[go: up one dir, main page]

CN102906935A - 光电转换元件、光电化学电池、光电转换元件用色素以及光电转换元件用色素溶液 - Google Patents

光电转换元件、光电化学电池、光电转换元件用色素以及光电转换元件用色素溶液 Download PDF

Info

Publication number
CN102906935A
CN102906935A CN201180025484XA CN201180025484A CN102906935A CN 102906935 A CN102906935 A CN 102906935A CN 201180025484X A CN201180025484X A CN 201180025484XA CN 201180025484 A CN201180025484 A CN 201180025484A CN 102906935 A CN102906935 A CN 102906935A
Authority
CN
China
Prior art keywords
general expression
expressed
mentioned
pigment
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180025484XA
Other languages
English (en)
Other versions
CN102906935B (zh
Inventor
佐藤宽敬
薄达也
小林克
木村桂三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of CN102906935A publication Critical patent/CN102906935A/zh
Application granted granted Critical
Publication of CN102906935B publication Critical patent/CN102906935B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines five >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种光电转换元件包括,具备有以下述一般式(1)所表示的色素与半导体微粒子的感光体层,而上述色素为有碳数5~18的脂肪族基的一般式(1)所表示的化合物的色素。[化1]
Figure DDA00002449226400011
一般式(1)[上述一般式(1)中,Q表示为4价的芳香族基。X1、X2分别独立表示为硫原子、氧原子或CR1R2。其中,R1、R2分别独立表示为氢原子、脂肪族基、芳香族基、以碳原子键结的杂环基。R、R’分别独立表示为脂肪族基、芳香族基、以碳原子键结的杂环基。P1、P2分别独立表示为色素残基。W1表示为使电荷中和所必需的相对离子。]

