[go: up one dir, main page]

CN102945968A - Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof - Google Patents

Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof Download PDF

Info

Publication number
CN102945968A
CN102945968A CN2012105222983A CN201210522298A CN102945968A CN 102945968 A CN102945968 A CN 102945968A CN 2012105222983 A CN2012105222983 A CN 2012105222983A CN 201210522298 A CN201210522298 A CN 201210522298A CN 102945968 A CN102945968 A CN 102945968A
Authority
CN
China
Prior art keywords
electrode
polyepichlorohydrin
diffusion layer
membrane
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105222983A
Other languages
Chinese (zh)
Inventor
朱荣杰
王涛
张伟
刘向
孙毅
张新荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Spaceflight Technology SAST
Original Assignee
Shanghai Academy of Spaceflight Technology SAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Spaceflight Technology SAST filed Critical Shanghai Academy of Spaceflight Technology SAST
Priority to CN2012105222983A priority Critical patent/CN102945968A/en
Publication of CN102945968A publication Critical patent/CN102945968A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种复合型聚环氧氯丙烷碱性聚合物膜电极及其制备方法。该膜电极包含碱性阴离子交换膜、电极层,该碱性阴离子交换膜是通过卤原子与叔胺发生亲核取代反应,得到季胺化聚环氧氯丙烷,再与多孔聚四氟乙烯膜复合而成;该电极层包含氢电极和氧电极,该氢电极包含气体扩散层及喷涂在其上的氢电极催化层,该氧电极包含气体扩散层及喷涂在其上的氧电极催化层;该膜电极是按照氢电极、碱性阴离子交换膜、氧电极的组合顺序一体化成型形成;该气体扩散层采用碳材料为基体,添加疏水性聚合物形成。本发明所涉及的碱性膜电极,其碱性阴离子交换膜合成方法简单、离子传导率高,可选用成本较低的非铂基催化剂,适用于碱性阴离子交换膜燃料电池。

The invention discloses a composite polyepichlorohydrin alkaline polymer membrane electrode and a preparation method thereof. The membrane electrode includes a basic anion exchange membrane and an electrode layer. The basic anion exchange membrane undergoes a nucleophilic substitution reaction between a halogen atom and a tertiary amine to obtain a quaternary aminated polyepichlorohydrin, and then combines with a porous polytetrafluoroethylene membrane Composite; the electrode layer includes a hydrogen electrode and an oxygen electrode, the hydrogen electrode includes a gas diffusion layer and a hydrogen electrode catalytic layer sprayed thereon, and the oxygen electrode includes a gas diffusion layer and an oxygen electrode catalytic layer sprayed thereon; The membrane electrode is integrally molded according to the combination sequence of hydrogen electrode, alkaline anion exchange membrane and oxygen electrode; the gas diffusion layer is formed by using carbon material as a matrix and adding hydrophobic polymer. The alkaline membrane electrode involved in the present invention has a simple synthesis method of the alkaline anion exchange membrane, high ion conductivity, and a non-platinum-based catalyst with low cost can be selected, and is suitable for the alkaline anion exchange membrane fuel cell.

Description

一种复合型聚环氧氯丙烷碱性聚合物膜电极及其制备方法A kind of composite polyepichlorohydrin alkaline polymer membrane electrode and preparation method thereof

技术领域 technical field

本发明属于燃料电池领域,涉及一种膜电极,具体涉及一种燃料电池用复合型聚环氧氯丙烷碱性聚合物膜电极及其制备方法。 The invention belongs to the field of fuel cells, and relates to a membrane electrode, in particular to a composite polyepichlorohydrin alkaline polymer membrane electrode for a fuel cell and a preparation method thereof.

背景技术 Background technique

碱性燃料电池(AFC)是第一种应用于实际的燃料电池,其最大的优点在于阴极氧化还原动力学优越,可以采用低载量Pt催化剂甚至非Pt催化剂。其工作原理是,阳极氢气与氢氧根离子在电催化剂的作用下,发生氧化反应生成水和电子,电子通过外电路传导到阴极,在阴极催化剂的作用下,与氧气和水反应生成氢氧根离子,生成的氢氧根离子通过电解质迁移到阳极继续参与反应。然而传统碱性燃料电池采用的是液体电解质(氢氧化钾溶液),不但具有较强的腐蚀性,而且只适用纯氢、纯氧反应剂,对CO2等酸性杂质气体敏感、性能急剧下降。 Alkaline fuel cell (AFC) is the first practical fuel cell, and its biggest advantage lies in the superior redox kinetics of the cathode, which can use low-load Pt catalysts or even non-Pt catalysts. Its working principle is that under the action of the electrocatalyst, the anode hydrogen and hydroxide ions undergo an oxidation reaction to generate water and electrons, and the electrons are conducted to the cathode through an external circuit. Under the action of the cathode catalyst, they react with oxygen and water to form hydrogen and oxygen. The generated hydroxide ions migrate through the electrolyte to the anode to continue to participate in the reaction. However, the traditional alkaline fuel cell uses a liquid electrolyte (potassium hydroxide solution), which is not only highly corrosive, but also only suitable for pure hydrogen and pure oxygen reactants, and is sensitive to acidic impurity gases such as CO 2 , and its performance drops sharply.

