CN102866262B - Array type single-chip integrated digital microaccelerometer - Google Patents
Array type single-chip integrated digital microaccelerometer Download PDFInfo
- Publication number
- CN102866262B CN102866262B CN201210336902.3A CN201210336902A CN102866262B CN 102866262 B CN102866262 B CN 102866262B CN 201210336902 A CN201210336902 A CN 201210336902A CN 102866262 B CN102866262 B CN 102866262B
- Authority
- CN
- China
- Prior art keywords
- mass
- structural sheet
- accelerometer unit
- type single
- array type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012545 processing Methods 0.000 claims abstract description 15
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 6
- 239000002210 silicon-based material Substances 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 23
- 239000011521 glass Substances 0.000 claims description 22
- 238000005516 engineering process Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000005459 micromachining Methods 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 3
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract description 16
- 239000004065 semiconductor Substances 0.000 abstract description 9
- 230000000295 complement effect Effects 0.000 abstract description 3
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 3
- 150000004706 metal oxides Chemical class 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 15
- 238000005530 etching Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 10
- 238000001020 plasma etching Methods 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 9
- 238000009616 inductively coupled plasma Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000001312 dry etching Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Pressure Sensors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及微加速度计,具体为一种阵列式单芯片集成数字微加速度计。 The invention relates to a micro accelerometer, in particular to an array type single chip integrated digital micro accelerometer.
背景技术 Background technique
目前,随着加速度传感器应用范围的不断扩大,对加速度传感器的要求也越来越高,即微型化、集成化、低成本、高性能。MEMS技术的传感器体积小、重量轻,但是用于处理加速度传感器的输出信号的板级电路的大尺寸和低可靠性无法满足MEMS器件小型化的发展趋势。如果能够将传感器的处理电路(板级电路)微型化,就可以大大减小传感器的体积、重量,也有利于提高传感器的可靠性,从而将具有微型化、低成本、高可靠性等优势的微传感器系统代替现有的传感器系统,扩大传感器的应用范围。 At present, with the continuous expansion of the application range of the acceleration sensor, the requirements for the acceleration sensor are getting higher and higher, that is, miniaturization, integration, low cost, and high performance. The sensor of MEMS technology is small in size and light in weight, but the large size and low reliability of the board-level circuit used to process the output signal of the acceleration sensor cannot meet the development trend of miniaturization of MEMS devices. If the processing circuit (board-level circuit) of the sensor can be miniaturized, the volume and weight of the sensor can be greatly reduced, and the reliability of the sensor can also be improved. The micro sensor system replaces the existing sensor system and expands the application range of the sensor.
CMOS 技术已成为集成电路主要制造工艺,制造成本下降的同时,成品率和产量也得到很大提高。CMOS是Complementary Metal Oxide Semiconductor(互补金属氧化物半导体)的缩写,它是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片。 CMOS technology has become the main manufacturing process of integrated circuits. While the manufacturing cost has decreased, the yield and output have also been greatly improved. CMOS is the abbreviation of Complementary Metal Oxide Semiconductor (Complementary Metal Oxide Semiconductor), which refers to a technology used to manufacture large-scale integrated circuit chips or chips manufactured by this technology.
现有的复合量程加速度计的处理电路通常采用板级电路方式,存在的缺点如下:1、体积大;2、压阻式加速度计单元中的固支梁根部在高冲击(即高过载)情况下容易出现断裂的情况;3、为了突出加速度计覆盖高低量程的特点,考虑到加速度计的加工工艺限制,高量程和低量程加速度计单元的一些结构尺寸必须是一致的,固支梁和质量块的厚度是相同的,加速度计单元的外形尺寸也要保持一致,鉴于这些约束因素,往往使得高、低量程的加速度计单元的性能很难达到最优化配置,成为高、低量程加速度计单元单片集成的一个难点。 The processing circuit of the existing compound-range accelerometer usually adopts the board-level circuit mode, and the disadvantages are as follows: 1. Large volume; 2. The root of the fixed beam in the piezoresistive accelerometer unit is under high impact (ie high overload) 3. In order to highlight the characteristics of the accelerometer covering high and low ranges, considering the limitations of the accelerometer’s processing technology, some structural dimensions of the high-range and low-range accelerometer units must be consistent, and the fixed beam and mass The thickness of the block is the same, and the dimensions of the accelerometer unit should also be consistent. In view of these constraints, it is often difficult to achieve the optimal configuration of the performance of the high and low range accelerometer unit, and become a high and low range accelerometer unit. A difficult point of monolithic integration.
因此,有必要发明一种新型的单片集成的阵列式数字微加速度计。 Therefore, it is necessary to invent a new monolithic integrated array digital micro accelerometer.