Description

光电转换元件、光电化学电池、光电转换元件用色素以及光电转换元件用色素溶液
技术领域
本发明涉及一种转换效率高、耐久性优异的光电转换元件以及光电化学电池,尤其涉及一种光电转换元件用色素以及光电转换元件用色素溶液。
背景技术
光电转换元件可使用于各种的光感测器、复印机、太阳能电池等中。在光电转换元件中,可使用金属、半导体、有机颜料或色素,或这些的组合等的各式各样的方式,而使其实用化。尤其是,利用非干涸性的太阳能源的太阳能电池并不需要燃料,且可利用无穷尽的干净能源,因此,其真正的实用化大大地被期待着。其中,硅系太阳能电池从以前就进行研究开发,且因各国的政策的考量而普及地持续发展着。但是,硅(silicon)为无机材料,对于产量(throughput)及分子修饰(molecular modification)都有其天然的极限。
所以,色素增感型太阳能电池(Dye-Sensitized Solar Cells)的研究被积极的进行。特别是,瑞士的洛桑工科大学的葛拉佐(Graetzel)等人,开发出将由钌错合物(ruthenium complex)形成的色素固定在多孔性氧化钛薄膜的表面的色素增感型太阳能电池,以实现常用非晶质硅的转换效率。因此,色素增感型太阳能电池一下子就吸引了世界的研究者的注意。
专利文献1中记载了,应用上述的技术,并使用以钌错合物色素而使的增感的半导体微粒子的色素增感光电转换元件。然而,已知的钌错合物色素为使用可见光而能够进行光电转换,但几乎无法吸收大于700nm以上长波长的红外光,因而,在红外区(infrared region)的光电转换能低。
在一提案中,提供可藉由使用具有特定结构的聚次甲基(polymethine)色素,以在700nm以上高波长的红外区,转换效率高的光电转换元件(例如,参照专利文献2)。
另外,光电转换元件必须是,在广波长区的初期的转换效率高,而使用后转换效率的降低少耐久性优异。可是,在耐久性这个部分,在专利文献2记载的光电转换元件中并未充分地叙述。
因此,转换效率高、耐久性优异的光电转换元件及光电化学电池是有必要的。而且,光电转换元件用色素及光电转换元件用色素溶液也是有必要的。
现有技术文献
专利文献
专利文献1:美国专利第5463057号说明书
专利文献2:日本专利第4217320号公报
发明内容
本发明的一课题在于,提供转换效率高且耐久性优异的光电转换元件及光电化学电池。本发明的另一课题在于提供光电转换元件用色素及光电转换元件用色素溶液。
本发明者等人重复锐意研究的结果发现,包含包括在导电性支撑体上具有吸附有具有特定结构的聚次甲基色素(色素化合物)的多孔质半导体微粒子层的感光体、电荷移动体以及对极的积层结构的光电转换元件,以及使用其的光电化学电池,于广波长区域的转换效率高,且耐久性优异。本发明是基于上述知识来实行。
本发明的课题为根据以下的方式所达成。
<1>一种光电转换元件,其特征在于包括具备有一般式(1)所表示的色素与半导体微粒子的感光体层,上述色素包括具有碳数5~18的脂肪族基的一般式(1)所表示的化合物的色素。
[化1]
Figure BDA00002449226200031
一般式(1)
[上述一般式(1)中,Q表示为4价的芳香族基。X1、X2分别独立表示为硫原子、氧原子或CR1R2。其中,R1、R2分别独立表示为氢原子、脂肪族基、芳香族基、以碳原子键结的杂环基,且其亦可被取代。R、R’分别独立表示为脂肪族基、芳香族基、以碳原子键结的杂环基,且其亦可被取代。P1、P2分别独立表示为色素残基。W1表示为使电荷中和所必需的相对离子。]
<2>如<1>所述的光电转换元件,其特征在于上述碳数5~18的脂肪族基为分支烷基。
<3>如<1>或<2>所述的光电转换元件,其特征在于上述一般式(1)中的Q表示为苯环或萘环。
<4>如<1>~<3>的任一项所述的光电转换元件,其特征在于上述一般式(1)中的P1及P2分别独立为一般式(2)或一般式(3)所表示。
[化2]
一般式(2)
[化3]
Figure BDA00002449226200033
一般式(3)
[上述一般式(2)或一般式(3)中,V1表示为氢原子或取代基。n表示为0~4的整数,n为2以上时,V1可相同或不同,也可相互键结以形成环。
Y表示为S、NR9或CR10R11。其中,R9表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基。R10、R11表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,其可相同或不同,也可相互键结以形成环。
Z表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且其亦可有取代基。
R3~R6及R8分别独立表示为氢原子、脂肪族基、芳香族基或杂环基,且其亦可有取代基。
R7为氧原子或有2个取代基的碳原子,2个取代基的哈梅特(Hammett)法则的取代常数(σ)的和为正数。]
<5>如<1>所述的光电转换元件,其特征在于上述一般式(1)中的P1及P2分别独立为下述一般式(4)或一般式(5)所表示。
[化4]
一般式(4)
[化5]
Figure BDA00002449226200042
一般式(5)
[一般式(4)或一般式(5)中,V1表示为氢原子或取代基。n表示为0~4的整数,n为2以上时,V1可相同或不同,也可相互键结以形成环。
Y表示为S、NR9或CR10R11。其中,R9表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基。R10、R11表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,其可相同或不同,也可相互键结以形成环。
Z表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且其亦可有取代基。]
<6>如<4>或<5>所述的光电转换元件,其特征在于上述V1有酸性基。
<7>如<4>~<6>的任一项所述的光电转换元件,其特征在于上述V1为氢原子、5-羧基、5-磺酸基、5-甲基或4,5-苯环缩合。
<8>如<6>或<7>所述的光电转换元件,其特征在于上述Z及V1为酸性基或有酸性基的基团。
<9>如<4>、<6>~<8>的任一项所述的光电转换元件,其特征在于上述一般式(2)为下述一般式(6)所表示,上述一般式(3)为下述一般式(7)所表示。
[化6]
Figure BDA00002449226200051
一般式(6)
[化7]
Figure BDA00002449226200052
一般式(7)
上述一般式(6)或一般式(7)中,Y、Z、R3~R8为与一般式(2)或一般式(3)的Y、Z、R3~R8定义相同。V12表示为酸性基。E11~E13中至少一个表示为拉电子基。p为2以上的整数。
<10>如<4>所述的光电转换元件,其特征在于上述一般式(2)为下述一般式(8)所表示,上述一般式(3)为下述一般式(9)所表示。
[化8]
Figure BDA00002449226200053
一般式(8)
[化9]
Figure BDA00002449226200061
一般式(9)
[化10]
Figure BDA00002449226200062
式A    式B    式C    式D
一般式(8)或一般式(9)中,Y、Z、R3~R8为与一般式(2)或一般式(3)的Y、Z、R3~R8定义相同。L为以上述式A~式D所表示,m表示为O或1以上的整数,m为2以上时,L亦可分别不相同。式A中,Xa表示为NRe、O、S,Re表示为氢原子或取代基。式A及式C中,Ra~Rd表示为酸性基。一般式(8)中,p表示为2以上的整数,Rx表示为酸性基。
<11>如<4>~<10>的任一项所述的光电转换元件,其特征在于上述Y表示为S、NCH3或C(CH3)2,Z表示为碳数5~18的脂肪族基。
<12>如<4>、<6>~<11>的任一项所述的光电转换元件,其特征在于上述R7为下述式(10)~式(13)的任一者所表示。
[化11]
Figure BDA00002449226200064
一般式(10)   一般式(11)    一般式(12)    一般式(13)
[上述式(10)~式(13)中,Rf表示为氢原子或取代基。]
<13>如<4>、<6>~<12>的任一项所述的光电转换元件,其特征在于上述R7为下述式(14)或式(15)所表示。
[化12]
Figure BDA00002449226200071
一般式(14)    一般式(15)
<14>如<1>~<13>的任一项所述的光电转换元件,其特征在于一般式(1)中,Q表示为苯环,X1、X2分别独立表示为硫原子、氧原子或C(CH3)2,R、R’分别独立表示为碳数5~18的脂肪族基。
<15>如<1>~<14>的任一项所述的光电转换元件,其特征在于上述半导体微粒子为氧化钛微粒子。
<16>一种光电化学电池,其特征在于包括<1>~<15>的任一项所述的光电转换元件。
<17>一种光电转换元件用色素,其特征在于包括有碳数5~18的脂肪族基的下述一般式(1)所表示的化合物。
[化13]
Figure BDA00002449226200072
一般式(1)
[一般式(1)中,Q表示为4价的芳香族基。X1、X2分别独立表示为硫原子、氧原子或CR1R2。其中,R1、R2分别独立表示为氢原子、脂肪族基、芳香族基、以碳原子键结的杂环基,且这些亦可被取代。R、R’分别独立表示为脂肪族基、芳香族基、以碳原子键结的杂环基,且这些亦可被取代。P1、P2分别独立表示为色素残基。W1表示为使电荷中和所必需的相对离子。]
<18>一种光电转换元件用色素溶液,其特征在于包括在有机溶剂中,含有且溶解有<17>所述的光电转换元件用色素。
本发明可提供转换效率高且耐久性优异的光电转换元件及光电化学电池。另外,本发明可提供光电转换元件用色素及光电转换元件用色素溶液。
本发明的上述记载以及其他特征和优点可适宜参照所附图式并根据下述记载而变得更明显易懂。
附图说明
图1是依照本发明的光电转换元件的一实例的示意剖面图。
具体实施方式
本发明者等人重复锐意研究的结果发现,具备有特定的色素与半导体微粒子的感光体层的光电转换元件,以及使用其的光电转换电池,光电转换效率高,耐久性、特别是光电转换效率的降低少。本发明是基于上述的见解来实行。
接着,参照图式来说明本发明的光电转换元件的较佳实例。如图1所示,光电转换元件10包括导电性支撑体1,以及感光体层2、电荷移动体层3与对极4,在导电性支撑体1上依该顺序配置而成。其中,上述导电性支撑体1及感光体层2用以构成受光电极5。上述感光体层2具有半导体微粒子22与增感色素21,而色素21的至少一部份吸附于半导体微粒子22(色素成为吸附平衡状态,且一部份也可存在于电荷移动体层中。)。形成有感光体层2的导电性支撑体1,在光电转换元件10中作为作用电极而发挥功能。以外部电路6使此光电转换元件10工作,而可作为光电化学电池100而使其作动。
受光电极5为包括导电性支撑体1及感光体层(半导体膜)2的电极,上述感光体层(半导体膜)2含有吸附涂设于导电性支撑体上的色素21的半导体微粒子22。入射于感光体层(半导体膜)2的光可使色素激发,而激发色素具有高能量的电子。于是上述电子可从色素21被传送至半导体微粒子22的传导带,进而藉由扩散到达导电性支撑体1,且此时色素21的分子会形成氧化体。电极上的电子在外部电路一边工作,一边回到色素氧化体,藉此作为光电化学电池而进行作用。在这个情况下,受光电极5是作为上述电池的负极而作业。
本发明的光电转换元件在导电性支撑体上具有感光体层,而此感光体层具有吸附有后述的特定色素的多孔质半导体微粒子层。感光体层为视目的而可被设计成单层结构,也可是多层结构。另外,感光体层中的色素为可由多种类的色素所混合者,但至少要使用后述的色素。在使用含有吸附有上述色素的半导体微粒子作为本发明的光电转换元件的感光体层时,则可获得对于广波长区域的光的感度高的光电转换元件。在使用上述光电转换元件作为光电化学电池时,可获得能得到高转换效率,转换效率的降低少且耐久性优异的光电转换元件。
(A)色素
(A1)一般式(1)的色素
在本发明的光电转换元件中是使用以下述一般式(1)所表示的化合物的色素。上述色素可作为光电转换元件用而使用,且具有碳数5~18的脂肪族基。脂肪族基较佳为烷基、烯基或炔基,更佳为烷基或烯基。最较佳为烷基,其例如可列举戊基(pentyl)、己基(hexyl)、庚基(heptyl)、辛基(octyl)、壬基(nonyl)、癸基(decyl)、十一基(undecyl)、十二基(dodecyl)、十八基(octadecyl)、环己基(cyclohexyl)、2-乙基己基(2-ethylhexyl)等。在烷基中较佳为分支烷基,其例如是2-乙基己基、2-甲基己基(2-methylhexyl)、2-甲基戊基(2-methyl pentyl)、3,5,5-三甲基己基(3,5,5-trimethylhexyl)、2-环戊基乙基(2-cyclopentylethyl)、2-环己基乙基(2-cyclohexylethyl)等。由于具有碳数5~18的烷基,可抑制水、亲核剂(nucleophile)所造成的色素的分解,并可抑制水接近吸附点而使色素从半导体微粒子剥离所造成的耐久性的降低。而且,由于能够抑制色素彼此间的聚集或过度吸附,故可抑制非效率的电子移动,并使光电转换效率提高。另外,由于烷基为分支,因而可更显著地获得上述效果,特别是耐久性提高的效果。
[化14]
Figure BDA00002449226200091
一般式(1)
式(1)中,Q表示为至少四官能以上的芳香族基。芳香族基的示例可列举为芳香族烃与芳香族杂环。其中,芳香族烃例如是苯、萘(naphthalin)、蒽(anthracene)、菲(phenanthrene)等,而芳香族杂环例如是蒽醌(anthraquinone)、咔唑(carbazole)、吡啶(pyridine)、喹啉(quinoline)、噻吩(thiophene)、呋喃(furan)、二苯并哌喃(xanthene)、噻嗯(thianthrene)等,这些亦可在连结部分以外具有取代基。以Q所表示的芳香族基较佳为芳香族烃,更佳为苯或萘。在此,朝Q的X2与N(R’)的键结,在图示的式中也包含,在N(R’)位置X2进行键结且在X2位置N(R’)进行键结的键结。
另外,X1、X2分别独立表示为硫原子、氧原子或CR1R2。X1、X2较佳为硫原子或CR1R2,更佳为CR1R2。其中,R1及R2分别独立表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基。以碳原子键结的杂环基,例如可列举吡咯(pyrrole)、呋喃、噻吩、咪唑(imidazole)、恶唑(oxazole)、噻唑(thiazole)、吡唑(pyrazole)、异恶唑(isoxazole)、异噻唑(isothiazole)、吡啶、嗒肼(pyridazine)、嘧啶(pyrimidine)、吡喃(pyran)等。R1、R2较佳为脂肪族基、芳香族基。脂肪族基,较佳为烷基、烯基或炔基,更佳为烷基或烯基。烷基可以列举直链或分支的烷基,而较佳为碳数5~18的烷基(例如是,戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。在烷基中,分支烷基为较佳,例如可列举2-乙基己基、2-甲基己基、2-甲基戊基、3,5,5-三甲基己基、2-环戊基乙基、2-环己基乙基等。因具有碳数5~18的烷基,可抑制水、亲核剂所造成的色素的分解,并可抑制水接近吸附点而使色素从半导体微粒子剥离所造成的耐久性的降低。而且,由于能够抑制色素彼此间的聚集或过度吸附,故可抑制非效率的电子移动,并使光电转换效率提高。另外,由于烷基为分支,因而可更显著地获得上述效果,特别是耐久性提高的效果。芳香族基较佳为苯、萘、蒽等。
R、R’分别独立表示为脂肪族基、芳香族基或以碳原子键结的杂环基,这些亦可被取代。以碳原子键结的杂环基,例如是吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、吡唑、异恶唑、异噻唑、吡啶、嗒肼、嘧啶、吡喃等。R、R’较佳为脂肪族基或芳香族基,芳香族基的碳原子数较佳为5~16,更佳为5或6。无取代的芳香族基较佳为苯基、萘基等。脂肪族基较佳为烷基、烯基或炔基,更佳为烷基或烯基,更较佳为碳数5~18的烷基(例如是戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。在烷基中,较佳为分支烷基,其例如是2-乙基己基、2-甲基己基、2-甲基戊基、3,5,5-三甲基己基、2-环戊基乙基、2-环己基乙基等。因具有碳数5~18的烷基,可抑制水、亲核剂(nucleophile)所造成的色素的分解,并可抑制水接近吸附点而使色素从半导体微粒子剥离所造成的耐久性的降低。而且,由于能够抑制色素彼此间的聚集或过度吸附,故可抑制非效率的电子移动,并使光电转换效率提高。另外,由于烷基为分支,因而可更显著地获得上述效果,特别是耐久性提高的效果。
P1、P2表示为色素残基。所谓色素残基是指,与一般式(1)的P1、P2以外的结构共同构成作为整体的色素化合物所必需的原子群。P1及P2为直接键结或通过连结基进行键结,以构成一般式(1)的色素。以P1及P2所形成的色素(色素化合物),例如是花青(cyanine)、部花青素(merocyanine)、玫红花青素(rhodacyanine)、3核部花青素、阿罗波拉(allopolar)、半花菁(hemicyanine)、桂皮(styryl)、氧杂菁(oxonol)、花青等的聚次甲基(polymethine)色素、含有吖啶(acridine)、二苯并哌喃、硫二苯并哌喃(thioxanthene)等的二芳基次甲基(diarylmethine)、三芳基次甲基(triarylmethine)、香豆素(coumarin)、靛苯胺(indoaniline)、靛酚(indophenol)、二嗪(diazine)、恶嗪(oxazine)、噻嗪(thiazine)、吡咯并吡咯二酮(Diketopyrrolopyrrole)、靛蓝(indigo)、蒽醌、苝(perylene)、喹吖酮(Quinacridone)、萘醌(naphthoquinone)、联吡啶(bipyridyl)、三联吡啶(terpyridyl)、四联吡啶(tetrapyridyl)、啡啉(phenanthroline)等。
较佳为,花青、部花青素、玫红花青素、3核部花青素、阿罗波拉(allopolar)、半花菁、桂皮等。此时,也包括在花青中形成色素的次甲基链上的取代基形成方酸环(squarylium ring)与克酮酸环(croconium ring)的色素。关于上述色素的详细记载于F、M、哈默(Harmer)着,约翰威立(JOHNWILEY&SONS)出版社,纽约、伦敦1964年出刊的“杂环化合物-花青染料以及相关化合物(Heterocyclic Compounds-Cyanine Dyes and RelatedCompounds)”中。花青、部花青素、玫红花青素的一般式,较佳为以在美国专利第5,340,694号第21、22页的(XI)、(XII)、(XIII)所表示。另外,较佳为以P1及P2所形成的色素残基的至少任一者的次甲基链部分具有方酸环与克酮酸环,更佳为两者皆具有。
在有上述一般式(1)的结构的色素中,P1及P2较佳分别独立为以下述
一般式(2)或一般式(3)所表示。
[化15]
Figure BDA00002449226200121
一般式(2)
[化16]
Figure BDA00002449226200122
一般式(3)
上述一般式(2)、一般式(3)中,V1表示为氢原子或取代基,n表示为0~4的整数,n为2以上时,V1可相同或不同,也可相互键结以形成环。n较佳为0~3,更佳为0~2。
Y表示为硫原子、NR9或CR10R11。其中,R9表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基。以碳原子键结的杂环基,例如是吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、吡唑、异恶唑、异噻唑、吡啶、嗒肼、嘧啶、吡喃等。R9的较佳示例为脂肪族基,而其较佳为烷基、烯基或炔基,更佳为烷基或烯基。另外,更较佳为碳数5~18的烷基(例如是戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。芳香族基较佳为苯、萘、蒽等。
R10、R11表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,R10及R11可相同或不同,也可相互键结以形成环。以碳原子键结的杂环基,例如是吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、吡唑、异恶唑、异噻唑、吡啶、嗒肼、嘧啶、吡喃。R10及R11的较佳示例为脂肪族基,而其较佳为烷基、烯基或炔基,更佳为烷基或烯基。另外,更较佳为碳数5~18的烷基(例如是戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。芳香族基较佳为苯、萘、蒽等。
Z表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且其亦可有取代基。取代基的较佳示例为酸性基,更佳为有羧基(carboxyl group)的基团。R3~R6及R8表示为氢原子、脂肪族基、芳香族基或杂环基,且其亦可有取代基。以碳原子键结的杂环基,例如是吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、吡唑、异恶唑、异噻唑、吡啶、嗒肼、嘧啶、吡喃等。R3~R6及R8较佳为氢原子或脂肪族基。脂肪族基较佳为烷基、烯基或炔基,更佳为烷基或烯基。另外,更较佳为碳数5~18的烷基(例如是戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。R3~R6及R8更较佳为氢原子。R7表示为氧原子或键结的两个取代基在哈梅特(Hammett)法则中的取代常数(σ)的和为正数的二价碳原子。
一般式(1)较佳为R、R’、P1及P2的至少一个具有酸性基。此处所谓酸性基是指,具有解离性的质子(proton)的取代基,例如羧基(carboxylgroup)、膦酰基(phosphonyl group)、磺酰基(sulfonyl group)、硼酸基(boricacid group)等,或有这些基的基团,较佳为有羧基的基团。另外,酸性基也可以是采用放出质子而解离的形式。
在一般式(1)中,W1表示为使电荷中和而需要相对离子(counter ion)时的相对离子。通常,色素是否为阳离子、阴离子,或是否带有净离子电荷,则是依据色素中的助色团(auxochrome)及取代基。具有一般式(1)的结构的色素具有解离性的取代基的情况下,亦可解离而具有负电荷。此时,分子整体的电荷可藉由W1来中和。
W1为阳离子时,例如是无机或有机的铵离子(ammonium ion)(例如四烷铵离子(tetraalkylammonium ion)、吡啶鎓离子(pyridinium ion)),或碱金属离子。另外,W1为阴离子时,可以是无机阴离子或有机阴离子的任一个。例如可列举,卤素阴离子(halogen anion)(例如,氟化物离子、氯化物离子、溴化物离子、碘化物离子)、经取代芳基磺酸离子(arylsulfonic acidion)(例如,对甲苯磺酸离子(p-toluenesulfonic acid ion)、对氯苯磺酸离子(p-chlorobenzenesulfonic acid ion))、芳基二磺酸(aryldisulfonic acid ion)(例如,1,3-苯二磺酸离子(1,3-benzenedisulfonic acid ion)、1,5-萘二磺酸离子(1,5-naphthalenedisulfonic acid ion)、2,6-萘二磺酸离子)、烷基硫酸离子(alkyl sulfateion ion)(例如,甲基硫酸离子)、硫酸离子(sulfate ion)、硫氰酸离子(thiocyanic acid ion)、过氯酸离子(perchloric acid ion)、四氟硼酸离子(tetrafluoroboric acid ion)、苦味酸离子(picric acid ion)、醋酸离子(acetic acidion)、三氟甲烷磺酸离子(trifluoromethane sulfonic acid ion)等。而且,作为电荷均衡相对离子可以用离子型聚合物(ionic polymer),或是具有与色素相反电荷的其他色素,且也可以是用金属错离子(例如双苯-1,2-二硫烯镍(III)(bisbenzene-1,2-dithiolato nickel(III)))。
在上述一般式(1)中,P1及P2较佳为分别独立为以下述一般式(4)或一般式(5)所表示,且据此可变成有高摩尔吸光系数的色素。
[化17]
Figure BDA00002449226200141
一般式(4)
[化18]
Figure BDA00002449226200142
一般式(5)
V1、n、Z及Y为,与上述一般式(2)及一般式(3)中的定义相同。
在上述一般式(4)或一般式(5)中,V1表示为氢原子或取代基,n表示为0~4的整数,n为2以上时,V1可相同或不同,也可相互键结以形成环。
