[go: up one dir, main page]

CN102841396A - Light filtering device - Google Patents

Light filtering device Download PDF

Info

Publication number
CN102841396A
CN102841396A CN2011101681459A CN201110168145A CN102841396A CN 102841396 A CN102841396 A CN 102841396A CN 2011101681459 A CN2011101681459 A CN 2011101681459A CN 201110168145 A CN201110168145 A CN 201110168145A CN 102841396 A CN102841396 A CN 102841396A
Authority
CN
China
Prior art keywords
optical thickness
fabry
glass substrate
basic optical
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101681459A
Other languages
Chinese (zh)
Inventor
张益升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Optical Co Inc
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to CN2011101681459A priority Critical patent/CN102841396A/en
Publication of CN102841396A publication Critical patent/CN102841396A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)

Abstract

The invention relates to a light filtering device, which comprises a glass substrate and a light filtering film, wherein the light filtering film is arranged on the glass substrate and is provided with a Fabry-Perot resonant cavity (Fabry-Perot resonator) structure formed by alternately stacking a high-refraction film layer and a low-refraction film layer, and the basic optical thicknesses of the high-refraction film layer and the low-refraction film layer are the quarter central wavelength (lambda) of incident light0/4) (ii) a The Fabry-Perot resonant cavity structures are sequentially stacked on the glass substrate, and each Fabry-Perot resonant cavity structure comprises two high-reflector film layers, a spacing layer positioned between the two high-reflector film layers, a spacing layer of the Fabry-Perot resonant cavity structure closest to the glass substrate and a spacing layer of the Fabry-Perot resonant cavity structure farthest from the glass substrate, wherein the optical thickness of the spacing layer is not less than 4 times of the basic optical thickness and not more than 14 times of the basic optical thickness.

Description

滤光装置filter device

技术领域 technical field

本发明与滤光装置有关,更详而言之是指一种可使用于稀疏波分复用(Coarse Wavelength Division Multiplexing,CWDM)的滤光装置。The present invention relates to a filter device, and more specifically refers to a filter device that can be used in Coarse Wavelength Division Multiplexing (CWDM).

背景技术 Background technique

随着计算机的大量普及与网络技术的快速发展,利用网络可以快速的获取数据或提供服务。而光电通讯能提供快速与大量的信息传输,因此,光电产业受到各个阶层人士与相关产业人员的重视。目前正在急剧发展的光电产业将电学(Electronics)与光学(Optics)相互结合而产生的一种应用领域,其中又以光纤网络技术(optical networking)为人所重视与广泛应用。With the popularization of computers and the rapid development of network technology, the use of the network can quickly obtain data or provide services. Optoelectronic communication can provide fast and large amount of information transmission, therefore, the optoelectronic industry is valued by people from all walks of life and related industries. The photoelectric industry, which is currently developing rapidly, is an application field produced by combining electronics and optics. Among them, optical networking technology is valued and widely used.

光纤网络技术为一种采用光纤(optical fiber)来做为数据传输媒介的通讯技术,可让多个不同的处理系统(例如为计算机系统或电话系统)之间通过激光束来传输模拟型式或数字型式的信号。另外,由于激光束比电波具有更高的频率,且激光束于光纤中的损耗极小,因此其传输速度与效率远大于传统的有线和无线式的通讯系统。Optical fiber network technology is a communication technology that uses optical fiber as a data transmission medium, allowing multiple different processing systems (such as computer systems or telephone systems) to transmit analog or digital data through laser beams. type of signal. In addition, since the laser beam has a higher frequency than electric waves, and the loss of the laser beam in the optical fiber is extremely small, its transmission speed and efficiency are much higher than traditional wired and wireless communication systems.