发明内容 Contents of the invention
本发明要解决现有的加速度传感器体积大的技术问题,另外,本发明还优化设计了现有的覆盖高低量程的加速度计及解决抗高过载的问题,提供了一种新型的阵列式单芯片集成数字微加速度计。 The present invention aims to solve the technical problem of the large size of the existing acceleration sensor. In addition, the present invention also optimizes the design of the existing accelerometer covering high and low ranges and solves the problem of high overload resistance, and provides a new type of array single chip Integrated digital micro accelerometer.
本发明是采用如下技术方案实现的: The present invention is realized by adopting the following technical solutions:
一种阵列式单芯片集成数字微加速度计,包括单晶硅材料的结构层;所述结构层分为左右两部分,结构层右面的上下两部分分别集成有不同量程的第一压阻式加速度计单元和第二压阻式加速度计单元;结构层左面集成有对第一、二压阻式加速度计单元的输出信号进行放大滤波处理的CMOS电路;所述第一压阻式加速度计单元包括置于结构层内的第一质量块,所述第一质量块通过四个第一固支梁与结构层一体构成;所述四个第一固支梁上分别设有阻值相等、连接成惠斯通电桥的压敏电阻;所述第二压阻式加速度计单元包括置于结构层内的第二质量块,所述第二质量块通过四个第二固支梁与结构层一体构成;所述四个第二固支梁上分别设有阻值相等、连接成惠斯通电桥的压敏电阻;所述惠斯通电桥分别接入所述CMOS电路。 An array-type single-chip integrated digital micro-accelerometer, including a structural layer of monocrystalline silicon material; the structural layer is divided into left and right parts, and the upper and lower parts on the right side of the structural layer are respectively integrated with the first piezoresistive acceleration of different ranges A meter unit and a second piezoresistive accelerometer unit; the left side of the structural layer is integrated with a CMOS circuit that amplifies and filters the output signals of the first and second piezoresistive accelerometer units; the first piezoresistive accelerometer unit includes The first quality block placed in the structural layer, the first mass block is integrally formed with the structural layer through four first fixed beams; the four first fixed beams are respectively provided with equal resistance and connected into The piezoresistor of the Wheatstone bridge; the second piezoresistive accelerometer unit includes a second quality block placed in the structural layer, and the second mass block is integrally formed with the structural layer by four second fixed beams ; The four second fixed support beams are respectively provided with piezoresistors with equal resistance and connected to form a Wheatstone bridge; the Wheatstone bridges are respectively connected to the CMOS circuit.
工作时,在加速度计单元的每一固支梁上通过离子注入的方法制作阻值相等的压敏电阻,然后连接成惠斯通电桥。根据压阻效应,当加速度计单元在工作方向感受加速度作用时,质量块上下移动,每个加速度计单元的四根固支梁受到应力的作用,固支梁上的压敏电阻阻值发生变化,惠斯通电桥的输出电压也将随之会产生变化,其输出电压与外加的加速度成正比。通过具有放大滤波处理功能的CMOS电路处理惠斯通电桥的输出电压,然后经过计算处理即可得到被测的加速度大小。 When working, piezoresistors with equal resistance are manufactured on each fixed beam of the accelerometer unit by ion implantation, and then connected to form a Wheatstone bridge. According to the piezoresistive effect, when the accelerometer unit feels acceleration in the working direction, the mass block moves up and down, and the four fixed beams of each accelerometer unit are subjected to stress, and the resistance of the piezoresistor on the fixed beam changes. , the output voltage of the Wheatstone bridge will also change accordingly, and its output voltage is proportional to the applied acceleration. The output voltage of the Wheatstone bridge is processed by the CMOS circuit with the function of amplification and filtering, and then the measured acceleration can be obtained through calculation and processing.
本发明将加速度计阵列单元与信号处理电路(具有放大滤波处理功能的CMOS电路)集成到一块芯片上,实现了微型化、集成化,大大减小了加速度传感器的体积、重量,减少测试系统中的元器件数量和重量,为新一代飞行器和武器装备等研制提供了重要的测试手段和先期开发。 The invention integrates the accelerometer array unit and the signal processing circuit (CMOS circuit with amplification and filtering function) into one chip, realizes miniaturization and integration, greatly reduces the volume and weight of the acceleration sensor, and reduces the The number and weight of components provide important testing means and early development for the development of a new generation of aircraft and weaponry.
本发明设计合理、结构简单,有效解决了现有的微传感器体积大的技术问题。 The invention has reasonable design and simple structure, and effectively solves the technical problem of large volume of the existing micro sensor.
附图说明 Description of drawings
图1是结构层的结构示意图。 Figure 1 is a schematic diagram of the structure of the structural layer.
图2是图1的仰视图。 Fig. 2 is a bottom view of Fig. 1 .