Y表示为S、NR9或CR10R11。其中,R9表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基。R10、R11表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,其可相同或不同,也可相互键结以形成环。
Z表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且其亦可有取代基。
在上述一般式(4)或一般式(5)中,Y较佳表示为硫原子、NCH3或C(CH3)2,而Z较佳表示为碳数5~18的脂肪族基。脂肪族基较佳为烷基、烯基或炔基,更佳为烷基或烯基。另外,更较佳为碳数5~18的烷基(例如是戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。藉由将Z作为碳数5~18的脂肪族基,可使每单位面积的吸附量提高。另外,脂肪族基也可被取代。
在上述一般式(2)~(5)中,V1较佳为具有酸性基。所谓酸性基是具有解离性的质子的取代基。V1只要具有酸性基即可,也可以是通过连结基而键结有酸性基。酸性基并无特别的限制,其例如羧基、膦酸基(phosphonicacid group)、磺基(sulfo group)、磺酸基(sulfonate group)、羟基(hydroxylradical)、羟肟酸基(hydroxamic group)、磷酸基(phosphoryl group)、膦酰基、亚磺酸基(sulfino group)、亚磺酰基(sulfinyl group)、亚膦酰基(Phosphinylgroup)、亚磷酸基(phosphono group)、硫醇基(thiol group)与磺酰基,及这些基的盐。上述的盐类并无特别的限制,其可为有机盐、无机盐中的任一者皆可。代表的例子,例如碱金属离子(锂(Li)、钠(Na)、钾(K)等)、碱土族金属离子(镁(Mg)、钙(Ca)等)、铵(ammonium)、烷基铵(alkylammonium)(例如,二乙基铵(diethylammonium)、四丁基铵(tetrabutylammonium)等)、吡啶鎓(pyridinium)、烷基吡啶鎓(alkylpyridinium)(例如,甲基吡啶鎓(methylpyridinium))、胍(guanidinium)、四烷鏻(tetraalkylphosphonium)等盐。在一般式(1)中,酸性基为多数个时,分别可相同或是不同。
本发明的上述酸性基较佳为羧基、磷酸基或膦酰基,更佳为羧基。
V1较佳为具有氢原子、5-羧基、5-磺酸基(5-sulfonic acid group)、5-甲基或4,5-苯环缩合(4,5-Condensed benzene-ring)。在此,位置号码是以N+作为1逆时针旋转而注记。
据此,可获得摩尔吸光系数提高或电子注入效率提高的效果。
另外,在一般式(2)~一般式(5)中,除了V1之外,Z也较佳为具有酸性基的基团。Z可设定为与V1相同的酸性基。酸性基在本发明的色素中具有吸附至半导体微粒子的作用。色素中的酸性基的数量较佳为1个以上,更佳为1~2个。而且,将V1与Z两者设定为酸性基,藉此可实现因吸附力提高而造成的耐久性提高。
可将上述一般式(2)以下述一般式(6)所表示,且将上述一般式(3)以下述一般式(7)所表示。
[化19]
Figure BDA00002449226200161
一般式(6)
[化20]
Figure BDA00002449226200162
一般式(7)
上述一般式(6)或一般式(7)中,V12表示为酸性基,E11~E13中的至少一个表示为拉电子基,p为2以上的整数。酸性基可列举与在上述V1所列举的酸性基相同的酸性基。
拉电子基较佳为氰基(cyano group)、硝基(nitro group)、磺酰基(sulfonylgroup)、磺酸氧基(sulfoxy group)、酰基(acyl group)、烷氧羰基(alkoxycarbonyl group)、胺甲酰基(carbamoyl group),更佳为氰基、硝基、磺酰基,更较佳为氰基。
上述一般式(6)中,p为2以上的整数,p较佳为2~5,更佳为2~3。上述一般式(6)以及一般式(7)中,由于V12表示为酸性基,E11~E13中的至少一个表示为拉电子基,被激发的电子可被强吸引至与半导体粒子层的吸附点附近,藉此朝半导体粒子层的电子的输送有效率的被进行,而可实现光电转换效率提高的效果。E11~E13中,更佳为E11、E12是拉电子基。
上述一般式(2)较佳为以下述一般式(8)所表示,上述一般式(3)较佳为以下述一般式(9)所表示。
[化21]
一般式(8)
[化22]
Figure BDA00002449226200171
一般式(9)
[化23]
Figure BDA00002449226200172
式A    式B    式C    式D    式E
一般式(8)或一般式(9)中,Y、Z、R3~R8与一般式(2)或一般式(3)的Y、Z、R3~R8定义相同。L为以上述式A~D所表示,m表示为0、或1以上的整数,m为2以上时,L各自亦可不同。上述式A中,Xa表示为NRe、O、S,Re表示为氢原子或取代基。在上述式A及式C中,Ra~Rd表示取代基。在Ra~Re中作为取代基可列举以下述取代基所表示的取代基作为具体例。
作为取代基,例如表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且这些基亦可被取代。以碳原子键结的杂环基,例如是吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、吡唑、异恶唑、异噻唑、吡啶、嗒肼、嘧啶、吡喃等。R、R’较佳为脂肪族基或芳香族基,芳香族基的碳原子数较佳为5~16,更佳为5或6。无取代的芳香族基较佳为苯基、萘基等。脂肪族基较佳为烷基、烯基或炔基,更佳为烷基或烯基,更较佳为碳数5~18的烷基(例如是戊基、己基、庚基、辛基、壬基、癸基、十一基、十二基、十八基、环己基、2-乙基己基等)。在烷基中,较佳为分支烷基,其例如可列举2-乙基己基、2-甲基己基、2-甲基戊基、3,5,5-三甲基己基、2-环戊基乙基、2-环己基乙基等。因具有碳数5~18的烷基,可抑制水、亲核剂(nucleophile)所造成的色素的分解,并可抑制水接近吸附点而使色素从半导体微粒子剥离所造成的耐久性的降低。而且,由于能够抑制色素彼此间的聚集或过度吸附,故可抑制非效率的电子移动,并使光电转换效率提高。另外,由于烷基为分支,因而可更显著地获得上述效果,特别是耐久性提高的效果。
上述一般式(8)中,p表示为2以上的整数,Rx表示为酸性基。酸性基可列举与上述V1所列举的酸性基相同的酸性基。Rx较佳为式E所表示的基团。
由于上述一般式(2)以上述一般式(8)所表示,上述一般式(3)以上述一般式(9)所表示,因而可获得吸收区域扩大或吸光系数提高的效果,且可产生光电转换效率提高的效果。
在上述一般式(3)、一般式(5)及一般式(9)中,R7较佳为式(10)~式(13)的任一者所表示。
[化24]
Figure BDA00002449226200181
Figure BDA00002449226200182
一般式(10)    一般式(11)    一般式(12)    一般式(13)
上述式中,Rf为氢原子或取代基。取代基例如可列举脂肪族基、芳香族基、以碳原子键结的杂环基,且该些取代基亦可被取代。其中,取代基较佳为脂肪族基、芳香族基。藉此,可使短波长侧的吸收被强化。
在上述一般式(3)、一般式(5)及一般式(9)中,R7较佳为以下述一般式(14)或一般式(15)所表示。
[化25]
Figure BDA00002449226200183
一般式(14)    一般式(15)
藉此,可获得电子注入效率提高的效果。
一般式(1)所表示的本发明的色素,在四氢呋喃∶乙醇=1∶1自勺溶液中,其极大吸收波长较佳为670nm~1100nm的范围,更佳为700nm~900nm的范围。
以下表示为本发明中一般式(1)所表示的化合物的较佳具体例,然本发明并不限定于此。
[化26]
Figure BDA00002449226200191
Figure BDA00002449226200192
[化27]
Figure BDA00002449226200193
Figure BDA00002449226200194
[化28]
Figure BDA00002449226200195
Figure BDA00002449226200196
[化29]
Figure BDA00002449226200201
另外,以下表示为本发明的具有一般式(6)~一般式(9)的结构的色素的较佳具体例,然本发明并不限定于此。
[化30]
(具体例1)
Figure BDA00002449226200202
[化31]
(具体例2)
[化32]
(具体例3)
Figure BDA00002449226200211
[化33]
(具体例4)
Figure BDA00002449226200212
Figure BDA00002449226200221
在上述具体例1~4中,基本架构A表示为下述的A-1~A-12中的任一者,基本架构B表示为下述的B-1~B-11中的任一者,基本架构C表示为下述的C-1~C-4中的任一者。另外,Z表示为下述的Z-1~Z-5,连结基L表示为下述的L-1~L-12中的任一者。
在具体例1~4中,基本架构A与基本架构B在*彼此的碳原子利用碳-碳双键键结,基本架构B与基本架构C在**彼此的碳原子利用碳-碳双键键结。
[化34]
Figure BDA00002449226200222
[化35]
Figure BDA00002449226200231
[化36]
Figure BDA00002449226200232
[化37]
Figure BDA00002449226200241
[化38]
例如,上述具体例中,若表示T-2、T-6、T-9、T-10、T-12、T-16、T-17、T-18、T-24、T-30、T-37、T-40~T-50的结构式,则为如下所示。
[化39]
Figure BDA00002449226200251
[化40]
Figure BDA00002449226200261
[化41]
[化42]
Figure BDA00002449226200272
[化43]
Figure BDA00002449226200281
[化44]
Figure BDA00002449226200282
另外,也可列举以下的色素。
[化45]
Figure BDA00002449226200291
具有上述结构的色素的合成,可参考优克朗斯基奇米切斯基则若(Ukrainskii Khimicheskii Zhurnal)第40卷3号253~258页、染料与颜料(Dyesand Pigments)第21卷227~234页以及这些文献中所引用的文献的记载等来进行。
(B)导电性支撑体
如图1所示,本发明的光电转换元件中,在导电性支撑体1上形成有色素21吸附于多孔质的半导体微粒子22的感光体层2。如后述,例如在导电性支撑体涂布·干燥半导体微粒子的分散液之后,藉由浸渍于本发明的色素溶液中,而可制造出感光体。
导电性支撑体可以使用如金属般本身有导电性的支撑体,或表面具有导电膜层的玻璃或高分子材料。导电性支撑体较佳为实质上是透明的。实质上是透明的意思是指,光的透过率为10%以上,较佳为50%以上,更佳为80%以上。另外,可使用在玻璃或高分子材料上涂设导电性的金属氧化物而成的支撑体作为导电性支撑体。此时的导电性的金属氧化物的涂布量,较佳为每1m2的玻璃或高分子材料的支撑体0.1~100g。在使用透明导电性支撑体时,光较佳为由支撑体侧入射。作为所使用的高分子材料的较佳例,可列举四醋酸纤维素(tetraacetylcellulose,TAC)、聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二酯(PolyethyleneNaphthalate,PEN)、对位聚苯乙烯(syndiotactic polystyrene,SPS)、聚苯硫醚(poly phenylene sulfide,PPS)、聚碳酸酯(polycarbonate,PC)、聚芳酯(polyarylate,PAR)、聚砜(polysulfone,PSF)、聚醚砜(polyether sulfone,PES)、聚醚酰亚胺(polyetherimide,PEI)、环状聚烯烃(cyclic polyolefin)、溴化苯氧基(brominated phenoxy)等。
在本发明中,作为较佳的导电性支撑体可使用金属支撑体。导电性金属支撑体也可使用以属于4族~13族中任一元素构成的导电性金属支撑体,以作为导电性支撑体。在此,4族~13族是指长周期型周期表中的元素。
本发明的导电性金属支撑体的厚度,较佳为10μm以上、2000μm以下,更佳为10μm以上、1000μm以下,更较佳为50μm以上、500μm以下。若导电性金属基板的厚度太厚则可挠性不足,因此使用作为光电转换元件时则会发生故障。另外,若厚度太薄,则光电转换元件在使用中会产生破损因而不佳。
本发明中所使用的导电性金属支撑体的表面电阻较佳为低表面电阻。较佳的表面电阻的范围为10Ω/m2以下,更佳为1Ω/m2以下,更较佳为0.1Ω/m2以下。表面电阻的值太高时,会变的不易通电而无法发挥光电转换元件的功能。
导电性金属支撑体较佳为使用选自由钛、铝、铜、镍、铁、不锈钢、锌、钼、钽、铌及锆所组成的群组的至少1种。这些金属也可以是合金。这些当中,较佳为钛、铝、铜、镍、铁、不锈钢及锌,更佳为钛、铝及铜,进而佳为钛及铝。使用铝时,较佳为使用铝合金展伸材料、1000系~7000系(轻金属协会:铝手册,轻金属协会(1978),26)等。
导电性金属支撑体因表面电阻小,而能够使光电化学电池的内部电阻降低,从而能获得高输出的电池。另外,在使用导电性金属支撑体的情况下,即使使涂布有后述的半导体微粒子分散液的导电性金属支撑体进行加热干燥的温度提高而进行煅烧,支撑体也不会软化。因此,藉由适当选择加热条件,可形成比表面积大的多孔质半导体微粒子层。根据上述,可使色素吸附量增加,而可提供在高输出下转换效率高的光电转换元件。
另外,一边连续地送出被卷绕的金属片,一边在此金属片上涂上半导体微粒子分散液,然后进行加热,即可得到多孔质的导电性支撑体。之后,连续涂布本发明的色素,藉此可在导电性支撑体上形成感光层。通过经由上述制程,则能够以廉价制造出光电转换元件或光电化学电池。
本发明的导电性金属支撑体,较佳为使用在高分子材料层上设置有导电层的基板。高分子材料层并无特别的限制,但要选择在导体层上涂布半导体微粒子分散液后加热时进行溶融而不会保持形状的材料。导电层为在高分子材料层上,以先前的方法,例如利用挤压被覆等进行积层而制造。
能使用的高分子材料层例如为,四醋酸纤维素(TAC)、聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、对位聚苯乙烯(SPS)、聚苯硫醚(PPS)、聚碳酸酯(PC)、聚芳酯(PAR)、聚砜(PSF)、聚醚砜(PES)、聚醚酰亚胺(PEI)、环状聚烯烃、溴化苯氧基等。
藉由使用在高分子材料层上设置了导电层的支撑体作为本发明的导电性金属支撑体,此高分子材料层可作为光电转换元件或光电化学电池的保护层而发挥功能。若使用电绝缘性的材料作为高分子材料,则此高分子材料层不只可作为保护层,也可作为绝缘层而发挥功能。根据上述,可确保光电转换元件本身的绝缘性。当使用此高分子材料层作为绝缘层的情况下,较佳为使用体电阻率是1010~1022Ω·cm者,更佳为体电阻率是1011~1019Ω·cm。使用上述材料时,若不特别地调配导电性的材料,则可得到具有上述范围内的体电阻率的绝缘层的导电性金属支撑体。导电性金属支撑体较佳为实质上是透明的。实质上是透明的意思是指,波长400nm~1200nm的光的透过率为10%以上,较佳为50%以上,更佳为80%以上。
在导电性金属支撑体上,也可于表面上设置光管理机构,例如可设置将高折射膜及低折射率的氧化物膜交互积层而成的反射防止膜,或光导(light guide)机构。
在导电性支撑体上,较佳为具有遮断紫外光的功能。例如可列举,使上述高分子材料层的内部或表面存在有可把紫外光转变成可见光的萤光材料的方法。另外,其他较佳的方法,例如可列举使用紫外线吸收剂的方法。在导电性支撑体上,也可以给予日本专利特开平11-250944号公报等中记载的功能。
若电池面积变大则导电膜的电阻值变大,因此也可配置集电电极。较佳集电电极的形状及材质可使用日本专利特开平11-266028号公报等中记载者。另外,在高分子材料层与导电层之间,也可配置气体阻隔膜(gasbarrier film)及/或离子扩散防止膜。气体阻隔膜为树脂膜或无机膜任一者皆可。
(C)半导体微粒子
如图1所示,本发明的光电转换元件中,在导电性支撑体1上形成有色素21吸附于多孔质的半导体微粒子22的感光体层2。如后述,例如是在上述的导电性支撑体涂布、干燥半导体微粒子的分散液之后,藉由浸渍于本发明的色素溶液中,即可制造出感光体。
半导体微粒子较佳为,使用金属的硫族化物(chalcogenide)(例如,氧化物、硫化物、硒化物(selenide)等)或钙钛矿(perovskites)的微粒子。金属的硫族化物较佳为钛、锡(tin)、锌、钨(tungsten)、锆、铪(hafnium)、锶(strontium)、铟(indium)、铈(cerium)、钇(yttrium)、镧(lanthanum)、钒(vanadium)、铌或钽的氧化物、硫化镉(cadmium sulfide)、硒化镉(cadmiumselenide)等。钙钛矿较佳为钛酸锶(strontium titanate)、钛酸钙(calciumtitanate)等。其中,更佳为氧化钛、氧化锌、氧化锡、氧化钨。
半导体中关于传导存在有载体为电子的n型以及载体为电洞的p型,但是在本发明的元件中使用n型就转换效率观点而较佳。在n型半导体中,除了没有杂质位阶的传导带电子与价电子带电洞的载体的浓度为相等的本质半导体(intrinsic semiconductor)(或本征半导体)外,存在因来自杂质的结构缺陷的电子载体浓度高的n型半导体。本发明中较佳使用的n型无机半导体为TiO2、TiSrO3、ZnO、Nb2O3、SnO2、WO3、Si、CdS、CdSe、V2O5、ZnS、ZnSe、SnSe、KTaO3、FeS2、PbS、InP、GaAs、CuInS2、CuInSe2等。其中,最较佳的n型半导体为TiO2、ZnO、SnO2、WO3及Nb2O3。另外,也可较佳使用使该些半导体的多数个复合而成的半导体材料。
半导体微粒子的粒径,以保有半导体微粒子分散液的黏度高的目的,较佳为一次粒子的平均粒径为2nm以上、50nm以下。另外,一次粒子的平均粒径是2nm以上、30nm以下的超微粒子为更佳。也可混合粒径分布不同的2种类以上的微粒子,此时小粒子的平均尺寸较佳为5nm以下。此外,以使入射光散射而使光捕获率提高为目的,可对上述的超微粒子以低含有率添加平均粒径超过50nm的大粒子。此时,大粒子的含有率较佳为平均粒径50nm以下的粒子的质量的50%以下,更佳为20%以下。因上述目的而添加混合的大粒子的平均粒径,较佳为100nm以上,更佳为250nm以上。
半导体微粒子的制作方法较佳为,以作花済夫的“溶胶凝胶法的科学”AGNE承风出版社(1998年)等中记载的溶胶·凝胶法(sol-gel method)法。另外,藉由将德固赛(Degussa)公司开发的氯化物于酸氢盐中高温加水分解,以制作氧化物的方法。当半导体微粒子是氧化钛时,较佳为用上述溶胶·凝胶法、凝胶·溶胶法、氯化物的酸氢盐中的高温加水分解法中的任一者,更佳为用清野学的“氧化钛物性及应用技术”技报堂出版(1997年)中记载的硫酸法及氯法(chlorine method)。另外,溶胶凝胶法较佳为,巴贝(Barbe)等人在美国陶瓷协会期刊(Journal of American Ceramic Society)第80卷第12号3157~3171页中记载的方法,或伯恩赛德(Burnside)等人在材料化学(Chemistry ofMaterials)第10卷第9号2419~2425页中记载的方法。
此外,作为半导体微粒子的制造方法,例如作为氧化钛纳米粒子的制造方法较佳可列举:利用四氯化钛的火焰加水分解的方法、四氯化钛的燃烧法、安定的硫族化物错合物的加水分解、正钛酸(orthotitanic acid)的加水分解、由可溶部分与不溶部分形成半导体微粒子后溶解去除可溶部分的方法、过氧化物水溶液的水热合成,或利用溶胶·凝胶法的核/壳(core/shell)结构的氧化钛的制造方法。
氧化钛的结晶结构例如是锐钛矿型(anatase)、板钛矿型(brookite)或金红矿型(rutile),而较佳为锐钛矿型、板钛矿型。
在氧化钛微粒子中也可以混合氧化钛纳米管·纳米线·纳米柱。
氧化钛亦可藉由非金属元素等而被掺杂(doping),而除了作为氧化钛的添加剂的掺质(dopant)外,为了改善颈化(necking)的黏合与防止逆电子移动,可在表面使用添加剂。作为较佳的添加剂的例子可列举铟锡氧化物(Indium Tin Oxide,ITO)、氧化锡(SnO)粒子、须晶、纤维状石墨·碳纳米管(graphite·carbon nanotubes)、氧化锌颈化偶合物(zinc oxide necking couple)、织维素(cellulose)等的纤维状物质、金属、有机硅(organosilicon)、十二烷基苯磺酸(dodecyl benzene sulfonic acid)、硅烷化合物(silane)等的电荷移动结合分子,以及电位倾斜型树枝状聚合物(dendrimer)等。
以去除氧化钛上的表面缺陷等的目的,也可在色素吸附前,对氧化钛进行酸碱或氧化还原处理。另外,亦可进行蚀刻(etching)、氧化处理、过氧化氢处理、脱氢处理、UV-臭氧、氧等离子等处理。
(D)半导体微粒子分散液
在本发明中,于上述的导电性支撑体上涂布半导体微粒子分散液,并适当地进行加热,藉此可得到多孔质半导体微粒子涂布层。
半导体微粒子分散液的制作方法,除上述的溶胶·凝胶法外,可列举在合成半导体时于溶剂中析出微粒子而直接使用的方法、对微粒子照射超音波等而粉碎成超微粒子的方法,或使用研磨机与研钵等机械性的粉碎捣碎的方法等。分散溶剂可使用水及/或各种有机溶剂。而有机溶剂,例如甲醇(methanol)、乙醇(ethanol)、异丙醇(isopropyl alcohol)、香茅醇(citronellol)、松香醇(terpineol)等醇类,丙酮(acetone)等酮类,乙酸乙酯(ethyl acetate)等酯类,二氯甲烷(dichloromethane)、乙腈(acetonitrile)等。
分散时,也可视需要使用少量的例如聚乙二醇(polyethylene glycol)、羟乙基纤维素(hydroxyethyl cellulose)、羧甲基纤维素(carboxymethyl cellulose)之类的聚合物、界面活性剂、酸或钳合剂(chelating agent)等当作是分散助剂。但是,在导电性支撑体上进行制膜制程之前,这些分散助剂较佳为以过滤法或使用分离膜的方法,或是远心分离法等,预先去除大部分。
若半导体微粒子分散液的黏度太高,则分散液会凝集而无法制膜,相反地若半导体微粒子分散液的黏度太低,则溶液会流掉而无法制膜。因此,分散液的黏度较佳为在25℃下10N·S/m2~300N·S/m2,更佳为在25℃下50N·S/m2~200N·S/m2
作为半导体微粒子分散液的涂布方法,可使用作为应用(application)式的方法的辊法(roller method)、浸渍法(dip method)等。另外,也可使用作为计量(metering)式的方法的气刀法(air knife method)、刮刀法(blademethod)等。此外,在相同部分可使用应用式的方法与计量式的方法的方法较佳为日本专利特公昭58-4589号公报中揭示的线棒法(wire bar method)、美国专利2681294号说明书等中记载的斜板加料法(slide hopper method)、挤压法(extrusion method)、淋幕法(curtain method)等。而且,较佳为使用一般机器以旋转法(spin method)或喷雾法(spraying method)进行涂布。湿式印刷方法主要为凸版(relief printing)、平板(offset)及凹版(gravure)的三大印刷法,而较佳为凹版、橡胶版、纲版印刷(screen printing)等。因此可由上述方法中,根据液黏度与湿厚度以选择较佳的制膜方法。因为本发明的半导体微粒子分散液黏度高、且具有黏稠性,所以凝集力强,因而在涂布时与支撑体会有不易亲合的情况。在上述情况中,可藉由以UV臭氧处理进行表面的清洁和亲水化,以增加涂布后的半导体微粒子分散液与导电性支撑体表面的接著力,使半导体微粒子分散液的涂布变得容易进行。
半导体微粒子层整体的较佳厚度为0.1μm~100μm,半导体微粒子层的厚度更佳为1μm~30μm,更较佳为2μm~25μm。半导体微粒子的每一1m2支撑体的承载量较佳为0.5g~400g,更佳为5g~100g。
对于已涂布半导体微粒子的层,为了半导体微粒子彼此的电子的接触的强化,及与支撑体的附著性的提高,还有为了干燥已涂布的半导体微粒子分散液,而施以加热处理。藉由上述的加热处理,可形成多孔质半导体微粒子层。
