[go: up one dir, main page]

CN102956466A - Fin-shaped transistor and manufacturing method thereof - Google Patents

Fin-shaped transistor and manufacturing method thereof Download PDF

Info

Publication number
CN102956466A
CN102956466A CN2011102493546A CN201110249354A CN102956466A CN 102956466 A CN102956466 A CN 102956466A CN 2011102493546 A CN2011102493546 A CN 2011102493546A CN 201110249354 A CN201110249354 A CN 201110249354A CN 102956466 A CN102956466 A CN 102956466A
Authority
CN
China
Prior art keywords
layer
substrate
fin
fin structure
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102493546A
Other languages
Chinese (zh)
Other versions
CN102956466B (en
Inventor
蔡振华
黄瑞民
戴圣辉
林俊贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN201110249354.6A priority Critical patent/CN102956466B/en
Publication of CN102956466A publication Critical patent/CN102956466A/en
Application granted granted Critical
Publication of CN102956466B publication Critical patent/CN102956466B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The invention provides a fin-shaped transistor and a manufacturing method thereof. The manufacturing method comprises the steps of firstly providing a substrate and forming a mask layer on the substrate. Then, a first trench is formed in the mask layer and the substrate, and a semiconductor layer is formed in the first trench. The mask layer is then removed, so that the semiconductor layer forms a fin structure embedded in the substrate and protruding out of the substrate. Finally, a gate is formed on the fin structure.

Description

鳍状晶体管与其制作方法Fin transistor and method for making same

技术领域 technical field

本发明涉及一种鳍状晶体管以及其制作方法,特别来说,是涉及一种具有嵌入式鳍状结构的鳍状晶体管以及其制作方法。The present invention relates to a fin transistor and its fabrication method, in particular to a fin transistor with an embedded fin structure and its fabrication method.

背景技术 Background technique

近年来,随着各种消费性电子产品不断的朝小型化发展,半导体元件设计的尺寸亦不断缩小,以符合高集成度、高效能和低耗电的潮流以及产品需求。In recent years, with the continuous miniaturization of various consumer electronic products, the design size of semiconductor components has also been continuously reduced to meet the trend and product requirements of high integration, high efficiency and low power consumption.

然而,随着电子产品的小型化发展,现有的平面晶体管(planar transistor)已经无法满足产品的需求。因此,目前发展出一种非平面晶体管(non-planar)的鳍状晶体管(Fin-FET)技术,其具有立体的栅极沟道(channel)结构,可有效减少基底的漏电、降低短沟道效应,并具有较高的驱动电流。但由于鳍状晶体管是属于立体的结构,较传统结构复杂,制造难度也偏高,一般通常是在硅绝缘(silicon-on-insulator,SOI)基底上形成,若要相容于现有的硅基底工艺则有一定的难度。However, with the development of miniaturization of electronic products, existing planar transistors can no longer meet the requirements of the products. Therefore, a non-planar fin transistor (Fin-FET) technology has been developed, which has a three-dimensional gate channel (channel) structure, which can effectively reduce the leakage of the substrate and reduce the short channel. effect, and has a higher drive current. However, since the fin transistor is a three-dimensional structure, it is more complicated than the traditional structure, and the manufacturing difficulty is relatively high. Generally, it is usually formed on a silicon-on-insulator (SOI) substrate. If it is to be compatible with the existing silicon The substrate process is somewhat difficult.

因此,还需要一种新颖的鳍状晶体管装置的制作方法。Therefore, there is also a need for a novel fabrication method of a fin transistor device.

发明内容 Contents of the invention

本发明于是提出一种鳍状晶体管结构以及其制作方法,可应用于一般硅基底,且具有良好的产品品质。The present invention thus proposes a fin transistor structure and a manufacturing method thereof, which can be applied to common silicon substrates and have good product quality.

根据实施例,本发明提供一种鳍状晶体管的制作方法。首先提供基底,并在基底上形成掩模层。接着于掩模层以及基底中形成第一沟槽,并在第一沟槽中形成半导体层。然后移除掩模层,使得半导体层形成鳍状结构嵌入在基底中且突出于基底上。最后,形成栅极于鳍状结构上。According to an embodiment, the present invention provides a method for manufacturing a fin transistor. Firstly, a base is provided, and a mask layer is formed on the base. Then a first trench is formed in the mask layer and the substrate, and a semiconductor layer is formed in the first trench. Then the mask layer is removed, so that the semiconductor layer forms a fin structure embedded in the substrate and protrudes above the substrate. Finally, a gate is formed on the fin structure.

根据另一实施例,本发明提供了一种鳍状晶体管的结构,包括基底、鳍状结构、栅极介电层以及栅极层。鳍状结构嵌入在基底中,并突出于基底上。栅极介电层覆盖在鳍状结构的表面,且栅极覆盖在栅极介电层上。According to another embodiment, the present invention provides a structure of a fin transistor, including a substrate, a fin structure, a gate dielectric layer, and a gate layer. The fin-like structure is embedded in the base and protrudes above the base. The gate dielectric layer covers the surface of the fin structure, and the gate covers the gate dielectric layer.