而光纤网络技术中,又以稀疏波分复用(Coarse Wavelength DivisionMultiplexing,CWDM)最常被使用,上述的稀疏波分复用通过滤光装置(Filter)与波长复用器(multiplexer)整合多个不同波长的通道于同一条光纤中,于接收端以解复用器(demultiplexer)将所有波长分离至不同的光纤中。而上述稀疏波分复用所使用的滤光装置的滤光膜具有复数腔由高折射膜层与低折射膜层交互堆栈形成的法布里-珀罗谐振腔(Fabry-Perot resonator)结构,且该滤光膜由空气端(Air)至玻璃基板端(NS)的其中一种结构设计如下所示:In optical fiber network technology, Coarse Wavelength Division Multiplexing (CWDM) is most commonly used. The above-mentioned sparse wavelength division multiplexing integrates multiple Channels of different wavelengths are in the same optical fiber, and a demultiplexer is used at the receiving end to separate all wavelengths into different optical fibers. The filter film of the filter device used in the above-mentioned sparse wavelength division multiplexing has a Fabry-Perot resonator structure in which multiple cavities are alternately stacked by high-refraction film layers and low-refraction film layers. And one of the structural designs of the filter film from the air end (Air) to the glass substrate end (NS) is as follows:

Air/H(LH)^2 2L(HL)^3 H(LH)^3 4L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^36L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^3 6L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^34L(HL)^3 H(LH)^3 2L(HL)^2 H/NSAir/H(LH)^2 2L(HL)^3 H(LH)^3 4L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^36L(HL)^3 H (LH)^4 6L(HL)^4 H(LH)^3 6L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^34L(HL)^3 H(LH) ^3 2L(HL)^2 H/NS

其中,H表示光学厚度为λ0/4的高折射膜层;L表示光学厚度为λ0/4的低折射膜层;λ0为入射光的中心波长;Wherein, H represents the high refraction film layer that optical thickness is λ 0 /4; L represents the low refraction film layer that optical thickness is λ 0 /4; λ 0 is the central wavelength of incident light;

藉以利用上述滤光装置的结构设计配合上波长复用器将多个不同波长的通道整合于同一条光纤中。In this way, multiple channels with different wavelengths can be integrated into the same optical fiber by utilizing the structural design of the above-mentioned optical filter device and matching with the wavelength multiplexer.

然而,请参阅图1,上述滤光装置的结构设计虽可达到整合通道的目的,但却无法有效地缩减各通道的抑止频带(stopband),每个通道皆具有其固定的带宽(band width),当各通道的抑止频带太大时,将会与相邻的通道相互干扰,而使得光纤网络技术的通讯质量受到影响。However, please refer to Figure 1. Although the structural design of the above-mentioned filter device can achieve the purpose of integrating channels, it cannot effectively reduce the stopband of each channel, and each channel has its fixed bandwidth. , when the suppression frequency band of each channel is too large, it will interfere with adjacent channels, which will affect the communication quality of optical fiber network technology.

发明内容 Contents of the invention

本发明要解决的技术问题在于,针对现有技术中的滤光装置无法有效缩减各通道的抑止频带,通讯质量受到影响的缺陷,提供一种滤光装置,其滤光膜的结构设计可有效地缩减各通道的抑止频带(stopband)。The technical problem to be solved by the present invention is to provide a filter device whose structural design of the filter film can effectively Reduce the stop band (stopband) of each channel to a large extent.

本发明为解决其技术问题所采取的技术方案是,提供一种滤光装置,包含有玻璃基板以及滤光膜,其中,该滤光膜设于该玻璃基板上,具有复数腔由高折射膜层与低折射膜层交互堆栈形成的法布里-珀罗谐振腔(Fabry-Perotresonator)结构,且上述的高折射膜层与低折射膜层的基本光学厚度为入射光的四分之一中心波长(λ0/4);这些法布里-珀罗谐振腔结构依序堆栈于该玻璃基板上,且各该法布里-珀罗谐振腔结构包含有两层高反射镜膜层以及一层位于该二高反射镜膜层之间的间隔层;The technical solution adopted by the present invention to solve the technical problem is to provide a filter device, which includes a glass substrate and a filter film, wherein the filter film is arranged on the glass substrate and has a plurality of cavities made of a high refraction film. A Fabry-Perot resonator (Fabry-Perotresonator) structure formed by stacking layers and low-refractive film layers alternately, and the basic optical thickness of the above-mentioned high-refractive film layer and low-refractive film layer is a quarter center of the incident light wavelength (λ 0 /4); these Fabry-Perot resonator structures are stacked on the glass substrate in sequence, and each of the Fabry-Perot resonator structures includes two layers of high reflection mirror film layers and a A spacer layer positioned between the two high reflection mirror film layers;

为达上述的目的,该滤光膜中最接近玻璃基板的法布里-珀罗谐振腔结构的间隔层、以及最远离玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度不小于4倍基本光学厚度,且不大于14倍基本光学厚度。In order to achieve the above-mentioned purpose, the optical thickness of the spacer layer of the Fabry-Perot cavity structure closest to the glass substrate and the spacer layer of the Fabry-Perot cavity structure farthest away from the glass substrate in the filter film Not less than 4 times the basic optical thickness, and not more than 14 times the basic optical thickness.