图3是玻璃层的结构示意图。 Fig. 3 is a schematic diagram of the structure of the glass layer.
图4是本发明一实施例的结构示意图。 Fig. 4 is a schematic structural diagram of an embodiment of the present invention.
图5是惠斯通电桥电路的结构示意图。 Fig. 5 is a structural schematic diagram of a Wheatstone bridge circuit.
图中,1-盖板,2-结构层,3-玻璃层,20-压敏电阻,21-第一压阻式加速度计单元,211-第一固支梁,212-第一质量块,22-第二压阻式加速度计单元,221-第二固支梁,222-第二质量块,23-槽,31-金属电极,32-金属引线,33-压焊点。 In the figure, 1-cover plate, 2-structural layer, 3-glass layer, 20-varistor, 21-first piezoresistive accelerometer unit, 211-first fixed beam, 212-first mass block, 22-second piezoresistive accelerometer unit, 221-second fixed beam, 222-second mass, 23-groove, 31-metal electrode, 32-metal lead, 33-pressure welding point.
具体实施方式 Detailed ways
下面结合附图对本发明的具体实施例进行详细说明。 Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1、2所示,一种阵列式单芯片集成数字微加速度计,包括单晶硅材料的结构层2;所述结构层2分为左右两部分,结构层2右面的上下两部分分别集成有不同量程的第一压阻式加速度计单元21和第二压阻式加速度计单元22;结构层2左面集成有对第一、二压阻式加速度计单元21、22的输出信号进行放大滤波处理的CMOS电路;所述第一压阻式加速度计单元21包括置于结构层2内的第一质量块212,所述第一质量块212通过四个第一固支梁211与结构层2一体构成;所述四个第一固支梁211上分别设有阻值相等、连接成惠斯通电桥的压敏电阻20;所述第二压阻式加速度计单元22包括置于结构层2内的第二质量块222,所述第二质量块222通过四个第二固支梁221与结构层2一体构成;所述四个第二固支梁221上分别设有阻值相等、连接成惠斯通电桥的压敏电阻20;所述惠斯通电桥分别接入所述CMOS电路。
As shown in Figures 1 and 2, an array-type single-chip integrated digital micro-accelerometer includes a
还包括置于结构层2上面、单晶硅材料的盖板1和置于结构层2下面的玻璃层3;所述盖板1的内侧面上与第一质量块212和第二质量块222相对应的地方设有凹面(具体加工时可腐蚀有凹面);所述第一质量块212和第二质量块222的厚度均小于结构层2的厚度、且第一质量块212和第二质量块222对应的玻璃层3上分别设有金属电极31;所述玻璃层3上设有两个压焊点33,所述金属电极31分别通过金属引线32与相应的压焊点33连接;所述结构层2的下面对应于玻璃层上的金属引线32和压焊点33的地方设有相应的槽23(具体加工时,在结构层2的下面对应于金属引线32的地方腐蚀有浅槽,对应于压焊点33的地方腐蚀有深槽)。如图2、3、4所示。
It also includes a cover plate 1 of monocrystalline silicon material placed on the
具体实施时,所述四个第一固支梁211横向对称分布于第一质量块212的两个相对侧面(两端四梁结构);所述四个第二固支梁221分别分布于第二质量块222的四个侧面(四端四梁结构)。
During specific implementation, the four first
所述第一压阻式加速度计单元21的量程为10g,所述第一固支梁211的规格是:梁长700um、梁宽80um、梁厚20um,所述第一质量块212的规格是:长2000um、宽1200um、厚395um;所述第二压阻式加速度计单元22的量程为10000g,所述第二固支梁221的规格是:梁长800um、梁宽1000um、梁厚20um,所述第二质量块222的规格是:长1000um、宽1000um、厚395um;所述盖板1的规格是:长10000um、宽10000um、高320um,盖板1内侧面上的凹面的规格是:长8000um、宽8000um、深50um。
The measuring range of the first
另外,第一质量块212还可以呈十字结构,在上述第一质量块212的左右两面增加的部分的规格是:长1240um、宽500um、厚395um,充分利用有限的空间结构,增大第一质量块212的重量。
In addition, the
所述每个第一固支梁211沿其长度方向上设有两个压敏电阻20,有利于惠斯通电桥的准确输出。
Each of the first
所述具有放大滤波处理功能的CMOS电路的第一级采用低噪声低失调前端运算放大器,第二级采用有源低通滤波电路,第三级采用低噪声高增益运算放大器。 The first stage of the CMOS circuit with amplification and filtering processing functions uses a low-noise and low-offset front-end operational amplifier, the second stage uses an active low-pass filter circuit, and the third stage uses a low-noise high-gain operational amplifier.