本发明以选择性外延生长工艺来形成鳍状结构,配合渐缩角度的侧壁以及循环退火工艺,可以确保鳍状结构的品质,进而提高产品的良率。另一方面,相较于已知鳍状晶体管大多在硅绝缘基底上形成,本发明提供的方法可在一般硅基底上操作,更增加了工艺的弹性。The invention uses a selective epitaxial growth process to form the fin structure, and cooperates with the tapered side wall and the cyclic annealing process to ensure the quality of the fin structure and improve the yield rate of the product. On the other hand, compared with the conventional fin transistors that are mostly formed on silicon insulating substrates, the method provided by the present invention can be operated on general silicon substrates, which further increases the flexibility of the process.

附图说明 Description of drawings

图1至图11绘示了本发明鳍状晶体管的制作方法示意图。1 to 11 are schematic diagrams illustrating the manufacturing method of the fin transistor of the present invention.

图12绘示了本发明鳍状晶体管的结构示意图。FIG. 12 is a schematic diagram of the structure of the fin transistor of the present invention.

附图标记说明Explanation of reference signs

300    基底                314    底部抗反射层300 Base 314 Bottom anti-reflection layer

302    物质层              316    图案化光致抗蚀剂层302 Substance layer 316 Patterned photoresist layer

304    掩模层              318    第二沟槽304 mask layer 318 second trench

306    底部抗反射层        320    绝缘层306 bottom anti-reflection layer 320 insulation layer

308    图案化光致抗蚀剂层  321    浅沟槽隔离308 patterned photoresist layer 321 shallow trench isolation

310    第一沟槽            322    栅极介电层310 first trench 322 gate dielectric layer

312    半导体层            324    栅极层312 semiconductor layer 324 gate layer

313    鳍状结构            326    鳍状晶体管313 fin structure 326 fin transistor

313a   源极区              328    有源区313a source region 328 active region

313b   漏极区313b drain region

具体实施方式 Detailed ways

为使本领域一般技术人员能更进一步了解本发明,下文特列举本发明的数个优选实施例,并配合附图,详细说明本发明的构成内容及所欲达成的功效。In order for those skilled in the art to have a better understanding of the present invention, several preferred embodiments of the present invention are enumerated below, together with the accompanying drawings, to describe in detail the composition and desired effects of the present invention.

首先,请参考图12,所绘示为本发明鳍状晶体管的结构示意图。如图12所示,本发明的鳍状晶体管326设置于被浅沟槽隔离321所包围的有源区中。鳍状晶体管326包括基底300、至少一鳍状结构(fin structure)313、物质层302、栅极介电层322以及栅极层324。基底300例如是一块硅基底(bulksilicon)或锗(Ge)基底,也可以是硅绝缘(silicon-on-insulator,SOI)基底。物质层302设置于基底300上方,在本发明优选实施例中,物质层302包括二氧化硅(SiO2)。First, please refer to FIG. 12 , which is a schematic structural diagram of the fin transistor of the present invention. As shown in FIG. 12 , the fin transistor 326 of the present invention is disposed in the active region surrounded by the shallow trench isolation 321 . The fin transistor 326 includes a substrate 300 , at least one fin structure 313 , a material layer 302 , a gate dielectric layer 322 and a gate layer 324 . The substrate 300 is, for example, a silicon substrate (bulk silicon) or a germanium (Ge) substrate, and may also be a silicon-on-insulator (SOI) substrate. The substance layer 302 is disposed on the substrate 300, and in a preferred embodiment of the present invention, the substance layer 302 includes silicon dioxide (SiO 2 ).

鳍状结构313嵌入(embedded)在基底300中,并通过物质层302而突出于基底300上方,且每个鳍状结构313大体上沿着y方向延伸并彼此平行于x方向。如图12所示,各鳍状结构313具有宽度W,在z方向上突出于物质层302的高度为H1,位于物质层302中的厚度为H2,位于基底300中的深度为H3。于本发明的优选实施例中,W大体上介于100埃至200埃之间,H1视产品设计可以约为0.5倍的W,或0.5倍至两倍的W,或是大于两倍的W,H2大体上会大于等于W,H3大体上介于100埃至500埃之间。此外,本发明的鳍状结构313具有朝向基底300渐缩的结构。优选者,该渐缩的角度θ小于30度。鳍状结构313例如是硅层、锗层(Ge)、硅锗层(SiGe)或上述的组合。鳍状结构313可进一步包括源极区313a以及漏极区313b,两者被栅极层324所分开,并包括适当电性与掺杂浓度的掺质。The fin structures 313 are embedded in the substrate 300 and protrude above the substrate 300 through the material layer 302 , and each fin structure 313 generally extends along the y direction and is parallel to the x direction. As shown in FIG. 12 , each fin structure 313 has a width W, a height H1 protruding from the material layer 302 in the z direction, a thickness H2 in the material layer 302 , and a depth H3 in the substrate 300 . In a preferred embodiment of the present invention, W is generally between 100 angstroms and 200 angstroms, and H1 can be about 0.5 times W, or 0.5 times to twice W, or more than twice W, depending on product design , H2 is generally greater than or equal to W, and H3 is generally between 100 angstroms and 500 angstroms. In addition, the fin structure 313 of the present invention has a tapered structure toward the base 300 . Preferably, the angle θ of the taper is less than 30 degrees. The fin structure 313 is, for example, a silicon layer, a germanium layer (Ge), a silicon germanium layer (SiGe), or a combination thereof. The fin structure 313 may further include a source region 313 a and a drain region 313 b separated by a gate layer 324 and include dopants of appropriate electrical properties and doping concentrations.