为达到较好的效果,该滤光膜中最接近玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度为4倍基本光学厚度、6倍基本光学厚度、8倍基本光学厚度、10倍基本光学厚度、12倍基本光学厚度以及14倍基本光学厚度其中的一者。In order to achieve a better effect, the optical thickness of the spacer layer of the Fabry-Perot cavity structure closest to the glass substrate in the filter film is 4 times the basic optical thickness, 6 times the basic optical thickness, and 8 times the basic optical thickness , 10 times the basic optical thickness, 12 times the basic optical thickness and 14 times the basic optical thickness.

为达到较好的效果,该滤光膜中最远离玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度为4倍基本光学厚度、6倍基本光学厚度、8倍基本光学厚度、10倍基本光学厚度、12倍基本光学厚度以及14倍基本光学厚度其中的一者。In order to achieve a better effect, the optical thickness of the spacer layer of the Fabry-Perot cavity structure farthest from the glass substrate in the filter film is 4 times the basic optical thickness, 6 times the basic optical thickness, and 8 times the basic optical thickness , 10 times the basic optical thickness, 12 times the basic optical thickness and 14 times the basic optical thickness.

藉此,利用上述的结构设计,将可有效地缩减各通道的抑止频带。Thereby, using the above structural design, the stop frequency band of each channel can be effectively reduced.

附图说明 Description of drawings

图1为现有滤光装置的各通道波型图。FIG. 1 is a waveform diagram of each channel of an existing optical filter device.

图2为本发明滤光装置的结构示意图。Fig. 2 is a schematic structural view of the filter device of the present invention.

图3为本发明滤光装置的各通道波型图。Fig. 3 is a waveform diagram of each channel of the optical filter device of the present invention.

具体实施方式 Detailed ways

为能更清楚地说明本发明,兹举较佳实施例并配合图示详细说明如后。In order to illustrate the present invention more clearly, preferred embodiments are given together with diagrams in detail as follows.

请参阅图2,本发明的滤光装置1适用于稀疏波分复用(Coarse WavelengthDivision Multiplexing,CWDM)。该滤光装置1包含有玻璃基板10以及滤光膜20,于本实施例,以入射光的中心波长λ0为1530奈米(nm)为例进行说明,其中:Please refer to FIG. 2 , the optical filter device 1 of the present invention is suitable for Coarse Wavelength Division Multiplexing (CWDM). The filter device 1 includes a glass substrate 10 and a filter film 20. In the present embodiment, the center wavelength λ 0 of the incident light is 1530 nanometers (nm) as an example for illustration, wherein:

该玻璃基板10由氧化硅、钡、锂、钠等元素组成。The glass substrate 10 is composed of elements such as silicon oxide, barium, lithium, and sodium.

该滤光膜20设于该玻璃基板10上,具有九腔由高折射膜层与低折射膜层交互堆栈形成的法布里-珀罗谐振腔(Fabry-Perot resonator)结构22,且各该法布里-珀罗谐振腔结构22由两层高反射镜膜层221以及一层位于该两层高反射镜膜层221之间的间隔层222所构成。另外,上述的高折射膜层与低折射膜层的基本光学厚度为λ0/4(即为382.5奈米),且该低折射膜层由氧化硅材质制成,折射率为1.38~1.44,而该高折射膜层由氧化钽材质制成,折射率为2.1~2.7。The filter film 20 is disposed on the glass substrate 10, and has a nine-cavity Fabry-Perot resonator structure 22 formed by alternately stacking high-refractive film layers and low-refractive film layers, and each of the The Fabry-Perot resonator structure 22 is composed of two layers of high reflection mirror film layers 221 and a spacer layer 222 between the two layers of high reflection mirror film layers 221 . In addition, the basic optical thickness of the above-mentioned high-refractive film layer and low-refractive film layer is λ 0 /4 (that is, 382.5 nanometers), and the low-refractive film layer is made of silicon oxide, and the refractive index is 1.38-1.44. The high refraction film layer is made of tantalum oxide material, and the refraction index is 2.1-2.7.