所述CMOS电路通过CMOS集成电路工艺集成在结构层2上;所述第一压阻式加速度计单元21和第二压阻式加速度计单元22通过硅微机械加工技术集成在结构层2上;所述压敏电阻20通过离子注入方法制作在第一固支梁211和第二固支梁221上。
The CMOS circuit is integrated on the
所述盖板1通过硅-硅直接键合工艺置于结构层2上面,所述玻璃层3通过硅-玻璃静电键合工艺置于结构层2下面。
The cover plate 1 is placed on the
具体使用时,由于第一质量块212和第二质量块222的厚度均小于结构层2的厚度,所以,质量块的底面与玻璃层3之间有一定的空隙,即等于结构层2与质量块的厚度差,所述金属电极31则正好置于此间隙内,但不与第一、二质量块212、222接触;由于盖板1的内侧面腐蚀有凹面,所以,质量块与盖板1之间也有一定的空隙;盖板1和玻璃层3的作用是防止加速度计单元的过载,当加速度计单元在工作方向感受加速度作用时,质量块在盖板1和玻璃层3形成的空间内上下移动,从而起到保护压阻式加速度计单元的作用,使得在高过载状态下由于盖板1和玻璃层3的阻挡作用第一、二固支梁211、221的根部不会发生断裂的情况。玻璃层3上的金属电极31的作用是消除静电。
During specific use, since the thicknesses of the
目前,阵列式加速度计单元单片集成设计时主要的难点是如何将高低量程的敏感结构(质量块和固支梁)达到最优化设计。考虑到加速度计单元的加工工艺限制,为了突出加速度传感器覆盖高低量程的特点,使高低量程加速度计单元实现单片集成、且两者的性能达到优化,那么,低量程加速度计单元需要较高的灵敏度,要求质量块结构大一点、固支梁厚度小一点;而高量程加速度计单元为了获得大的量程范围和实现满量程输出,往往灵敏度较小,在高低量程加速度计单元的外形尺寸相同的情况下,高量程的加速度计单元的质量块结构要小、且固支梁也可以厚一些。并且,加速度传感器的灵敏度、固有频率和阻尼等特性在结构尺寸上存在着一定的相互制约关系,根据大量的试验结果分析表明,加速度计单元的尺寸结构是加速度传感器的主要影响因素。故此,为了充分利用第一加速度计单元(低量程)的空间结构,将第一质量块的形状设计成十字结构,尽量增大第一质量块的重量,为了进一步提高第一加速度计单元的灵敏度,将第一加速度计单元设计成两端四梁结构、且第一固支梁与第一质量块具有上述的尺寸优化结构(第一固支梁:梁长700um、梁宽80um、梁厚20um;第一质量块:长2000um、宽1200um、厚395um,两面增加的部分长1240um、宽500um、厚395um)。考虑到提高第二加速度计单元(高量程)的量程范围,需要适当降低灵敏度、提高抗过载能力、实现满量程输出,第二加速度计单元选择四端四梁结构、且第二固支梁与第二质量块具有上述的尺寸优化结构(第二固支梁:梁长800um、梁宽1000um、梁厚20um,第二质量块:长1000um、宽1000um、厚395um),同时还可以降低其横向灵敏度指标。所以,第一加速度计单元和第二加速度计单元的结构尺寸优化设计,使得大量程的加速度计单元能够满量程输出,高低量程的加速度计单元的性能实现优化设计,更为重要的是,本发明的加速度计单元的最大过载量能够达到20000g,且当加速度计单元达到最大过载量20000g时,低量程的加速度计单元也不会被损坏,提高了加速度传感器的可靠性。 At present, the main difficulty in the monolithic integration design of the array accelerometer unit is how to optimize the design of the sensitive structure (mass block and fixed support beam) with high and low ranges. Considering the limitations of the processing technology of the accelerometer unit, in order to highlight the characteristics of the acceleration sensor covering the high and low ranges, to realize the monolithic integration of the high and low range accelerometer units, and to optimize the performance of the two, then the low range accelerometer unit requires a higher Sensitivity requires a larger mass block structure and a smaller thickness of the fixed beam; while the high-range accelerometer unit is often less sensitive in order to obtain a large range range and full-scale output. In some cases, the mass block structure of the high-range accelerometer unit should be smaller, and the fixed support beam can also be thicker. Moreover, the sensitivity, natural frequency and damping characteristics of the acceleration sensor have certain mutual constraints on the structural size. According to the analysis of a large number of test results, the size structure of the accelerometer unit is the main influencing factor of the acceleration sensor. Therefore, in order to make full use of the space structure of the first accelerometer unit (low range), the shape of the first mass block is designed as a cross structure, and the weight of the first mass block is increased as much as possible. In order to further improve the sensitivity of the first accelerometer unit , the first accelerometer unit is designed as a four-beam structure at both ends, and the first fixed beam and the first mass block have the above-mentioned size optimization structure (the first fixed beam: the beam length is 700um, the beam width is 80um, and the beam thickness is 20um ; The first mass: 2000um in length, 1200um in width, and 395um in thickness, and the increased part on both sides is 1240um in length, 500um in width, and 395um in thickness). In consideration of improving the range of the second accelerometer unit (high range), it is necessary to properly reduce the sensitivity, improve the overload resistance, and achieve full-scale output. The second accelerometer unit chooses a four-terminal four-beam structure, and the second fixed beam and The second mass block has the above-mentioned size-optimized structure (second fixed beam: beam length 800um, beam width 1000um, beam thickness 20um, second mass block: length 1000um, width 1000um, thickness 395um), and can also reduce its lateral direction Sensitivity index. Therefore, the optimal design of the structural size of the first accelerometer unit and the second accelerometer unit enables the accelerometer unit with a large range to output at full scale, and the performance of the accelerometer unit with a high and low range is optimized. More importantly, this The maximum overload of the accelerometer unit of the invention can reach 20000g, and when the accelerometer unit reaches the maximum overload of 20000g, the low-range accelerometer unit will not be damaged, which improves the reliability of the acceleration sensor.