栅极层324设置于栅极介电层322上,并沿着x方向延伸而覆盖至少一鳍状结构313。栅极层324可以包括各种导电材料,例如是多晶硅或者是金属。栅极介电层322设置于鳍状结构313以及栅极层324之间,并覆盖在鳍状结构313的表面,详细来说,栅极介电层322会设置于突出于物质层302上方部分(即具有H1高度的区域)的鳍状结构313的侧壁及/或顶面。栅极介电层322可以是例如二氧化硅或者是高介电常数介电层。高介电常数介电层例如可选自氧化铪(hafnium oxide,HfO2)、硅酸铪氧化合物(hafnium siliconoxide,HfSiO4)、硅酸铪氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化铝(aluminum oxide,Al2O3)、氧化镧(lanthanum oxide,La2O3)、氧化钽(tantalum oxide,Ta2O5)、氧化钇(yttrium oxide,Y2O3)、氧化锆(zirconium oxide,ZrO2)、钛酸锶(strontium titanate oxide,SrTiO3)、硅酸锆氧化合物(zirconiumsilicon oxide,ZrSiO4)、锆酸铪(hafnium zirconium oxide,HfZrO4)、锶铋钽氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、锆钛酸铅(lead zirconatetitanate,PbZrxTi1-xO3,PZT)与钛酸钡锶(barium strontium titanate,BaxSr1-xTiO3,BST)所组成的群组。The gate layer 324 is disposed on the gate dielectric layer 322 and extends along the x direction to cover at least one fin structure 313 . The gate layer 324 may include various conductive materials, such as polysilicon or metal. The gate dielectric layer 322 is disposed between the fin structure 313 and the gate layer 324, and covers the surface of the fin structure 313. In detail, the gate dielectric layer 322 is disposed on the portion protruding above the material layer 302 The sidewall and/or the top surface of the fin structure 313 (ie, the region with the height H1). The gate dielectric layer 322 can be, for example, silicon dioxide or a high-k dielectric layer. The high dielectric constant dielectric layer can be selected from, for example, hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (aluminum oxide, Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconia oxide, ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalum oxide (strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (lead zirconate titanate, PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr 1-x TiO 3 , BST) group.

可以理解的是,前述x方向、y方向以及z方向仅为相对位置的参考,若将基板300沿逆时针或顺时针旋转90度,例如使鳍状结构313沿着x方向延伸并彼此平行于y方向,而栅极层324沿着y方向延伸,其排列方式仍为本发明的等同变化与修饰,皆应属本发明的涵盖范围。It can be understood that the aforementioned x-direction, y-direction and z-direction are only references for relative positions. If the substrate 300 is rotated 90 degrees counterclockwise or clockwise, for example, the fin structures 313 extend along the x-direction and are parallel to each other. y direction, while the gate layer 324 extends along the y direction, and its arrangement is still the equivalent change and modification of the present invention, which should fall within the scope of the present invention.

为了增加鳍状晶体管326的电性表现,本发明还提供了下列实施示例。于本发明的实施例中,鳍状晶体管326还可包括硅应力层(图未示)设置于鳍状结构313以及栅极介电层322之间,例如设置于鳍状结构313的侧壁或者顶面。于另一实施例中,若鳍状结构313包括伸张硅锗层(relaxed SiGe),还可以设置第二硅锗层(图未示)于鳍状结构313与栅极介电层322之间,且第二硅锗层中锗的含量大于鳍状结构313中锗的含量。In order to increase the electrical performance of the fin transistor 326, the present invention also provides the following implementation examples. In an embodiment of the present invention, the fin transistor 326 may further include a silicon stress layer (not shown) disposed between the fin structure 313 and the gate dielectric layer 322 , such as disposed on the sidewall of the fin structure 313 or top surface. In another embodiment, if the fin structure 313 includes a relaxed SiGe layer (relaxed SiGe), a second SiGe layer (not shown) may be disposed between the fin structure 313 and the gate dielectric layer 322, And the content of germanium in the second silicon germanium layer is greater than the content of germanium in the fin structure 313 .