藉此,本实施例的该滤光膜20的九腔法布里-珀罗谐振腔结构22依序如下列所示:Thus, the nine-cavity Fabry-Perot resonator structure 22 of the filter film 20 in this embodiment is as follows in sequence:

H(LH)^2 4L(HL)^3;H(LH)^3 4L(HL)^3;H(LH)^4 6L(HL)^4;H(LH)^3 6L(HL)^3;H(LH)^4 6L(HL)^4;H(LH)^3 6L(HL)^3;H(LH)^4 6L(HL)^4;H(LH)^34L(HL)^3;H(LH)^3 4L(HL)^2 H/NSH(LH)^2 4L(HL)^3; H(LH)^3 4L(HL)^3; H(LH)^4 6L(HL)^4; H(LH)^3 6L(HL)^ 3; H(LH)^4 6L(HL)^4; H(LH)^3 6L(HL)^3; H(LH)^4 6L(HL)^4; H(LH)^34L(HL) ^3; H(LH)^3 4L(HL)^2 H/NS

其中,H表示光学厚度为λ0/4的高折射膜层;L表示光学厚度为λ0/4的低折射膜层;NS为玻璃基板;Among them, H represents a high-refraction film layer with an optical thickness of λ 0 /4; L represents a low-refraction film layer with an optical thickness of λ 0 /4; NS is a glass substrate;

而本发明不同之处在于该滤光装置1的该滤光膜20中最接近该玻璃基板的第一腔法布里-珀罗谐振腔结构22、以及最远离该玻璃基板的第九腔法布里-珀罗谐振腔结构22的结构设计。The difference of the present invention is that the first cavity Fabry-Perot cavity structure 22 closest to the glass substrate in the filter film 20 of the optical filter device 1, and the ninth cavity structure farthest from the glass substrate Structural design of the Brie-Perot cavity structure 22.

由上述设计式可得知,该第一腔法布里-珀罗谐振腔结构22为H(LH)^34L(HL)^2H,其中,H(LH)^3与(HL)^2H为该第一腔法布里-珀罗谐振腔结构22的高反射镜膜层221,而H(LH)^3与(HL)^2H之间的4L则为该第一腔法布里-珀罗谐振腔结构22的间隔层222。而该第九腔法布里-珀罗谐振腔结构22为H(LH)^2 4L(HL)^3,其中,H(LH)^2与(HL)^3为该第九腔法布里-珀罗谐振腔结构22的高反射镜膜层221,而H(LH)^2与(HL)^3之间的4L则为第九腔法布里-珀罗谐振腔结构22的间隔层222。It can be known from the above design formula that the first cavity Fabry-Perot cavity structure 22 is H(LH)^34L(HL)^2H, wherein H(LH)^3 and (HL)^2H are The high reflection mirror film layer 221 of the first cavity Fabry-Perot resonator structure 22, and the 4L between H(LH)^3 and (HL)^2H is the first cavity Fabry-Perot The spacer layer 222 of the resonant cavity structure 22. And this ninth cavity Fabry-Perot cavity structure 22 is H(LH)^2 4L(HL)^3, wherein, H(LH)^2 and (HL)^3 are the ninth cavity fabric The high reflection mirror film layer 221 of Li-Perot resonator structure 22, and the 4L between H(LH)^2 and (HL)^3 is the interval of the ninth cavity Fabry-Perot resonator structure 22 Layer 222.

藉此,请参阅图3,本发明通过上述将第一腔法布里-珀罗谐振腔结构22、以及第九腔法布里-珀罗谐振腔结构22的间隔层222增加至4倍基本光学厚度的设计,将可有效地缩减各通道的抑止频带(stopband),使得各通道将不会干扰到相邻的其它通道,进而提升光纤网络技术的通讯质量。In this way, referring to FIG. 3, the present invention increases the spacer layer 222 of the first cavity Fabry-Perot resonator structure 22 and the ninth cavity Fabry-Perot cavity structure 22 to four times basically The design of the optical thickness can effectively reduce the stopband of each channel, so that each channel will not interfere with other adjacent channels, thereby improving the communication quality of the optical fiber network technology.

