化。根据实验结果可知,未加入PEG所制备的ZSM-5分子筛样晶在12h的结晶度为89%,而根据本实施例方法添加PEG之后,同杆晶化时间后,ZSM-5分子筛的结晶度达到100%。结合图4可见,添加PEG的ZSM-5是纯相的MFI结构,无任何杂相出现。如图5所示,比较两样晶的晶化曲线可见,PEG的加入可明显促进ZSM-5的晶化。Compared with the pure silicon system, the induction period of the silica-alumina molecular sieve is significantly increased, and the addition of PEG further significantly promotes the nucleation and crystallization of the molecular sieve. According to the experimental results, the crystallinity of the ZSM-5 molecular sieve sample crystal prepared without adding PEG was 89% in 12 hours, and after adding PEG according to the method of this embodiment, after the same rod crystallization time, the crystallinity of ZSM-5 molecular sieve up to 100%. It can be seen from Figure 4 that ZSM-5 added with PEG has a pure-phase MFI structure without any impurity phase. As shown in Figure 5, comparing the crystallization curves of the two crystals, it can be seen that the addition of PEG can significantly promote the crystallization of ZSM-5.
实施例5Example 5
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)把硫酸铝溶解在稀硫酸水溶液中,搅拌形成澄清A溶液;同时,用热水溶解九水硅酸钠(Na2SiO3·9H2O)形成澄清B溶液。在机械搅拌下,将澄清溶液A逐滴滴加到B溶液中,待酸完全滴加完毕后,将上述浊液过滤得到滤饼,将该硅铝无定形滤饼进行投料。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TPAOH∶H2O的摩尔比为0.033∶1∶0.055∶0.1∶35,其中SiO2∶PEG400的质量比为1∶20%。(1) Dissolve aluminum sulfate in dilute sulfuric acid aqueous solution and stir to form a clear solution A; at the same time, dissolve sodium silicate nonahydrate (Na 2 SiO 3 ·9H 2 O) with hot water to form a clear solution B. Under mechanical stirring, add the clear solution A dropwise to the solution B. After the acid is completely added dropwise, filter the above turbid solution to obtain a filter cake, and feed the silica-alumina amorphous filter cake. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the molar ratio of alkali source compound: TPAOH: H 2 O is 0.033: 1: 0.055: 0.1: 35, wherein the mass of SiO 2 : PEG400 The ratio is 1:20%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化24小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 24 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
对比例5Comparative example 5
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)把硫酸铝溶解在稀硫酸水溶液中,搅拌形成澄清A溶液;同时,用热水溶解九水硅酸钠(Na2SiO3·9H2O)形成澄清B溶液。在机械搅拌下,将澄清溶液A逐滴滴加到B溶液中,待酸完全滴加完毕后,将上述浊液过滤得到滤饼,将该硅铝无定形滤饼进行投料。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TPAOH∶H2O的摩尔比为0.033∶1∶0.055∶0.35∶35。(1) Dissolve aluminum sulfate in dilute sulfuric acid aqueous solution and stir to form a clear solution A; at the same time, dissolve sodium silicate nonahydrate (Na 2 SiO 3 ·9H 2 O) with hot water to form a clear solution B. Under mechanical stirring, add the clear solution A dropwise to the solution B. After the acid is completely added dropwise, filter the above turbid solution to obtain a filter cake, and feed the silica-alumina amorphous filter cake. The molar ratio of the molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : the alkali source compound: TPAOH: H 2 O in the above-mentioned aluminum source compound is 0.033:1:0.055:0.35:35.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化24小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 24 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
实施例5和对比例5采用相同的硅铝源制备含MFI结构的硅铝沸石分子筛,通过对比可以发现,在添加定量聚乙二醇PEG400的情况下,且能保证两者的结晶度都为98%,实施例5可以将有机模板剂TPAOH的量从0.35降低到0.1。Example 5 and Comparative Example 5 used the same silicon-aluminum source to prepare silica-alumina zeolite molecular sieves containing MFI structure. It can be found by comparison that, in the case of adding quantitative polyethylene glycol PEG400, the crystallinity of both can be guaranteed to be 98%,
实施例6Example 6
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TPAOH∶H2O的摩尔比为0.033∶1∶0.055∶0.1∶12,其中SiO2∶PEG400的质量比为1∶100%。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the molar ratio of alkali source compound: TPAOH: H 2 O is 0.033: 1: 0.055: 0.1: 12, wherein the mass of SiO 2 : PEG400 The ratio is 1:100%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
实施例6Example 6
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG6000)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶乙二胺∶水的摩尔比为0.033∶1∶0.055∶0.28∶12,其中SiO2∶PEG6000的质量比为1∶50%。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG6000) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the molar ratio of alkali source compound: ethylenediamine: water is 0.033: 1: 0.055: 0.28: 12, wherein the mass of SiO 2 : PEG6000 The ratio is 1:50%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
实施例7Example 7
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG20000)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶乙二胺∶H2O的摩尔比为0.033∶1∶0.055∶0.28∶12,其中SiO2∶PEG20000的质量比为1∶20%。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG20000) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: ethylenediamine: the molar ratio of H 2 O is 0.033:1:0.055:0.28:12, wherein SiO 2 : PEG20000 The mass ratio is 1:20%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于140℃晶化24小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 140°C for 24 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain a silicon-alumina containing MFI structure Zeolite molecular sieve.