请参考图1至图11,所绘示为本发明鳍状晶体管的制作方法示意图,其沿着图12中的AA’切线所绘制。如图1所示,首先提供基底300,例如硅基底。接着在基底300上依序形成物质层302以及掩模层304。于本发明优选实施例中,物质层302的材料包括二氧化硅(SiO2),而掩模层304的材料则包括氮化硅(SiN)。Please refer to FIG. 1 to FIG. 11 , which are schematic diagrams of the manufacturing method of the fin transistor of the present invention, which are drawn along the tangent line AA' in FIG. 12 . As shown in FIG. 1 , a substrate 300 such as a silicon substrate is provided first. Next, a substance layer 302 and a mask layer 304 are sequentially formed on the substrate 300 . In a preferred embodiment of the present invention, the material of the substance layer 302 includes silicon dioxide (SiO 2 ), and the material of the mask layer 304 includes silicon nitride (SiN).

如图2所示,在掩模层304上形成图案化光致抗蚀剂层308,用以定义各鳍状结构313的位置。于优选实施例中,图案化光致抗蚀剂层308与掩模层304之间可以选择性地形成单层或多层结构的底部抗反射层(bottom antireflection coating,BARC)306;而于另一实施例中,也可以不用形成底部抗反射层306。As shown in FIG. 2 , a patterned photoresist layer 308 is formed on the mask layer 304 to define the position of each fin structure 313 . In a preferred embodiment, a single-layer or multi-layer bottom antireflection layer (bottom antireflection coating, BARC) 306 can be selectively formed between the patterned photoresist layer 308 and the mask layer 304; In one embodiment, the bottom anti-reflection layer 306 may not be formed.

如图3所示,以图案化光致抗蚀剂层308为掩模进行至少一蚀刻工艺。此蚀刻工艺会移除未被图案化光致抗蚀剂层308覆盖的掩模层304、物质层302,并进一步蚀刻至基底300,而形成多个第一沟槽310。于本发明优选实施例中,第一沟槽310具有渐缩(tapered)的侧壁,且该渐缩角度小于30度。接着,移除图案化光致抗蚀剂层308以及抗反射层306。As shown in FIG. 3 , at least one etching process is performed using the patterned photoresist layer 308 as a mask. The etching process removes the mask layer 304 and the substance layer 302 not covered by the patterned photoresist layer 308 , and further etches the substrate 300 to form a plurality of first trenches 310 . In a preferred embodiment of the present invention, the first trench 310 has tapered sidewalls, and the tapered angle is less than 30 degrees. Next, the patterned photoresist layer 308 and the antireflection layer 306 are removed.

如图4所示,以基底300为晶种层进行选择性外延生长工艺(selectiveepitaxial growth),以在每个第一沟槽310中形成半导体层(semiconductorlayer)312。半导体层312会由第一沟槽310的底部生长,并向上生长超过掩模层304的顶面。于本发明的实施例中,半导体层312例如包括硅层(Si)、锗层(Ge)、硅锗层(SiGe)或上述的组合。半导体层312亦可具有一层或多层的结构,并具有适当的应力。一般而言,若基底300为硅基底,当进行选择性外延生长锗层或硅锗层时,位错(dislocation)等的晶格缺陷通常发生在相对硅(001)面为30度的位置。以图12为例,硅(001)面平行于硅基底300的表面(x轴方向),渐缩角度即为渐缩侧壁与z轴的夹角θ。在进行选择性外延生长工艺时,由于第一沟槽310具有渐缩的侧壁,且该渐缩角度θ小于30度,故半导体层312中的位错(dislocation)等的晶格缺陷会沿着第一沟槽310的渐缩侧壁逐渐往上移动。当位错往上移动至二氧化硅的物质层302时,位错会因为高宽比陷捕(aspect ratio trapping,ART)现象而被物质层302吸收。因此,本发明的半导体层312能免除位错的产生,而具有优选的品质。值得注意的是,虽然晶格缺陷易发生的位置会随着基底300与半导体层312外延材料改变,但由于半导体主要的基底300与半导体层312的外延材料多为钻石状结构(Diamond structure),位错等的晶格缺陷仍通常发生在相对硅(001)面为30度的位置,因此本发明使用具有小于30度的渐缩侧壁,能克服大部分的晶隔缺陷问题。As shown in FIG. 4 , a selective epitaxial growth process (selective epitaxial growth) is performed using the substrate 300 as a seed layer to form a semiconductor layer (semiconductor layer) 312 in each first trench 310 . The semiconductor layer 312 grows from the bottom of the first trench 310 and grows upward beyond the top surface of the mask layer 304 . In an embodiment of the present invention, the semiconductor layer 312 includes, for example, a silicon layer (Si), a germanium layer (Ge), a silicon germanium layer (SiGe), or a combination thereof. The semiconductor layer 312 may also have a one-layer or multi-layer structure with appropriate stress. Generally speaking, if the substrate 300 is a silicon substrate, when a germanium layer or a silicon germanium layer is selectively epitaxially grown, lattice defects such as dislocations usually occur at a position 30 degrees relative to the silicon (001) plane. Taking FIG. 12 as an example, the silicon (001) plane is parallel to the surface (x-axis direction) of the silicon substrate 300, and the tapering angle is the angle θ between the tapering sidewall and the z-axis. During the selective epitaxial growth process, since the first trench 310 has tapered sidewalls, and the tapered angle θ is less than 30 degrees, lattice defects such as dislocations in the semiconductor layer 312 will be along the The tapered sidewalls of the first trench 310 gradually move upward. When dislocations move upward to the material layer 302 of silicon dioxide, the dislocations will be absorbed by the material layer 302 due to aspect ratio trapping (ART) phenomenon. Therefore, the semiconductor layer 312 of the present invention can avoid generation of dislocations, and has preferable quality. It is worth noting that although the locations where lattice defects are prone to occur will change with the epitaxial materials of the substrate 300 and the semiconductor layer 312, since the epitaxial materials of the substrate 300 and the semiconductor layer 312 are mostly diamond-like structures, Lattice defects such as dislocations usually occur at a position of 30 degrees relative to the silicon (001) plane, so the present invention uses tapered sidewalls with less than 30 degrees to overcome most of the lattice defects.