值得一提的是,在不使各通道波型失真的条件下,最接近玻璃基板的法布里-珀罗谐振腔结构的间隔层、以及最远离玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度亦可依环境或需求改成4~14倍基本光学厚度,而为达到较佳的效果,上述的间隔层亦可依需求改成6倍基本光学厚度、8倍基本光学厚度、10倍基本光学厚度、12倍基本光学厚度或是14倍基本光学厚度。It is worth mentioning that, under the condition of not distorting the waveform of each channel, the spacer layer of the Fabry-Perot cavity structure closest to the glass substrate and the Fabry-Perot cavity structure farthest from the glass substrate The optical thickness of the spacer layer of the structure can also be changed to 4 to 14 times the basic optical thickness according to the environment or requirements. Optical thickness, 10 times the basic optical thickness, 12 times the basic optical thickness or 14 times the basic optical thickness.

必须说明的是,本发明滤光装置的结构设计并不以上述设计式所揭示的结构层数或是结构设计为限,只要是通过增加最接近玻璃基板的法布里-珀罗谐振腔结构的间隔层、以及最远离玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度的方式来达到缩减各通道的抑止频带的目的者,理应属本发明其它可行的实施态样而已,且凡应用本发明说明书及权利要求所做的等效结构及制作方法变化,理应包含在本发明的专利范围内。It must be noted that the structural design of the filter device of the present invention is not limited to the number of structural layers or the structural design disclosed in the above design formula, as long as the Fabry-Perot cavity structure closest to the glass substrate is added The optical thickness of the spacer layer and the spacer layer of the Fabry-Perot resonator structure farthest from the glass substrate to achieve the purpose of reducing the stop frequency band of each channel should belong to other feasible implementation aspects of the present invention. , and any equivalent structure and manufacturing method changes made by applying the specification and claims of the present invention should be included in the patent scope of the present invention.

Claims (10)