所述CMOS电路的主要功能是对加速度计单元敏感结构输出信号进行放大滤波处理;考虑到在采集微弱信号时引入的噪声和失调,CMOS电路的第一级采用低噪声低失调前端运算放大器,可以有效抑制信号噪声,降低信号的失调电压,保证前端微弱信号的采集与放大;第二级采用有源低通滤波电路,进一步滤除其它频率的信号和噪声;第三级采用低噪声高增益运算放大器,对微弱信号进一步放大,以满足后级信号处理的要求。CMOS电路由内部基准电源对各部分电路进行电源分配。进一步提高加速度传感器的准确度。 The main function of the CMOS circuit is to amplify and filter the output signal of the sensitive structure of the accelerometer unit; considering the noise and offset introduced when collecting weak signals, the first stage of the CMOS circuit adopts a low-noise and low-offset front-end operational amplifier, which can Effectively suppress signal noise, reduce signal offset voltage, and ensure the collection and amplification of weak front-end signals; the second stage uses an active low-pass filter circuit to further filter out other frequency signals and noise; the third stage uses low-noise high-gain operations The amplifier further amplifies the weak signal to meet the requirements of post-stage signal processing. The CMOS circuit uses an internal reference power supply to distribute power to each part of the circuit. Further improve the accuracy of the acceleration sensor.
试验结果分析如下: The test results are analyzed as follows:
1、取样片(阵列式单芯片集成数字微加速度计),测试第一加速度计单元(低量程)的静态性能指标如表1.1所示: 1. Sampling piece (array type single-chip integrated digital micro-accelerometer), test the static performance index of the first accelerometer unit (low range) as shown in Table 1.1:
1.1样片静态性能指标 1.1 Sample static performance index
2、第二加速度计单元(高量程)测试结果如表1.2所示: 2. The test results of the second accelerometer unit (high range) are shown in Table 1.2:
表1.2 各样片的灵敏度、线性度及重复性 Table 1.2 Sensitivity, linearity and repeatability of each sample
由上述试验结果分析可知,高、低量程的样片均基本达到了设计指标要求,使得阵列式加速度计单片集成的高低量程的敏感结构达到优化设计。 From the analysis of the above test results, it can be seen that the high and low range samples basically meet the design index requirements, making the array accelerometer single-chip integrated high and low range sensitive structure achieve optimal design.
半导体硅微机械加工技术工艺介绍: Semiconductor Silicon Micromachining Technology Introduction:
(1)光刻:是一种图形复印和化学腐蚀相结合的精密表面加工技术。在半导体器件生产过程中,光刻的目的就是按照器件设计的要求,在二氧化硅薄膜或金属薄膜上面,刻蚀出与掩模版完全对应的几何图形,以实现选择性扩散和金属薄膜布线的目的。光刻是半导体器件制造工艺中的关键工艺之一。光刻质量的好坏直接影响半导体器件的性能和成品率。 (1) Photolithography: It is a precision surface processing technology that combines graphic printing and chemical etching. In the production process of semiconductor devices, the purpose of lithography is to etch a geometric pattern completely corresponding to the mask on the silicon dioxide film or metal film according to the requirements of device design, so as to realize selective diffusion and metal film wiring. Purpose. Photolithography is one of the key processes in the semiconductor device manufacturing process. The quality of photolithography directly affects the performance and yield of semiconductor devices.