于本发明另一实施例中,在进行完选择性外延生长后,还可以进行循环退火工艺(cyclic thermal annealing,CTA),包括先进行高温退火步骤,再进行低温退火步骤,并持续数个循环。于本发明的实施例中,高温退火是在摄氏850度至950度中持续5分钟,优选为900度,低温退火是在350度至450度中持续5分钟,优选为400度,并循环多次例如为3次。由于半导体层312和基底300之间的热膨胀系数(thermal expansion coefficient)不同,因此进行循环退火工艺可以促使半导体层312中的位错更加往物质层302的方向移动,进而降低位错等的晶格缺陷的产生。In another embodiment of the present invention, after the selective epitaxial growth is completed, a cyclic thermal annealing (CTA) process can also be performed, including first performing a high-temperature annealing step, and then performing a low-temperature annealing step, and continuing for several cycles . In an embodiment of the present invention, the high temperature annealing is carried out at 850°C to 950°C for 5 minutes, preferably 900°C, and the low temperature annealing is carried out at 350°C to 450°C for 5 minutes, preferably at 400°C, and repeated cycles The number of times is, for example, three times. Since the thermal expansion coefficient (thermal expansion coefficient) between the semiconductor layer 312 and the substrate 300 is different, performing a cyclic annealing process can promote dislocations in the semiconductor layer 312 to move toward the material layer 302, thereby reducing the crystal lattice of dislocations and the like. The occurrence of defects.

如图5所示,接着进行平坦化步骤,例如是化学机械抛光(chemicalmechanical polish,CMP)工艺,以将掩模层304顶面上的半导体层312去除,使得半导体层312和掩模层304齐高。在此步骤中,半导体层312于是构成了多个鳍状结构(fin structure)313。每个鳍状结构313大体上彼此平行,且设置于各第一沟槽310中,突出于基底300上并与掩模层304齐高。As shown in FIG. 5 , a planarization step, such as a chemical mechanical polish (CMP) process, is performed to remove the semiconductor layer 312 on the top surface of the mask layer 304, so that the semiconductor layer 312 and the mask layer 304 are aligned. high. In this step, the semiconductor layer 312 then forms a plurality of fin structures 313 . Each fin structure 313 is substantially parallel to each other, and is disposed in each first trench 310 , protrudes above the substrate 300 and is flush with the mask layer 304 .

如图6所示,在掩模层304上形成选择性的底部抗反射层314以及图案化光致抗蚀剂层316,以定义出有源区328以及包围有源区328的浅沟槽隔离的位置,其中鳍状结构313会位于有源区328中。接着,如图7所示,以图案化光致抗蚀剂层316为掩模进行蚀刻工艺,以移除未被图案化光致抗蚀剂层316覆盖的掩模层304、物质层302,并进一步蚀刻至基底300,并在基底300中形成多个第二沟槽318。第二沟槽318的深度会大于第一沟槽310的深度,在实施例中,第二沟槽318的深度大体上介于2000埃至3000埃。然后,移除图案化光致抗蚀剂层316以及抗反射层314。As shown in FIG. 6 , a selective bottom antireflection layer 314 and a patterned photoresist layer 316 are formed on the mask layer 304 to define an active region 328 and shallow trench isolations surrounding the active region 328 , wherein the fin structure 313 will be located in the active region 328 . Next, as shown in FIG. 7, an etching process is performed using the patterned photoresist layer 316 as a mask to remove the mask layer 304 and the substance layer 302 not covered by the patterned photoresist layer 316, And further etch to the substrate 300 to form a plurality of second trenches 318 in the substrate 300 . The depth of the second trench 318 is greater than the depth of the first trench 310. In one embodiment, the depth of the second trench 318 is generally between 2000 angstroms and 3000 angstroms. Then, the patterned photoresist layer 316 and the antireflection layer 314 are removed.