1.一种滤光装置,其特征在于,包含有: 1. A filter device, characterized in that it comprises: 玻璃基板;以及 glass substrates; and 滤光膜,设于该玻璃基板上,具有复数腔由高折射膜层与低折射膜层交互堆栈形成的法布里-珀罗谐振腔结构,且上述的高折射膜层与低折射膜层的基本光学厚度为λ0/4,其中λ0是入射光的中心波长;这些法布里-珀罗谐振腔结构依序堆栈于该玻璃基板上,且各该法布里-珀罗谐振腔结构包含有两层高反射镜膜层以及一层位于该二高反射镜膜层之间的间隔层; The filter film is set on the glass substrate and has a Fabry-Perot resonant cavity structure in which multiple cavities are alternately stacked with high-refraction film layers and low-refraction film layers, and the above-mentioned high-refraction film layers and low-refraction film layers are The basic optical thickness is λ 0 /4, where λ 0 is the central wavelength of the incident light; these Fabry-Perot resonator structures are stacked on the glass substrate in sequence, and each Fabry-Perot resonator The structure includes two layers of high reflective mirror film layers and a spacer layer between the two high reflective mirror film layers; 其中,该滤光膜中最接近玻璃基板的法布里-珀罗谐振腔结构的间隔层、以及最远离玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度不小于4倍基本光学厚度,且不大于14倍基本光学厚度。 Wherein, the optical thickness of the spacer layer of the Fabry-Perot cavity structure closest to the glass substrate in the filter film and the spacer layer of the Fabry-Perot cavity structure farthest from the glass substrate are not less than 4 times The basic optical thickness is not greater than 14 times the basic optical thickness. 2.如权利要求1所述的滤光装置,其特征在于,该滤光膜中最接近玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度为4倍基本光学厚度、6倍基本光学厚度、8倍基本光学厚度、10倍基本光学厚度、12倍基本光学厚度以及14倍基本光学厚度其中的一者。 2. The optical filter device according to claim 1, wherein the optical thickness of the spacer layer of the Fabry-Perot resonator structure closest to the glass substrate in the optical filter film is 4 times of the basic optical thickness, 6 times the basic optical thickness, 8 times the basic optical thickness, 10 times the basic optical thickness, 12 times the basic optical thickness and 14 times the basic optical thickness. 3.如权利要求1所述的滤光装置,其特征在于,该滤光膜中最远离玻璃基板的法布里-珀罗谐振腔结构的间隔层的光学厚度为4倍基本光学厚度、6倍基本光学厚度、8倍基本光学厚度、10倍基本光学厚度、12倍基本光学厚度以及14倍基本光学厚度其中的一者。 3. The optical filter device according to claim 1, wherein the optical thickness of the spacer layer of the Fabry-Perot resonator structure farthest from the glass substrate in the optical filter film is 4 times of the basic optical thickness, 6 times the basic optical thickness, 8 times the basic optical thickness, 10 times the basic optical thickness, 12 times the basic optical thickness and 14 times the basic optical thickness. 4.如权利要求1所述的滤光装置,其特征在于,所述的入射光的中心波长为1530奈米。 4. The filter device according to claim 1, wherein the center wavelength of the incident light is 1530 nm. 5.如权利要求1所述的滤光装置,其特征在于,所述的低折射膜层的折射率为1.38~1.44。 5. The filter device according to claim 1, characterized in that, the refractive index of the low-refractive film layer is 1.38-1.44. 6.如权利要求5所述的滤光装置,其特征在于,所述的低折射膜层以氧化硅材质制成。 6. The filter device according to claim 5, wherein the low refraction film layer is made of silicon oxide. 7.如权利要求1所述的滤光装置,其特征在于,所述的高折射膜层的折射率为2.1~2.7。 7. The filter device according to claim 1, characterized in that, the refractive index of the high refraction film layer is 2.1-2.7. 8.如权利要求7所述的滤光装置,其特征在于,所述的高折射膜层以氧化钽材质制成。 8. The optical filter device according to claim 7, wherein the high refraction film layer is made of tantalum oxide. 9.如权利要求1所述的滤光装置,其特征在于,该滤光膜由九腔法布里-珀罗谐振腔结构依序堆栈形成,且该滤光膜的结构满足下列设计式:H(LH)^2 AL(HL)^3 H(LH)^3 4L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^3 6L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^3 6L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^3 4L(HL)^3 H(LH)^3 BL(HL)^2 H /NS,其中,H表示光学厚度为λ0/4的高折射膜层;L表示光学厚度为λ0/4的低折射膜层;NS为玻璃基板;4≦A≦14;4≦B≦14。 9. The filter device according to claim 1, wherein the filter film is formed by sequentially stacking nine-cavity Fabry-Perot resonator structures, and the structure of the filter film satisfies the following design formula: H(LH)^2 AL(HL)^3 H(LH)^3 4L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^3 6L(HL)^3 H( LH)^4 6L(HL)^4 H(LH)^3 6L(HL)^3 H(LH)^4 6L(HL)^4 H(LH)^3 4L(HL)^3 H(LH) ^3 BL(HL)^2 H/NS, wherein H represents a high-refraction film layer with an optical thickness of λ 0 /4; L represents a low-refraction film layer with an optical thickness of λ 0 /4; NS is a glass substrate; 4 ≦A≦14; 4≦B≦14. 10.如权利要求9所述的滤光装置,其特征在于,该设计式中的A为4、6、8、10、12与14其中的一者;该设计式中的B为4、6、8、10、12与14其中的一者。 10. The filter device according to claim 9, wherein A in the design formula is one of 4, 6, 8, 10, 12 and 14; B in the design formula is 4, 6 , 8, 10, 12 and 14 one of them.
CN2011101681459A 2011-06-21 2011-06-21 Light filtering device Pending CN102841396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101681459A CN102841396A (en) 2011-06-21 2011-06-21 Light filtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101681459A CN102841396A (en) 2011-06-21 2011-06-21 Light filtering device

Publications (1)

Publication Number Publication Date
CN102841396A true CN102841396A (en) 2012-12-26

Family

ID=47368927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101681459A Pending CN102841396A (en) 2011-06-21 2011-06-21 Light filtering device

Country Status (1)