此外,除加热处理之外,也可使用光的能源。例如,使用氧化钛作为半导体微粒子时,也可给予如紫外光般的半导体微粒子可吸收的光以使表面活性化,且可用雷射光等仅使半导体微粒子表面活性化。对半导体微粒子照射该微粒子可吸收的光,藉此吸附于粒子表面的杂质可藉由粒子表面的活性化而被分解,而可设定成为了上述目的较佳状态。在组合加热处理与紫外光的情况下,较佳为对半导体微粒子一边照射微粒子可吸收的光,一边以100℃以上、250℃以下进行加热,更佳为以100℃以上、150℃以下进行加热。如上述,藉由光激发半导体微粒子,能够以光分解清洗已混入微粒子层内的杂质的同时,增强微粒子之间的物理接合。
另外,除了在上述的导电性支撑体上涂布半导体微粒子分散液,并加热或照射光以外,也可进行其他的处理。较佳的方法,例如可列举通电、化学的处理等。
在涂布后也可施加压力,施加压力的方法例如可列举日本专利特表2003-500857号公报等。光照射的例子可列举日本专利特开2001-357896号公报等。等离子·微波·通电的例子可列举日本专利特开2002-353453号公报等。化学的处理,例如可列举日本专利特开2001-357896号公报等。
上述的在导电性支撑体上涂设半导体微粒子的方法,除上述的在导电性支撑体上涂布半导体微粒子分散液的方法外,可使用在导电性支撑体上涂布日本专利第2664194号公报中记载的半导体微粒子的前驱物,藉由空气中的水分进行加水分解,以得到半导体微粒子膜的方法等方法。
作为前驱物例如可列举(NH4)2TiF6、过氧化钛、金属烷氧化合物、金属错合物、金属有机酸盐等。
另外可列举:涂布与金属有机氧化物(烷氧化合物等)共存的浆料(slurry)并以加热处理、光处理等而形成半导体膜的方法,及与无机系前驱物共存的浆料且特定出浆料的pH与所分散的钛粒子的特性的方法。在这些浆料中亦可少量地添加黏结剂(binder),黏结剂可列举纤维素、氟聚合物、交联橡胶(cross‐linked rubber)、聚钛酸丁酯(polybutyltitanate)、羧甲基纤维素等。
有关半导体微粒子或其前驱物层的形成的技术,例如是以电晕放电(corona discharge)、等离子、UV等的物理的方法进行亲水化的方法、藉由碱或聚伸乙基二氧基噻吩(polyethylenedioxythiophene)与聚苯乙烯磺酸(polystyrene sulfonate)等的化学处理、聚苯胺等的接合用中间膜的形成等。
在导电性支撑体上涂设半导体微粒子的方法,也可与上述的(1)湿式法一起合并使用(2)干式法、(3)其他方法。(2)干式法较佳可列举日本专利特开2000-231943号公报等。(3)其他方法较佳可列举日本专利特开2002-134435号公报等。
干式法例如是蒸镀或溅镀、气胶沉积法(aerosol deposition method)等,另外也可用电泳法、电析法。
另外,亦可使用暂时在耐热基板上制作涂膜后,转印至塑胶等膜上的方法。较佳为,如日本专利特开2002-184475号公报记载的通过乙烯醋酸乙烯酯(Ethylene Vinyl Acetate,EVA)转印的方法,或包含可以日本专利特开2003-98977号公报记载的紫外光、水系溶剂去除的无机盐的牺牲基盘上形成半导体层、导电层后,转印至有机基板上,然后去除牺牲基板的方法。
为了能吸附多的色素,半导体微粒子以表面积大者为较佳。例如,在支撑体上涂设半导体微粒子的状态下,其表面积相对于投影面积较佳为10倍以上,更佳为100倍以上。上述的上限并没有特别的限制,其通常是5000倍左右。较佳半导体微粒子的结构可列举日本专利特开2001-93591号公报等。
一般而言,虽然半导体微粒子的层的厚度越大,每一单位面积可承载色素的量会增加,因而光的吸收效率会变高,但是已产生的电子的扩散距离会增加,因此电荷再结合的损失也会变大。半导体微粒子层的较佳厚度可根据元件的用途而不同,典型的是在0.1μm~100μm。另外,用作光电化学电池的情况下,半导体微粒子层的厚度较佳为1μm~50μm,更佳为3μm~30μm。为了使半导体微粒子在涂布于支撑体后粒子彼此密着,也可在100℃~800℃的温度下,加热10分~10小时。使用玻璃作为支撑体时,制膜温度较佳为400℃~600℃。
使用高分子材料作为支撑体时,较佳为在250℃以下制膜后进行加热。上述情况下的制膜方法,可为(1)湿式法、(2)干式法、(3)电泳法(含电析法)的任何一种,较佳为(1)湿式法或(2)干式法,更佳为(1)湿式法。
再者,半导体微粒子的每1m2支撑体的涂布量为0.5g~500g,较佳为5g~100g。
为了使色素吸附于半导体微粒子,较佳为将制膜后的半导体电极浸渍于以溶液与本发明的色素形成的色素吸附用色素溶液中。色素吸附用色素溶液中所使用的溶液并无特别的限制,其只要是可溶解本发明的光电转换元件用色素即可。例如,可使用乙醇、甲醇、异丙醇、甲苯、第三丁醇、乙腈、丙酮、正丁醇等的有机溶剂。其中,较佳为使用乙醇、甲苯。而且,有机溶剂可以单独使用,也可以混合多数个来使用。为使色素均匀地吸附到半导体微粒子中,上述色素的浓度较佳为0.01mmole/L~1.0mmole/L,更佳为0.1mmole/L~1.0mmole/L。
以溶液与本发明的色素形成的色素吸附用色素溶液为,视需要可加热至50℃至100℃。色素的吸附可在半导体微粒子的涂布前进行,或涂布后进行。另外,也可同时涂布半导体微粒子与色素,而使色素吸附。未吸附的色素可藉由清洗去除。在进行涂布膜的煅烧时,较佳为在煅烧后进行色素的吸附,而更佳为在煅烧后,于涂布膜表面吸附水之前快速地使色素被吸附。在不破坏本发明的宗旨的范围内,也可混合具有其他结构的色素。在混合色素时,为了使全部的色素溶解,需要使用色素吸附用色素溶液。
色素的使用量就整体而言,较佳为每1m2支撑体0.01mmole~100mmole,更佳为0.1mmole~50mmole,更较佳为0.1mmole~10mmole。在这种情况下,本发明的色素的使用量较佳为5mole%以上。
另外,色素对半导体微粒子的吸附量,相对于半导体微粒子1g,较佳为0.001mmole~1mmole,更佳为0.1mmole~0.5mmole。
藉由设为如上述般的色素量,可充分得到半导体中的增感效果。据此,若色素量少则增感效果变得不充分,色素量太多时,未附着于半导体的色素会悬浮而成为增感效果降低的原因。
另外,以降低聚集等色素彼此间的相互作用为目的,也可共吸附无色的化合物。共吸附的疏水性化合物可列举具有羧基的类固醇化合物(例如,胆酸(cholic acid)、三甲基乙酰基酸(pivaloyl acid))等。
在吸附色素之后,也可使用胺类(amine)来处理半导体微粒子的表面。较佳的胺类可列举4-第三丁基吡啶(4-tert-butylpyridine)、聚乙烯基吡啶(polyvinylpyridine)等。上述的胺类可在液体的情况下直接使用,也可溶解在有机溶剂中来使用。
对向电极可作为光电化学电池的正极而发挥作用。对向电极通常与上述的导电性支撑体同义,但是若为可充分地保持强度的结构,则不一定需要支撑体。然而,具有支撑体者在密闭性的观点上是有利的。对向电极的材料例如是铂、碳、导电性聚合物,而较佳为铂、碳、导电性聚合物。
对极的构造较佳为集电效果高的构造,较佳的例子为日本专利特开平10-505192号公报等。
受光电极也可使用氧化钛与氧化锡(TiO2/SnO2)等的复合电极,氧化钛的混合电极可例举日本专利特开2000-113913号公报中所记载者。氧化钛以外的混合电极可例举,日本专利特开2001-185243号公报、日本专利特开2003-282164号公报中所记载者。
为了要提高入射光的利用率等,受光电极可为串联型,而较佳的串联型结构例,可列举日本专利特开2002-90989号公报等中记载的例子。
也可设置在受光电极层内部有效率地进行光散射、反射的光管理机能,较佳可列举日本专利特开2002-93476号公报中所记载者。
在导电性支撑体与多孔质半导体微粒子层之间,为了防止因电解液与电极直接接触所造成的逆电流,较佳为形成短路防止层。较佳的例子可列举,日本专利特开平06-507999号公报等中所记载者。
为了防止受光电极与对极的接触,较佳为使用间隔物(spacer)或分隔物(separator)。较佳的例子可列举,日本专利特开2001-283941号公报中所记载者。
(E)电解质
代表性的氧化还原对例如碘与碘化物(例如,碘化锂、碘化四丁基铵、碘化四丙铵(tetrapropylammonium iodide)等)的组合,烷基紫精(alkylviologen)(例如,甲基紫精氯(methyl viologen chloride)、己基紫精溴(hexylviologen bromide)、苄基紫精四氟硼酸盐(benzyl viologen tetrafluoroborate))与其还原物的组合,聚羟基苯(polyhydroxy benzene)类(例如,对苯二酚(hydroquinone)、萘二酚(naphthhydroquinone)等)与其氧化物的组合,2价与3价的铁错合物(例如,赤血盐(red prussiate)与黄血盐(yellow prussiate))的组合等。其中,以碘与碘化物的组合为较佳。溶解上述氧化还原对的有机溶剂,较佳为非质子性的极性溶剂(例如,乙腈、碳酸伸丙酯(propylenecarbonate)、碳酸伸乙酯(ethylene carbonate)、二甲基甲酰胺(dimethylformamide)、二甲亚砜(dimethyl sulfoxide)、环丁砜(sulfolane)、1,3-二甲基咪唑啉酮(1,3-dimethyl imidazolinone)、3-甲基恶唑啉酮(3-methyloxazolidinone)等)。在凝胶电解质的基质中使用的聚合物,例如聚丙烯腈(polyacrylonitrile)、聚偏氟乙烯(polyvinylidene fluoride)等。溶融盐可列举藉由在碘化锂与其他至少1种类的锂盐(例如,醋酸锂(lithium acetate)、过氯酸锂(lithium perchlorate)等)中混合聚环氧乙烷(polyethylene oxide),赋予在室温下的流动性的溶融盐。上述情况的聚合物的添加量为1质量%~50质量%。另外,在电解液中也可含有γ-丁内酯(γ-butyrolactone),藉此可使碘化物离子的扩散效率变高而提高转换效率。
电解质中的添加物,除了上述的4-第三丁基吡啶之外,可加入胺吡啶(aminopyridine)系化合物、苯并咪唑(benzimidazole)系化合物、胺三唑(aminotriazole)系化合物及胺噻唑(aminothiazole)系化合物、咪唑系化合物、胺基三嗪(amino triazine)系化合物、尿素衍生物(urea derivative)、酰胺(amide)化合物、嘧啶系化合物以及不含氮的杂环。
另外,为了提高效率,也可采用控制电解液的水分的方法。控制水分的较佳方法,可列举控制浓度的方法,及与脱水剂共存的方法。为了减轻碘的毒性,可使用碘与环糊精(cyclodextrin)的晶笼化合物(clathratecompound),相反地也可用经常补给水分的方法。此外,可使用环状脒(cyclicamidine),也可加入氧化防止剂、加水分解防止剂、分解防止剂、碘化锌。
另外,也可使用溶融盐作为电解质,较佳的溶融盐可列举含咪唑鎓(imidazolium)或三唑鎓(triazolium)型阳离子的离子性液体、恶唑鎓(oxazolium)系、吡啶鎓系、胍系及其组合。对于这些阳离子也可与特定的阴离子组合,而对于上述的溶融盐也可加入添加物,且也可以具有液晶性的取代基。另外,亦可使用四级铵盐(Quaternary ammonium salt)系的溶融盐。
上述以外的溶融盐例如可列举,藉由在碘化锂与其他至少1种类的锂盐(例如,醋酸锂、过氯酸锂等)中混合聚环氧乙烷,赋予在室温下具有流动性者等。
另外,也可以藉由在包括电解质与溶剂的电解液中,添加凝胶化剂而凝胶化,以使电解质拟固体化。凝胶化剂例如是,分子量1000以下的有机化合物、分子量500-5000的范围的Si含有化合物、由特定的酸性化合物与碱性化合物形成的有机盐、山梨醇衍生物(sorbitol derivative)、聚乙烯基吡啶。
另外,也可使用将基质高分子(matrix polymer)、交联型高分子化合物或单体、交联剂、电解质及溶剂封闭在高分子中的方法。基质高分子较佳为在主链或侧链的重复单元中具有含氮杂环的高分子及使其与亲电子性化合物反应的交联剂、具有三嗪结构的高分子、具有酰脲(ureide)结构的高分子、含有液晶性化合物的高分子、有醚键(ether linkage)的高分子、聚偏氟乙烯系、甲基丙烯酸酯、丙烯酸酯系、热硬化性树脂、交联聚硅氧烷、聚乙烯醇(polyvinyl alcohol,PVA)、ポリアルキレングリ一ル与糊精等的晶笼化合物、添加有含氧或含硫高分子系、天然高分子等。在上述中,也可添加碱膨润型高分子、具有可在一个高分子中形成阳离子部位与碘的电荷移动错和物的化合物的高分子等。
作为基质高分子亦可用包含将2官能以上的异氰酸酯(isocyanate)作为一部份的成分,而与羟基、胺基、羧基等的官能基反应而成的交联聚合物的种类。另外,可使用将氢化硅烷基(hydrosilyl group)与双键性化合物所得到的交联高分子、聚磺酸(polysulfone acid)或聚羧酸(polycarboxylicacid)等,与2价以上的金属离子化合物反应的交联方法等。
利用与上述拟固体的电解质组合而能够较佳地使用的溶剂,可列举含有特定的磷酸酯(phosphoric acid ester)、含碳酸伸乙酯(ethylene carbonate)的混合溶剂、具有特定的介电常数(dielectric constant)的溶剂。另外,也可保持固体电解质膜或于细孔保持液体电解质溶液,其方法较佳为列举导电性高分子膜、纤维状固体、滤膜等的布状固体。
此外,也可用p型半导体或电洞传输材料等的固体电荷传输层,以替代以上的液体电解质及拟固体电解质。固体电荷传输层亦可使用有机电洞传输材料。电洞传输层较佳列举聚噻吩、聚苯胺、聚吡咯及聚硅烷等的导电性高分子、2个环共有以C、Si等四面体结构为中心元素的螺环(spiro)化合物、三芳基胺(triarylamine)等的芳香族胺衍生物、联伸三苯(triphenylene)衍生物、含氮杂环衍生物、液晶性氰衍生物。
因为氧化还原对可成为电子的载体,所以某程度的浓度是有必要的,其浓度总计较佳为0.01mole/L以上,更佳为0.1mole/L,更较佳为0.3mole/L以上。上述的浓度的上限并无特别的限制,通常为5mole/L左右。
[实例]
以下,基于实例来更佳详细说明本发明,然本发明并不限定于此。
色素的调制
将下述的(SA-1)0.45g与下述的(SB-1)0.26g,在1-丁醇10ml与甲苯10ml的混合溶剂中混合,然后在100℃下一边加热4小时一边搅拌。之后,将所得到的结晶以抽吸过滤进行过滤,并利用硅凝胶管柱层析(silica gelcolumn chromatography)纯化,以调制出上述的色素S-140.26g。
[化46]
Figure BDA00002449226200411
[实验1]
(光电转换元件的制作)
以如下方式来制作如图1所示的光电转换元件。
在玻璃基板上,藉由溅镀形成掺杂有氟的氧化锡以作为透明导电膜,然后利用雷射切割,将透明导电膜分割成2个部分。在其中一个导电膜上烧结锐钛矿型氧化钛粒子,以制作受光电极。接着,在受光电极上,涂布以及烧结以40:60(质量比)含有二氧化硅粒子与金红矿型氧化钛的分散液,以形成绝缘性多孔体。半导体微粒子的涂布量为20g/m2,继之形成碳电极以作为对极。
接着,在下述表1中所记载的色素的乙醇溶液(各3×10-4mole/L)中,浸渍48小时。然后,将染附增感色素的玻璃浸渍在4-第三丁基吡啶的10%乙醇溶液中30分钟后,以乙醇清洗并使之自然干燥。所得到的感光体的厚度为10μm。色素量根据色素的种类,适合地选自0.1mmole/m2~10mmole/m2的范围。
电解液可使用碘化二甲基丙基咪唑鎓(0.5mole/L)、碘(0.1mole/L)的甲氧基丙腈(methoxypropionitrile)溶液。
(色素的极大吸收波长的测定)
测定所使用的色素的最大吸收波长,其结果如表1所示。最大吸收波长的测定可利用分光光度计(U-4100(商品名)、日立高新科技(HitachiHigh-Technology)公司制造)进行,溶液可使用THF:乙醇=1:1,浓度可调整成2μM。
(光电转换效率的测定)
藉由使500W的氙灯(优志旺(ushio)公司制造)的光,通过AM1.5G滤光片(Oriel公司制造)及锐截止滤光片(Kenko L-42,商品名),而产生不含紫外线的模拟太阳光。上述的光的强度为89mW/cm2。在所制作的光电转换元件上照射上述的光,以电流电压测定装置(Keithley 238型,商品名)来测定光电转换特性。
光电化学电池的转换效率的初期值的测定结果,在下述的表1中表示为转换效率。转换效率为2.5%以上者以◎表示,1%以上、不到2.5%者以○表示,0.3%以上、不到1%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,以500小时后的转换效率的降低当作耐久性来进行评价。上述的结果,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,而相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表1
试料号码 色素 色素的极大吸收波长(nm) 转换效率 耐久性 备注
1-1 S-1 741 本发明
1-2 S-2 739 本发明
1-3 S-3 735 本发明
1-4 S-4 727 本发明
1-5 S-5 727 本发明
1-6 S-6 746 本发明
1-7 S-7 782 本发明
1-8 S-8 769 本发明
1-9 S-9 752 本发明
1-10 S-10 745 本发明
1-11 S-11 788 本发明
1-12 S-12 786 本发明
1-13 S-13 765 本发明
1-14 S-14 772 本发明
1-15 S-15 772 本发明
1-16 S-16 773 本发明
1-17 S-17 761 本发明
1-18 S-18 791 本发明
1-19 T-2 790 本发明
1-20 T-6 785 本发明
1-21 T-9 800 本发明
1-22 T-10 810 本发明
1-23 T-12 800 本发明
1-24 T-16 770 本发明
1-25 T-17 770 本发明
1-26 T-18 770 本发明
1-27 T-24 770 本发明
1-28 T-30 800 本发明
1-29 T-37 820 本发明
1-30 T-41 795 本发明
1-31 T-42 810 本发明
1-32 T-43 810 本发明
1-33 A-1 731 ○× 比较例
1-34 A-2 770 ○× 比较例
在实验1~10中,使用以下的A-1及A-1作为比较色素。
[化47]
Figure BDA00002449226200441
由表1可知,使用本发明的色素的光电化学电池,转换效率的初期值为合格标准,而且经过500小时后的转换效率为初期值的60%以上,且表示出优异的耐久性。
对于上述,使用比较色素的情况下,转换效率的初期值为合格标准,但在耐久性上有问题。
[实验2]
藉由在玻璃基板上制作ITO膜,然后在其上方积层FTO膜,藉此制作透明导电膜。之后,藉由在透明导电膜上形成氧化物半导体多孔质膜,而得到透明电极板。接着,使用此透明电极板来制作光电化学电池,并测定转换效率。上述的方法如以下的(1)~(5)。
(1)ITO(铟锡氧化物)膜用原料化合物溶液的调制
将氯化铟(III)四水合物(indium(III)chloride tetrahydrate)5.58g与氯化锡(II)二水合物(tin(II)chloride dihydrate)0.23g溶解于乙醇100ml中,以作为ITO膜用原料化合物溶液。
(2)FTO(fluorine-doped tin oxide,氟掺杂氧化锡)膜用原料化合物溶液的调制
将氯化锡(IV)五水合物0.701g溶解于乙醇10ml中,然后加入氟化铵0.592g的饱和水溶液,之后将上述的混合物放入超音波清洗机中约20分钟至完全溶解,以作为FTO膜用原料化合物溶液。
(3)ITO/FTO透明导电膜的制作
厚度2mm的耐热玻璃板的表面以化学清洗及干燥后,将此玻璃板置于反应器中,以加热器进行加热。加热器的加热温度变成450℃时,将以(1)得到的ITO膜用原料化合物溶液,由口径0.3mm的喷嘴,在压力0.06MPa下,至玻璃板的距离设为400mm,进行25分钟的喷雾。
在上述的ITO膜用原料化合物溶液的喷雾后,经过2分钟(在此期间,于玻璃基板表面持续喷雾乙醇,以抑制基板表面温度的上升),加热器的加热温度变成530℃时,将以(2)得到的FTO膜用原料化合物溶液在同样的条件下进行喷雾2分钟30秒。根据上述,可得到在耐热玻璃板上依序形成有厚度530nm的ITO膜、厚度170nm的FTO膜的透明电极板。
为了比较,在厚度2mm的耐热玻璃板上,同样地分别制作仅成膜有厚度530nm的ITO膜的透明电极板、以及仅成膜有厚度180nm的FTO膜的透明电极板。
将上述3种的透明电极板于加热炉中以450℃加热2小时。
(4)光电化学电池的制作
接下来,使用上述3种的透明电极板,来制作日本专利特许第4260494号公报的图2所示的构造的光电化学电池。氧化物半导体多孔质膜的形成为,将平均粒径约230nm的氧化钛微粒子分散于乙腈中成浆料(paste),然后利用棒涂布法(bar coating method)将该浆料于透明电极11上涂布成厚度15μm,干燥后在450℃下进行1小时的煅烧。接着,在氧化物半导体多孔质膜上承载表2记载的色素。
而且,对极为使用在玻璃板上积层了ITO膜与FTO膜的导电性基板,而电解质层中使用包括碘/碘化物的非水溶液的电解液。光电化学电池的平面尺寸为25mm×25mm。
(5)光电化学电池的评价
对以(4)所得到的光电化学电池,照射类似太阳光(AM1.5),利用与实验1同样的方法测定光电转换特性,而求得转换效率。其结果表示于表2。关于转换效率,其表示为将试料号码2-9当作1时的相对值。关于耐久性,相对于转换效率的初期值,经过500小时后的转换效率90%以上者为◎,60%以上、不到90%者为○,40%以上、不到60%者为△,不到40%者为×,而相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表2
试料号码 导电膜 色素 转换效率 耐久性 备注
2-1 仅ITO S-2 055 本发明
2-2 仅FTO S-2 059 本发明
2-3 ITO+FTO S-2 089 本发明
2-4 仅ITO S-8 061 本发明
2-5 仅FTO S-8 063 本发明
2-6 ITO+FTO S-8 091 本发明
2-7 仅ITO S-13 065 本发明
2-8 仅FTO S-13 076 本发明
2-9 ITO+FTO S-13 100 本发明
2-10 仅ITO T-16 099 本发明
2-11 仅FTO T-16 097 本发明
2-12 ITO+FTO T-16 110 本发明
2-13 仅ITO T-24 097 本发明
2-14 仅FTO T-24 093 本发明
2-15 ITO+FTO T-24 107 本发明
2-16 仅ITO T-12 100 本发明
2-17 仅FTO T-12 105 本发明
2-18 ITO+FTO T-12 130 本发明
2-19 仅ITO A-2 062× 比较例
2-20 仅FTO A-2 068× 比较例
2-21 ITO+FTO A-2 082× 比较例
由表2可知,导电层为仅有ITO膜的情况或仅有FTO膜的情况时,即使是本发明的光电化学电池,其转换效率也会变低,而导电层为在ITO膜上形成FTO膜的情况时,转换效率表示有变高的倾向。上述的倾向在比较例的光电化学电池的情况下也同样有。
尽管如此,本发明的光电化学电池经过500小时后的转换效率均为60%以上,且显示出优异的耐久性,相对于此比较例的光电化学电池的经过500小时后的转换效率不到40%,而得知具有耐久性的问题。
[实验3]
在FTO膜上配置集电电极,以制作光电化学电池,并评价转换效率。评价为如下述般制成试验电池(i)与试验电池(iv)的2种类。
(试验电池(i))
将100mm×100mm×2mm的耐热玻璃板的表面以化学清洗及干燥后,将此玻璃板置于反应器中,以加热器进行加热后,将上述的实验2所使用的FTO(fluorine-doped tin oxide,氟掺杂氧化锡)膜用原料化合物溶液,由口径0.3mm的喷嘴,在压力0.06MPa下,距玻璃板400mm的距离,进行25分钟的喷雾,以准备有FTO膜的玻璃基板。
在上述的基板表面,利用蚀刻法(etching method),于格子状电路图案上形成深5μm的沟。然后,以光微影(photolithographic)形成图案后,使用氢氟酸进行蚀刻。为了使金属电镀能形成,利用溅镀法于其上形成金属导电层(晶种层(Seed layer)),而且更可利用附加电镀形成金属配线层。金属配线层是由透明基板表面凸透镜状地形成至3μm高度。电路宽为60μm。自其上利用SPD法形成作为遮蔽层5的400nm厚度的FTO膜,以作为电极基板(i)。电极基板(i)的剖面形状变成为如日本专利特开2004-146425中的图2所示。