如图8所示,在基底300上全面形成绝缘层320,使其至少填满各第二沟槽318。形成绝缘层320的方式例如是沉积工艺,包括等离子体增强化学气相沉积(plasma-Enhanced CVD,PECVD)等。绝缘层320例如是二氧化硅层。接着如图9所示,进行平坦化工艺以去除位于掩模层304上方的绝缘层320。然后再进行回蚀刻工艺以移除第二沟槽318中的部分绝缘层320,使得绝缘层320的高度略高于物质层302,而形成了多个浅沟槽隔离321。值得注意的是,前述实施例中图1至图4是形成鳍状结构313后,在图5至图8中再形成浅沟槽隔离321。而于本发明另一实施例中,亦可先形成浅沟槽隔离321后,再形成鳍状结构313。As shown in FIG. 8 , an insulating layer 320 is fully formed on the substrate 300 such that it at least fills up each second trench 318 . The method of forming the insulating layer 320 is, for example, a deposition process, including plasma-enhanced chemical vapor deposition (plasma-Enhanced CVD, PECVD) and the like. The insulating layer 320 is, for example, a silicon dioxide layer. Next, as shown in FIG. 9 , a planarization process is performed to remove the insulating layer 320 above the mask layer 304 . Then, an etch-back process is performed to remove part of the insulating layer 320 in the second trench 318 , so that the height of the insulating layer 320 is slightly higher than that of the substance layer 302 , thereby forming a plurality of shallow trench isolations 321 . It should be noted that, in FIGS. 1 to 4 in the foregoing embodiments, after the fin structure 313 is formed, the shallow trench isolation 321 is formed in FIGS. 5 to 8 . In another embodiment of the present invention, the shallow trench isolation 321 may also be formed first, and then the fin structure 313 is formed.

如图10所示,进行蚀刻工艺以将掩模层304去除。于本发明实施例中,当掩模层304为氮化硅时,可利用热磷酸加以去除。于本发明的实施例中,还可以在鳍状结构313的侧壁或顶面形成硅应力层(图未示)。而于另一实施例中,若鳍状结构313包括伸张硅锗层(relaxed SiGe),还可以在鳍状结构313上形成第二硅锗层(图未示),且第二硅锗层中锗的含量大于鳍状结构313中锗的含量。As shown in FIG. 10 , an etching process is performed to remove the mask layer 304 . In the embodiment of the present invention, when the mask layer 304 is silicon nitride, it can be removed by hot phosphoric acid. In an embodiment of the present invention, a silicon stress layer (not shown) may also be formed on the sidewall or top surface of the fin structure 313 . In another embodiment, if the fin structure 313 includes a relaxed SiGe layer (relaxed SiGe), a second SiGe layer (not shown) may also be formed on the fin structure 313, and the second SiGe layer The germanium content is greater than the germanium content in the fin structure 313 .

最后如图11所示,在基底300上形成栅极介电层322覆盖在各鳍状结构313上,栅极介电层322可以是例如二氧化硅或者是高介电常数介电层。然后,在栅极介电层322上形成栅极层324,栅极层324可以包括各种导电材料,例如是多晶硅或者是金属。后续,在图案化栅极层324使的形成所需的栅极结构之后,再进行离子注入工艺以在鳍状结构313中形成如图12的源极区313a以及漏极区313b。通过上述步骤,即可形成了如图12的结构。于本发明的实施例中,还可在鳍状晶体管326上形成内层介电层(inter-layerdielectric,ILD)(图未示),并在内层介电层中形成适当的接触洞(图未示),以作为和外部电路的输出/输入沟道。Finally, as shown in FIG. 11 , a gate dielectric layer 322 is formed on the substrate 300 to cover each fin structure 313 . The gate dielectric layer 322 can be, for example, silicon dioxide or a high-k dielectric layer. Then, a gate layer 324 is formed on the gate dielectric layer 322 , and the gate layer 324 may include various conductive materials, such as polysilicon or metal. Subsequently, after patterning the gate layer 324 to form the desired gate structure, an ion implantation process is performed to form the source region 313 a and the drain region 313 b in the fin structure 313 as shown in FIG. 12 . Through the above steps, the structure shown in Figure 12 can be formed. In an embodiment of the present invention, an inter-layer dielectric layer (inter-layer dielectric, ILD) (not shown) may also be formed on the fin transistor 326, and appropriate contact holes may be formed in the inter-layer dielectric layer (FIG. not shown) as an output/input channel with external circuits.

本领域的人应可了解前述实施例即为「先栅极(gate-first)工艺」。而本发明亦可使用于「后栅极(gate last)工艺」,举例来说,在另外一实施例中,此栅极层324可以是牺牲栅极(sacrifice gate),在形成了内层介电层后,可进一步将此牺牲栅极层324移除,并另外再形成低电阻的栅极(图未示),例如是金属栅极,而完成后栅极工艺。Those skilled in the art should understand that the foregoing embodiments are "gate-first processes". The present invention can also be used in the "last gate (gate last) process". For example, in another embodiment, the gate layer 324 can be a sacrificial gate (sacrifice gate). After the electrical layer, the sacrificial gate layer 324 can be further removed, and a low-resistance gate (not shown), such as a metal gate, can be formed to complete the gate-last process.