Country Link
CN (1) CN102841396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508654A (en) * 2018-04-08 2018-09-07 青岛海信电器股份有限公司 A kind of backlight module and liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999322A (en) * 1995-06-28 1999-12-07 Cushing; David Henry Multilayer thin film bandpass filter
US6018421A (en) * 1995-06-28 2000-01-25 Cushing; David Henry Multilayer thin film bandpass filter
TWI245934B (en) * 2004-07-21 2005-12-21 Asia Optical Co Inc CWDM filter with four channels
CN1721887A (en) * 2004-07-16 2006-01-18 亚洲光学股份有限公司 CWDM filter
CN1734293A (en) * 2004-08-10 2006-02-15 亚洲光学股份有限公司 CWDM filter with four channels
EP1659445A1 (en) * 2003-06-13 2006-05-24 Nippon Telegraph and Telephone Corporation Variable wavelength optical filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999322A (en) * 1995-06-28 1999-12-07 Cushing; David Henry Multilayer thin film bandpass filter
US6018421A (en) * 1995-06-28 2000-01-25 Cushing; David Henry Multilayer thin film bandpass filter
EP1659445A1 (en) * 2003-06-13 2006-05-24 Nippon Telegraph and Telephone Corporation Variable wavelength optical filter
CN1721887A (en) * 2004-07-16 2006-01-18 亚洲光学股份有限公司 CWDM filter
TWI245934B (en) * 2004-07-21 2005-12-21 Asia Optical Co Inc CWDM filter with four channels
US20060018022A1 (en) * 2004-07-21 2006-01-26 Asia Optical Co., Inc. CWDM filter with four channels
CN1734293A (en) * 2004-08-10 2006-02-15 亚洲光学股份有限公司 CWDM filter with four channels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508654A (en) * 2018-04-08 2018-09-07 青岛海信电器股份有限公司 A kind of backlight module and liquid crystal display device

Similar Documents

Publication Publication Date Title
CN103217730B (en) Narrow-band negative filter plate membrane system with gradually-changing optical thicknesses
CN114019604B (en) A Small Wavelength Demultiplexing-Multiplexing Device
US20230085821A1 (en) Wavelength multiplexer/demultiplexer using metamaterials for optical fiber communications
CN110261958A (en) The unrelated silicon nitride micro-loop filtering chip of environment temperature based on vertical slits structure
CN101252407B (en) Wavelength Demultiplexer Based on Two-dimensional Photonic Crystal
CN102890383A (en) Super-compact surface plasmon polarization multi-cavity coupling system
CN106772703B (en) One kind being based on the parallel multiplied sensor array structure of 1 × 8 high-performance photonic crystal of silicon on insulator (SOI)
CN102141651A (en) Optical multiplexer/demultiplexer integrated based on surface plasmas and preparation method thereof
CN101246237A (en) Multi-cavity cascaded photonic crystal multi-channel filter
JP5475728B2 (en) Light filter
JP2008276074A (en) Optical communication filter and optical communication module using the same
CN103545715A (en) Manufacturing method of laser array and multiplexer monolithic integrated chip
CN102841396A (en) Light filtering device
CN201464752U (en) Tunable filters based on transparent optoelectronic ceramics
CN103647207B (en) Preparation method of reflective film for laser resonator cavity mirror
CN101726871A (en) Method for preparing transparent photoelectric ceramic-base tunable wave filter
US8724221B2 (en) Optical interference bandpass filter
CN1601949B (en) A Dielectric Film Dense Wavelength Division Multiplexer Filter
CN117075256B (en) A staggered grating hybrid plasmonic waveguide Bragg grating polarizer
JPH1144826A (en) Optical device
Vermeulen et al. Silicon-on-insulator nanophotonic waveguide circuit for fiber-to-the-home transceivers
CN116299851B (en) High bandwidth power beam splitter based on mixed surface plasma waveguide
CN113376748B (en) Combined and demultiplexed device with integrated silicon-based Bragg reflector and preparation method
CN114637072B (en) Shallow etching multimode interference coupling multichannel flat-top type wavelength division multiplexing receiver
CN101158733A (en) A Reflective Arrayed Waveguide Grating Based on Photonic Crystal Mirror

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121226