在电极基板(i)上,涂布、干燥平均粒径25nm的氧化钛分散液后,以450℃进行1小时加热、烧结。然后,在表3中所示的色素的乙醇溶液中浸渍40分钟,以承载色素。另外,预备探讨有关于本发明中使用的色素对各种有机溶剂的溶解性。上述结果得知能在甲苯中溶解,所以如表3中记载,亦准备在甲苯溶液中浸透了40分钟并进行了承载的物品。
隔着50μm厚的热可塑性聚烯烃树脂片材(polyolefin resin sheet),将铂溅镀FTO基板与上述基板对向配置,且使树脂片材热溶融而固定两极板。
然而,由在铂溅镀极侧预先打开的电解液的注液口,注液入主成分中含有0.5M的碘化盐与0.05M的碘的甲氧基乙腈(methoxy acetonitrile),且注满于电极间。而且,以环氧系封装树脂来封装周边部及电解液注液口,并涂布银涂料于集电端子部,以作为试验电池(i)。接着,用与实验1同样的方法,在试验电池(i)上照射AM1.5的类似太阳光,以测定转换效率,而其结果表示于表3中。
(试验电池(iv))
以与试验电池(i)同样的方法,准备100mm×100mm的配置有FTO膜的玻璃基板。在上述的FTO玻璃基板上,利用附加电镀法形成金属配线层(金电路)。上述的金属配线层(金电路)为在基板表面上形成格子状,而电路宽50μm、电路厚5μm。然后,在其表面上,利用SPD法形成厚度300nm的FTO膜当作遮蔽层,以作为电极基板(iv)。使用SEM-EDX确认电极基板(iv)的剖面时,发现在配线底部可能有认为起因于电镀抗蚀层的裙状底部的潜入,而在阴影部分未覆盖有FTO。
使用电极基板(iv),与试验电池(i)同样地进行制作试验电池(iv)。用与实验1同样的方法,在试验电池(iv)上照射AM1.5的类似太阳光,以测定转换效率。上述转换效率的初期值的结果在表3中表示为转换效率。
转换效率为2.5%以上者以◎表示,1%以上、不到2.5%者以○表示,0.3%以上、不到1%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,500小时后的转换效率,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,其在表3中表示为耐久性。相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表3
试料号码 试验电池 色素 色素溶液的溶剂 转换效率 耐久性 备注
3-1 (i) S-3 乙醇 本发明
3-2 (iv) S-3 乙醇 本发明
3-3 (i) S-3 甲苯 本发明
3-4 (iv) S-3 甲苯 本发明
3-5 (i) S-9 乙醇 本发明
3-6 (iv) S-9 乙醇 本发明
3-7 (i) S-9 甲苯 本发明
3-8 (iv) S-9 甲苯 本发明
3-9 (i) T-17 乙醇 本发明
3-10 (iv) T-17 乙醇 本发明
3-11 (i) T-17 甲苯 本发明
3-12 (iv) T-17 甲苯 本发明
3-13 (i) T-18 乙醇 本发明
3-14 (iv) T-18 乙醇 本发明
3-15 (i) T-18 甲苯 本发明
3-16 (iv) T-18 甲苯 本发明
3-17 (i) A-1 乙醇 ○× 比较例
3-18 (iv) A-1 乙醇 ◎× 比较例
3-19 (i) A-2 乙醇 比较例
3-20 (iv) A-2 乙醇 比较例
根据表3,使用本发明的色素的试验电池的转换效率为1%以上,且表示出高的值。另外,可知道藉由适当选择色素溶液中使用的溶剂,能使转换效率提高(试料3-1、3-2与试料3-3、3-4相比)。对于使用比较色素的情况时,转换效率的初期值有与本发明同样高的情况,但是经过500小时后的转换效率大为降低,相对于此使用本发明的色素的情况的耐久性降低明显较少,且显示优异的特性。
[实验4]
制作过氧钛酸及氧化钛微粒子,并使用其以制作氧化物半导体膜。然后,使用此氧化物半导体膜以制作光电化学电池,并进行评价。
(光电化学电池(A)的制作)
(1)氧化物半导体膜形成用涂布液(A1)的调制
将5g的氢化钛悬浮于1L的纯水中,然后以30分钟添加入5质量百分比(%)的过氧化氢液400g,接着加热至80℃并进行溶解,以调制过氧钛酸的溶液。从上述溶液的全量分取出90体积百分比(vol%),然后添加浓氨水调整酸碱值至pH9,并放入高压釜中,以250℃在饱和蒸汽压下进行5小时水热处理,以调制氧化钛胶体粒子(A2)。所得到的氧化钛胶体粒子,利用X光绕射的结果为结晶性高的锐钛矿型氧化钛。
接着,将上述所得到的氧化钛胶体粒子(A2)浓缩至10质量%,混合上述的过氧钛酸溶液,将上述的混合液中的钛换算成TiO2,以成为TiO2质量的30质量%的方式添加羟丙基纤维素(hydroxypropyl cellulose)作为膜形成助剂,而调制半导体膜形成用涂布液(A1)。
(2)氧化物半导体膜(A3)的制作
接下来,在掺杂氟的氧化锡作为电极层所形成的透明玻璃基板上,涂布上述涂布液(A1)并且自然干燥,然后使用低压水银灯照射6000mJ/cm2的紫外线以使过氧酸(peroxo acid)分解,而使涂膜硬化。以300℃加热涂膜30分钟,而进行羟丙基纤维素的分解及退火(annealing),以在玻璃基板上形成氧化物半导体膜(A3)。
(3)对氧化物半导体膜(A3)的色素的吸附
接下来,调制作为分光增感色素的本发明的色素的浓度3×10-4mole/L的乙醇溶液。上述色素溶液为在以100rpm旋转,而涂布于金属氧化物半导体膜(A3)上,并进行干燥。然后,进行5次的上述涂布及干燥制程。
(4)电解质溶液的调制
在乙腈与碳酸伸乙酯的体积比1:5的混合溶剂中,溶解碘化四丙铵0.46mole/L使其中的碘为0.07mole/L的浓度,以调制电解质溶液。
(5)光电化学电池(A)的制作
以(2)制作的吸附色素的氧化物半导体膜(A3)所形成的玻璃基板作为一侧的电极,形成掺杂氟的氧化锡当作电极以作为另一侧的电极。接着,在电极上,对向配置承载铂的透明玻璃基板,侧面以树脂密封,且在电极间封入(4)的电解质溶液。然后,在电极间连接导线,以制作光电化学电池(A)。
(光电化学电池(B)的制作)
除了照射紫外线以分解过氧酸而使膜硬化后,进行氩气(Ar)的离子照射(日新电气制:离子注入装置,以200eV照射10小时)之外,与氧化物半导体膜(A3)同样作法,以形成氧化物半导体膜(B3)。
与氧化物半导体膜(A3)相同,在氧化物半导体膜(B3)上进行色素的吸附。然后,用与光电化学电池(A)同样的作法,制作光电化学电池(B)。
(光电化学电池(C)的制作)
以纯水稀释18.3g的四氯化钛,得到含有用TiO2换算为1.0质量%的水溶液。一边搅拌上述的水溶液,一边添加15质量%的氨水,以得到pH9.5的白色浆料。将上述浆料过滤清洗,得到用TiO2换算为10.2质量%的水和氧化钛凝胶的滤饼。然后,混合上述的滤饼与5质量%过氧化氢溶液400g,接着加热至80℃并进行溶解,以调制过氧钛酸的溶液。从上述溶液的全量分取出90vol%,然后添加浓氨水而调整至pH9,并放入高压釜中,以250℃在饱和蒸汽压下进行5小时水热处理,以调制氧化钛胶体粒子(C2)。
接下来,使用以上述得到的过氧钛酸溶液与氧化钛胶体粒子(C2),与氧化物半导体膜(A3)同样作法以形成氧化物半导体膜(C3),之后与氧化物半导体膜(A3)同样作法,进行作为分光增感色素的本发明的色素的吸附。然后,用与光电化学电池(A)同样的作法,制作光电化学电池(C)。
(光电化学电池(D)的制作)
以纯水稀释18.3g的四氯化钛,得到含有用TiO2换算为1.0质量%的水溶液。一边搅拌上述的水溶液,一边添加15质量%的氨水,得到pH9.5的白色浆料。过滤清洗上述浆料后,于纯水中悬浮而制成TiO2为0.6质量%的水和氧化钛凝胶的浆料,加入盐酸至pH2后,放入高压釜中,以180℃在饱和蒸汽压下进行5小时水热处理,以调制氧化钛胶体粒子(D2)。
接着,将氧化钛胶体粒子(D2)浓缩至10质量%,于其中以TiO2换算成为30质量%的方式添加羟丙基纤维素作为膜形成助剂,以调制半导体膜形成用涂布液。接下来,在掺杂氟的氧化锡作为电极层所形成的透明玻璃基板上,涂布上述涂布液并自然干燥,然后使用低压水银灯照射6000mJ/cm2的紫外线,使涂膜硬化。继之,以300℃加热涂膜30分钟,而进行羟丙基纤维素的分解及退火(annealing),以形成氧化物半导体膜(D3)。
接下来,与氧化物半导体膜(A3)同样作法,进行作为分光增感色素的本发明的色素的吸附。然后,用与光电化学电池(A)同样的作法,制作光电化学电池(D)。
对光电化学电池(A)~(D),照射类似太阳光(AM1.5),利用与实验1同样的方法测定光电转换效率,以求得转换效率。上述的转换率的初期值的结果于表4中以转换效率表示。转换效率为2.5%以上者以◎表示,1%以上、不到2.5%者以○表示,0.3%以上、不到1%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,500小时后的转换效率,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,上述的值于表4中表示成耐久性。相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表4
试料号码 光电化学电池 色素 转换效率 耐久性 备注
4-1 (A) S-12 本发明
4-2 (B) S-12 本发明
4-3 (C) S-12 本发明
4-4 (D) S-12 本发明
4-5 (A) S-14 本发明
4-6 (B) S-14 本发明
4-7 (C) S-14 本发明
4-8 (D) S-14 本发明
4-9 (A) T-2 本发明
4-10 (B) T-2 本发明
4-11 (C) T-2 本发明
4-12 (D) T-2 本发明
4-13 (A) T-9 本发明
4-14 (B) T-9 本发明
4-15 (C) T-9 本发明
4-16 (D) T-9 本发明
4-17 (A) A-1 ○× 比较例
4-18 (B) A-1 ○× 比较例
4-19 (C) A-1 ○× 比较例
4-20 (D) A-1 ○× 比较例
4-21 (A) A-2 比较例
4-22 (B) A-2 比较例
4-23 (C) A-2 比较例
4-24 (D) A-2 比较例
由表4可知,使用本发明的色素的光电化学电池,转换效率的初期值为合格标准,而且经过500小时后的转换效率为初期值的60%以上,且表示出优异的耐久性。
相对上述,已知使用比较色素的情况下,转换效率的初期值为合格标准,但在耐久性上有问题。
[实验5]
改变方法来进行氧化钛的调制,由所得到的氧化钛制作氧化物半导体膜及做光电化学电池,并进行其评价。
(1)以热处理法调制氧化钛
(氧化钛1(板钛矿型)等)
使用市售的锐钛矿型的氧化钛(石原产业公司制造,商品名ST-01),将其加热至约900℃而转换为板钛矿型的氧化钛,进而加热至约1,200℃而作为金红矿型的氧化钛。然后,分别依序作为比较氧化钛1(锐钛矿型)、氧化钛1(板钛矿型)、比较氧化钛1(金红矿型)。
(2)以湿式法合成氧化钛
(氧化钛2(板钛矿型)等)
在安装有回流冷却器的反应槽中装入蒸馏水954ml,加温至95℃。一边保持搅拌速度200rpm,一边将四氯化钛(钛含有量:16.3%、比重1.59、纯度99.9%)水溶液46ml以约5.0ml/min的速度滴入到反应槽内的蒸馏水中。此时,要注意不要让反应液的温度下降。上述结果,四氯化钛浓度为0.25mole/L(氧化钛换算为2质量%)。在反应槽中,反应液从刚滴入后开始白浊,持续保持同样的温度,滴入结束后,再升温加热至沸点左右(104℃),以上述的状态保持60分钟而反应完全结束。
过滤由反应得到的溶胶,然后使用60℃的真空干燥器做成粉末。将粉末以X光绕射法进行定量分析的结果为,(板钛矿型121面的峰值强度)/(在三根重叠位置的峰值强度)的比是0.38,(金红矿型的主要峰值强度)/(在三根重叠位置的峰值强度)的比是0.05。由上述求得的氧化钛为,板钛矿型约70.0质量%,金红矿型约1.2质量%,锐钛矿型约28.8质量%的结晶性。另外,利用穿透型电子显微镜来观察上述的微粒子,1次粒子的平均粒径为0.015μm。
(氧化钛3(板钛矿型)等)
以蒸馏水稀释三氯化钛水溶液(钛含有量:28%、比重1.5、纯度99.9%),并制成以钛浓度换算为0.25mol/L的溶液。此时,为了不让液温上升进行冰冷却,并且保持在50℃以下。接着,取上述溶液500ml投入安装有回流冷却器的反应槽,一边加温至85℃,一边由臭氧气体产生装置以1L/min将纯度80%的臭氧气体进行起泡(bubbling),以进行氧化反应。在上述的状态保持2小时,而使反应完全结束。将所得到的溶胶进行过滤及真空干燥,以做成粉末。将上述粉末以X光绕射法进行定量分析的结果为,(板钛矿型121面的峰值强度)/(在三根重叠位置的峰值强度)的比是0.85,(金红矿型的主要峰值强度)/(在三根重叠位置的峰值强度)的比是0。由上述求得的二氧化钛为,板钛矿型约98质量%,金红矿型约0质量%,锐钛矿型约0质量%,约2%为无定形。另外,利用穿透型电子显微镜来观察上述的微粒子,1次粒子的平均粒径为0.05μm。
(光电化学电池的制作及评价)
以上述的方法调制的氧化钛1~3作为半导体,利用以下的方法制作使用日本特开2000-340269号公报记载的图1所示结构的光电转换元件的光电化学电池。
在玻璃基板上涂布掺杂氟的氧化锡,以作为导电性透明电极。在电极面上以个别的氧化钛粒子为原料做成涂料,以棒涂布法涂布厚度50μm后,在500℃下进行煅烧以形成膜厚约20μm的薄层。
如实验1所探讨,得知本发明所使用的色素对各种有机溶剂中的溶解性高,所以使用乙醇作为溶剂,对改变色素溶液的浓度者进行评价。本发明中使用的色素为3×10-4M与6×10-4M的2标准的色素溶液。比较色素对于溶剂的溶解性低,因无法调制6×10-4M溶液,所以仅使用3×10-4M的色素溶液来评价。
调制如表5中所示的色素的浓度的乙醇溶液,将形成有上述的氧化钛的薄层的玻璃基板浸渍于其中,保持在室温下12小时。上述的结果为,在氧化钛的薄层上吸附有上述的色素。
使用四丙铵的碘盐与碘化锂的乙腈溶液为电解质,铂作为对极,以制作具有如日本专利特开2000-340269号公报的图1所示结构的光电转换元件。光电转换为,在上述的元件上照射160W的高压水银灯的光(以滤光片截止红外线部),以与实验1同样的方法测定转换效率的初期值。上述结果于表5中表示成转换效率。
转换效率为2.5%以上者以◎表示,1%以上、不到2.5%者以○表示,0.3%以上、不到1%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,500小时后的转换效率,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,上述结果于表5中表示成耐久性。相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表5
由表5可知,使用本发明的色素的情况,藉由提高色素溶液的浓度,而得知转换效率的初期值会变高。这被认为是因为藉由提高色素溶液的浓度高,对氧化钛的色素的吸附也会变多。使用比较色素的情况时,转换效率的初期值也为合格标准。
但是,关于耐久性,使用比较色素的情况时,全都不合格,相对于此使用本发明的色素的情况则显示出优异的特性。
[实验6]
使用不同粒径的氧化钛,制作已分散半导体微粒子的涂料,然后使用其以制作光电化学电池,并评价其特性。
[涂料的调制]
(涂料1)
与球形的TiO2粒子(锐钛矿型、平均粒径:25nm、以下称为球形TiO2粒子1)放入硝酸溶液中,藉由搅拌来调制氧化钛浆料。接着,在氧化钛浆料中加入纤维素系黏结剂以作为增黏剂,并进行混练以调制涂料。
(涂料2)
球形TiO2粒子1与球形的TiO2粒子(锐钛矿型、平均粒径:200nm、以下称为球形TiO2粒子2)放入硝酸溶液中,藉由搅拌来调制氧化钛浆料。接着,在氧化钛浆料中加入纤维素系黏结剂以作为增黏剂,并进行混练以调制涂料(TiO2粒子1的质量:TiO2粒子2的质量=30:70)。
(涂料3)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:100nm、高宽比:5、以下称为棒状TiO2粒子1),以调制棒状TiO2粒子1的质量:涂料1的质量=10:90的涂料。
(涂料4)
在涂料1中,混合棒状的TiO2粒子1,以调制棒状TiO2粒子1的质量:涂料1的质量=30:70的涂料。
(涂料5)
在涂料1中,混合棒状的TiO2粒子1,以调制棒状TiO2粒子1的质量:涂料1的质量=50:50的涂料。
(涂料6)
在涂料1中,混合板状的云母粒子(直粒径:100nm、高宽比:6、以下称为板状云母粒子1),以调制板状云母粒子1的质量:涂料1的质量=20:80的涂料。
(涂料7)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:30nm、高宽比:6.3、以下称为棒状TiO2粒子2),以调制棒状TiO2粒子2的质量:涂料1的质量=30:70的涂料。
(涂料8)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:50nm、高宽比:6.1、以下称为棒状TiO2粒子3),以调制棒状TiO2粒子3的质量:涂料1的质量=30:70的涂料。
(涂料9)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:75nm、高宽比:5.8、以下称为棒状TiO2粒子4),以调制棒状TiO2粒子4的质量:涂料1的质量=30:70的涂料。
(涂料10)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:130nm、高宽比:5.2、以下称为棒状TiO2粒子5),以调制棒状TiO2粒子5的质量:涂料1的质量=30:70的涂料。
(涂料11)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:180nm、高宽比:5、以下称为棒状TiO2粒子6),以调制棒状TiO2粒子6的质量:涂料1的质量=30:70的涂料。
(涂料12)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:240nm、高宽比:5、以下称为棒状TiO2粒子7),以调制棒状TiO2粒子7的质量:涂料1的质量=30:70的涂料。
(涂料13)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:110nm、高宽比:4.1、以下称为棒状TiO2粒子8),以调制棒状TiO2粒子8的质量:涂料1的质量=30:70的涂料。
(涂料14)
在涂料1中,混合棒状的TiO2粒子(锐钛矿型、直径:105nm、高宽比:3.4、以下称为棒状TiO2粒子9),以调制棒状TiO2粒子9的质量:涂料1的质量=30:70的涂料。
(光电化学电池1)
根据以下所示的顺序,制作具有与日本专利特开2002-289274号公报的图5记载的光电极12同样结构的光电极,然后使用光电极,以制作除了此光电极以外具有与色素增感太阳电池20同样结构的10×10mm尺寸的光电化学电池1。
准备在玻璃基板上形成有掺杂氟的SnO2导电膜(膜厚:500nm)的透明电极。
在SnO2导电膜上,网版印刷(screen printing)上述的涂料,然后使其干燥。之后,在空气中、450℃的条件下进行煅烧。接着,使用涂料4,藉由重复进行网版印刷与煅烧,而在SnO2导电膜上形成有与上述专利文献的图5所示的半导体电极2同样结构的半导体电极(受光面的面积:10mm×10mm、层厚:10μm、半导体层的层厚:6μm、光散射层的层厚:4μm、光散射层中含有棒状TiO2粒子1的含有率:30质量%),而制作不含有增感色素的光电极。
接下来,以如下方式使色素吸附至半导体电极。首先,以乙氧化镁(magnesium ethoxide)脱水的无水乙醇作为溶剂,在其中以使表6记载的色素的个别浓度成为3×10-4mol/L的方式进行溶解,而调制色素溶液。然后,将半导体电极浸渍在上述溶液中,藉此在半导体电极中吸附色素的全量约1.5×10-7mol/cm2,而制成光电极10。
继之,以有与上述的光电极同样形状与大小的铂电极(Pt薄膜的厚度:100nm)作为对极,调制含有碘及碘化锂的碘系氧化还原溶液作为电解质。然后,准备有符合半导体电极的大小的形状的杜邦(DUPONT)公司制造的间隔物S(商品名:「Surlyn」),如日本专利特开2002-289274号公报的图3所示,通过间隔物S使光电极10与对极CE为对向配置,在其内部填充上述的电解质,以完成光电化学电池1。
(光电化学电池2)
除了将半导体电极的制造如以下进行以外,根据与光电化学电池1同样顺序制作如日本专利特开2002-289274号公报记载的图1所示的光电极10,并制作有如日本专利特开2002-289274号公报记载的图3所示的色素增感型太阳电池20同样结构的光电化学电池2。
涂料2作为半导体层形成用涂料来使用。然后,在SnO2导电膜上,网版印刷(screen printing)上述的涂料2,接着使其干燥。之后,在空气中、450℃的条件下进行煅烧,以形成半导体层。
将涂料3作为光散射层的最内部的层形成用涂料来使用,而且将涂料5作为光散射层的最外部的层形成用涂料来使用。然后,以与光电化学电池1同样作法,在半导体层上形成光散射层。
接着,在SnO2导电膜上,形成与日本专利特开2002-289274号公报记载的图1所示的半导体电极2有同样结构的半导体电极(受光面的面积:10mm×10mm、层厚:10μm、半导体层的层厚:3μm、最内部的层的层厚:4μm、最内部的层中含有的棒状TiO2粒子1的含有率:10质量%、最外部的层的层厚:3μm、最内部的层中含有的棒状TiO2粒子1的含有率:50质量%),然后制作不含有增感色素的光电极。之后,与光电化学电池1同样地,通过间隔物S使光电极与对极CE为对向配置,在其内部填充上述的电解质,以完成光电化学电池2。
(光电化学电池3)
在半导体电极的制造时,除了以涂料1作为半导体层形成用涂料来使用,以涂料4作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序,制作如日本专利特开2002-289274号公报记载的图5所示的光电极10,并制作有如日本专利特开2002-289274号公报记载的图3所示的光电化学电池20同样结构的光电化学电池3。
其中,半导体电极为,受光面的面积:10mm×10mm、层厚:10μm、半导体层的层厚:5μm、光散射层的层厚:5μm、光散射层中含有的棒状TiO2粒子1的含有率:30质量%。
(光电化学电池4)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料6作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序,制作如图5所示的光电极10,以及有如日本专利特开2002-289274记载的图3所示的光电化学电池20同样结构的光电化学电池4。其中,半导体电极为,受光面的面积:10mm×10mm、层厚:10μm、半导体层的层厚:6.5μm、光散射层的层厚:3.5μm、光散射层中含有的板状的云母粒子1的含有率:20质量%。
(光电化学电池5)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料8作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池5。其中,半导体电极的光散射层中含有的棒状TiO2粒子3的含有率:30质量%。
(光电化学电池6)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料9作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池6。其中,半导体电极的光散射层中含有的棒状TiO2粒子4的含有率:30质量%。
(光电化学电池7)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料10作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池7。其中,半导体电极的光散射层中含有的棒状TiO2粒子5的含有率:30质量%。
(光电化学电池8)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料11作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池8。其中,半导体电极的光散射层中含有的棒状TiO2粒子6的含有率:30质量%。
(光电化学电池9)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料13作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池9。其中,半导体电极的光散射层中含有的棒状TiO2粒子8的含有率:30质量%。
(光电化学电池10)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料14作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池10。其中,半导体电极的光散射层中含有的棒状TiO2粒子9的含有率:30质量%。
(光电化学电池11)
在半导体电极的制造时,除了仅使用涂料2制作仅由半导体层形成的半导体电极(受光面的面积:10mm×10mm、层厚:10μm)以外,根据与光电化学电池1同样顺序来制作光电化学电池11。
(光电化学电池12)
在半导体电极的制造时,除了以涂料2作为半导体层形成用涂料来使用,以涂料7作为光散射层形成用涂料来使用以外,根据与光电化学电池1同样顺序来制作光电化学电池12。其中,半导体电极的光散射层中含有的棒状TiO2粒子2的含有率:30质量%。
[特性的试验及评价]
对光电化学电池1~12,使用太阳光模拟器(solar simulator)(WACOM制造、WXS-85H(商品名)),照射通过AM1.5滤光片的来自于氙灯的1000W/m2的类似太阳光。使用I-V测试测定电流-电压特性,以求得转换效率的初期值。上述的结果表示于表6。
转换效率为2.5%以上者以◎表示,1%以上、不到2.5%者以○表示,0.3%以上、不到1%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,500小时后的转换效率,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,上述的结果表示于表6。相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表6
试料号码 光电化学电池 色素 转换效率 耐久性 备注
6-1 光电化学电池1 S-15 本发明
6-2 光电化学电池2 S-15 本发明
6-3 光电化学电池3 S-15 本发明
6-4 光电化学电池4 S-15 本发明
6-5 光电化学电池5 S-15 本发明
6-6 光电化学电池6 S-15 本发明
6-7 光电化学电池7 S-15 本发明
6-8 光电化学电池8 S-15 本发明
6-9 光电化学电池9 S-15 本发明
6-10 光电化学电池10 S-15 本发明
6-11 光电化学电池1 T-6 本发明
6-12 光电化学电池2 T-6 本发明
6-13 光电化学电池3 T-6 本发明
6-14 光电化学电池4 T-6 本发明
6-15 光电化学电池5 T-6 本发明
6-16 光电化学电池6 T-6 本发明
6-17 光电化学电池7 T-6 本发明
6-18 光电化学电池8 T-6 本发明
6-19 光电化学电池9 T-6 本发明
6-20 光电化学电池10 T-6 本发明
6-21 光电化学电池1 A-1 比较例
6-22 光电化学电池2 A-1 比较例
6-23 光电化学电池3 A-1 比较例
6-24 光电化学电池4 A-1 比较例
6-25 光电化学电池5 A-1 比较例
6-26 光电化学电池6 A-1 比较例
6-27 光电化学电池7 A-1 ◎× 比较例
6-28 光电化学电池8 A-1 比较例
6-29 光电化学电池9 A-1 比较例
6-30 光电化学电池10 A-1 比较例
6-31 光电化学电池11 A-1 △× 比较例
6-32 光电化学电池12 A-1 △× 比较例
由表6可知,使用本发明的色素的光电化学电池,转换效率的初期值为1%以上,而且经过500小时后的转换效率为初期值的60%以上,且表示出优异的耐久性。
相对于此,得知使用比较色素的情况下,转换效率的初期值为合格标准,但在耐久性上有问题。
[实验7]
在导电性基板上涂布于金属氧化物微粒子中加入金属烷氧化物的浆料状物,然后进行UV臭氧照射、UV照射或干燥,以制作电极。接着,制作光电化学电池,并且测定转换效率。
(金属氧化物微粒子)
作为金属氧化物微粒子使用氧化钛。氧化钛是使用质量比30%金红矿型及70%锐钛矿型、平均粒径25nm的P25粉末(德固赛(Degussa)公司制造、商品名)。
(金属氧化物微粒子粉末的前处理)
藉由预先热处理金属氧化物微粒子,以去除表面的有机物与水分。氧化钛微粒子的情况,则是以450℃的烘箱,在大气下,加热30分钟。
(金属氧化物微粒子中含有的水分量的测定)
将预先保存在温度26℃、湿度72%的环境的氧化钛、P25粉末(德固赛公司制造、商品名)中含有的水分量,可藉由热重量测定时重量减少,及在300℃加热时脱去的水分量的卡式滴定(Karl Fischer titration)来定量。
将氧化钛、P25粉末(德固赛公司制造、商品名)在300℃加热时脱去的水分量利用卡式滴定(Karl Fischer titration)来定量时,0.1033g的氧化钛微粉末中含有0.253mg的水。亦即是,氧化钛微粉末含有约2.5质量%的水分。在30分钟热处理、冷却后,保存在干燥器中来使用。
(金属烷氧化物涂料的调制)
具有结合金属氧化物微粒子的作用的金属烷氧化物分别使用四异丙氧化钛(IV)(titanium(IV)tetraisopropoxide,TTIP)作为钛原料、四正丙氧化锆(IV)(zirconium(IV)tetra n-propoxide)作为锆原料、五乙氧化铌(V)(niobium(V)pentaethoxide)作为铌原料(全部是奥德里奇(Aldrich)公司制造)。
以利用金属烷氧化物的加水分解所产生的非晶质层不过度厚,且粒子彼此的键结充分进行的方式,金属氧化物微粒子与金属烷氧化物的摩尔浓度比根据金属氧化物微粒子径而做适当地调节。再者,金属烷氧化物全作为0.1M的乙醇溶液。在混合氧化物钛微粒子与四异丙基化钛(IV)(TTIP)的情况时,相对于氧化物钛微粒子1g,混合3.55g的0.1M TTIP溶液。此时,所得到的涂料中的氧化钛浓度约22质量%,成为在涂布上适当的黏度。另外,此时的氧化钛与TTIP与乙醇以质量比计为1:0.127:3.42,以摩尔比计为1:0.036:5.92。
同样地,关于氧化钛微粒子与TTIP以外的烷氧化物的混合涂料,亦调制成微粒子浓度为22质量%。使用氧化锌与氧化锡的涂料则为16质量%。氧化锌与氧化锡的情况下,以相对于金属氧化物微粒子1g金属烷氧化物溶液5.25g的比例进行混合。
接着,将金属氧化物微粒子与金属烷氧化物溶液置于密闭容器中,利用磁力搅拌器(magnetic stirrer)搅拌2小时,以得到均匀的涂料。导电性基板上的涂料的涂布方法,可使用刮刀成膜法(doctor blade method)、网版印刷法、喷雾涂布法等,适当的涂料粘度为根据涂布方法做适当选择。在此是使用简便的玻璃棒涂布方法(与刮刀成膜法类似)。在此情况下,给予适当的涂料粘度的金属氧化物微粒子的浓度大概在5质量%~30质量%的范围。
以分解金属烷氧化物而生成的非晶质金属氧化物的厚度,在本实验中是0.1nm~0.6nm左右的范围,而其可作为适合范围的厚度。
(导电性基板上的涂料的涂布与风干处理)
在配置有铟锡氧化物(ITO)导电膜的聚对苯二甲酸乙二酯(PET)膜基板(20Ω/cm2),或配置有氟掺杂氧化锡(FTO)导电膜的玻璃基板(10Ω/cm2)上,将作为间隔物的粘着胶带2枚以一定间隔平行粘贴,然后使用玻璃棒将按照上述的方法调制的涂料均匀涂布。
在涂布涂料后、色素吸附前,改变关于有无UV臭氧处理、UV照射处理或干燥处理的条件,以制作多孔质膜。
(干燥处理)
将涂布至导电性基板后的膜在空气中且室温中风干约两分钟。在此过程中,涂料中的金属烷氧化合物由于大气中的水分而受到加水分解,而自Ti烷氧化合物、Zr烷氧化合物、Nb烷氧化合物分别形成非晶质的氧化钛、氧化锆、氧化铌。
所生成的非晶质金属氧化物达成将金属氧化物微粒子彼此以及膜与导电性基板进行接着的作用,因此仅以风干而得到机械强度与附着性优异的多孔质膜。
(UV臭氧处理)
UV臭氧处理是使用日本激光(laser)电子公司制造的NL-UV253UV臭氧清洗装置。UV光源为设置有具有185nm与254nm辉线的4.5W水银灯3个,而试料为距光源约6.5cm的距离处水平配置。然后,在腔室(chamber)中利用导入氧气气流以产生臭氧。在本实例中,是进行2小时的UV臭氧处理。然而,以上述的UV臭氧处理所造成的ITO膜及FTO膜的导电性的降低,全都没有看见。
(UV处理)
除了在腔室中以氮气取代来进行处理以外,同样地与上述UV臭氧处理相同,进行2小时的处理。以上述的UV处理所造成的ITO膜及FTO膜的导电性的降低,全都没有看见。
(色素吸附)
色素为使用表7记载的色素,并调制各色素的0.5mM的乙醇溶液。本实验中,将以上述制程制作的多孔质膜在100℃的烘箱干燥1小时后,浸渍于增感色素的溶液中,然后直接在室温下放置50分钟,而在氧化钛表面上吸附色素。将色素吸附后的试料以乙醇清洗,并风干。
(光电化学电池的制作与电池特性评价)
将形成有色素吸附后的多孔质膜的导电性基板作为光电极,并将其与利用溅镀将铂微粒子修饰过的ITO/PET膜或FTO/玻璃对极对向配置,以试做光电化学电池。上述光电极的有效面积约0.2cm2。电解质溶液为使用含有0.5M的LiI、0.05M的I2及0.5M的第三丁基吡啶的3-甲氧基丙腈(3-methoxypropionitrile),并利用毛管现象导入至两电极间的缝隙。
根据以一定光子数(1016cm2)照射下的光电流作用光谱测定,以及用AM1.5类似太阳光(100mW/cm2)照射下的I-V测定来进行电池性能的评价。上述的测定是使用分光计器公司制造的CEP-2000型分光感度测定装置,而所得到的转换效率表示于表7中。
转换效率为2.0%以上者以◎表示,0.8%以上、不到2.0%者以○表示,0.3%以上、不到0.8%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,500小时后的转换效率,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,上述结果作为耐久性表示于表7中。相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
表7
Figure BDA00002449226200651
在表7中,“UV臭氧”、“UV”、“干燥”的栏位分别表示为,在多孔质膜的形成后、增感色素吸附前,有无UV臭氧处理、UV照射处理、干燥处理。已处理者为“○”,未处理者为“×”。
表7的“TiO2的前处理”的栏位表示为,有无氧化钛微粒子的前处理(在450℃的烘箱中进行30分钟热处理)。试料6、14、22表示为使用高TTIP浓度(氧化钛:TTIP的摩尔比为1:0.356)的涂料的试料,而其他的试料(试料1~5、7~13、23、24)全部为使用氧化钛:TTIP=1:0.0356的涂料。
由表7可知,使用本发明的色素的光电化学电池,在多孔质膜的形成后、增感色素吸附前,不管有无UV臭氧处理、UV照射处理、干燥处理,比起单独使用上述色素的情况,通常光电化学电池的转换效率高、且可得到合格标准的转换效率。而且,经过500小时后的转换效率为初期值的60%以上,且表示出优异的耐久性。
相对于此,得知使用比较色素的情况下,转换效率的初期值为合格标准,但在耐久性上有问题。
[实验8]
使用乙腈作为溶剂,溶解碘化锂0.1mol/L、碘0.05mol/L、碘化二甲基丙基咪唑鎓0.62mol/L,以调制电解质溶液。于此以浓度分别成为0.5mol/L的方式个别添加并溶解下述所示的No.1~No.8的聚苯并咪唑系化合物。
[化48]
Figure BDA00002449226200661
在导电性玻璃上的承载表8记载的色素的多孔质氧化钛半导体薄膜(厚度15μm)上,滴入No.1~No.8的聚苯并咪唑系化合物电解质。然后,在此装载聚乙烯膜制的框型(frame type)间隔物(厚度25μm),接着覆盖铂对电极,以制作光电转换元件。
在所得到的光电转换元件上,照射以氙灯为光源强度100mW/cm2的光,而得到的开放电压与光电转换效率表示在表8中。
(结果的评价)
(i)开放电压为7.0V以上者以◎表示,6.5V以上、不到7.0V者以○表示,6.0V以上、不到6.5V者以△表示,不到6.0V者以×表示,而6.5V以上者合格。
(ii)转换效率为2.0%以上者以◎表示,0.8%以上、不到2.0%者以○表示,0.3%以上、不到0.8%者以△表示,不到0.3%者以×表示,而转换效率为0.3%以上者合格,不到0.3%者不合格。另外,相对于转换效率的初期值,500小时后的转换效率,90%以上者评价为◎,60%以上、不到90%者评价为○,40%以上、不到60%者评价为△,不到40%者评价为×,上述的值作为耐久性表示于表8中。相对于转换效率的初期值,500小时后的转换效率为60%以上者合格,不到60%者不合格。
另外,在表8中,也表示出使用没有加入聚苯并咪唑系化合物的电解液的光电转换元件的结果。
表8
由表8可知,使用本发明的色素的光电化学电池为,开放电压及转换效率的初期值皆是合格标准,而经过500小时后的转换效率为初期值的60%以上,且表示出优异的耐久性。
相对于此,使用比较色素的情况下,开放电压及转换效率的初期值为合格标准,但在耐久性上有问题。
[实验9]
(光电化学电池1)
根据以下所示的顺序,制作具有与日本专利特开2004-152613号公报的图1所示的光电极10同样结构的光电极(其中,将半导体电极2设为2层构造),然后除使用此光电极以外,制作有与日本专利特开2004-152613号公报的图1所示的色素增感太阳电池20同样结构的光电化学电池(半导体电极2的受光面F2的面积:1cm2)。其中,关于具有该2层构造的半导体电极2的各层,配置在靠近透明电极1的一侧的层称为“第1层”,配置在靠近多孔体层PS的一侧的层称为“第2层”。
首先,使用平均粒径25nm的P25粉末(德固赛公司制造、商品名)、与其粒子径不同的氧化钛粒子、P200粉末(平均粒径200nm、德固赛公司制造、商品名),而以P25与P200的合计含有量为15%,且P25与P200的质量比为P25:P200=30:70的方式,于其中加入乙酰丙酮(acetylacetone)、离子交换水、界面活性剂(东京化成公司制造、商品名:“Triton-X”),并进行混练,以调制第2层形成用的浆料(以下称“浆料1”)。
接下来,除了不使用P200、仅使用P25以外,利用与上述的浆料1同样的调制顺序,调制第1层形成用的浆料(P1的含有量:15%、以下称“浆料2”)。
另一方面,在玻璃基板(透明导电性玻璃)上,准备形成有掺杂氟的SnO2导电膜(膜厚:700nm)的透明电极(厚度:1.1mm)。接着,在SnO2导电膜上,以棒涂布法涂布上述的浆料2,然后使其干燥。之后,在空气中、450℃下进行30分钟的煅烧。如上述,以于透明电极上,形成半导体电极2的第1层。
然后,使用浆料1,藉由重复进行与上述同样的涂布与煅烧,在第1层上形成第2层。如上述,在SnO2导电膜上形成半导体电极2(受光面的面积:1.0cm2、第1层与第2层的合计厚度:10μm(第1层的厚度:3μm、第2层的厚度:7μm)),然后制作不含有增感色素的光电极10。
之后,调制作为色素的表9记载的色素的乙醇溶液(各增感色素的浓度:3×10-4mol/L)。然后,将上述光电极10浸渍在上述溶液中,在80℃的温度条件下放置20小时,藉此在半导体电极的内部吸附增感色素合计约1.0×10-7mol/cm2
继之,制作具有与上述的光电极同样形状与大小的对极CE。首先在透明导电性玻璃上,滴下氯铂酸六水合物(chloroplatinic acid hexahydrate)的异丙醇溶液,并在空气中干燥后,藉由在450℃下进行30分钟的煅烧处理,以得到铂烧结对极CE。此外,上述对极CE中预先设置有电解质E的注入用的孔(直径1mm)。
接着,调制以甲氧基乙腈为溶剂,溶解碘化锌、碘化-1,2-二甲基-3-丙基咪唑鎓、碘、4-第三丁基吡啶的液状电解质(碘化锌的浓度:10mmol/L、碘化二甲基丙基咪唑鎓的浓度:0.6mol/L、碘的浓度:0.05mol/L、4-第三丁基吡啶的浓度:1mol/L)。
然后,准备有符合半导体电极的大小的形状的三井杜邦聚合化学(DUPONT-MITSUI POLYCHEMICALS)公司制造的间隔物S(商品名:“Hi-milan”,乙烯/甲基丙烯酸无规共聚离子聚合物膜),如日本专利特开2004-152613号公报的图1所示,通过间隔物使光电极与对极为对向配置,分别利用热熔接接合在一起以得到电池的匡体(未填充电解液)。
接着,从对极的孔注入液状电解质到匡体内后,用与间隔物相同材料的构件塞住孔,进而在对极的孔使上述构件热熔接而密封住孔,以完成光电化学电池1。
(光电化学电池2)
除了液状电解质中的碘化锌的浓度为50mmol/L以外,以与光电化学电池1同样地顺序与条件,来制作光电化学电池2。
(光电化学电池3)
除了液状电解质中以碘化锂取代碘化锌进行添加,液状电解质中碘化锂的浓度为20mmol/L以外,以与光电化学电池1同样地顺序与条件,来制作比较光电化学电池1。
(比较光电化学电池4)
除了液状电解质中以碘化锂取代碘化锌进行添加,液状电解质中碘化锂的浓度为100mmol/L以外,以与光电化学电池1同样地顺序与条件,来制作比较光电化学电池4。
(试验与评价)
根据以下的顺序,就光电化学电池1~4所使用的试料,测定转换效率。
电池特性评价试验为使用太阳光模拟器(哇控(WACOM)制造、商品名:“WXS-85H型”),在通过AM滤光片(AM1.5)的来自于氙灯光源的类似太阳光的照射条件,设为100mW/cm2(所谓的“1Sun”的照射条件)的测定条件下进行。
关于各光电化学电池,使用I-V测试在室温下测定电流-电压特性,并由此求得转换效率。上述所得到的结果表示于表9A(1Sun的照射条件)的“初期值”。另外,在60℃、1Sun照射下,以10Ω负荷的作动条件,转换效率的经过300小时后的转换效率的结果也表示于表9A。转换效率的初期值为2.4%以上者合格,不到2.4%者不合格。另外,相对于初期值,经过300小时后的转换效率的降低率为20%以下者合格,超过20%者不合格。
另外,除了测定转换效率的经过500小时后的转换效率的结果以外,同样地进行评价。上述的结果表示于表9B中。
表9A
Figure BDA00002449226200711
表9B
Figure BDA00002449226200712
由表9A、9B可知,使用本发明的色素的光电化学电池为,转换效率的初期值皆为合格标准,而经过300小时后的转换效率的降低率为20%以下,且表示出优异的耐久性。
相对于此,得知使用比较色素的情况下,转换效率的初期值为合格标准,但在耐久性上有问题。
[实验10]
1.二氧化钛分散液的调制
在内侧涂布了氟树脂的内容积200ml的不锈钢制容器中,放入二氧化钛微粒子(日本Aerosil股份有限公司制造,德固赛P-25)15g、水45g、分散剂(日本奥德里奇公司制造、Triron X-100)1g、直径0.5mm的氧化锆珠子(尼卡多(Nikkato)公司制造)30g,然后使用砂研磨机(艾美克斯(Aimex)公司制造)在1500rpm下进行分散处理2小时。由所得到的分散液,过滤氧化锆珠子。所得到的分散液中的二氧化钛微粒子的平均粒径为2.5μm。其中,粒径为利用马文(MALVERN)公司制造的Mastersizer(商品名)来测定。
2.吸附色素的氧化钛微粒子层(电极A)的制作
准备覆盖有掺杂氟的氧化锡的20mm×20mm的导电性玻璃板(旭硝子(AGC)股份有限公司制造,TCO玻璃-U,表面电阻:约30Ω/m2),在此导电层侧的两端(距端部3mm的宽的部分)贴上间隔物用粘着胶带后,在导电层上使用玻璃棒涂布上述分散液。分散液的涂布后,剥离粘着胶带,并在室温下风干一天。接着,将上述的半导体涂布玻璃板放入电器炉(雅马拓科学(Yamato Scientific)股份有限公司制造高温炉(muffle furnace)FP-32型)中在450℃下进行30分钟的煅烧。取出半导体涂布玻璃板,并冷却后,浸渍在表10所示的色素的乙醇溶液(浓度:3×10-4mol/L)中3小时。吸附色素的半导体涂布玻璃板在4-第三丁基吡啶中浸渍15分钟后,以乙醇清洗,并自然干燥,以得到吸附色素的氧化钛微粒子层(电极A)。电极A的色素增感氧化钛微粒子层的厚度为10μm,氧化钛微粒子的涂布量为20g/m2。另外,色素的吸附量,依据色素的种类,在0.1mmol/m2~10mmol/m2的范围内。
3.光电化学电池a的制作
溶剂为使用乙腈与3-甲基-2-恶唑林酮的体积比90/10的混合物。在上述溶剂中,加入碘与作为电解质盐的1-甲基-3-己基咪唑鎓的碘盐,以调制含有0.5mol/L的电解质及0.05mol/L的碘的溶液。在上述溶液中,相对于(溶剂+含氮高分子化合物+盐)100质量份,加入10质量份的含氮高分子化合物(α)。而且,相对于含氮高分子化合物的反应性氮原子,混合亲电子剂(β)0.1mole以成为均匀的反应溶液。
另一方面,在上述电极A的色素增感氧化钛微粒子层上通过间隔物设置包括蒸镀铂的玻璃板的对极的铂薄膜侧,并固定导电性玻璃板与铂蒸镀玻璃板。将所得到的组合体的开放端浸渍在上述电解质溶液中,藉由毛细管现象使反应溶液浸透入色素增感氧化钛微粒子层中。
接着,在80℃下加热30分钟,以进行交联反应。以上述方式,在如日本专利特开2000-323190号公报的图2所示的导电性玻璃板10的导电层12上,依序积层有色素增感氧化钛微粒子层20、电解质层30,及包括铂薄膜42与玻璃板41的对极40的本发明的光电化学电池a-1(试料号码10-1)。
另外,除了将色素与电解质组成物的组成的组合如表10所示进行变更以外,藉由重复上述制程,以得到有不同感光体及/或电荷移动体的光电化学电池a-2(试料号码10-4)。
4.光电化学电池b、c的制作
(1)光电化学电池b
以上述的方式,将包括用本发明的色素使的色素增感的氧化钛微粒子层的电极A(20mm×20mm),隔着间隔物而重合在相同大小的铂沉积玻璃板上。接着,利用毛细管现象,使在两玻璃板的缝隙间被电解液(以乙腈与3-甲基-2-恶唑林酮的体积比90/10的混合物作为溶剂的碘0.05mol/L、碘化锂0.5mol/L的溶液)浸透,以制作光电化学电池b-1。另外,除了将色素变更成如表10所示的色素以外,藉由重复上述制程,以得到光电化学电池b-2(试料号码10-5)。
(2)光电化学电池c(日本专利特开平9-27352号中记载的电解质)
以上述的方式,在包括用本发明的色素而色素增感的氧化钛微粒子层的电极A(20mm×20mm)上,涂布含浸电解液。其中,电解液为在含有六乙二醇甲基丙烯酸酯(Hexaethylene glycol methacrylate ester)(日本油脂化学股份有限公司制造,BLEMMER PE-350)1g、乙二醇1g、作为聚合起始剂的2-羟基-2-甲基-1-苯基-丙烷-1-酮(2-hydroxy-2-methyl-1-phenylpropane-1-one)(日本汽巴嘉基(ciba-geigy)股份有限公司制造,DAROCUR 1173)20mg的混合液中,溶解碘化锂500mg,并藉由10分钟的真空脱气而得到。接着,利用将含浸了上述混合溶液的多孔性氧化钛层置于减压下,藉此除去多孔性氧化钛层中的气泡,促使单体的浸透之后,在多孔性氧化钛层的微细孔内填充藉由紫外光照射而聚合的高分子化合物的均匀溶胶。将以上述的方式得到的物品在碘环境中曝露30分钟,使碘扩散于高分子化合物中,之后重合铂蒸镀玻璃板,以得到光电化学电池c-1。另外,除了将色素变更成如表10所示的色素以外,藉由重复上述制程,以得到光电化学电池c-2(试料号码10-6)。
5.光电转换效率的测定
藉由将500W的氙灯(优志旺(ushio)公司制造)的光,通过AM1.5滤光片(Oriel公司制造)及锐截止滤光片(Kenko L-42),以作为不含紫外线的模拟太阳光。光强度为89mW/cm2
在上述的光电化学电池的导电性玻璃板10与铂蒸气沉积玻璃板40上分别连接鳄鱼夹,而各鳄鱼夹连接于电流电压测定装置(Keithley SMU238型(商品名))上。在此从导电性玻璃板10侧照射模拟太阳光,利用电流电压测定装置以测定所产生的电。将藉此求得的光电化学电池的转换效率的初期值,及300小时连续照射时的转换效率的降低率表示于表10。转换效率的初期值为2.7%以上者合格,不到2.7%者不合格。另外,经过300小时后的转换效率的降低率为20%以下者合格,超过20%者不合格。
表10
Figure BDA00002449226200741
(备注)
(1)色素的记号为如本文中所记载。
(2)含氮高分子α、亲电子剂β表示为以下的化合物。
[化49]
Figure BDA00002449226200742
[化50]
Figure BDA00002449226200743
由表10可知,使用本发明的色素的光电化学电池的转换效率的初期值为合格标准,而经过300小时后的转换效率的降低率为15%以下,且表示出优异的耐久性。
相对于此,得知使用比较色素的情况下,转换效率的初期值为合格标准,但在耐久性上有问题。
虽然对本发明连同其实施型态一起进行了说明,但本发明者认为只要没有特别指定,本发明并不限定于说明的任何细部中,在不违反后附的权利要求所示的发明的精神与范围内而可扩大解读。
本申请案是基于在2010年5月31号向日本智慧财产局提出申请的日本专利申请案特愿2010-124020、在2010年12月24号向日本智慧财产局提出申请的日本专利申请案特愿2010-287040,以及在2011年3月17号向日本智慧财产局提出申请的日本专利申请案特愿2011-059911而主张优先权,并在此参照该些专利申请案的内容以并入作为本说明书的记载的一部份。
主要元件符号说明:
1:导电性支撑体
2:感光体层
21:色素
22:半导体微粒子
3:电荷移动体层
4:对极
5:受光电极
6:电路
10:光电转换元件
100:光电化学电池

Claims (18)

1.一种光电转换元件,其特征在于,包括具备有下述一般式(1)所表示的色素与半导体微粒子的感光体层,上述色素包括具有碳数5~18的脂肪族基的以下述一般式(1)所表示的化合物的色素,
[化1]
Figure FDA00002449226100011
一般式(1)
[上述一般式(1)中,Q表示为4价的芳香族基;X1、X2分别独立表示为硫原子、氧原子或CR1R2,其中R1、R2分别独立表示为氢原子、脂肪族基、芳香族基、以碳原子键结的杂环基,且R1、R2亦可被取代;R、R’分别独立表示为脂肪族基、芳香族基、以碳原子键结的杂环基,且R、R’亦可被取代;P1、P2分别独立表示为色素残基;W1表示为使电荷中和所必需时的相对离子。]
2.根据权利要求1所述的光电转换元件,其特征在于上述碳数5~18的脂肪族基为分支烷基。
3.根据权利要求1或2所述的光电转换元件,其特征在于上述一般式(1)中的Q表示为苯环或萘环。
4.根据权利要求1-3中任一项所述的光电转换元件,其特征在于上述一般式(1)中的P1及P2分别独立地以下述一般式(2)或下述一般式(3)所表示,
[化2]
Figure FDA00002449226100012
一般式(2)
[化3]
Figure FDA00002449226100021
一般式(3)
[上述一般式(2)或一般式(3)中,V1表示为氢原子或取代基,n表示为0~4的整数,n为2以上时,V1可相同或不同,也可相互键结以形成环;
Y表示为S、NR9或CR10R11,其中R9表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,R10、R11表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,R10、R11可相同亦可不同,也可相互键结以形成环;
Z表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且Z亦可有取代基;
R3~R6及R8分别独立表示为氢原子、脂肪族基、芳香族基或杂环基,且R3~R6及R8亦可有取代基;
R7为氧原子或具有2个取代基的碳原子,且2个取代基的哈梅特法则中σ的和为正数。]
5.根据权利要求1所述的光电转换元件,其特征在于上述一般式(1)中的P1及P2分别独立地以一般式(4)或一般式(5)所表示,
[化4]
Figure FDA00002449226100022
一般式(4)
[化5]
一般式(5)
[上述一般式(4)或一般式(5)中,V1表示为氢原子或取代基,n表示为0~4的整数,n为2以上时,V1可相同或不同,也可相互键结以形成环;
Y表示为S、NR9或CR10R11,其中R9表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,R10、R11表示为氢原子、脂肪族基、芳香族基或以碳原子键结的杂环基,R10、R11可相同亦可不同,也可相互键结以形成环;
Z表示为脂肪族基、芳香族基或以碳原子键结的杂环基,且Z亦可有取代基。]
6.根据权利要求4或5所述的光电转换元件,其特征在于上述V1有酸性基。
7.根据权利要求4-6中任一项所述的光电转换元件,其特征在于上述V1为氢原子、5-羧基、5-磺酸基、5-甲基或4,5-苯环缩合。
8.根据权利要求6或7所述的光电转换元件,其特征在于上述Z及V1为酸性基或具有酸性基的基团。
9.根据权利要求4、6-8中任一项所述的光电转换元件,其特征在于上述一般式(2)以下述一般式(6)所表示,上述一般式(3)以下述一般式(7)所表示,
[化6]
Figure FDA00002449226100031
一般式(6)
[化7]
Figure FDA00002449226100032
一般式(7)
上述一般式(6)以及一般式(7)中,Y、Z、R3~R8与一般式(2)或一般式(3)的Y、Z、R3~R8定义相同;V12表示为酸性基;E11~E13中至少一个表示为拉电子基;p为2以上的整数。
10.根据权利要求4所述的光电转换元件,其特征在于上述一般式(2)以下述一般式(8)所表示,上述一般式(3)以下述一般式(9)所表示,
[化8]
Figure FDA00002449226100041
一般式(8)
[化9]
一般式(9)
[化10]
式A    式B    式C    式D
上述一般式(8)或一般式(9)中,Y、Z、R3~R8与一般式(2)或一般式(3)的Y、Z、R3~R8定义相同;L为以上述式A~式D所表示,m表示为0或1以上的整数,m为2以上时,L亦可分别不相同;上述式A中,Xa表示为NRe、O、S,Re表示为氢原子或取代基;上述式A及式C中,Ra~Rd表示为酸性基;上述一般式(8)中,p表示为2以上的整数,Rx表示为酸性基。
11.根据权利要求4-10中任一项所述的光电转换元件,其特征在于上述Y表示为S、NCH3或C(CH3)2,Z表示为碳数5~18的脂肪族基。
12.根据权利要求4、6-11中任一项所述的光电转换元件,其特征在于上述式R7以下述式(10)~式(13)的任一者所表示,
[化11]
Figure FDA00002449226100051
Figure FDA00002449226100052
一般式(10)    一般式(11)    一般式(12)    一般式(13)
[上述式(10)~式(13)中,Rf表示为氢原子或取代基。]
13.根据权利要求4、6-12中任一项所述的光电转换元件,其特征在于上述R7以下述一般式(14)或一般式(15)所表示,
[化12]
Figure FDA00002449226100053
一般式(14)    一般式(15)。
14.根据权利要求1-13中任一项所述的光电转换元件,其特征在于上述一般式(1)中,Q表示为苯环,X1、X2分别独立表示为硫原子、氧原子或C(CH3)2,R、R’分别独立表示为碳数5~18的脂肪族基。
15.根据权利要求1-14中任一项所述的光电转换元件,其特征在于上述半导体微粒子为氧化钛微粒子。
16.一种光电化学电池,其特征在于,包括如权利要求1-15中任一项所述的光电转换元件。
17.一种光电转换元件用色素,其特征在于,包括具有碳数5~18的脂肪族基的以下述一般式(1)所表示的化合物,
[化13]
Figure FDA00002449226100054
一般式(1)
[上述一般式(1)中,Q表示为4价的芳香族基;X1、X2分别独立表示为硫原子、氧原子或CR1R2,其中R1、R2分别独立表示为氢原子、脂肪族基、芳香族基、以碳原子键结的杂环基,且R1、R2亦可被取代;R、R’分别独立表示为脂肪族基、芳香族基、以碳原子键结的杂环基,且R、R’亦可被取代;P1、P2分别独立表示为色素残基;W1表示为使电荷中和所必需时的相对离子。]
18.一种光电转换元件用色素溶液,其特征在于,包括:在有机溶剂中,含有且溶解有如权利要求17所述的光电转换元件用色素。
CN201180025484.XA 2010-05-31 2011-05-26 光电转换元件、光电化学电池、光电转换元件用色素以及光电转换元件用色素溶液 Expired - Fee Related CN102906935B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2010-124020 2010-05-31
JP2010124020 2010-05-31
JP2010-287040 2010-12-24
JP2010287040 2010-12-24
JP2011059911A JP5620314B2 (ja) 2010-05-31 2011-03-17 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
JP2011-059911 2011-03-17
PCT/JP2011/062130 WO2011152284A1 (ja) 2010-05-31 2011-05-26 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液