值得注意的是,图12中的鳍状结构313中宽度W,高度H1、高度H2以及高度H3可在前述工艺中透过控制不同参数而得。举例来说,宽度W以及高度H3是在图3中形成的第一沟槽310来决定,而高度H1和高度H2是在图1中掩模层304和物质层302的厚度来决定。由于可调整工艺的参数来决定宽度W以及高度H1的比例,故本发明可以视产品设计而形成不同电性的非平面晶体管(non-planer transistor),例如FIN-FET(当H1大于等于两倍W时)、trigate(当H1大约为1倍W时)或者segment-FET(当H1大约为0.5倍W时)。此外,本发明以选择性外延生长工艺来形成鳍状结构,配合渐缩角度的侧壁以及循环退火工艺,可以确保鳍状结构的品质,进而提高产品的良率。另一方面,相较于已知鳍状晶体管大多在硅绝缘基底上形成,本发明提供的方法可在一般硅基底上操作,更增加了工艺的弹性。It should be noted that the width W, height H1 , height H2 and height H3 of the fin structure 313 in FIG. 12 can be obtained by controlling different parameters in the aforementioned process. For example, the width W and the height H3 are determined by the first trench 310 formed in FIG. 3 , while the heights H1 and H2 are determined by the thicknesses of the mask layer 304 and the substance layer 302 in FIG. 1 . Since the parameters of the process can be adjusted to determine the ratio of the width W and the height H1, the present invention can form different electrical non-planar transistors (non-planer transistors) depending on the product design, such as FIN-FET (when H1 is greater than or equal to twice W), trigate (when H1 is about 1 times W) or segment-FET (when H1 is about 0.5 times W). In addition, the present invention uses a selective epitaxial growth process to form the fin structure, and cooperates with the tapered sidewall and the cyclic annealing process to ensure the quality of the fin structure and improve the yield of the product. On the other hand, compared with the conventional fin transistors that are mostly formed on silicon insulating substrates, the method provided by the present invention can be operated on general silicon substrates, which further increases the flexibility of the process.

以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (20)

1. method that forms fin transistor comprises:
Substrate is provided;
In this substrate, form mask layer;
In this mask layer and this substrate, form the first groove;
In this first groove, form semiconductor layer;
Remove this mask layer, so that this semiconductor layer formation fin structure is embedded in this substrate and protrudes from this substrate; And
Forming grid covers on this fin structure.
2. the method for formation fin transistor as claimed in claim 1 also comprises forming shallow trench isolation to define active area.
3. the method for formation fin transistor as claimed in claim 2, wherein form first this shallow trench isolation from, remove again this mask layer.
4. the method for formation fin transistor as claimed in claim 1, the method that wherein forms this semiconductor layer comprises selective epitaxial growth process.
5. the method for formation fin transistor as claimed in claim 1, the method that wherein forms this semiconductor layer comprises cycle annealing technique.
6. the method for formation fin transistor as claimed in claim 1 also is included between this substrate and this mask layer and forms material layer.
7. the method for formation fin transistor as claimed in claim 6, wherein this material layer comprises silicon dioxide.
8. the method for formation fin transistor as claimed in claim 1, wherein this semiconductor layer comprises silicon layer, germanium layer, germanium-silicon layer or above-mentioned combination.
9. method that forms fin transistor comprises:
Substrate is provided;
In this substrate, form mask layer;
In this mask layer and this substrate, form the first groove;
In this first groove, form semiconductor layer;
Form shallow trench isolation to define active area, wherein this semiconductor layer is arranged in this active area;
Form this shallow trench isolation from rear, remove this mask layer, so that this semiconductor layer formation fin structure is embedded in this substrate and protrudes from this substrate;
Form grid on this fin structure.
10. the method for formation fin transistor as claimed in claim 9, the method that wherein forms this semiconductor layer comprises selective epitaxial growth process.
11. the method for formation fin transistor as claimed in claim 9, the method that wherein forms this semiconductor layer comprises cycle annealing technique.
12. the method for formation fin transistor as claimed in claim 9 also is included between this substrate and this mask layer and forms material layer.
13. the method for formation fin transistor as claimed in claim 12, wherein this material layer comprises silicon dioxide.
14. the method for formation fin transistor as claimed in claim 9, wherein this semiconductor layer comprises silicon layer, germanium layer, germanium-silicon layer or above-mentioned combination.
15. a fin transistor comprises:
Substrate;
Fin structure is embedded in this substrate, and this fin structure protrudes from this substrate;
Gate dielectric covers the surface of this fin structure; And
Grid covers on this gate dielectric.
16. fin transistor as claimed in claim 15, wherein this fin structure comprises silicon layer, germanium layer, germanium-silicon layer or above-mentioned combination.
17. fin transistor as claimed in claim 15, wherein this fin structure has the structure towards the substrate convergent.
18. fin transistor as claimed in claim 15 also comprises the silicon stressor layers, this stressor layers is arranged between this fin structure and this gate dielectric.
19. fin transistor as claimed in claim 15, wherein this fin structure comprises the extension germanium-silicon layer, and this fin transistor comprises that also the second germanium-silicon layer is arranged between this fin structure and this gate dielectric, and in this second germanium-silicon layer the content of germanium greater than the content of germanium in this fin structure.
20. fin transistor as claimed in claim 15, wherein this fin structure comprises the extension germanium-silicon layer, and this fin transistor comprises that also the silicon stressor layers is arranged at the sidewall of this fin structure.
CN201110249354.6A 2011-08-26 2011-08-26 Fin transistor and method for making same Active CN102956466B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110249354.6A CN102956466B (en) 2011-08-26 2011-08-26 Fin transistor and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110249354.6A CN102956466B (en) 2011-08-26 2011-08-26 Fin transistor and method for making same

