[go: up one dir, main page]

CN102810630A - Anisotropy adjustable magnetic film structure, magnetic sensor and preparation method - Google Patents

Anisotropy adjustable magnetic film structure, magnetic sensor and preparation method Download PDF

Info

Publication number
CN102810630A
CN102810630A CN2011101433641A CN201110143364A CN102810630A CN 102810630 A CN102810630 A CN 102810630A CN 2011101433641 A CN2011101433641 A CN 2011101433641A CN 201110143364 A CN201110143364 A CN 201110143364A CN 102810630 A CN102810630 A CN 102810630A
Authority
CN
China
Prior art keywords
layer
magnetic
magnetosensitive
magnetic field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101433641A
Other languages
Chinese (zh)
Other versions
CN102810630B (en
Inventor
余天
王文秀
韩秀峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN201110143364.1A priority Critical patent/CN102810630B/en
Publication of CN102810630A publication Critical patent/CN102810630A/en
Application granted granted Critical
Publication of CN102810630B publication Critical patent/CN102810630B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种GMR或TMR磁性纳米多层薄膜结构、磁敏传感器及制备方法,该磁性纳米多层薄膜结构依次包括基片和其上的缓冲层,参考磁性层、中间层、探测磁性层和覆盖层,其中所述参考磁性层利用了铁磁层/非磁层界面诱导的垂直各向异性,通过调节参考磁性层中铁磁层厚度使得其易磁化方向为面内,设为XY方向,或垂直膜面,设为Z方向。本发明利用铁磁层/非磁层界面诱导的垂直各向异性调制参考磁性层的磁各向异性,在铁磁层较薄处获得易磁化轴垂直膜面的参考层,在铁磁层较厚处获得易磁化轴在面内的参考层,再利用钉扎结构及诱导磁场生长实现参考磁性层和探测磁性层磁各向异性在三维空间的调制,其磁敏探测器集成度高、工艺简单,热稳定性和一致性好。A GMR or TMR magnetic nano multilayer thin film structure, magnetic sensor and preparation method, the magnetic nano multilayer thin film structure sequentially includes a substrate and a buffer layer thereon, a reference magnetic layer, an intermediate layer, a detection magnetic layer and a cover layer , wherein the reference magnetic layer utilizes the perpendicular anisotropy induced by the ferromagnetic layer/nonmagnetic layer interface, by adjusting the thickness of the ferromagnetic layer in the reference magnetic layer so that its easy magnetization direction is in-plane, set as the XY direction, or perpendicular to the film face, set to the Z direction. The present invention utilizes the perpendicular anisotropy induced by the ferromagnetic layer/non-magnetic layer interface to modulate the magnetic anisotropy of the reference magnetic layer, and obtains a reference layer whose axis of easy magnetization is perpendicular to the film plane at the thinner ferromagnetic layer, and where the ferromagnetic layer is thinner The thick part obtains the reference layer with the easy magnetization axis in the plane, and then uses the pinning structure and induced magnetic field growth to realize the modulation of the magnetic anisotropy of the reference magnetic layer and the detection magnetic layer in three-dimensional space. Simple, thermally stable and consistent.

Description

各向异性可调制的磁性薄膜结构、磁敏传感器及制备方法Anisotropy adjustable magnetic film structure, magnetic sensor and preparation method

技术领域 technical field

本发明属于自旋电子学材料和磁敏传感器领域,具体地说,本发明涉及基于巨磁电阻(Giant Magnetoresistance,GMR)和隧穿磁电阻(TunnelingMagnetoresistance,TMR)效应的一种功能性纳米磁性多层膜的结构、其在磁敏探测器,特别是三维磁敏探测器中的应用及相应制备方法。The invention belongs to the field of spintronics materials and magnetosensitive sensors. Specifically, the invention relates to a functional nanometer magnetic sensor based on the effects of giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR). The structure of the layer film, its application in the magnetosensitive detector, especially the three-dimensional magnetosensitive detector, and the corresponding preparation method.