(2)腐蚀:用光刻方法制成的光刻胶微图形结构,只能给出器件的形貌,并不是真正的器件结构。为获得器件的结构必须把光刻胶的图形转移到光刻胶下面的各层材料上面去。腐蚀是指用化学的、物理的或同时使用化学物理的方法有选择性地把未被光刻胶掩蔽的部分(如二氧化硅、氮化硅、多晶硅或金属铝薄膜)去除,从而最终实现把掩模图形转移到薄膜上。理想的腐蚀要求垂直腐蚀(各向异性腐蚀)、有高的选择比(只对薄膜腐蚀,对衬底不腐蚀或极小腐蚀)和腐蚀指标可控性。腐蚀的方法大体上可分为湿法腐蚀和干法腐蚀两大类。 (2) Corrosion: The photoresist micropattern structure made by photolithography can only give the morphology of the device, not the real device structure. In order to obtain the structure of the device, the pattern of the photoresist must be transferred to the layers of material below the photoresist. Etching refers to the selective removal of parts not masked by photoresist (such as silicon dioxide, silicon nitride, polysilicon or metal aluminum film) by chemical, physical or chemical physical methods at the same time, so as to finally achieve Transfer the mask pattern to the film. Ideal corrosion requires vertical corrosion (anisotropic corrosion), high selectivity ratio (only for thin film corrosion, no corrosion or minimal corrosion for substrate) and controllability of corrosion indicators. Corrosion methods can be roughly divided into two categories: wet etching and dry etching.
a、湿法腐蚀:湿法腐蚀图形受晶向限制,深宽比较差,侧壁倾斜。湿法腐蚀分为各向同性腐蚀和各向异性腐蚀,不同类型的湿法腐蚀比较见表1.3。 a. Wet etching: The wet etching pattern is limited by the crystal orientation, the aspect ratio is poor, and the side wall is inclined. Wet etching is divided into isotropic etching and anisotropic etching. The comparison of different types of wet etching is shown in Table 1.3.
表1.3 不同类型的湿法腐蚀 Table 1.3 Different types of wet etching
利用KOH腐蚀剂在(100)晶面进行各向异性腐蚀是半导体硅微机械加工工艺中一种简单易行且重要的加工工艺。 Using KOH etchant to perform anisotropic etching on (100) crystal plane is a simple and important processing technology in semiconductor silicon micromachining technology.
b、干法腐蚀:包括PE(等离子体腐蚀)、RIE(反应离子腐蚀)、ICP(感应耦合等离子体腐蚀)、TCP(变压器耦合等离子体腐蚀、ECR(电子回旋共振腐蚀)等。干法腐蚀清洁、干燥,无浮胶现象,工艺过程简单,图形分辨率高,成本高。表1.4是几种干法腐蚀方法的比较。 b. Dry etching: including PE (plasma etching), RIE (reactive ion etching), ICP (inductively coupled plasma etching), TCP (transformer coupled plasma etching), ECR (electron cyclotron resonance etching), etc. Dry etching Clean, dry, no floating glue phenomenon, simple process, high graphics resolution, high cost. Table 1.4 is a comparison of several dry etching methods.
表1.4 几种干法腐蚀方法的比较 Table 1.4 Comparison of several dry etching methods
在高深宽比硅刻腐蚀技术方面,北京大学微电子所进行了卓有成效的研究。硅深槽刻蚀技术采用了STSMultiplex ICP高密度等离子刻蚀系统。这一刻蚀技术只使用F基气体作为刻蚀剂,侧壁钝化用聚合物生成剂,解决了系统腐蚀和工艺尾气的污染问题。 In terms of high aspect ratio silicon etching and etching technology, the Institute of Microelectronics of Peking University has carried out fruitful research. The silicon deep groove etching technology adopts the STSMultiplex ICP high-density plasma etching system. This etching technology only uses F-based gas as an etchant, and a polymer generator for sidewall passivation, which solves the problems of system corrosion and process exhaust gas pollution.
(3)深槽反应离子(RDEI)刻蚀技术 (3) Deep groove reactive ion (RDEI) etching technology
以前,干法刻蚀主要用于表面微机械加工,但近来由于许多刻蚀速率快、各向异性好和掩膜腐蚀速率选择比高的反应离子刻蚀技术的兴起,RDEI被广泛的用于体硅微机械加工,并成了制作高深宽比微机械结构的有力工具。Surface Teehnozogy Systen,(STS)公司开发T感应藕合等离子体(CIP)系统,用光刻胶做掩膜版,光刻胶在侧壁的聚合可以对侧壁进行钝化,因此刻蚀深度可达到500微米。本发明所述的压阻式加速度计的质量块结构即采用RDEI技术完成。 In the past, dry etching was mainly used for surface micromachining, but recently due to the rise of many reactive ion etching techniques with fast etching rate, good anisotropy and high selective ratio of mask etching rate, RDEI is widely used for Bulk silicon micromachining has become a powerful tool for fabricating high aspect ratio micromechanical structures. Surface Teehnozogy Systen, (STS) company develops T inductively coupled plasma (CIP) system, uses photoresist as a mask, and the polymerization of photoresist on the sidewall can passivate the sidewall, so the etching depth can be controlled up to 500 microns. The mass block structure of the piezoresistive accelerometer described in the present invention is completed by RDEI technology.