碱性阴离子交换膜燃料电池(AAEMFC)的提出,避免了传统碱性燃料电池的缺陷与不足。AAEMFC具有以下明显优势:(1) AAEMFC与传统AFC一样,最大的优点在于电极反应。可以减少贵金属的使用量,可用钴、银、镍替代铂。在碱性介质中,甲醇氧化比在酸性介质中更彻底,氧还原动力学在碱性条件下更优越;(2) 阴离子交换膜中不存在Na+、K+等可移动的金属阳离子,不会形成金属碳酸盐破坏电解质和电极层;(3) 碱性介质中,氧自由基对聚合物膜的破坏被抑制,因此选用无氟聚合物电解质膜更有可能降低环境污染;(4) AAEMFC中,水在阳极产生,在阴极消耗,系统水管理大大简化;(5) 使用固体电解质,不存在漏液、强腐蚀性等问题,可采用低成本金属双极板。 The proposal of Alkaline Anion Exchange Membrane Fuel Cell (AAEMFC) avoids the defects and deficiencies of traditional Alkaline Fuel Cells. AAEMFC has the following obvious advantages: (1) AAEMFC is the same as traditional AFC, the biggest advantage lies in the electrode reaction. The amount of precious metals used can be reduced, and platinum can be replaced by cobalt, silver, and nickel. In alkaline medium, methanol oxidation is more thorough than in acidic medium, and the oxygen reduction kinetics is superior under alkaline conditions; (2) There are no mobile metal cations such as Na + and K + in the anion exchange membrane, and no Metal carbonates will be formed to damage the electrolyte and electrode layers; (3) In alkaline media, the damage of oxygen free radicals to polymer membranes is inhibited, so the selection of fluorine-free polymer electrolyte membranes is more likely to reduce environmental pollution; (4) In AAEMFC, water is produced at the anode and consumed at the cathode, which greatly simplifies system water management; (5) Using solid electrolyte, there are no problems such as leakage and strong corrosion, and low-cost metal bipolar plates can be used.

目前AAEMFC的技术难度在于缺乏一种高效、稳定的碱性聚合物膜电极。主要原因之一是缺乏一种可适用于燃料电池的阴离子交换膜(AAEM),由于OH-的迁移速率不足H+的1/4,AAEM的电导率低于PEM;AAEM抗高温性能差,大多在≥60℃时发生降解;化学稳定性较差,机械强度较低。另一个主要原因是缺乏可适用于碱性固体电解质的电极,传统碱性燃料电池中的疏水性电极和质子交换膜燃料电池的酸性体系电极并不适用于AAEMFC。 The current technical difficulty of AAEMFC lies in the lack of an efficient and stable alkaline polymer membrane electrode. One of the main reasons is the lack of an anion exchange membrane (AAEM) suitable for fuel cells. Since the mobility of OH - is less than 1/4 of that of H + , the conductivity of AAEM is lower than that of PEM; AAEM has poor high temperature resistance, and most of them Degradation occurs at ≥60°C; poor chemical stability and low mechanical strength. Another main reason is the lack of electrodes suitable for alkaline solid electrolytes. The hydrophobic electrodes in traditional alkaline fuel cells and the acidic system electrodes in proton exchange membrane fuel cells are not suitable for AAEMFC.

发明内容 Contents of the invention

本发明的目的解决上述技术问题,提供一种高效、稳定的碱性阴离子交换膜燃料电池的膜电极。 The purpose of the present invention is to solve the technical problems mentioned above, and to provide a membrane electrode of an alkaline anion exchange membrane fuel cell with high efficiency and stability.

为达到上述目的,本发明提供了一种复合型聚环氧氯丙烷碱性聚合物膜电极,该膜电极包含碱性阴离子交换膜、电极层,其中: In order to achieve the above object, the invention provides a kind of composite polyepichlorohydrin alkaline polymer membrane electrode, and this membrane electrode comprises alkaline anion exchange membrane, electrode layer, wherein:

所述碱性阴离子交换膜是通过聚环氧氯丙烷的氯原子与叔胺的亲核取代反应,得到季胺化聚环氧氯丙烷,然后与多孔聚四氟乙烯膜复合而成; The basic anion exchange membrane is formed by nucleophilic substitution reaction between polyepichlorohydrin chlorine atoms and tertiary amines to obtain quaternized polyepichlorohydrin, and then compounded with porous polytetrafluoroethylene membrane;

所述电极层包含氢电极和氧电极,所述的氢电极包含气体扩散层及喷涂在该气体扩散层上的氢电极催化层,所述的氧电极包含气体扩散层及喷涂在该气体扩散层上的氧电极催化层; The electrode layer includes a hydrogen electrode and an oxygen electrode, the hydrogen electrode includes a gas diffusion layer and a hydrogen electrode catalytic layer sprayed on the gas diffusion layer, and the oxygen electrode includes a gas diffusion layer and a hydrogen electrode catalyst layer sprayed on the gas diffusion layer Oxygen electrode catalytic layer on top;

所述膜电极是按照氢电极、碱性阴离子交换膜、氧电极的组合顺序一体化成型形成; The membrane electrode is integrally formed according to the combination sequence of hydrogen electrode, alkaline anion exchange membrane and oxygen electrode;

其中,所述的气体扩散层采用碳材料为基体,添加疏水性聚合物形成。 Wherein, the gas diffusion layer is formed by using a carbon material as a matrix and adding a hydrophobic polymer.

上述的复合型聚环氧氯丙烷碱性聚合物膜电极,其中,所述的叔胺选择N,N,N`,N`-四甲基-1,6-甲二胺、N,N,N`,N`-四甲基-1,6-乙二胺、N,N,N`,N`-四甲基-1,6-丙二胺或N,N,N`,N`-四甲基-1,6-己二胺中的任意一种。 The above composite polyepichlorohydrin alkaline polymer membrane electrode, wherein the tertiary amine is selected from N,N,N`,N`-tetramethyl-1,6-methanediamine, N,N, N`,N`-tetramethyl-1,6-ethylenediamine, N,N,N`,N`-tetramethyl-1,6-propylenediamine or N,N,N`,N`- Any one of tetramethyl-1,6-hexanediamine.

上述的复合型聚环氧氯丙烷碱性聚合物膜电极,其中: The above-mentioned composite polyepichlorohydrin alkaline polymer membrane electrode, wherein:

所述的氢电极催化层包含铂基催化剂和聚合物乳液; The hydrogen electrode catalytic layer includes a platinum-based catalyst and a polymer emulsion;

所述的氧电极催化层包含铂基催化剂和聚合物乳液;或者,非铂基催化剂和聚合物乳液; The oxygen electrode catalytic layer comprises a platinum-based catalyst and a polymer emulsion; or, a non-platinum-based catalyst and a polymer emulsion;