实施例8Example 8
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TPAOH∶导向胶∶H2O的摩尔比为0.033∶1∶0.055∶0.1∶12,其中SiO2∶导向胶∶PEG400的质量比为1∶1%∶100%。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the alkali source compound: TPAOH: guiding gel: the molar ratio of H 2 O is 0.033: 1: 0.055: 0.1: 12, wherein SiO 2 : The mass ratio of guiding glue: PEG400 is 1:1%:100%.
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于175℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 175°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
实施例9Example 9
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。上述的铝源化合物中Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TEABr∶H2O的摩尔比为0.033∶1∶0.055∶0.35∶12,其中SiO2∶PEG400的质量比为1∶5%。。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 in the above-mentioned aluminum source compound: the molar equivalent of SiO 2 : the molar ratio of alkali source compound: TEABr: H 2 O is 0.033: 1: 0.055: 0.35: 12, wherein the mass of SiO 2 : PEG400 The ratio is 1:5%. .
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于185℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 185°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain a silicon-alumina containing MFI structure Zeolite molecular sieve.
实施例10Example 10
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体KOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶己二胺∶H2O的摩尔比为0.033∶1∶0.055∶0.35∶12,其中SiO2∶PEG400的质量比为1∶20%。。(1) Dissolve solid KOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : the alkali source compound: hexamethylenediamine: the molar ratio of H 2 O is 0.033:1:0.055:0.35:12, wherein the mass ratio of SiO 2 :PEG400 is 1: 20%. .
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于185℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 185°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain a silicon-alumina containing MFI structure Zeolite molecular sieve.
实施例11Example 11
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体KOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PPG2000)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TPAOH∶H2O的摩尔比为0.033∶1∶0.055∶0.1∶12,其中SiO2∶PEG400的质量比为1∶20%。(1) Dissolve solid KOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PPG2000) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : the alkali source compound: TPAOH: H 2 O has a molar ratio of 0.033:1:0.055:0.1:12, wherein the mass ratio of SiO 2 :PEG400 is 1:20% .
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于200℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 200°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain silicon aluminum with MFI structure Zeolite molecular sieve.
实施例12Example 12
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶TPABr∶H2O的摩尔比为0.033∶1∶0.055∶0.1∶12,其中SiO2∶PEG400的质量比为1∶20%。。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : the molar ratio of alkali source compound: TPABr: H 2 O is 0.033: 1: 0.055: 0.1: 12, and the mass ratio of SiO 2 : PEG400 is 1: 20% . .
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于185℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的硅铝沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 185°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain a silicon-alumina containing MFI structure Zeolite molecular sieve.