背景技术 Background technique

磁敏探测器广泛应用于定位、角度检测、速度检测、加速度测量、力测量等无伤探测和磁存储等各领域。按测量原理的不同,磁敏探测器可分为:基于半导体材料霍尔(Hall)效应的磁敏探测器、基于各向异性磁电阻(AMR)效应的磁敏探测器,以及基于巨磁电阻效应(GMR)和隧穿磁电阻效应(TMR)的磁敏探测器等。其中,基于GMR效应和TMR效应的磁敏探测器,因灵敏度较高、功耗小、生产工艺能和常规半导体工艺相兼容,具有广泛的用途。Magnetic detectors are widely used in various fields such as positioning, angle detection, speed detection, acceleration measurement, force measurement and other non-destructive detection and magnetic storage. According to different measurement principles, magnetosensitive detectors can be divided into: magnetosensitive detectors based on the Hall effect of semiconductor materials, magnetosensitive detectors based on anisotropic magnetoresistance (AMR) effects, and magnetosensitive detectors based on giant magnetoresistance Effect (GMR) and tunneling magnetoresistance (TMR) magnetosensitive detectors, etc. Among them, magnetosensitive detectors based on the GMR effect and the TMR effect have a wide range of uses due to their high sensitivity, low power consumption, and production processes compatible with conventional semiconductor processes.

为了探测三维空间中磁场分布通常有两种技术方案:第一种方案需要三个独立的、易磁化轴在面内且空间分布相互垂直的一维磁敏探测器对三维空间X、Y和Z三个方向分别探测;方案二,采用两个易磁化轴在面内且空间分布相互垂直的独立磁敏探测器分别探测X、Y方向磁场,Z方向上则采用具有垂直磁各向异性的合金或磁性多层膜,如FePt、[Co/Pt]n等构成的磁敏探测器,从而实现面内集成[覃启航等 中国发明专利 授权公告号 100593112C]。但上述两种方案均有不足:第一种方案受三个易磁化轴在面内的一维磁敏传感器相互垂直空间布局限制集成度较低;第二种方案采用合金和多层薄膜结构增加了制备工艺难度且FePt、[Co/Pt]n等多层薄膜热稳定性和一致性较差。In order to detect the magnetic field distribution in three-dimensional space, there are usually two technical schemes: the first scheme requires three independent one-dimensional magnetosensitive detectors whose easy magnetization axes are in the plane and whose spatial distribution is perpendicular to each other to measure the three-dimensional space X, Y and Z The three directions are detected separately; in the second scheme, two independent magnetosensitive detectors with easy magnetization axes in the plane and the spatial distribution are perpendicular to each other are used to detect the magnetic field in the X and Y directions respectively, and an alloy with perpendicular magnetic anisotropy is used in the Z direction Or magnetic multilayer films, such as magnetosensitive detectors composed of FePt, [Co/Pt]n, etc., so as to realize in-plane integration [Qin Qihang et al. China Invention Patent Authorization Announcement No. 100593112C]. However, both of the above two schemes have shortcomings: the first scheme is limited by the vertical space layout of the one-dimensional magnetic sensor with three easy magnetization axes in the plane, and the integration degree is low; the second scheme uses alloy and multilayer thin film structure to increase The preparation process is difficult and the thermal stability and consistency of multi-layer films such as FePt and [Co/Pt]n are poor.

发明内容 Contents of the invention

本发明所要解决的技术问题是提供一种GMR或TMR磁性纳米多层薄膜结构、新的磁敏传感器及制备方法,以解决现有技术磁敏传感器,特别是三维空间磁场探测器,制备工艺复杂和一致性较差的缺陷。The technical problem to be solved by the present invention is to provide a GMR or TMR magnetic nano-multilayer thin film structure, a new magnetic sensor and a preparation method to solve the problem of the complicated preparation process of the magnetic sensor in the prior art, especially the three-dimensional space magnetic field detector. and poor consistency defects.