其中,所述铂基催化剂为Pt黑或40%Pt/C,所述非铂基催化剂为Ni、Ag、Co或其碳载型Ni、Ag、Co催化剂;所述聚合物乳液为聚全氟乙丙烯、Nafion(Nafion属于全氟磺酸类聚合物,是杜邦公司专利产品,无中文译名)或季胺化聚合物乳液中的一种或几种。所述季胺化聚合物是指支链上带有季胺基团的脂肪族或芳香族高分子聚合物,如本文中所提及的季胺化聚环氧氯丙烷,还有季胺化聚氯苯乙烯(脂肪族主链)、季胺化聚砜(芳香族主链)等等。 Wherein, the platinum-based catalyst is Pt black or 40%Pt/C, the non-platinum-based catalyst is Ni, Ag, Co or its carbon-supported Ni, Ag, Co catalyst; the polymer emulsion is polyperfluoro One or more of ethylene propylene, Nafion (Nafion is a perfluorosulfonic acid polymer, a patented product of DuPont, without Chinese translation) or quaternized polymer emulsion. The quaternized polymer refers to an aliphatic or aromatic polymer with a quaternary amine group on the branch chain, such as the quaternized polyepichlorohydrin mentioned herein, and the quaternized Polychlorostyrene (aliphatic backbone), quaternized polysulfone (aromatic backbone), etc.

优选地,本发明所采用的季胺化聚合物乳液选择与膜材料相同的季胺化聚环氧氯丙烷,或者,Tokuyama公司的AS-x乳液(具有季胺化支链,详细结构未公开)。 Preferably, the quaternized polyepichlorohydrin used in the present invention is selected from the same quaternized polyepichlorohydrin as the membrane material, or the AS-x emulsion of Tokuyama Company (with quaternized branched chain, the detailed structure is not disclosed) ).

上述的复合型聚环氧氯丙烷碱性聚合物膜电极,其中,所述的气体扩散层的基体采用的碳材料为碳纸或者碳布,添加聚四氟乙烯或聚全氟乙丙烯进行疏水处理。 The above composite polyepichlorohydrin basic polymer membrane electrode, wherein the carbon material used in the base of the gas diffusion layer is carbon paper or carbon cloth, and polytetrafluoroethylene or polyperfluoroethylene propylene is added for hydrophobic deal with.

本发明还提供了一种上述的复合型聚环氧氯丙烷碱性聚合物膜电极的制备方法,该方法包含以下具体步骤: The present invention also provides a kind of preparation method of above-mentioned composite polyepichlorohydrin alkaline polymer membrane electrode, and this method comprises following concrete steps:

步骤1,碱性阴离子交换膜制备: Step 1, preparation of basic anion exchange membrane:

步骤1.1,将聚环氧氯丙烷溶解在N,N-二甲基亚砜中,边搅拌边加热,至温度80-100℃; Step 1.1, dissolving polyepichlorohydrin in N,N-dimethylsulfoxide, heating while stirring, to a temperature of 80-100°C;

步骤1.2,在惰性气氛下,向上述聚环氧氯丙烷溶液中,加入以聚环氧氯丙烷的重量计为30wt%-85wt%的叔胺,反应12-48小时,反应完成后移出溶液,过滤后备用,得到季胺化聚环氧氯丙烷; Step 1.2, under an inert atmosphere, add 30wt%-85wt% tertiary amine based on the weight of polyepichlorohydrin to the polyepichlorohydrin solution, react for 12-48 hours, remove the solution after the reaction is completed, Standby after filtering to obtain quaternized polyepichlorohydrin;

步骤1.3,向上述步骤1.2所得的季胺化聚环氧氯丙烷均一溶液中加入乙醇和丙酮,搅拌0.5-2小时,形成10-20wt%的均匀成膜溶液; Step 1.3, adding ethanol and acetone to the homogeneous solution of quaternized polyepichlorohydrin obtained in the above step 1.2, and stirring for 0.5-2 hours to form a uniform film-forming solution of 10-20wt%;

步骤1.4,将上述成膜溶液浇铸到经过预处理的多孔聚四氟乙烯薄膜中,在60-80℃加热蒸发溶剂,在60-120℃真空热处理4-20小时,即得所需阴离子交换膜; Step 1.4, casting the above film-forming solution into the pretreated porous polytetrafluoroethylene film, heating and evaporating the solvent at 60-80°C, and vacuum heat treatment at 60-120°C for 4-20 hours to obtain the desired anion exchange membrane ;

步骤2,电极层的制备: Step 2, preparation of the electrode layer:

步骤2.1,扩散层基底憎水处理:将扩散层基底材料碳纸或碳布用聚四氟乙烯或聚全氟乙丙烯乳液处理并进行烧结,先在120-130℃烧结15-30min,然后在280-350℃烧结15-30min;其中,碳纸或碳布是在整个气体扩散电极中起到支撑的作用,但为了能够有效传导气体,故对其进行疏水处理(水会阻碍气体传导); Step 2.1, Hydrophobic treatment of the diffusion layer base: treat the carbon paper or carbon cloth as the base material of the diffusion layer with polytetrafluoroethylene or polyperfluoroethylene propylene emulsion and sinter, first sinter at 120-130°C for 15-30min, and then Sinter at 280-350°C for 15-30min; among them, carbon paper or carbon cloth plays a supporting role in the entire gas diffusion electrode, but in order to effectively conduct gas, it is treated with hydrophobic treatment (water will hinder gas conduction);

步骤2.2,扩散层的制备:将碳粉和聚全氟乙丙烯乳液进行调和,制备气体扩散层浆料,然后,将该扩散层浆料喷涂到步骤2.1中憎水处理后的基底材料上,先在120-130℃烧结15-30min,然后在280-350℃烧结15-30min,并进行滚压整平,形成气体扩散层;其中,对碳纸或碳布进行整平(因为微观上,碳纸是多孔的),如果不整平处理,在后续涂布催化层时,大量的催化剂会填充到碳纸或碳布的孔隙中,远离电解质,起不到应有的催化作用; Step 2.2, preparation of the diffusion layer: blend the carbon powder and the polyperfluoroethylene propylene emulsion to prepare the gas diffusion layer slurry, and then spray the diffusion layer slurry on the base material after the hydrophobic treatment in step 2.1, First sinter at 120-130°C for 15-30min, then sinter at 280-350°C for 15-30min, and roll and flatten to form a gas diffusion layer; among them, carbon paper or carbon cloth is flattened (because microscopically, Carbon paper is porous), if it is not leveled, a large amount of catalyst will be filled into the pores of carbon paper or carbon cloth when the catalytic layer is subsequently coated, away from the electrolyte, and the proper catalytic effect cannot be achieved;