实施例13Example 13
一种ZSM-5分子筛的制备方法,其具体步骤如下:A kind of preparation method of ZSM-5 molecular sieve, its concrete steps are as follows:
(1)用去离子水溶解固体NaOH及偏铝酸钠(NaAlO2),搅拌澄清之后,加入聚乙二醇(PEG400)形成澄清A溶液;在上述溶液中加入固体硅胶,搅拌30-60分钟,继续加入含TPA+导向胶,搅拌均匀。Al2O3的摩尔当量∶SiO2的摩尔当量∶碱源化合物∶丁胺∶PEG400∶H2O的摩尔比为0.033∶1∶0.055∶0.28∶12,其中SiO2∶PEG400的质量比为1∶20%。。(1) Dissolve solid NaOH and sodium metaaluminate (NaAlO 2 ) with deionized water, stir and clarify, then add polyethylene glycol (PEG400) to form a clear A solution; add solid silica gel to the above solution, and stir for 30-60 minutes , continue to add TPA + guide glue, stir evenly. The molar equivalent of Al 2 O 3 : the molar equivalent of SiO 2 : alkali source compound: butylamine: PEG400: the molar ratio of H 2 O is 0.033: 1: 0.055: 0.28: 12, wherein the mass ratio of SiO 2 : PEG400 is 1 : 20%. .
(2)将得到的反应混合物转移至高压反应釜中进行水热晶化,于185℃晶化12小时,晶化后的产物经过滤、去离子水洗涤、干燥等得到含MFI结构的纯硅沸石分子筛。(2) Transfer the obtained reaction mixture to a high-pressure reactor for hydrothermal crystallization, and crystallize at 185°C for 12 hours. The crystallized product is filtered, washed with deionized water, dried, etc. to obtain pure silicon containing MFI structure Zeolite molecular sieve.
实施例14Example 14
本实施例ZSM-5分子筛的合成步骤与实施例4基本一致。本实施例采用盐酸作为酸源。其晶化温度为175℃,晶化2-48小时可合成得到本发明ZSM-5分子筛原粉,其相对结晶度可达到108%。The synthesis steps of the ZSM-5 molecular sieve in this example are basically the same as those in Example 4. In this example, hydrochloric acid was used as the acid source. Its crystallization temperature is 175°C, and the original ZSM-5 molecular sieve powder of the present invention can be synthesized by crystallization for 2-48 hours, and its relative crystallinity can reach 108%.
实施例15Example 15
本实施例ZSM-5分子筛的合成步骤与实施例3基本一致。本实施例采用白炭黑作为硅源。其晶化温度为175℃,晶化2-48小时可合成得到本发明ZSM-5分子筛原粉,其相对结晶度可达到108%。The synthesis steps of the ZSM-5 molecular sieve in this example are basically the same as those in Example 3. In this embodiment, white carbon black is used as the silicon source. Its crystallization temperature is 175°C, and the original ZSM-5 molecular sieve powder of the present invention can be synthesized by crystallization for 2-48 hours, and its relative crystallinity can reach 108%.
实施例16Example 16
本实施例ZSM-5分子筛的合成步骤与实施例4基本一致。本实施例采用硝酸及硝酸铝分别作为酸源和铝源。其晶化温度为175℃,晶化2-48小时可合成得到本发明ZSM-5分子筛原粉,其相对结晶度可达到102%。The synthesis steps of the ZSM-5 molecular sieve in this example are basically the same as those in Example 4. In this embodiment, nitric acid and aluminum nitrate are used as acid source and aluminum source respectively. Its crystallization temperature is 175°C, and the raw ZSM-5 molecular sieve powder of the present invention can be synthesized after crystallization for 2-48 hours, and its relative crystallinity can reach 102%.
实施例17Example 17
本实施例ZSM-5分子筛的合成步骤与实施例1基本一致。本实施例采用的晶化温度为185℃,晶化2-48小时可合成得到本发明ZSM-5分子筛原粉,其相对结晶度可达到100%。The synthesis steps of the ZSM-5 molecular sieve in this example are basically the same as those in Example 1. The crystallization temperature used in this example is 185° C., and the raw ZSM-5 molecular sieve powder of the present invention can be synthesized after crystallization for 2-48 hours, and its relative crystallinity can reach 100%.
本发明pentasil型沸石分子筛合成中加入聚醚类化合物,加速分子筛的晶化,减少模板剂的用量,可以在较低有机模板剂用量下合成相对结晶度较高的分子筛。The polyether compound is added in the synthesis of the pentasil-type zeolite molecular sieve of the present invention to accelerate the crystallization of the molecular sieve, reduce the dosage of the template agent, and synthesize the molecular sieve with relatively high crystallinity at a lower dosage of the organic template agent.