(4)离子注入 (4) Ion implantation
本发明所述的压敏电阻即通过离子注入工艺来完成。离子注入是掺杂技术的一种,就是将所需的杂质以一定的方式掺入到半导体基片规定的区域,并达到规定的数量和符合要求的分布,以达到改变材料电学性能、制作PN结、集成电路的电阻和互联线的目的。 The varistor described in the present invention is completed by ion implantation process. Ion implantation is a kind of doping technology, which is to dope the required impurities into the specified area of the semiconductor substrate in a certain way, and achieve the specified quantity and distribution in order to change the electrical properties of the material and make PN Junctions, resistance of integrated circuits and purpose of interconnecting wires.
(5)键合工艺 (5) Bonding process
盖板与结构层采用的是硅-硅直接键合工艺:用BCB胶将上盖板与器件热粘结键合,这个过程相对简单,这里简要介绍一下BCB胶。BCB(benzo-cyclo-butene,苯并环丁烯)从90年代开始商业化,是一种先进的电子封装材料。BCB用于硅-硅圆片级粘结时,有如下一些优点: The cover plate and the structural layer adopt a silicon-silicon direct bonding process: the upper cover plate and the device are thermally bonded and bonded with BCB glue. This process is relatively simple. Here is a brief introduction to BCB glue. BCB (benzo-cyclo-butene, benzocyclobutene) has been commercialized since the 1990s and is an advanced electronic packaging material. When BCB is used for silicon-silicon wafer level bonding, it has the following advantages:
a、高度的平整化能力:对于25um的线条和间距,平整度大于80%。 a. High planarization capability: For 25um lines and spaces, the planarity is greater than 80%.
b、固化温度较低:200~300度,甚至可以在180度下进行。 b. Low curing temperature: 200~300 degrees, even at 180 degrees.
c、良好的粘结性能,粘结强度非常高。 c. Good bonding performance, very high bonding strength.
d、BCB还可以进行光刻或刻蚀,从而可以进行选择性粘贴。 d. BCB can also be photolithographic or etched, so that it can be selectively pasted.
e、固化的BCB对可见光透明透过率达90%,所以可用于光学器件中。 e. The cured BCB has a transparent transmittance of 90% for visible light, so it can be used in optical devices.
f、固化的BCB能抵抗很多酸、碱和溶剂的侵蚀,适合流体方面的应用。 f. The cured BCB can resist the erosion of many acids, alkalis and solvents, and is suitable for fluid applications.
g、吸水率很低,介电常数比较低。 g. The water absorption rate is very low and the dielectric constant is relatively low.
玻璃层与结构层采用的是硅-玻璃的静电键合工艺。硅-玻璃键合过程为:将抛光的硅片表面与抛光的玻璃表面相接触,这个结构被放在一块加热板上,两端接静电电压,玻璃接负极,硅片接阳极。当温度达到一定高度时,玻璃开始软化,使得玻璃中Na+的活性足以使玻璃具有像金属一样的导电性能。在电场作用下Na+向阴极漂移,与阴极中和,从而在阳极附近产生负空间电荷区,平衡后漂移停止。这时候紧密接触的表面发生化学反应,形成牢固Si-O键,完成键合。 The glass layer and the structure layer adopt the silicon-glass electrostatic bonding process. The silicon-glass bonding process is as follows: the polished silicon wafer surface is in contact with the polished glass surface. This structure is placed on a heating plate, and the two ends are connected to an electrostatic voltage, the glass is connected to the negative electrode, and the silicon wafer is connected to the anode. When the temperature reaches a certain height, the glass begins to soften, so that the activity of Na+ in the glass is enough to make the glass have the same conductivity as metal. Under the action of an electric field, Na+ drifts to the cathode and neutralizes with the cathode, thereby generating a negative space charge region near the anode, and the drift stops after equilibrium. At this time, a chemical reaction occurs on the surface in close contact to form a strong Si-O bond and complete the bond.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210336902.3A CN102866262B (en) | 2012-09-13 | 2012-09-13 | Array type single-chip integrated digital microaccelerometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210336902.3A CN102866262B (en) | 2012-09-13 | 2012-09-13 | Array type single-chip integrated digital microaccelerometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102866262A CN102866262A (en) | 2013-01-09 |
CN102866262B true CN102866262B (en) | 2014-04-16 |
Family
ID=47445253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210336902.3A Expired - Fee Related CN102866262B (en) | 2012-09-13 | 2012-09-13 | Array type single-chip integrated digital microaccelerometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102866262B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107651649B (en) * | 2016-07-26 | 2019-10-18 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of passive array formula MEMS sensor of numeral output |