步骤2.3,催化层的制备:将催化剂浆料各组分均匀混合,喷涂到制备好的扩散层上,然后在50-80℃的烘箱中干燥,形成催化层;该扩散层及其上喷涂的催化层构成电极层,分别得到氢电极和氧电极; Step 2.3, preparation of the catalytic layer: uniformly mix the components of the catalyst slurry, spray on the prepared diffusion layer, and then dry it in an oven at 50-80°C to form a catalytic layer; the diffusion layer and its sprayed The catalytic layer constitutes the electrode layer to obtain a hydrogen electrode and an oxygen electrode respectively;

步骤3,碱性聚合物膜电极组件制备 Step 3, preparation of basic polymer membrane electrode assembly

步骤3.1,将步骤1制得的阴离子交换膜浸渍在KOH溶液中,将Cl-置换为OH-,用去离子水反复冲洗后晾干备用; Step 3.1, immerse the anion exchange membrane prepared in step 1 in KOH solution, replace Cl- with OH-, rinse with deionized water repeatedly, and then dry it for later use;

步骤3.2,剪裁合适大小的氢电极和氧电极放置在碱性阴离子交换膜上下两侧,上下对齐、配合完好,通过压机热压处理,压机的压力为1-6MPa,热压温度为80-100℃,持续时间60-150s,打开压机,自然冷却后取出制得的膜电极。 Step 3.2, cut the hydrogen electrode and oxygen electrode of appropriate size and place them on the upper and lower sides of the alkaline anion exchange membrane. -100°C for 60-150s, turn on the press, and take out the prepared membrane electrode after natural cooling.

上述的复合型聚环氧氯丙烷碱性聚合物膜电极的制备方法,其中,步骤1.3中,所述的季胺化聚环氧氯丙烷在乙醇和丙酮的浓度为14wt%。 The preparation method of the above-mentioned composite polyepichlorohydrin basic polymer membrane electrode, wherein, in step 1.3, the concentration of the quaternized polyepichlorohydrin in ethanol and acetone is 14wt%.

本发明所采取的技术方案是通过亲核取代反应制备季胺化聚环氧氯丙烷,再与多孔聚四氟乙烯复合成膜,制备阴离子交换膜,所制备的阴离子交换膜成膜性好、制备方法简单、毒性污染小,并且具有较好的热稳定性和较高的离子传导率;然后制备适合于碱性固体电解质的电极,按照氢电极——碱性阴离子交换膜——氧电极的组合顺序一体化成型形成膜电极。 The technical scheme adopted in the present invention is to prepare quaternary aminated polyepichlorohydrin through nucleophilic substitution reaction, and then compound with porous polytetrafluoroethylene to form an anion exchange membrane. The prepared anion exchange membrane has good film-forming property, The preparation method is simple, the toxicity and pollution are small, and it has good thermal stability and high ion conductivity; then prepare an electrode suitable for alkaline solid electrolyte, according to the principle of hydrogen electrode-alkaline anion exchange membrane-oxygen electrode The combined sequence is integrally formed to form a membrane electrode.

本发明所述膜电极涉及的碱性阴离子交换膜采用季胺化聚环氧氯丙烷与多孔聚四氟乙烯膜复合而成,与目前技术相比,制备方法简单、毒性污染小,并且具有较好的热稳定性和较高的离子传导率。 The basic anion exchange membrane involved in the membrane electrode of the present invention is formed by compounding quaternary aminated polyepichlorohydrin and porous polytetrafluoroethylene membrane. Compared with the current technology, the preparation method is simple, the toxicity and pollution are small, and it has relatively high Good thermal stability and high ionic conductivity.

本发明所述膜电极涉及的氢电极、氧电极中采用了季胺化聚合物乳液(主要成分为季胺化聚环氧氯丙烷),提高了OH-在电极中的传导能力,避免了固体电解质与电极接触界面有限的缺点,提高了膜电极性能;涉及的氧电极中采用了非铂催化剂,降低了燃料电池成本。 In the hydrogen electrode and the oxygen electrode involved in the membrane electrode of the present invention, the quaternized polymer emulsion (mainly composed of quaternized polyepichlorohydrin) is used, which improves the conductivity of OH in the electrode and avoids solid The disadvantage of the limited contact interface between the electrolyte and the electrode improves the performance of the membrane electrode; the non-platinum catalyst is used in the oxygen electrode involved, which reduces the cost of the fuel cell.

附图说明 Description of drawings

图1是PECH、QPECH以及QPECH/PTFE复合膜的热重曲线。 Fig. 1 is the thermogravimetric curve of PECH, QPECH and QPECH/PTFE composite membrane.

图2是QPECH/PTFE复合膜在不同温度(30-80℃)下的离子传导率。 Figure 2 shows the ion conductivity of QPECH/PTFE composite membrane at different temperatures (30-80°C).

图3是本发明所述膜电极的极化特性曲线(实验条件为:氢氧进气表压0.12MPa;氢氧增湿温度70℃,电池温度60-65℃;氢气、氧气进气计量比2.0:1)。 Fig. 3 is the polarization characteristic curve of the membrane electrode of the present invention (experimental conditions are: hydrogen and oxygen inlet gauge pressure 0.12MPa; hydrogen and oxygen humidification temperature 70 ℃, battery temperature 60-65 ℃; hydrogen, oxygen gas inlet metering ratio 2.0:1).

具体实施方式 Detailed ways

下面结合实施例,对本发明作进一步阐述。应该理解,这些实施例仅用于详细说明本发明而不用于限制本发明的范围。 Below in conjunction with embodiment, the present invention is further elaborated. It should be understood that these examples are only used to illustrate the present invention in detail and are not intended to limit the scope of the present invention.