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点部被包括在本发明中,并且以所附的权利要求书为保护范围。The protection content of the present invention is not limited to the above embodiments. Without departing from the spirit and scope of the inventive concept, changes and advantages that can be imagined by those skilled in the art are all included in the present invention, and the appended claims are the protection scope.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105094326A CN102963907A (en) | 2012-12-03 | 2012-12-03 | Pentasil type zeolite molecular sieve synthetic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105094326A CN102963907A (en) | 2012-12-03 | 2012-12-03 | Pentasil type zeolite molecular sieve synthetic method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102963907A true CN102963907A (en) | 2013-03-13 |
Family
ID=47794384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105094326A Pending CN102963907A (en) | 2012-12-03 | 2012-12-03 | Pentasil type zeolite molecular sieve synthetic method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102963907A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105460952A (en) * | 2014-08-19 | 2016-04-06 | 神华集团有限责任公司 | Preparation method of ZSM-5 molecular sieve material, and ZSM-5 molecular sieve material prepared by the method |
CN107915234A (en) * | 2017-11-09 | 2018-04-17 | 华东师范大学 | A kind of preparation method of 1 nano zeolite aggregation molecular sieves of multi-stage porous TS |
CN109264740A (en) * | 2018-09-30 | 2019-01-25 | 厦门大学 | A kind of preparation method and application of nanometer of SAPO-34 molecular sieve |
CN110817899A (en) * | 2018-08-14 | 2020-02-21 | 中国科学院大连化学物理研究所 | A kind of method for promoting the synthesis of ZSM-11 molecular sieve |
CN111001436A (en) * | 2019-12-14 | 2020-04-14 | 中触媒新材料股份有限公司 | Intergrowth composite molecular sieve with AEI/KFI structure, preparation method thereof and SCR application thereof |
CN111646485A (en) * | 2020-04-28 | 2020-09-11 | 北京泷涛环境科技有限公司 | Hierarchical pore molecular sieve and preparation method and application thereof |
CN113479904A (en) * | 2021-06-25 | 2021-10-08 | 陕西师范大学 | Rapid synthesis method of Sn-doped MFI zeolite molecular sieve |
CN113856407A (en) * | 2021-10-28 | 2021-12-31 | 山东新龙集团有限公司 | Method for treating tail gas in process of preparing epoxy chloropropane by oxidation method |
CN116060411A (en) * | 2023-02-02 | 2023-05-05 | 中煤科工集团北京土地整治与生态修复科技研究院有限公司 | A kind of preparation method of polymer aluminum iron silicate flocculant and zeolite molecular sieve |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0197012A2 (en) * | 1985-04-01 | 1986-10-08 | Research Institute Of Petroleum Processing, Sinopec | A class of pillared interlayered clay molecular sieve products with regularly interstratified mineral structure |
US6342153B1 (en) * | 1997-12-23 | 2002-01-29 | China Petrochemical Corporation | Pillared clay catalysts for heavy oil catalytic pyrolisis process and the preparation method thereof |
CN101898767A (en) * | 2010-07-20 | 2010-12-01 | 华东师范大学 | A kind of synthetic method of high silicon ZSM-5 zeolite |
CN102649574A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Preparation method for mesoporous ZSM-11 zeolite |
-
2012
- 2012-12-03 CN CN2012105094326A patent/CN102963907A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0197012A2 (en) * | 1985-04-01 | 1986-10-08 | Research Institute Of Petroleum Processing, Sinopec | A class of pillared interlayered clay molecular sieve products with regularly interstratified mineral structure |
US6342153B1 (en) * | 1997-12-23 | 2002-01-29 | China Petrochemical Corporation | Pillared clay catalysts for heavy oil catalytic pyrolisis process and the preparation method thereof |
CN101898767A (en) * | 2010-07-20 | 2010-12-01 | 华东师范大学 | A kind of synthetic method of high silicon ZSM-5 zeolite |
CN102649574A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Preparation method for mesoporous ZSM-11 zeolite |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105460952A (en) * | 2014-08-19 | 2016-04-06 | 神华集团有限责任公司 | Preparation method of ZSM-5 molecular sieve material, and ZSM-5 molecular sieve material prepared by the method |