Publications (2)

Publication Number Publication Date
CN102956466A true CN102956466A (en) 2013-03-06
CN102956466B CN102956466B (en) 2016-11-16

Family

ID=47765126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110249354.6A Active CN102956466B (en) 2011-08-26 2011-08-26 Fin transistor and method for making same

Country Status (1)

Country Link
CN (1) CN102956466B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362093A (en) * 2014-10-14 2015-02-18 中国科学院上海微系统与信息技术研究所 SOI (silicon on insulator) structure and manufacturing method thereof
CN105244379A (en) * 2014-07-10 2016-01-13 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN105336786A (en) * 2014-08-15 2016-02-17 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN105448985A (en) * 2014-08-14 2016-03-30 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN109427907A (en) * 2017-08-30 2019-03-05 三星电子株式会社 Semiconductor devices and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11854880B2 (en) 2021-02-25 2023-12-26 Changxin Memory Technologies, Inc. Memory device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262389A1 (en) * 2004-01-16 2007-11-15 Robert Chau Tri-gate transistors and methods to fabricate same
CN101154597A (en) * 2006-09-29 2008-04-02 海力士半导体有限公司 Fin transistor manufacturing method
US20080157182A1 (en) * 2006-12-27 2008-07-03 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262389A1 (en) * 2004-01-16 2007-11-15 Robert Chau Tri-gate transistors and methods to fabricate same
CN101154597A (en) * 2006-09-29 2008-04-02 海力士半导体有限公司 Fin transistor manufacturing method
US20080157182A1 (en) * 2006-12-27 2008-07-03 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244379A (en) * 2014-07-10 2016-01-13 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN105448985A (en) * 2014-08-14 2016-03-30 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN105336786A (en) * 2014-08-15 2016-02-17 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN104362093A (en) * 2014-10-14 2015-02-18 中国科学院上海微系统与信息技术研究所 SOI (silicon on insulator) structure and manufacturing method thereof
CN104362093B (en) * 2014-10-14 2017-03-22 中国科学院上海微系统与信息技术研究所 SOI (silicon on insulator) structure and manufacturing method thereof
CN109427907A (en) * 2017-08-30 2019-03-05 三星电子株式会社 Semiconductor devices and its manufacturing method
CN109427907B (en) * 2017-08-30 2023-11-07 三星电子株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
CN102956466B (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US9406805B2 (en) Fin-FET
TWI502747B (en) Semiconductor component and method of manufacturing same
US9184087B2 (en) Mechanisms for forming FinFETs with different fin heights
US8691651B2 (en) Method of forming non-planar FET
US8278184B1 (en) Fabrication method of a non-planar transistor
CN104821296A (en) Semiconductor device and forming method thereof
US8722501B2 (en) Method for manufacturing multi-gate transistor device
CN102956466B (en) Fin transistor and method for making same
TWI687980B (en) Semiconductor device and method for fabricating the same
CN105810729A (en) Fin field effect transistor and manufacturing method thereof
CN104752447A (en) Semiconductor device and manufacturing method thereof
CN104681490A (en) Forming method of CMOS (complementary metal-oxide-semiconductor) transistor
TWI523114B (en) Fin-fet and method of forming the same
CN104078363A (en) Semiconductor device manufacturing method
CN103377931B (en) Semiconductor structure and manufacturing method thereof
TWI518790B (en) Semiconductor device and method of making the same
CN103219366B (en) Fin-shaped field effect transistor structure and manufacturing method thereof
TWI517392B (en) Finfet structure and method for making the same
CN103107089B (en) Method for fabricating non-planar transistors
CN109087890B (en) Semiconductor device, manufacturing method thereof and electronic device
TWI515798B (en) Method of forming non-planar fet
TWI505376B (en) Method of forming a non-planar transistor
TWI528460B (en) Method for fabricating field effect transistor with fin structure
CN109037213A (en) A kind of semiconductor devices and preparation method thereof and electronic device
CN103000518B (en) Methods of forming non-planar transistors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant