CN102891619A - Staggered parallel-type three-level dual-buck full-bridge inverter - Google Patents
Staggered parallel-type three-level dual-buck full-bridge inverter Download PDFInfo
- Publication number
- CN102891619A CN102891619A CN2012102160646A CN201210216064A CN102891619A CN 102891619 A CN102891619 A CN 102891619A CN 2012102160646 A CN2012102160646 A CN 2012102160646A CN 201210216064 A CN201210216064 A CN 201210216064A CN 102891619 A CN102891619 A CN 102891619A
- Authority
- CN
- China
- Prior art keywords
- power
- power triode
- pole
- switch
- triode switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inverter Devices (AREA)
Abstract
本发明公开了一种交错并联型三电平双降压式全桥逆变器,包括第一全桥逆变电路1、第二全桥逆变电路2、工频换向电路3和负载电路4。采用峰值电流控制,根据电感电流的方向和输出电压的大小,控制逆变电路半周期工作。本发明的优点是:拓扑本身无桥臂直通问题、无开关管寄生二极管反向恢复问题、电压应力减半、输出电压谐波含量小、系统的效率和功率等级高且控制简单易于实现等。
The invention discloses an interleaved parallel three-level double-step-down full-bridge inverter, comprising a first full-bridge inverter circuit 1, a second full-bridge inverter circuit 2, a power frequency commutation circuit 3 and a load circuit 4. Using peak current control, according to the direction of the inductor current and the magnitude of the output voltage, the inverter circuit is controlled to work in half a cycle. The advantages of the present invention are: the topology itself has no bridge arm straight-through problem, no switch tube parasitic diode reverse recovery problem, voltage stress is halved, output voltage harmonic content is small, system efficiency and power level are high, and control is simple and easy to implement.
Description
一、技术领域 1. Technical field
本发明涉及一种交错并联型三电平双降压式全桥逆变器,属电能变换装置中的逆变器。The invention relates to an interleaved parallel three-level double-step-down full-bridge inverter, which belongs to an inverter in an electric energy conversion device.
二、背景技术 2. Background technology
随着电力电子技术的发展,逆变器得到了广泛的研究和应用,同时某些特定的场合也对逆变器提出了更高的要求:避免功率三极开关管直通问题和提高输入直流电压利用率。三电平双降压式全桥逆变器(dual buck full bridge three-level inverter,以下简称DBFBTLI)是一种能够很好解决上述问题的拓扑结构,相对于传统的逆变器,该逆变器具有无桥臂直通、无功率三极开关管寄生体二极管反向恢复问题、电压应力减半、输出电压谐波含量小、拓扑本身开关损耗小等优点,是一种很具有研究价值和发展前景的拓扑结构。同时应用交错并联技术可有效降低输出电流纹波和开关器件的电流应力、减小单个输出滤波电感容量和EMI滤波器的尺寸,提高逆变电路的功率等级和效率。With the development of power electronics technology, inverters have been extensively researched and applied. At the same time, some specific occasions have put forward higher requirements for inverters: avoiding the problem of direct connection of power triode switches and increasing input DC voltage. utilization rate. Three-level double-buck full-bridge inverter (dual buck full bridge three-level inverter, hereinafter referred to as DBFBTLI) is a topology that can solve the above problems well. Compared with traditional inverters, this inverter The device has the advantages of no bridge arm straight-through, no reverse recovery problem of the parasitic body diode of the power triode switch tube, halved voltage stress, small harmonic content of the output voltage, and small switching loss of the topology itself. It is a research value and development. The topology of the foreground. At the same time, the application of interleaved parallel technology can effectively reduce the output current ripple and the current stress of the switching device, reduce the single output filter inductance capacity and the size of the EMI filter, and improve the power level and efficiency of the inverter circuit.
三、发明内容 3. Contents of the invention
1、发明目的:本发明的目的是提供一种采用交错并联技术提高功率等级及减小输出电流纹波的逆变器。1. Purpose of the invention: The purpose of the invention is to provide an inverter that adopts interleaved parallel technology to increase power level and reduce output current ripple.
2、技术方案:为了解决上述的技术问题,本发明的交错并联型三电平双降压式全桥逆变器,包括第一全桥逆变电路1、第二全桥逆变电路2、工频换向电路3和负载电路4。第一全桥逆变电路1包括第一功率三极开关管S1、第二功率三极开关管S2、第一续流二极管D1、第二续流二极管D2、第一输出滤波电感L1、第二输出滤波电感L2;第二全桥逆变电路2包括第三功率三极开关管S3、第四功率三极开关管S4、第三续流二极管D3、第四续流二极管D4、第三输出滤波电感L3、第四输出滤波电感L4;工频换向电路3包括第一工频功率三极开关管S5、第二工频功率三极开关管S6;负载电路4包括输出滤波电容Cf和负载电阻R。第一全桥逆变电路1和第二全桥逆变电路2在输入侧和输出侧并联,共用输入电源、工频换向电路及负载电路。本发明交错并联型三电平双降压式全桥逆变器的特征在于,第一功率三极开关管S1的漏极与外接电源U的正极连接;第一功率三极开关管S1源极和第一续流二极管D1的阴极,连接到第一输出滤波电感L1的一端;第一续流二极管D1的阳极,连接到外接电源U的负极;第二功率三极开关管S2的源极与外接电源U的负极连接;第二功率三极开关管S2漏极和第二续流二极管D2的阳极,连接到第二输出滤波电感L2的一端;第二续流二极管D2的阴极,连接到外接电源U的正极;第三功率三极开关管S3的漏极与外接电源U的正极连接;第三功率三极开关管S3源极和第三续流二极管D3的阴极,连接到第三输出滤波电感L3的一端;第三续流二极管D3的阳极,连接到外接电源U的负极;第四功率三极开关管S4的源极与外接电源U的负极连接;第四功率三极开关管S4漏极和第四续流二极管D4的阳极,连接到第四输出滤波电感L4的一端;第四续流二极管D4的阴极,连接到外接电源U的正极;第一输出滤波电感L1、第二输出滤波电感L2、第三输出滤波电感L3、第四输出滤波电感L4的另一端连接到输出滤波电容Cf的上端;第一工频功率三极开关管S5的漏极与外接电源U的正极连接;第一工频功率三极开关管S5的源极和第二工频功率三极开关管S6的漏极,连接到输出滤波电容Cf的下端;第二工频功率三极开关管S6的源极与外接电源U的负极连接;负载电阻R并联在输出滤波电容Cf的两端。2. Technical solution: In order to solve the above-mentioned technical problems, the interleaved parallel three-level double-step-down full-bridge inverter of the present invention includes a first full-
3、有益效果:本发明是可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器,具有如下优点:(1)不需引入谐振电路、辅助开关,即可实现逆变器功率开关管的零电流开通,且控制简单;(2)随着交错并联技术的引入,使得该逆变器体积变得更小、更适合于大功率场合;(3)输出电流谐波含量低。3. Beneficial effects: the present invention is an interleaved parallel three-level double-step-down full-bridge inverter capable of realizing the zero-current turn-on inverter function, and has the following advantages: (1) No need to introduce a resonant circuit or an auxiliary switch, that is, It can realize the zero-current turn-on of the inverter power switch tube, and the control is simple; (2) With the introduction of the interleaved parallel technology, the volume of the inverter becomes smaller and more suitable for high-power occasions; (3) the output Low current harmonic content.
4、附图说明 4. Description of drawings
图1是本发明的可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器结构示意图,标号名称:1.第一全桥逆变电路;2.第二全桥逆变电路;3、工频换向电路;4、负载电路;Fig. 1 is a structural schematic diagram of the interleaved parallel three-level double step-down full-bridge inverter capable of realizing the zero-current turn-on inverter function of the present invention, label name: 1. the first full-bridge inverter circuit; 2. the second Full bridge inverter circuit; 3. Power frequency commutation circuit; 4. Load circuit;
图2是本发明的可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器各开关模态示意图;Fig. 2 is a schematic diagram of each switch mode of the interleaved parallel three-level double-buck full-bridge inverter capable of realizing the zero-current turn-on inverter function of the present invention;
图3是本发明的可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器采用的控制框图。Fig. 3 is a control block diagram adopted by the interleaved parallel three-level double-buck full-bridge inverter capable of realizing the zero-current turn-on inverter function of the present invention.
图中的主要符号名称:S1~S4——第一~第四功率三极开关管。D1~D4——第一~第四续流二极管。S5、S6——第一、第二工频功率三极开关管。L1~L4——第一~四输出滤波电感。Cf——输出滤波电容。iL1~iL4——第一~四输出滤波电感电流。iZ1、iZ2——第一全桥逆变电路1、第二全桥逆变电路2的输出电流。uo——逆变器输出电压。ur——电压环基准。io——逆变器输出电流。ir——电压环输出即电流环基准。CP1、CP2——时钟脉冲1、2。drv1~drv4——第一~第四功率三极开关管S1~S4的驱动。drv5、drv6——第一、第二工频功率三极开关管S5、S6的驱动。U——外接电源。Names of main symbols in the figure: S 1 ~ S 4 —— first to fourth power triode switch tubes. D 1 -D 4 ——first to fourth freewheeling diodes. S 5 , S 6 ——the first and second power frequency power triode switch tubes. L 1 ~L 4 —— first to fourth output filter inductors. C f ——Output filter capacitor. i L1 ~i L4 —— first to fourth output filter inductor current. i Z1 , i Z2 —the output currents of the first full-
四、具体实施方式 4. Specific implementation
如图1所示,本实例的可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器,其特征在于,第一功率三极开关管S1的漏极与外接电源U的正极连接;第一功率三极开关管S1源极和第一续流二极管D1的阴极,连接到第一输出滤波电感L1的一端;第一续流二极管D1的阳极,连接到外接电源U的负极;第二功率三极开关管S2的源极与外接电源U的负极连接;第二功率三极开关管S2漏极和第二续流二极管D2的阳极,连接到第二输出滤波电感L2的一端;第二续流二极管D2的阴极,连接到外接电源U的正极;第三功率三极开关管S3的漏极与外接电源U的正极连接;第三功率三极开关管S3源极和第三续流二极管D3的阴极,连接到第三输出滤波电感L3的一端;第三续流二极管D3的阳极,连接到外接电源U的负极;第四功率三极开关管S4的源极与外接电源U的负极连接;第四功率三极开关管S4漏极和第四续流二极管D4的阳极,连接到第四输出滤波电感L4的一端;第四续流二极管D4的阴极,连接到外接电源U的正极;第一输出滤波电感L1、第二输出滤波电感L2、第三输出滤波电感L3、第四输出滤波电感L4的另一端连接到输出滤波电容Cf的上端;第一工频功率三极开关管S5的漏极与外接电源U的正极连接;第一工频功率三极开关管S5的源极和第二工频功率三极开关管S6的漏极,连接到输出滤波电容Cf的下端;第二工频功率三极开关管S6的源极与外接电源U的负极连接;负载电阻R并联在输出滤波电容Cf的两端。As shown in Figure 1, the interleaved parallel three-level double-buck full-bridge inverter of this example that can realize the zero-current turn-on inverter function is characterized in that the drain of the first power triode switch S1 Connected to the positive pole of the external power supply U; the source of the first power triode switch S1 and the cathode of the first freewheeling diode D1 are connected to one end of the first output filter inductor L1 ; the first freewheeling diode D1 The anode is connected to the negative pole of the external power supply U; the source of the second power triode switching tube S2 is connected to the negative pole of the external power supply U; the drain of the second power triode switching tube S2 and the second freewheeling diode D2 The anode is connected to one end of the second output filter inductor L2 ; the cathode of the second freewheeling diode D2 is connected to the positive pole of the external power supply U; the drain of the third power triode switching tube S3 is connected to the positive pole of the external power supply U Connection; the source of the third power triode switch S3 and the cathode of the third freewheeling diode D3 are connected to one end of the third output filter inductor L3 ; the anode of the third freewheeling diode D3 is connected to the external power supply The negative pole of U; the source of the fourth power triode switching tube S4 is connected to the negative pole of the external power supply U; the drain of the fourth power triode switching tube S4 and the anode of the fourth freewheeling diode D4 are connected to the fourth One end of the output filter inductor L 4 ; the cathode of the fourth freewheeling diode D 4 is connected to the positive pole of the external power supply U; the first output filter inductor L 1 , the second output filter inductor L 2 , the third output filter inductor L 3 , The other end of the fourth output filter inductor L 4 is connected to the upper end of the output filter capacitor C f ; the drain of the first power frequency power triode switch S 5 is connected to the positive pole of the external power supply U; the first power frequency power triode switch The source of the tube S5 and the drain of the second power frequency power triode switch tube S6 are connected to the lower end of the output filter capacitor C f ; the source of the second power frequency power triode switch tube S6 is connected to the external power supply U The negative connection; the load resistor R is connected in parallel to the two ends of the output filter capacitor C f .
本发明的可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器可分为四个工作区间:1.输出电流io正半周期时,第一功率三极开关管S1、第三功率三极开关管S3交替调制工作,第二功率三极开关管S2和第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,此阶段电路可分为6个工作模态;2.输出电流io正半周期过零时,由于第一工频功率三极开关管S5、第二工频功率三极开关管S6设置了死区,在此阶段系统暂不工作;3.输出电流io负半周期时,第二功率三极开关管S2、第四功率三极开关管S4交替调制工作,第一功率三极开关管S1和第三功率三极开关管S3截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,此阶段电路可分为6个工作模态;4.输出电流io负半周期过零时,由于第一工频功率三极开关管S5、第二工频功率三极开关管S6设置了死区,在此阶段系统暂不工作。The interleaved parallel three-level double-step-down full-bridge inverter of the present invention that can realize the zero-current turn-on inverter function can be divided into four working areas: 1. When the output current i o is in the positive half cycle, the first power three The pole switch tube S 1 and the third power triode switch tube S 3 are alternately modulated, the second power triode switch tube S 2 and the fourth power triode switch tube S 4 are cut off, and the second power frequency power triode switch tube S 6 is turned on, the first power frequency power triode switch tube S 5 is cut off, and the circuit at this stage can be divided into 6 working modes; 2. When the output current i o crosses zero in the positive half cycle, due to the first power frequency power triode The switching tube S 5 and the second power frequency power triode switching tube S 6 are set with a dead zone, and the system does not work at this stage; 3. When the output current i o is in the negative half cycle, the second power triode switching tube S 2 , The fourth power triode switch S4 works alternately, the first power triode S1 and the third power triode S3 are cut off, the first power frequency power triode S5 is turned on, and the second power triode S5 is turned on. The power frequency power triode switch S 6 is cut off, and the circuit can be divided into 6 working modes at this stage; 4. When the output current i o crosses zero in the negative half cycle, due to the first power frequency power triode switch S 5 , the second A dead zone is set for the two-frequency power triode switch tube S6 , and the system does not work temporarily at this stage.
下面以图1所示为主电路结构,结合图2叙述本发明的交错并联型三电平双降压式全桥逆变器的工作原理和工作模态。The main circuit structure shown in FIG. 1 is described below in conjunction with FIG. 2 to describe the working principle and working mode of the interleaved parallel three-level double-buck full-bridge inverter of the present invention.
1.工作区间1:输出电流io为正,第一功率三极开关管S1、第三功率三极开关管S3交替调制工作,第二功率三极开关管S2和第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,此阶段共包含6个工作模态:1. Working range 1: the output current i o is positive, the first power triode switch S 1 and the third power triode S 3 are alternately modulated, the second power triode S 2 and the fourth power three The pole switch S 4 is turned off, the second power frequency power triode switch S 6 is turned on, and the first power frequency power triode switch S 5 is turned off. There are 6 working modes in this stage:
工作模态I:如图2(a)所示,第一功率三极开关管S1和第三功率三极开关管S3导通,第二功率三极开关管S2、第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,全桥逆变电路1、2同时工作,此时iZ2从零开始上升,iZ1逐渐上升至最大值。Working mode I: As shown in Figure 2(a), the first power triode switch S 1 and the third power triode switch S 3 are turned on, the second power triode switch S 2 , the fourth power triode The pole switch S4 is turned off, the second power frequency power triode switch S6 is turned on, the first power frequency power triode switch S5 is turned off, and the full-
工作模态II:如图2(b)所示,第三功率三极开关管S3导通,第一功率三极开关管S1、第二功率三极开关管S2、第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,iZ1通过第一续流二极管D1续流下降,全桥逆变电路1、2同时工作,iZ2继续上升。Working Mode II: As shown in Figure 2(b), the third power triode switch S 3 is turned on, the first power triode switch S 1 , the second power triode switch S 2 , the fourth power triode The pole switch S 4 is turned off, the second power frequency power triode switch S 6 is turned on, the first power frequency power triode switch S 5 is turned off, i Z1 freewheels down through the first freewheeling diode D 1 , and the full bridge The
工作模态III:如图2(c)所示,第三功率三极开关管S3导通,第一功率三极开关管S1、第二功率三极开关管S2、第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,由于此时iZ1已下降至零,第一续流二极管D1截止,全桥逆变电路2单独工作,iZ2继续上升。Working Mode III: As shown in Figure 2(c), the third power triode switch S 3 is turned on, the first power triode switch S 1 , the second power triode switch S 2 , the fourth power triode The pole switch S4 is turned off, the second power frequency power triode switch S6 is turned on, and the first power frequency power triode switch S5 is turned off. Since i Z1 has dropped to zero at this time, the first freewheeling diode D 1 cuts off, the full-
工作模态IV:如图2(d)所示,第一功率三极开关管S1和第三功率三极开关管S3导通,第二功率三极开关管S2、第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,全桥逆变电路1、2同时工作,此时iZ1从零开始上升,iZ2逐渐上升至最大值。Working mode IV: As shown in Figure 2(d), the first power triode switch S 1 and the third power triode switch S 3 are turned on, the second power triode switch S 2 , the fourth power triode The pole switch S4 is turned off, the second power frequency power triode switch S6 is turned on, the first power frequency power triode switch S5 is turned off, and the full-
工作模态V:如图2(e)所示,第一功率三极开关管S1导通,第二功率三极开关管S2、第三功率三极开关管S3、第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,iZ2通过第三续流二极管D3续流下降,全桥逆变电路1、2同时工作,iZ1继续上升。Working mode V: As shown in Figure 2(e), the first power triode switch S 1 is turned on, the second power triode switch S 2 , the third power triode switch S 3 , the fourth power triode The pole switch S 4 is turned off, the second power frequency power triode switch S 6 is turned on, the first power frequency power triode switch S 5 is turned off, i Z2 freewheels down through the third freewheeling diode D 3 , and the full bridge The
工作模态VI:如图2(f)所示,第一功率三极开关管S1导通,第二功率三极开关管S2、第三功率三极开关管S3、第四功率三极开关管S4截止,第二工频功率三极开关管S6导通,第一工频功率三极开关管S5截止,由于此时iZ2已下降至零,第三续流二极管D3截止,全桥逆变电路1单独工作,iZ1继续上升。Working mode VI: As shown in Figure 2(f), the first power triode switch S 1 is turned on, the second power triode switch S 2 , the third power triode switch S 3 , the fourth power triode The pole switch S4 is turned off, the second power frequency power triode switch S6 is turned on, and the first power frequency power triode switch S5 is turned off. Since i Z2 has dropped to zero at this time, the third freewheeling diode D 3 cut off, the full-
2.工作区间2:2. Working area 2:
工作模态VII:如图2(g)所示,由于死区时间设置的较短,故第一功率三极开关管S1、第二功率三极开关管S2、第三功率三极开关管S3、第四功率三极开关管S4、第一工频功率三极开关管S5、第二工频功率三极开关管S6均处于截止状态,电路暂不工作,iZ1,iZ1为零。Working Mode VII: As shown in Figure 2(g), due to the short dead time setting, the first power triode switch S 1 , the second power triode switch S 2 , and the third power triode switch The tube S 3 , the fourth power triode switch tube S 4 , the first power frequency power triode switch tube S 5 , and the second power frequency power triode switch tube S 6 are all in the cut-off state, and the circuit is not working temporarily, i Z1 , i Z1 is zero.
3.工作区间3:输出电流io为负,第二功率三极开关管S2、第四功率三极开关管S4交替调制工作,第一功率三极开关管S1和第三功率三极开关管S3截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,此阶段共包含6个工作模态:3. Working range 3: the output current i o is negative, the second power triode switch S 2 and the fourth power triode S 4 work alternately, the first power triode S 1 and the third power three The pole switch S 3 is turned off, the first power frequency power triode switch S 5 is turned on, and the second power frequency power triode switch S 6 is turned off. There are 6 working modes in this stage:
工作模态VIII:如图2(h)所示,第二功率三极开关管S2和第四功率三极开关管S4导通,第一功率三极开关管S1、第三功率三极开关管S3截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,全桥逆变电路1、2同时工作,此时iZ2从零开始下降,iZ1逐渐下降至最小值。Working mode VIII: As shown in Figure 2(h), the second power triode switch S 2 and the fourth power triode switch S 4 are turned on, the first power triode switch S 1 , the third power triode The pole switch S3 is turned off, the first power frequency power triode switch S5 is turned on, the second power frequency power triode switch S6 is turned off, and the full-
工作模态IX:如图2(i)所示,第四功率三极开关管S4导通,第一功率三极开关管S1、第二功率三极开关管S2、第三功率三极开关管S3截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,iZ1通过第二续流二极管D2续流上升,全桥逆变电路1、2同时工作,iZ2继续下降。Working mode IX: As shown in Figure 2(i), the fourth power triode switch S 4 is turned on, the first power triode switch S 1 , the second power triode switch S 2 , the third power triode The pole switch S 3 is turned off, the first power frequency power triode switch S 5 is turned on, the second power frequency power triode switch S 6 is turned off, i Z1 freewheels to rise through the second freewheeling diode D 2 , and the full bridge The
工作模态X:如图2(j)所示,第四功率三极开关管S4导通,第一功率三极开关管S1、第二功率三极开关管S2、第三功率三极开关管S3截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,由于此时iZ1已上升至零,第二续流二极管D2截止,全桥逆变电路2单独工作,iZ2继续下降。Working mode X: As shown in Figure 2(j), the fourth power triode switch S 4 is turned on, the first power triode switch S 1 , the second power triode switch S 2 , the third power triode The pole switch S3 is turned off, the first power frequency power triode switch S5 is turned on, and the second power frequency power triode switch S6 is turned off. Since i Z1 has risen to zero at this time, the second freewheeling diode D 2 cut off, the full-
工作模态XI:如图2(k)所示,第二功率三极开关管S2和第四功率三极开关管S4导通,第一功率三极开关管S1、第三功率三极开关管S3截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,全桥逆变电路1、2同时工作,此时iZ1从零开始下降,iZ2逐渐下降至最小值。Working mode XI: As shown in Figure 2(k), the second power triode switch S 2 and the fourth power triode switch S 4 are turned on, the first power triode switch S 1 , the third power triode The pole switch tube S3 is turned off, the first power frequency power triode switch tube S5 is turned on, the second power frequency power triode switch tube S6 is turned off, and the full-
工作模态XII:如图2(1)所示,第二功率三极开关管S2导通,第一功率三极开关管S1、第三功率三极开关管S3、第四功率三极开关管S4截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,iZ2通过第四续流二极管D4续流上升,全桥逆变电路1、2同时工作,iZ1继续下降。Working mode XII: As shown in Figure 2(1), the second power triode switch S 2 is turned on, the first power triode switch S 1 , the third power triode switch S 3 , the fourth power triode The pole switch S 4 is turned off, the first power frequency power triode switch S 5 is turned on, the second power frequency power triode switch S 6 is turned off, i Z2 rises through the fourth freewheeling diode D 4 freewheeling, and the full bridge The
工作模态XIII:如图2(m)所示,第二功率三极开关管S2导通,第一功率三极开关管S1、第三功率三极开关管S3、第四功率三极开关管S4截止,第一工频功率三极开关管S5导通,第二工频功率三极开关管S6截止,由于此时iZ2己上升至零,第四续流二极管D4截止,全桥逆变电路1单独工作,iZ1继续下降。Working mode XIII: As shown in Figure 2(m), the second power triode switch S 2 is turned on, the first power triode switch S 1 , the third power triode switch S 3 , the fourth power triode The pole switch S4 is turned off, the first power frequency power triode switch S5 is turned on, and the second power frequency power triode switch S6 is turned off. Since i Z2 has risen to zero at this time, the fourth freewheeling diode D 4 cut off, the full-
4.工作区间4:4. Working area 4:
工作模态XIV:如图2(n)所示,由于死区时间设置的较短,故第一功率三极开关管S1、第二功率三极开关管S2、第三功率三极开关管S3、第四功率三极开关管S4、第一工频功率三极开关管S5、第二工频功率三极开关管S6均处于截止状态,电路暂不工作,iZ1,iZ1为零。Working mode XIV: As shown in Figure 2(n), due to the short dead time setting, the first power triode switch S 1 , the second power triode switch S 2 , and the third power triode switch The tube S 3 , the fourth power triode switch tube S 4 , the first power frequency power triode switch tube S 5 , and the second power frequency power triode switch tube S 6 are all in the cut-off state, and the circuit is not working temporarily, i Z1 , i Z1 is zero.
为实现以上工作原理,采用控制方案如附图3所示:输出电压uo与电压基准ur经电压环调节器运算得到电流基准ir。电感电流iL1~iL4与电流基准ir经比较器、锁存器运算得到PWM信号。该PWM信号经逻辑运算得到第一~第四功率三极开关管的驱动信号后,通过驱动电路得到drv1、drv2、drv3、drv4,分别驱动第一~第四功率三极开关管S1~S4。电压基准ur经过零比较、死区电路、驱动电路后得到第一、第二工频功率三极开关管S5、S6的驱动信号drv5、drv6。In order to realize the above working principle, a control scheme is adopted as shown in Figure 3: the output voltage u o and the voltage reference u r are calculated by the voltage loop regulator to obtain the current reference i r . Inductive current i L1 ~ i L4 and current reference i r get PWM signal through comparator and latch operation. After the PWM signal is logically operated to obtain the drive signals of the first to fourth power triode switches, drv 1 , drv 2 , drv 3 , and drv 4 are obtained through the drive circuit to drive the first to fourth power triode switches respectively S 1 ~ S 4 . The voltage reference u r passes through zero comparison, dead zone circuit and drive circuit to obtain the drive signals drv 5 and drv 6 of the first and second power frequency power triode switch tubes S 5 and S 6 .
由以上描述可知,本发明是一种可实现零电流开通逆变功能的交错并联型三电平双降压式全桥逆变器,该逆变器具有如下优点:It can be known from the above description that the present invention is an interleaved parallel three-level double-buck full-bridge inverter capable of realizing the zero-current turn-on inverter function. The inverter has the following advantages:
1.不需引入谐振电路、辅助开关,即可实现逆变器主开关管的零电流开通,且控制简单;1. The zero-current turn-on of the main switching tube of the inverter can be realized without introducing a resonant circuit and an auxiliary switch, and the control is simple;
2.随着交错并联技术的引入,使得该逆变器体积变得更小、更适合于大功率场合;2. With the introduction of interleaved parallel technology, the volume of the inverter becomes smaller and more suitable for high-power occasions;
3.输出电流谐波含量小。3. The harmonic content of the output current is small.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102160646A CN102891619A (en) | 2012-06-28 | 2012-06-28 | Staggered parallel-type three-level dual-buck full-bridge inverter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102160646A CN102891619A (en) | 2012-06-28 | 2012-06-28 | Staggered parallel-type three-level dual-buck full-bridge inverter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102891619A true CN102891619A (en) | 2013-01-23 |
Family
ID=47535018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102160646A Pending CN102891619A (en) | 2012-06-28 | 2012-06-28 | Staggered parallel-type three-level dual-buck full-bridge inverter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102891619A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103812370A (en) * | 2012-11-09 | 2014-05-21 | 江苏绿扬电子仪器集团有限公司 | Multi-level full-bridge inverter |
TWI508424B (en) * | 2013-10-11 | 2015-11-11 | Delta Electronics Inc | Solar photovoltaic power conversion system and method of operating the same |
CN115441767A (en) * | 2022-09-21 | 2022-12-06 | 福建福安闽东亚南电机有限公司 | Inverter topology structure integrating phase-shifting staggered power superposition and magnetism |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5889668A (en) * | 1997-09-05 | 1999-03-30 | Electric Power Research Institute, Inc. | Three-phase DC-to-AC power inverter with three-level poles |
CN1595782A (en) * | 2004-07-01 | 2005-03-16 | 南京航空航天大学 | Double output double step-down type half bridge inverter, and control and modulation method |
CN1967998A (en) * | 2006-10-20 | 2007-05-23 | 南京航空航天大学 | Three-level double step-down full bridge inverter |
CN101145740A (en) * | 2007-10-29 | 2008-03-19 | 南京航空航天大学 | Coupled Inductor Dual Buck Full Bridge Inverter |
-
2012