实施例1 Example 1

将聚环氧氯丙烷(PECH)溶解在N,N-二甲基亚砜(DMSO)中,边搅拌边加热,至温度100℃;在惰性气氛下,向反应器中加入30%的N,N,N`,N`-四甲基-1,6-乙二胺反应48小时,反应完成后移出溶液,过滤后备用,得到季胺化聚环氧氯丙烷(QPECH);向上述均一溶液中加入一定量的乙醇和丙酮,搅拌2小时,形成14%的均匀成膜溶液;将成膜溶液浇铸到经过预处理的多孔聚四氟乙烯薄膜中,在60℃加热蒸发溶剂,在100℃真空热处理12小时,即得所需阴离子交换膜。 Dissolve polyepichlorohydrin (PECH) in N,N-dimethylsulfoxide (DMSO), heat while stirring, to a temperature of 100°C; under an inert atmosphere, add 30% N to the reactor, N,N`,N`-tetramethyl-1,6-ethylenediamine was reacted for 48 hours. After the reaction was completed, the solution was removed and filtered for later use to obtain quaternized polyepichlorohydrin (QPECH); Add a certain amount of ethanol and acetone to the mixture, stir for 2 hours to form a 14% uniform film-forming solution; cast the film-forming solution into a pretreated porous polytetrafluoroethylene film, heat and evaporate the solvent at 60°C, and then heat it at 100°C After vacuum heat treatment for 12 hours, the desired anion exchange membrane was obtained.

将碳纸用聚四氟乙烯(PTFE)乳液处理并进行烧结,首次先在120℃烧结15min,然后在350℃烧结15min;然后将一定量的碳粉和聚全氟乙丙烯(FEP)乳液进行调和,制备气体扩散层浆料,将碳粉浆料喷涂到憎水处理后的基体材料上,首次先在120℃烧结15min,然后在280℃烧结30min,并进行滚压整平,形成气体扩散层。 The carbon paper is treated with polytetrafluoroethylene (PTFE) emulsion and sintered, firstly sintered at 120°C for 15 minutes, then at 350°C for 15 minutes; then a certain amount of carbon powder and polyperfluoroethylene propylene (FEP) emulsion are sintered Reconcile and prepare the gas diffusion layer slurry, spray the carbon powder slurry on the base material after hydrophobic treatment, first sinter at 120°C for 15min, then sinter at 280°C for 30min, and roll and level it to form a gas diffusion layer layer.

氧电极催化层的制备是将80%的Pt黑与20%的季胺化聚合物乳液(优选与膜材料相同的季胺化聚环氧氯丙烷)用1:1的乙醇水溶液配置成浆料混合均匀,喷涂到制备好的扩散层上,然后在80℃的烘箱中干燥。该扩散层与喷涂在其上的氧电极催化层一起构成氧电极。 The preparation of the oxygen electrode catalytic layer is to prepare 80% Pt black and 20% quaternized polymer emulsion (preferably the same quaternized polyepichlorohydrin as the membrane material) with 1:1 ethanol aqueous solution to form a slurry Mix evenly, spray on the prepared diffusion layer, and then dry in an oven at 80°C. The diffusion layer together with the oxygen electrode catalytic layer sprayed on it constitutes the oxygen electrode.

氢电极催化层的制备是将70%的Pt/C与30%的季胺化聚合物乳液(优选与膜材料相同的季胺化聚环氧氯丙烷)用1:1的乙醇水溶液配置成浆料混合均匀,喷涂到制备好的扩散层上,然后在80℃的烘箱中干燥。该扩散层与喷涂在其上的氢电极催化层一起构成氢电极。 The preparation of the hydrogen electrode catalytic layer is to prepare a slurry of 70% Pt/C and 30% quaternized polymer emulsion (preferably the same quaternized polyepichlorohydrin as the membrane material) with 1:1 ethanol aqueous solution The materials are mixed evenly, sprayed on the prepared diffusion layer, and then dried in an oven at 80°C. The diffusion layer together with the hydrogen electrode catalytic layer sprayed on it constitutes the hydrogen electrode.

将阴离子交换膜浸渍在KOH溶液中,将交换离子置换为OH,用去离子水反复冲洗后晾干;剪裁合适大小的氢电极和氧电极放置在碱性阴离子交换膜上下两侧,上下对齐、配合完好,通过高精度压机热压处理,压机的压力为2MPa,热压温度为100℃,持续时间60s,打开压机,自然冷却后取出膜电极。 Immerse the anion exchange membrane in the KOH solution, replace the exchange ions with OH - , wash it repeatedly with deionized water and dry it; cut the appropriate size hydrogen electrode and oxygen electrode and place them on the upper and lower sides of the alkaline anion exchange membrane, aligning up and down , The fit is in good condition, and it is heat-pressed by a high-precision press. The pressure of the press is 2MPa, the temperature of the press is 100°C, and the duration is 60s. Turn on the press, and take out the membrane electrode after natural cooling.

实施例2 Example 2

阴离子交换膜的制备过程如实施例1所述,所不同的是叔胺采用N,N,N`,N`-四甲基-1,6-己二胺。对聚环氧氯丙烷(PECH)、合成的季胺化聚环氧氯丙烷(QPECH)、制备的阴离子交换膜(QPECH/PTFE)进行热重分析测试,如图1所示,制备的阴离子交换膜(QPECH/PTFE)其分解温度大于200℃,具有较好的热稳定性,能满足低温燃料电池运行的需求(工作温度一般低于120℃);对制备的阴离子交换膜的离子传导率进行测试,测试如图2所示,制备的阴离子交换膜具有较高的离子传导率,最高离子传导率大于10-2 S·cm-1(目前阴离子交换膜先进水平在10-2量级)。 The preparation process of the anion exchange membrane is as described in Example 1, except that the tertiary amine is N,N,N',N'-tetramethyl-1,6-hexanediamine. Polyepichlorohydrin (PECH), synthesized quaternized polyepichlorohydrin (QPECH), and the prepared anion exchange membrane (QPECH/PTFE) were tested by thermogravimetric analysis. As shown in Figure 1, the prepared anion exchange The membrane (QPECH/PTFE) has a decomposition temperature greater than 200°C and has good thermal stability, which can meet the needs of low-temperature fuel cell operation (the operating temperature is generally lower than 120°C); the ion conductivity of the prepared anion exchange membrane Test, test As shown in Figure 2, the prepared anion exchange membrane has high ion conductivity, the highest ion conductivity is greater than 10 -2 S·cm -1 (the current advanced level of anion exchange membrane is on the order of 10 -2 ).