为实现上述目的,本发明提供一种磁各向异性在三维空间可调制的GMR或TMR磁性纳米多层薄膜结构,依次包括:基片(Sub)和其上的缓冲层(BufferLayer,BL),参考磁性层(Reference Layer,RL)、中间层(Space)、探测磁性层(Free Layer)和覆盖层(Capping Layer);所述参考磁性层和探测磁性层利用了铁磁层/非磁层界面诱导的垂直各向异性,通过调节参考磁性层和探测磁性层中铁磁层厚度使得其易磁化方向为面内(设为XY方向),或垂直膜面(设为Z方向)。In order to achieve the above object, the present invention provides a GMR or TMR magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in three-dimensional space, including: a substrate (Sub) and a buffer layer (BufferLayer, BL) thereon, Reference magnetic layer (Reference Layer, RL), intermediate layer (Space), detection magnetic layer (Free Layer) and cover layer (Capping Layer); said reference magnetic layer and detection magnetic layer utilize ferromagnetic layer/non-magnetic layer interface Induced perpendicular anisotropy, by adjusting the thickness of the ferromagnetic layer in the reference magnetic layer and the detection magnetic layer, the easy magnetization direction is in-plane (set as XY direction), or perpendicular to the film plane (set as Z direction).

其中,当易磁化方向在面内时采用钉扎结构或诱导磁场生长的方式调制易磁化轴在面内的取向。Among them, when the easy magnetization direction is in the plane, the orientation of the easy magnetization axis in the plane is modulated by the way of pinning structure or induced magnetic field growth.

其中,所述参考磁性层矫顽力Hc1大于探测磁性层矫顽力Hc2Wherein, the coercive force Hc 1 of the reference magnetic layer is greater than the coercive force Hc 2 of the detection magnetic layer.

其中,所述中间层是非磁性金属层或绝缘势垒层,其中,对应GMR磁性纳米多层薄膜结构,所述中间层为非磁性金属层,对应TMR磁性纳米多层薄膜结构,所述中间层为绝缘势垒层。Wherein, the intermediate layer is a non-magnetic metal layer or an insulating barrier layer, wherein, corresponding to the GMR magnetic nano-multilayer thin film structure, the intermediate layer is a non-magnetic metal layer, corresponding to the TMR magnetic nano-multi-layer thin film structure, and the intermediate layer is an insulating barrier layer.

其中,所述参考磁性层和探测磁性层可以由单一铁磁层(FM)构成,也可以由是铁磁层、反铁磁层(AFM)和非磁金属层(NM)构成的直接或间接钉扎结构;所述直接钉扎是指反铁磁材料层直接和铁磁性层接触FM/AFM,所述的间接钉扎是指在反铁磁材料层和铁磁性层之间插一层很薄的非磁性金属层FM/NM/AFM或者插入复合层FM1/NM/FM11/AFM,所述磁性纳米多层薄膜结构为以下结构:Wherein, the reference magnetic layer and the detection magnetic layer can be composed of a single ferromagnetic layer (FM), or can be directly or indirectly composed of a ferromagnetic layer, an antiferromagnetic layer (AFM) and a nonmagnetic metal layer (NM). Pinning structure; the direct pinning means that the antiferromagnetic material layer directly contacts the FM/AFM with the ferromagnetic layer, and the indirect pinning means inserting a very thin layer between the antiferromagnetic material layer and the ferromagnetic layer. Thin non-magnetic metal layer FM/NM/AFM or insert composite layer FM1/NM/FM11/AFM, the structure of the magnetic nano multilayer film is as follows:

Sub/BL/AFM1/FM11/NM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;Sub/BL/AFM1/FM11/NM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;

或Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/FM2/AFM2/CL;or Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/FM2/AFM2/CL;

或Sub/BL/AFM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;or Sub/BL/AFM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;

或Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/AFM2/CL;or Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/AFM2/CL;

或Sub/BL/AFM1/FM1/Space/FM2/NM2/AFM2/CL;or Sub/BL/AFM1/FM1/Space/FM2/NM2/AFM2/CL;

或Sub/BL/AFM1/FM1/Space/FM2/AFM2/CLor Sub/BL/AFM1/FM1/Space/FM2/AFM2/CL

或Sub/BL/AFM1/FM11/NM/FM1/Speace/FM2/CLor Sub/BL/AFM1/FM11/NM/FM1/Speace/FM2/CL

或Sub/BL/AFM1/NM1/FM1/Speace/FM2/CLor Sub/BL/AFM1/NM1/FM1/Speace/FM2/CL

或Sub/BL/AFM1/FM1/Speace/FM2/CL。Or Sub/BL/AFM1/FM1/Speace/FM2/CL.