- 2012-06-28 CN CN2012102160646A patent/CN102891619A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5889668A (en) * | 1997-09-05 | 1999-03-30 | Electric Power Research Institute, Inc. | Three-phase DC-to-AC power inverter with three-level poles |
CN1595782A (en) * | 2004-07-01 | 2005-03-16 | 南京航空航天大学 | Double output double step-down type half bridge inverter, and control and modulation method |
CN1967998A (en) * | 2006-10-20 | 2007-05-23 | 南京航空航天大学 | Three-level double step-down full bridge inverter |
CN101145740A (en) * | 2007-10-29 | 2008-03-19 | 南京航空航天大学 | Coupled Inductor Dual Buck Full Bridge Inverter |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103812370A (en) * | 2012-11-09 | 2014-05-21 | 江苏绿扬电子仪器集团有限公司 | Multi-level full-bridge inverter |
TWI508424B (en) * | 2013-10-11 | 2015-11-11 | Delta Electronics Inc | Solar photovoltaic power conversion system and method of operating the same |
US9300225B2 (en) | 2013-10-11 | 2016-03-29 | Delta Electronics, Inc. | Solar photovoltaic power conversion system and method of operating the same |
CN115441767A (en) * | 2022-09-21 | 2022-12-06 | 福建福安闽东亚南电机有限公司 | Inverter topology structure integrating phase-shifting staggered power superposition and magnetism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106533224B (en) | A kind of New Type of Resonant DC Link soft switching inverter and its modulator approach | |
CN101902143B (en) | Capacitor-clamped three-level dual-buck half-bridge inverter | |
CN103701356B (en) | A kind of two auxiliary resonance polar form three phase soft switch inverter | |
CN101902142B (en) | Diode clamping five-level dual buck half-bridge inverter | |
CN100459393C (en) | Two-way AC chopper | |
CN100459402C (en) | Three level double voltage reducing type semi-bridge converter | |
CN104201884B (en) | A kind of Sofe Switch DC DC translation circuit | |
CN104377982B (en) | Zero-voltage switching Heric type non-isolated photovoltaic grid-connected inverter | |
CN105553254B (en) | A kind of ZVT high-gain DC DC converters containing switching capacity | |
CN203911754U (en) | Interleaved parallel zero-voltage switch-off high-gain DC/DC converter | |
CN103501109A (en) | Converter bridge arm circuit with energy active feedback absorption loop and converter | |
CN103944439B (en) | The two motor cascaded multi-level inverse conversion systems without Active Front End | |
CN103391001A (en) | High-gain DCDC converter for MPPT link of photovoltaic inverter | |
CN203827175U (en) | Novel soft switching bi-directional DC-DC converter | |
CN106685251A (en) | Single-inductor double Buck full-bridge inverter with diode series-parallel structure and its control method | |
CN100433527C (en) | Double step-down inverter | |
CN203911753U (en) | Zero-voltage switch-off interleaved parallel DC/DC converter | |
CN104113208B (en) | Interleaved Boost converter comprising lossless buffer circuit | |
CN103595257A (en) | Isolation type direct-current buck converter with soft switching function and control method of isolation type direct-current buck converter | |
CN108736756A (en) | A kind of double auxiliary resonance electrode type three phase soft switch inverter circuits of modified | |
CN103825455B (en) | The double Buck full-bridge inverter of single inductance | |
CN205377786U (en) | Two pressure reducing type photovoltaic power generation system | |
CN102891619A (en) | Staggered parallel-type three-level dual-buck full-bridge inverter | |
CN203590033U (en) | High gain DC/DC converter applied in photovoltaic inverter MPPT link | |
CN109149951B (en) | Soft-switching three-phase current type push-pull direct-current converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130123 |