Publications (2)

Publication Number Publication Date
CN102906935A true CN102906935A (zh) 2013-01-30
CN102906935B CN102906935B (zh) 2015-08-19

Family

ID=45066659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180025484.XA Expired - Fee Related CN102906935B (zh) 2010-05-31 2011-05-26 光电转换元件、光电化学电池、光电转换元件用色素以及光电转换元件用色素溶液

Country Status (5)

Country Link
JP (1) JP5620314B2 (zh)
KR (1) KR101553104B1 (zh)
CN (1) CN102906935B (zh)
TW (1) TWI541137B (zh)
WO (1) WO2011152284A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148696A (zh) * 2018-07-16 2019-01-04 天津师范大学 基于甲基紫精配体的金属有机杂化钙钛矿铁电体薄膜在用于光伏产业方面的应用
CN109698073A (zh) * 2017-10-23 2019-04-30 北京工商大学 靛蓝二磺酸钠与半菁衍生物有序杂化薄膜的光电转换性能
CN110379889A (zh) * 2019-07-31 2019-10-25 浙江天地环保科技有限公司 一种高效率高稳定性全无机钙钛矿太阳能电池的制备方法
CN113421933A (zh) * 2021-05-26 2021-09-21 海南聚能科技创新研究院有限公司 一种半导体光敏感复合材料及其制备方法以及应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809870B2 (ja) * 2011-06-22 2015-11-11 富士フイルム株式会社 光電変換素子、光電気化学電池、及びそれらに用いられる色素
JP5434998B2 (ja) * 2011-09-15 2014-03-05 トヨタ自動車株式会社 負極活物質、負極及び電池
JP5881578B2 (ja) 2011-12-15 2016-03-09 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および色素溶液
JP2014056741A (ja) * 2012-09-13 2014-03-27 Kyushu Institute Of Technology 色素増感太陽電池の製造方法及び色素増感太陽電池
JP6252479B2 (ja) 2012-09-24 2017-12-27 コニカミノルタ株式会社 光電変換素子およびその製造方法
JP5913223B2 (ja) 2012-09-28 2016-04-27 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極
JP6063359B2 (ja) 2012-09-28 2017-01-18 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液
JP2014082187A (ja) 2012-09-28 2014-05-08 Fujifilm Corp 光電変換素子および色素増感太陽電池
JP5913222B2 (ja) 2012-09-28 2016-04-27 富士フイルム株式会社 光電変換素子および色素増感太陽電池
JP5992389B2 (ja) 2012-11-16 2016-09-14 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP5944372B2 (ja) 2012-12-17 2016-07-05 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP5972811B2 (ja) 2013-02-22 2016-08-17 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および色素増感太陽電池
JP6047513B2 (ja) 2013-03-25 2016-12-21 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP5791770B1 (ja) * 2014-08-28 2015-10-07 株式会社フジクラ 色素増感太陽電池素子用電解質、及び、これを用いた色素増感太陽電池素子
US20170256363A1 (en) * 2014-08-28 2017-09-07 Fujikura Ltd. Electrolyte for dye-sensitized solar cell element and dye-sensitized solar cell element using the same
JP6641667B2 (ja) * 2015-03-03 2020-02-05 株式会社リコー 塗工液、太陽電池用構造体、太陽電池、及び太陽電池用構造体の製造方法
TWI690099B (zh) * 2019-08-23 2020-04-01 台灣中油股份有限公司 鈣鈦礦太陽能電池模組的製造方法及鈣鈦礦太陽能電池模組
JP6927393B1 (ja) * 2020-08-31 2021-08-25 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036330A (ja) * 1998-07-17 2000-02-02 Fuji Photo Film Co Ltd 光電変換素子の製造方法
US6335481B1 (en) * 1998-09-30 2002-01-01 Fuji Photo Film Co., Ltd. Semiconductor particle sensitized with methine dye

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9217811D0 (en) 1992-08-21 1992-10-07 Graetzel Michael Organic compounds
JPH11144773A (ja) * 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JP4217320B2 (ja) * 1998-12-24 2009-01-28 富士フイルム株式会社 光電変換素子および光電気化学電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036330A (ja) * 1998-07-17 2000-02-02 Fuji Photo Film Co Ltd 光電変換素子の製造方法
US6335481B1 (en) * 1998-09-30 2002-01-01 Fuji Photo Film Co., Ltd. Semiconductor particle sensitized with methine dye

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698073A (zh) * 2017-10-23 2019-04-30 北京工商大学 靛蓝二磺酸钠与半菁衍生物有序杂化薄膜的光电转换性能
CN109698073B (zh) * 2017-10-23 2020-11-24 北京工商大学 靛蓝二磺酸钠与半菁衍生物有序杂化薄膜的光电转换性能
CN109148696A (zh) * 2018-07-16 2019-01-04 天津师范大学 基于甲基紫精配体的金属有机杂化钙钛矿铁电体薄膜在用于光伏产业方面的应用
CN110379889A (zh) * 2019-07-31 2019-10-25 浙江天地环保科技有限公司 一种高效率高稳定性全无机钙钛矿太阳能电池的制备方法
CN113421933A (zh) * 2021-05-26 2021-09-21 海南聚能科技创新研究院有限公司 一种半导体光敏感复合材料及其制备方法以及应用

Also Published As

Publication number Publication date
TW201210835A (en) 2012-03-16
TWI541137B (zh) 2016-07-11
KR101553104B1 (ko) 2015-09-14
WO2011152284A1 (ja) 2011-12-08
CN102906935B (zh) 2015-08-19
JP5620314B2 (ja) 2014-11-05
JP2012144688A (ja) 2012-08-02
KR20130086943A (ko) 2013-08-05

Similar Documents

Publication Publication Date Title
CN102906935A (zh) 光电转换元件、光电化学电池、光电转换元件用色素以及光电转换元件用色素溶液
CN102869729A (zh) 金属错体色素、光电转换组件以及色素增感太阳电池
KR101696939B1 (ko) 색소, 이것을 사용한 광전 변환 소자, 광전기 화학 전지, 및 색소의 제조 방법
CN103052689B (zh) 金属络合物色素、光电转换元件及光电化学电池
CN102792516B (zh) 制备光电转换元件的方法、光电转换元件和光电化学电池
JP2012036237A (ja) 金属錯体色素、光電変換素子及び光電気化学電池
KR101890006B1 (ko) 광전 변환 소자, 광 전기 화학 전지 및 이에 사용되는 금속 착물 색소
JP5721717B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP5689351B2 (ja) 光電変換素子及び光電気化学電池
CN103124774B (zh) 金属络合物色素、光电转换元件及光电化学电池
Kamaraj et al. Performance of 4-Subsituted Pyridine Based Additive and Cobalt Redox in Poly (Ethylene Glycol)–Hydroxyethylcellulose Polymer Electrolytes with DTTCY Acid Sensitizer on Dye Sensitized Solar Cells
KR101505790B1 (ko) 광전 변환 소자, 광 전기 화학 전지, 및 그것들에 사용되는 색소
JP2011228276A (ja) 光電変換素子及び光電気化学電池
EP2933875B1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for producing dye-sensitized solar cell
KR101505767B1 (ko) 광전 변환 소자 및 광전기화학 전지
TWI617626B (zh) 光電轉換元件、色素增感太陽電池、金屬錯合物色素及溶解金屬錯合物色素而成的色素溶液
JP5788779B2 (ja) 光電変換素子及び光電気化学電池
JP2012036239A (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP2009021070A (ja) 色素増感型太陽電池
CN107406686B (zh) 钌络合物色素、色素溶液、光电转换元件及色素增感太阳能电池
WO2016047344A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2012017870A1 (ja) 色素、光電変換素子及び光電気化学電池
TW201615653A (zh) 光電轉換元件、色素增感太陽電池、金屬錯合物色素以及色素溶液
JP2016063154A (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20200526