其中,所述铁磁层的材料优选Co、Fe、Ni或者铁磁性金属合金材料,或者半金属材料,按所需磁各向异性不同厚度在0.2~10nm变化。Wherein, the material of the ferromagnetic layer is preferably Co, Fe, Ni or a ferromagnetic metal alloy material, or a semi-metal material, and the thickness varies from 0.2 to 10 nm according to the required magnetic anisotropy.

其中,所述铁磁性金属合金薄膜优选CoFe、CoFeB、NiFeCr或NiFe,所述半金属材料优选CoFeAl、CoMnAl、CoMnGe或CoMnGa。Wherein, the ferromagnetic metal alloy thin film is preferably CoFe, CoFeB, NiFeCr or NiFe, and the semi-metal material is preferably CoFeAl, CoMnAl, CoMnGe or CoMnGa.

其中,所述反铁磁性材料优选PtMn、IrMn、FeMn、NiMn,或者选自具有反铁磁性的氧化物,所述具有反铁磁性的氧化物优选CoO或NiO,所述PtMn、IrMn、FeMn及NiMn的厚度为3~30nm,所述具有反铁磁性的氧化物的厚度为5~50nm。Wherein, the antiferromagnetic material is preferably PtMn, IrMn, FeMn, NiMn, or selected from oxides with antiferromagnetism, the oxide with antiferromagnetism is preferably CoO or NiO, and the PtMn, IrMn, FeMn and The thickness of NiMn is 3-30nm, and the thickness of the antiferromagnetic oxide is 5-50nm.

其中,所述非磁性金属层优选Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au或其合金,厚度为0.2~10nm。Wherein, the non-magnetic metal layer is preferably Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or alloys thereof, with a thickness of 0.2-10 nm.

其中,当所述中间层为势垒时,优选AlOx(0<x<3/2)、MgO、Mg1-xZnxO(0<x<1)、MgxAl2/3(1-x)O(0<x<1)、AlN、Ta2O5、ZnO、HfO2、TiO2无机氧化物,厚度为0.5~5nm;所述当中间层为非磁金属时,优选Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au金属材料,厚度为0.2~10nm。Among them, when the intermediate layer is a potential barrier, AlO x (0<x<3/2), MgO, Mg 1-x Zn x O (0<x<1), Mg x Al 2/3 (1 -x) O (0<x<1), AlN, Ta 2 O 5 , ZnO, HfO 2 , TiO 2 inorganic oxides, with a thickness of 0.5-5 nm; when the intermediate layer is a non-magnetic metal, it is preferably Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au metal materials, the thickness is 0.2-10nm.

其中,所述缓冲层为电阻较大且与衬底紧密接触的金属材料,所述的缓冲层厚度为3~30nm。Wherein, the buffer layer is a metal material with high resistance and in close contact with the substrate, and the thickness of the buffer layer is 3-30 nm.

其中,所述缓冲层优选Ta、Ru、Cr、Pt,或者上述金属的多层膜结构。Wherein, the buffer layer is preferably Ta, Ru, Cr, Pt, or a multilayer film structure of the above metals.

其中,所述覆盖层为不易被氧化和腐蚀且导电性较好的金属层,用于保护结构不被氧化和腐蚀,所述覆盖层的结构为Ta、Cu、Al、Ru、Au、Ag、Pt上述金属的单层的薄膜,或者为上述金属的多层薄膜,所述覆盖层的厚度为2~100nm。Wherein, the covering layer is a metal layer that is not easy to be oxidized and corroded and has good conductivity, and is used to protect the structure from being oxidized and corroded. The structure of the covering layer is Ta, Cu, Al, Ru, Au, Ag, Pt is a single-layer thin film of the above metal, or a multi-layer thin film of the above metal, and the thickness of the covering layer is 2-100 nm.