CN107915234A (en) * | 2017-11-09 | 2018-04-17 | 华东师范大学 | A kind of preparation method of 1 nano zeolite aggregation molecular sieves of multi-stage porous TS |
CN107915234B (en) * | 2017-11-09 | 2020-10-16 | 华东师范大学 | Preparation method of hierarchical porous TS-1 nano zeolite aggregate molecular sieve |
CN110817899A (en) * | 2018-08-14 | 2020-02-21 | 中国科学院大连化学物理研究所 | A kind of method for promoting the synthesis of ZSM-11 molecular sieve |
CN110817899B (en) * | 2018-08-14 | 2022-09-16 | 中国科学院大连化学物理研究所 | A kind of method for promoting the synthesis of ZSM-11 molecular sieve |
CN109264740A (en) * | 2018-09-30 | 2019-01-25 | 厦门大学 | A kind of preparation method and application of nanometer of SAPO-34 molecular sieve |
CN111001436A (en) * | 2019-12-14 | 2020-04-14 | 中触媒新材料股份有限公司 | Intergrowth composite molecular sieve with AEI/KFI structure, preparation method thereof and SCR application thereof |
CN111646485A (en) * | 2020-04-28 | 2020-09-11 | 北京泷涛环境科技有限公司 | Hierarchical pore molecular sieve and preparation method and application thereof |
CN113479904A (en) * | 2021-06-25 | 2021-10-08 | 陕西师范大学 | Rapid synthesis method of Sn-doped MFI zeolite molecular sieve |
CN113479904B (en) * | 2021-06-25 | 2024-01-16 | 陕西师范大学 | Rapid synthesis method of Sn-doped MFI zeolite molecular sieve |
CN113856407A (en) * | 2021-10-28 | 2021-12-31 | 山东新龙集团有限公司 | Method for treating tail gas in process of preparing epoxy chloropropane by oxidation method |
CN116060411A (en) * | 2023-02-02 | 2023-05-05 | 中煤科工集团北京土地整治与生态修复科技研究院有限公司 | A kind of preparation method of polymer aluminum iron silicate flocculant and zeolite molecular sieve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102963907A (en) | Pentasil type zeolite molecular sieve synthetic method | |
US9962688B2 (en) | Method for synthesizing molecular sieve SSZ-13 | |
CN108217682B (en) | Method for synthesizing silicon-rich ZSM-48 zeolite molecular sieve by adopting seed crystal guiding method | |
CN101249968A (en) | Method for synthesizing Beta molecular sieve without organic template | |
CN103318911B (en) | Preparation method of beta zeolite with multilevel pore canals | |
CN103232044B (en) | Synthesis method of nanoscale MCM-49 (Multi Chip Module) molecular sieve | |
CN103848439A (en) | Synthetic method of ZSM-5 type molecular sieve | |
CN104321280A (en) | Beta zeolite and method for producing same | |
TW201114685A (en) | Method of preparing ZSM-5 zeolite using nanocrystalline ZSM-5 seeds | |
CN106542537A (en) | In the method for omnipotent gel synthesizing high-silicon zeolite molecular sieve | |
CN102442677A (en) | Preparation method of all-silicon molecular sieve | |
CN108190913A (en) | The method of method synthesis Silicon-rich ZSM-5 zeolite molecular sieve is oriented to using crystal seed | |
CN103803576B (en) | A kind of low silica-alumina ratio ZSM-48 molecular sieve and preparation method thereof | |
CN106587102B (en) | The synthetic method of ZSM-12 type zeolite molecular sieves | |
CN104828837B (en) | A kind of method of synthesizing submicron NaA molecular sieve | |
CN111592011A (en) | Method for directly synthesizing SSZ-13 zeolite molecular sieve by using TEAOH as organic template agent | |
CN102198950B (en) | Preparation method of NaY molecular sieve with high silicon-aluminum ratio | |
CN105000571A (en) | EU-1/ZMS-48 intergrowth zeolite and preparation and application thereof | |
CN108217683A (en) | The method of method synthesis Silicon-rich ZSM-23 zeolite molecular sieves is oriented to using crystal seed | |
CN108264054A (en) | The method of method synthesis Silicon-rich ZSM-22 zeolite molecular sieves is oriented to using crystal seed | |
CN110862098A (en) | Method for synthesizing MCM-22 molecular sieve | |
CN103449468B (en) | Synthesis method of NaY molecular sieve | |
CN103073025B (en) | A kind of FER molecular sieve and synthetic method thereof | |
CN102180478A (en) | Method for synthesizing Beta molecular sieve by using silica gel under the condition without organic template | |
CN106976889A (en) | Si-Al zeolite molecular sieve with BOG structures and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130313 |