气体扩散层的制备过程如实施例1所述。 The preparation process of the gas diffusion layer is as described in Example 1.

氧电极催化层的制备是将70%的Ag/C与30%的季胺化聚合物乳液(Tokuyama公司的AS-x乳液)用1:1的乙醇水溶液配置成浆料混合均匀,喷涂到制备好的扩散层上,然后在80℃的烘箱中干燥。 The preparation of the oxygen electrode catalytic layer is to mix 70% Ag/C and 30% quaternized polymer emulsion (AS-x emulsion of Tokuyama Company) with 1:1 ethanol aqueous solution to form a slurry and mix it evenly, and spray it to the preparation on a good diffusion layer, and then dried in an oven at 80°C.

氢电极催化层的制备过程如实施例1所述。 The preparation process of the hydrogen electrode catalytic layer is as described in Example 1.

实施例3 Example 3

将实施例2中的膜电极应用于燃料电池中,进行极化特性曲线测试,测试条件:氢氧进口表压0.12MPa;氢氧增湿温度70℃,电池温度60-65℃;氢气、氧气进气计量比2.0。测试结果如图3所示,表明所制备的复合型聚环氧氯丙烷碱性聚合物膜电极表现出良好的碱性燃料电池电性能,电池开路电压大于1.0V,最大功率密度为16.4 mW·cm-2。该实例是所制备膜电极在燃料电池中应用,采用极化曲线表达了燃料电池的电化学性能,结果表明所制备的膜电极在燃料电池能够正常运行;与各类报道中所涉及的阴离子交换膜燃料电池性能相比,性能较为良好。 Apply the membrane electrode in Example 2 to a fuel cell, and conduct a polarization characteristic curve test. The test conditions are: hydrogen and oxygen inlet gauge pressure 0.12MPa; hydrogen and oxygen humidification temperature 70°C, battery temperature 60-65°C; hydrogen, oxygen Air intake metering ratio 2.0. The test results are shown in Figure 3, indicating that the prepared composite polyepichlorohydrin alkaline polymer membrane electrode exhibits good electrical properties for alkaline fuel cells, the open circuit voltage of the battery is greater than 1.0V, and the maximum power density is 16.4 mW· cm -2 . This example is the application of the prepared membrane electrode in a fuel cell. The electrochemical performance of the fuel cell is expressed by the polarization curve. The results show that the prepared membrane electrode can operate normally in the fuel cell; Compared with membrane fuel cell performance, the performance is relatively good.

尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。 Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (6)