CN112798821B (en) * | 2020-12-28 | 2021-10-08 | 武汉大学 | A biaxial piezoelectric accelerometer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6301965B1 (en) * | 1999-12-14 | 2001-10-16 | Sandia Corporation | Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state |
CN101017180A (en) * | 2007-03-06 | 2007-08-15 | 中北大学 | Combined micro-accelerometer |
-
2012
- 2012-09-13 CN CN201210336902.3A patent/CN102866262B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6301965B1 (en) * | 1999-12-14 | 2001-10-16 | Sandia Corporation | Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state |
CN101017180A (en) * | 2007-03-06 | 2007-08-15 | 中北大学 | Combined micro-accelerometer |
Non-Patent Citations (4)
Title |
---|
A CMOS MEMS Accelerometer with Bulk Micro-maching;A.Chaehoi,L.Latorre,and P.Nouet;《18th European Conference on Solid-State Transducers》;20041231;第1页至第2页,附图1-2 * |
A.Chaehoi,L.Latorre,and P.Nouet.A CMOS MEMS Accelerometer with Bulk Micro-maching.《18th European Conference on Solid-State Transducers》.2004,第1页至第2页,附图1-2. |
复合量程微加速度计的研究;熊继军等;《传感技术学报》;20061231;第19卷(第5期);第2201页至第2203页,图1-3、7、9 * |
熊继军等.复合量程微加速度计的研究.《传感技术学报》.2006,第19卷(第5期),第2201页至第2203页,图1-3、7、9. |
Also Published As
Publication number | Publication date |
---|---|
CN102866262A (en) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101627292B (en) | Pressure sensor | |
CN104729784B (en) | A kind of beam groove combines step island film micro-pressure sensor chip and preparation method | |
CN107907710B (en) | A MEMS piezoresistive two-axis acceleration sensor chip and its preparation method | |
Wang et al. | Monolithic integration of pressure plus acceleration composite TPMS sensors with a single-sided micromachining technology | |
CN104764547B (en) | A kind of sculptured island membrane stress concentrating structure micro-pressure sensor chip and preparation method | |
CN104748904B (en) | Sectional mass block stressed concentration structural micro-pressure sensor chip and preparation method | |
CN104062464B (en) | MEMS piezoresistive acceleration and pressure integrated sensor and manufacturing method thereof | |
CN107796955B (en) | Multi-beam type single-mass in-plane biaxial acceleration sensor chip and preparation method thereof | |
CN100439235C (en) | A method of manufacturing a pressure sensor silicon chip | |
CN109786422A (en) | Piezoelectric excitation tension silicon micro-resonant pressure sensor chip and preparation method thereof | |
CN108254106B (en) | Preparation method of silicon-glass-silicon four-layer structure resonant MEMS pressure sensor | |
CN105181189B (en) | Silicon nanowire pressure sensor and its encapsulating structure based on huge piezoresistive characteristic | |
CN111591952A (en) | MEMS piezoresistive pressure sensor and preparation method thereof | |
CN105300573B (en) | A kind of beam diaphragm structure piezoelectric transducer and preparation method thereof | |
CN114577370B (en) | High-precision flange plate type silicon resonance pressure sensor and manufacturing process thereof | |
CN113465791B (en) | A kind of resonant pressure sensor and preparation method thereof | |
CN104089642B (en) | Piezoresistive acceleration and pressure integrated sensor and manufacturing method thereof | |
CN102879609B (en) | Capacitive acceleration sensor of "H" shaped beam and its preparation method | |
CN112284607A (en) | Cross island high-temperature-resistant corrosion-resistant pressure sensor chip and preparation method thereof | |
CN112034204A (en) | Linked contact capacitance type acceleration sensitive chip and manufacturing method thereof | |
CN105716750A (en) | MEMS piezoresistive pressure sensor and production method thereof | |
CN205192667U (en) | Silicon nanowire pressure sensor and packaging structure based on huge pressure drag characteristic | |
CN102866262B (en) | Array type single-chip integrated digital microaccelerometer | |
CN114323396A (en) | A MEMS capacitive six-axis force sensor chip and its fabrication process | |
CN114314498A (en) | MEMS film vacuum gauge and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 Termination date: 20160913 |