1.一种复合型聚环氧氯丙烷碱性聚合物膜电极,该膜电极包含碱性阴离子交换膜、电极层,其特征在于: 1. a compound type polyepichlorohydrin basic polymer membrane electrode, this membrane electrode comprises alkaline anion exchange membrane, electrode layer, is characterized in that: 所述碱性阴离子交换膜是通过聚环氧氯丙烷的氯原子与叔胺发生亲核取代反应,得到季胺化聚环氧氯丙烷,然后与多孔聚四氟乙烯膜复合而成; The basic anion exchange membrane is formed by nucleophilic substitution reaction between polyepichlorohydrin chlorine atoms and tertiary amines to obtain quaternized polyepichlorohydrin, and then compounded with porous polytetrafluoroethylene membrane; 所述电极层包含氢电极和氧电极,所述的氢电极包含气体扩散层及喷涂在该气体扩散层上的氢电极催化层,所述的氧电极包含气体扩散层及喷涂在该气体扩散层上的氧电极催化层; The electrode layer includes a hydrogen electrode and an oxygen electrode, the hydrogen electrode includes a gas diffusion layer and a hydrogen electrode catalytic layer sprayed on the gas diffusion layer, and the oxygen electrode includes a gas diffusion layer and a hydrogen electrode catalyst layer sprayed on the gas diffusion layer Oxygen electrode catalytic layer on top; 所述膜电极是按照氢电极、碱性阴离子交换膜、氧电极的组合顺序一体化成型形成; The membrane electrode is integrally formed according to the combination sequence of hydrogen electrode, alkaline anion exchange membrane and oxygen electrode; 其中,所述的气体扩散层采用碳材料为基体,添加疏水性聚合物形成。 Wherein, the gas diffusion layer is formed by using a carbon material as a matrix and adding a hydrophobic polymer. 2.如权利要求1所述的复合型聚环氧氯丙烷碱性聚合物膜电极,其特征在于,所述的叔胺选择N,N,N`,N`-四甲基-1,6-甲二胺、N,N,N`,N`-四甲基-1,6-乙二胺、N,N,N`,N`-四甲基-1,6-丙二胺或N,N,N`,N`-四甲基-1,6-己二胺中的任意一种。 2. composite polyepichlorohydrin alkaline polymer membrane electrode as claimed in claim 1, is characterized in that, described tertiary amine selects N, N, N ', N '-tetramethyl-1,6 -Methylenediamine, N,N,N`,N`-tetramethyl-1,6-ethylenediamine, N,N,N`,N`-tetramethyl-1,6-propylenediamine or N , Any one of N,N`,N`-tetramethyl-1,6-hexanediamine. 3.如权利要求1所述的复合型聚环氧氯丙烷碱性聚合物膜电极,其特征在于: 3. composite polyepichlorohydrin basic polymer membrane electrode as claimed in claim 1, is characterized in that: 所述的氢电极催化层包含铂基催化剂和聚合物乳液; The hydrogen electrode catalytic layer includes a platinum-based catalyst and a polymer emulsion; 所述的氧电极催化层包含铂基催化剂和聚合物乳液;或者,非铂基催化剂和聚合物乳液; The oxygen electrode catalytic layer comprises a platinum-based catalyst and a polymer emulsion; or, a non-platinum-based catalyst and a polymer emulsion; 其中,所述铂基催化剂为Pt黑或40%Pt/C,所述非铂基催化剂为Ni、Ag、Co或其碳载型Ni、Ag、Co催化剂;所述聚合物乳液为聚全氟乙丙烯、Nafion或季胺化聚合物乳液中的一种或几种。 Wherein, the platinum-based catalyst is Pt black or 40%Pt/C, the non-platinum-based catalyst is Ni, Ag, Co or its carbon-supported Ni, Ag, Co catalyst; the polymer emulsion is polyperfluoro One or more of ethylene propylene, Nafion or quaternized polymer emulsion. 4.如权利要求1所述的复合型聚环氧氯丙烷碱性聚合物膜电极,其特征在于,所述的气体扩散层的基体采用的碳材料为碳纸或者碳布,添加聚四氟乙烯或聚全氟乙丙烯进行疏水处理。 4. composite polyepichlorohydrin alkaline polymer membrane electrode as claimed in claim 1, is characterized in that, the carbon material that the matrix of described gas diffusion layer adopts is carbon paper or carbon cloth, adds polytetrafluoroethylene Ethylene or FEP for hydrophobic treatment. 5.一种根据权利要求1-4中任意一项所述的复合型聚环氧氯丙烷碱性聚合物膜电极的制备方法,其特征在于,该方法包含以下具体步骤: 5. a preparation method according to any one of claim 1-4 composite polyepichlorohydrin alkaline polymer membrane electrode, is characterized in that, the method comprises the following specific steps: 步骤1,碱性阴离子交换膜制备: Step 1, preparation of basic anion exchange membrane: 步骤1.1,将聚环氧氯丙烷溶解在N,N-二甲基亚砜中,边搅拌边加热,至温度80-100℃; Step 1.1, dissolving polyepichlorohydrin in N,N-dimethylsulfoxide, heating while stirring, to a temperature of 80-100°C; 步骤1.2,在惰性气氛下,向上述聚环氧氯丙烷溶液中,加入以聚环氧氯丙烷的重量计为30wt%-85wt%的叔胺,反应12-48小时,反应完成后移出溶液,过滤后备用,得到季胺化聚环氧氯丙烷; Step 1.2, under an inert atmosphere, add 30wt%-85wt% tertiary amine based on the weight of polyepichlorohydrin to the polyepichlorohydrin solution, react for 12-48 hours, remove the solution after the reaction is completed, Standby after filtering to obtain quaternized polyepichlorohydrin; 步骤1.3,向上述步骤1.2所得的季胺化聚环氧氯丙烷均一溶液中加入乙醇和丙酮,搅拌0.5-2小时,形成10-20wt%的均匀成膜溶液; Step 1.3, adding ethanol and acetone to the homogeneous solution of quaternized polyepichlorohydrin obtained in the above step 1.2, and stirring for 0.5-2 hours to form a uniform film-forming solution of 10-20wt%; 步骤1.4,将上述成膜溶液浇铸到经过预处理的多孔聚四氟乙烯薄膜中,在60-80℃加热蒸发溶剂,在60-120℃真空热处理4-20小时,即得所需阴离子交换膜; Step 1.4, casting the above film-forming solution into the pretreated porous polytetrafluoroethylene film, heating and evaporating the solvent at 60-80°C, and vacuum heat treatment at 60-120°C for 4-20 hours to obtain the desired anion exchange membrane ; 步骤2,电极层的制备: Step 2, preparation of the electrode layer: 步骤2.1,扩散层基底憎水处理:将扩散层基底材料碳纸或碳布用聚四氟乙烯或聚全氟乙丙烯乳液处理并进行烧结,先在120-130℃烧结15-30min,然后在280-350℃烧结15-30min; Step 2.1, Hydrophobic treatment of the diffusion layer base: treat the carbon paper or carbon cloth as the base material of the diffusion layer with polytetrafluoroethylene or polyperfluoroethylene propylene emulsion and sinter, first sinter at 120-130°C for 15-30min, and then Sintering at 280-350°C for 15-30min; 步骤2.2,扩散层的制备:将碳粉和聚全氟乙丙烯乳液进行调和,制备气体扩散层浆料,然后,将该扩散层浆料喷涂到步骤2.1中憎水处理后的基底材料上,先在120-130℃烧结15-30min,然后在280-350℃烧结15-30min,并进行滚压整平,形成气体扩散层; Step 2.2, preparation of the diffusion layer: blend the carbon powder and the polyperfluoroethylene propylene emulsion to prepare the gas diffusion layer slurry, and then spray the diffusion layer slurry on the base material after the hydrophobic treatment in step 2.1, First sinter at 120-130°C for 15-30min, then sinter at 280-350°C for 15-30min, and carry out rolling and leveling to form a gas diffusion layer; 步骤2.3,催化层的制备:将催化剂浆料各组分均匀混合,喷涂到制备好的扩散层上,然后在50-80℃的烘箱中干燥,形成催化层;该扩散层及其上喷涂的催化层一起构成电极层,分别得到氢电极和氧电极; Step 2.3, preparation of the catalytic layer: uniformly mix the components of the catalyst slurry, spray on the prepared diffusion layer, and then dry it in an oven at 50-80°C to form a catalytic layer; the diffusion layer and its sprayed The catalytic layer together constitutes the electrode layer, and the hydrogen electrode and the oxygen electrode are respectively obtained; 步骤3,碱性聚合物膜电极组件制备 Step 3, preparation of basic polymer membrane electrode assembly 步骤3.1,将步骤1制得的阴离子交换膜浸渍在KOH溶液中,将Cl置换为OH,用去离子水反复冲洗后晾干备用; Step 3.1, immersing the anion exchange membrane prepared in step 1 in KOH solution, replacing Cl - with OH - , washing with deionized water repeatedly, and then drying it for later use; 步骤3.2,剪裁合适大小的氢电极和氧电极放置在碱性阴离子交换膜上下两侧,上下对齐、配合完好,通过压机热压处理,压机的压力为1-6MPa,热压温度为80-100℃,持续时间60-150s,打开压机,自然冷却后取出制得的膜电极。 Step 3.2, cut the hydrogen electrode and oxygen electrode of appropriate size and place them on the upper and lower sides of the alkaline anion exchange membrane. -100°C for 60-150s, turn on the press, and take out the prepared membrane electrode after natural cooling. 6.如权利要求5所述的复合型聚环氧氯丙烷碱性聚合物膜电极的制备方法,其特征在于,步骤1.3中,所述的季胺化聚环氧氯丙烷在乙醇和丙酮的浓度为14wt%。 6. the preparation method of composite type polyepichlorohydrin basic polymer membrane electrode as claimed in claim 5 is characterized in that, in step 1.3, described quaternization polyepichlorohydrin is mixed with ethanol and acetone The concentration is 14wt%.
CN2012105222983A 2012-12-07 2012-12-07 Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof Pending CN102945968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105222983A CN102945968A (en) 2012-12-07 2012-12-07 Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105222983A CN102945968A (en) 2012-12-07 2012-12-07 Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof

Publications (1)

Publication Number Publication Date
CN102945968A true CN102945968A (en) 2013-02-27

Family

ID=47728889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105222983A Pending CN102945968A (en) 2012-12-07 2012-12-07 Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102945968A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716368A (en) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 Nonwoven fabric/ionic liquid composite proton exchange membrane and production method thereof
CN105680055A (en) * 2015-11-26 2016-06-15 杭州电子科技大学 Preparation method of alkaline anion exchange membrane and application thereof in fuel cell
CN111313060A (en) * 2018-12-11 2020-06-19 中国科学院大连化学物理研究所 Integrated alkaline membrane electrode and preparation thereof
CN111740139A (en) * 2020-06-19 2020-10-02 武汉大学 An ion-exchange-free alkaline polymer electrolyte fuel cell membrane electrode and preparation method thereof
CN114133604A (en) * 2021-11-29 2022-03-04 武汉理工大学 A kind of basic anion exchange membrane based on polyepichlorohydrin and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104151A (en) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 Application of membrane electrode in basic anion exchange membrane fuel cell
CN102456891A (en) * 2010-10-29 2012-05-16 中国科学院大连化学物理研究所 Gas diffusion layer with gradient pore structure and preparation and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104151A (en) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 Application of membrane electrode in basic anion exchange membrane fuel cell
CN102456891A (en) * 2010-10-29 2012-05-16 中国科学院大连化学物理研究所 Gas diffusion layer with gradient pore structure and preparation and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN YI GUO ET AL: "Quaternized polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells", 《JOURNAL OF MEMBRANE SCIENCE》, vol. 371, 1 February 2011 (2011-02-01), pages 268 - 275 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716368A (en) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 Nonwoven fabric/ionic liquid composite proton exchange membrane and production method thereof
CN104716368B (en) * 2013-12-13 2017-07-07 中国科学院大连化学物理研究所 A kind of non-woven fabrics/ionic liquid compound proton exchange membrane and preparation method thereof
CN105680055A (en) * 2015-11-26 2016-06-15 杭州电子科技大学 Preparation method of alkaline anion exchange membrane and application thereof in fuel cell
CN105680055B (en) * 2015-11-26 2018-05-04 杭州电子科技大学 A kind of preparation method of alkaline anion-exchange membrane and its application in a fuel cell
CN111313060A (en) * 2018-12-11 2020-06-19 中国科学院大连化学物理研究所 Integrated alkaline membrane electrode and preparation thereof
CN111740139A (en) * 2020-06-19 2020-10-02 武汉大学 An ion-exchange-free alkaline polymer electrolyte fuel cell membrane electrode and preparation method thereof
CN111740139B (en) * 2020-06-19 2022-06-03 武汉大学 An ion-exchange-free alkaline polymer electrolyte fuel cell membrane electrode and preparation method thereof
CN114133604A (en) * 2021-11-29 2022-03-04 武汉理工大学 A kind of basic anion exchange membrane based on polyepichlorohydrin and preparation method thereof
CN114133604B (en) * 2021-11-29 2024-02-02 武汉理工大学 Basic anion exchange membrane based on polyepichlorohydrin and preparation method thereof

Similar Documents

Publication Publication Date Title
Chen et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm− 2 and a durability of 1000 hours
Vincent et al. Low cost hydrogen production by anion exchange membrane electrolysis: A review
Gao et al. Enhanced water transport in AEMs based on poly (styrene–ethylene–butylene–styrene) triblock copolymer for high fuel cell performance
Wang et al. A polytetrafluoroethylene-quaternary 1, 4-diazabicyclo-[2.2. 2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells
Tang et al. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress
CN110504472A (en) A direct methanol fuel cell membrane electrode for improving catalyst utilization and its preparation method
Couto et al. KOH-doped polybenzimidazole for alkaline direct glycerol fuel cells
Sambandam et al. Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes
Cho et al. Effect of catalyst layer ionomer content on performance of intermediate temperature proton exchange membrane fuel cells (IT-PEMFCs) under reduced humidity conditions
CN106750441A (en) A kind of poly- triazole ionic liquid of cross-linking type/polybenzimidazoles high temperature proton exchange film and preparation method thereof
CN102945968A (en) Composite polyepoxy chloropropane alkaline polymer membrane electrode and preparation method thereof
CN108448138A (en) A preparation method of fuel cell electrode and membrane electrode with fully ordered structure of catalytic layer
Shin et al. Thermally crosslinked and quaternized polybenzimidazole ionomer binders for solid alkaline fuel cells
Zaffora et al. Methanol and proton transport through chitosan‐phosphotungstic acid membranes for direct methanol fuel cell
CN103490081B (en) Modification perfluorosulfonic acid proton exchange film, its preparation method and direct methanol fuel cell membrane electrode and preparation method thereof
KR102358255B1 (en) High temperature type anion exchange membrane, water electrolysis apparatus comprising the same, and method for preparing the same
CN101853947A (en) Composite cross-linked alkaline polymer membrane for fuel cell, preparation method and application
JP4896435B2 (en) Electrolyte for electrode of polymer electrolyte fuel cell
Parrondo et al. Electrochemical Performance Measurements of PBI‐Based High‐Temperature PEMFCs
JP2013114901A (en) Manufacturing method for catalyst layer for fuel cell and catalyst layer for fuel cell
CN108011120B (en) A kind of preparation method of membrane electrode
Xu et al. A quaternary polybenzimidazole membrane for intermediate temperature polymer electrolyte membrane fuel cells
KR20080103794A (en) Membrane-electrode assembly manufacturing method comprising ionomer slurry used in fuel cell, and fuel cell including membrane-electrode assembly and membrane-electrode body
CN110783574A (en) Direct alcohol fuel cell gas diffusion electrode and preparation method thereof and direct alcohol fuel cell
JP7235408B2 (en) Membrane electrode assembly for fuel cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130227