其中,所述基片为玻璃衬底、Si衬底、Si/SiO2衬底、SiC衬底的无机衬底,或者为聚乙烯、聚丙烯、聚苯乙烯、据对苯二甲酸二醇酯、聚酰亚胺、聚碳酸酯的有机柔性衬底,所述基片的厚度为0.3~1mm。Wherein, the substrate is an inorganic substrate such as a glass substrate, a Si substrate, a Si/ SiO substrate, or a SiC substrate, or it is polyethylene, polypropylene, polystyrene, or terephthalate , polyimide, polycarbonate organic flexible substrate, the thickness of the substrate is 0.3-1mm.

而且,本发明提出一种基于上述的磁性纳米多层薄膜结构制备的磁敏传感器。Moreover, the present invention proposes a magnetic sensor prepared based on the above-mentioned magnetic nano-multilayer film structure.

其中,所述磁敏传感器为面内集成的三维空间磁敏测器,所述面内集成的三维空间磁敏测器包括同一基片上不同位置的三个独立的磁敏探测器单元,所述磁敏探测器单元均采用权利要求1所述磁性纳米多层薄膜结构制备。Wherein, the magnetic sensitive sensor is an in-plane integrated three-dimensional space magnetic sensor, and the in-plane integrated three-dimensional space magnetic sensor includes three independent magnetic sensitive detector units at different positions on the same substrate, and the The magnetosensitive detector unit is prepared by adopting the magnetic nanometer multi-layer thin film structure described in claim 1.

其中,无外磁场时,每个磁敏探测器单元的参考层磁矩方向分别与其探测层磁矩方向垂直;三个磁敏探测器参考层易磁化轴方向相互垂直,其中一个磁敏探测器单元参考层易磁化轴方向垂直于膜面(设为Z方向),另两个磁敏探测器单元参考层易磁化轴方向平行于膜面且相互垂直(分别设为X和Y方向)。Among them, when there is no external magnetic field, the direction of the magnetic moment of the reference layer of each magnetosensitive detector unit is perpendicular to the direction of the magnetic moment of the detection layer; The direction of the easy magnetization axis of the reference layer of the unit is perpendicular to the film surface (set as the Z direction), and the directions of the easy magnetization axes of the reference layers of the other two magnetosensitive detector units are parallel to the film surface and perpendicular to each other (set as the X and Y directions respectively).

而且,本发明提出上述的磁敏传感器的制备方法,所述磁敏传感器为面内集成的三维空间磁敏测器,所述面内集成的三维空间磁敏测器为利用掩膜遮挡方式在基片不同单元中不同位置依次沉积三个独立的、纳米磁性GMR或TMR多层薄膜,分别为第一磁敏探测器薄膜、第二磁敏探测器薄膜和第三磁敏探测器薄膜,再经过微加工获得三个独立的GMR或TMR磁敏探测器单元,构成一个三维空间磁敏测器,其中,所述第一磁敏探测器薄膜、第二磁敏探测器薄膜和第三磁敏探测器薄膜都采用权利要求1所述的磁各向异性在三维空间可调制的GMR或TMR磁性纳米多层薄膜结构。Moreover, the present invention proposes the method for preparing the above-mentioned magnetic sensor. The magnetic sensor is an in-plane integrated three-dimensional space magnetic sensor, and the in-plane integrated three-dimensional space magnetic sensor is a Three independent, nano-magnetic GMR or TMR multilayer films are sequentially deposited in different positions in different units of the substrate, which are the first magneto-sensitive detector film, the second magneto-sensitive detector film and the third magneto-sensitive detector film, and then Three independent GMR or TMR magneto-sensitive detector units are obtained through micro-processing to form a three-dimensional space magneto-sensitive detector, wherein the first magneto-sensitive detector film, the second magneto-sensitive detector film and the third magneto-sensitive detector The detector film adopts the GMR or TMR magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in three-dimensional space according to claim 1.

其中,上述磁敏传感器的制备方法包括步骤:Wherein, the preparation method of above-mentioned magnetic sensitive sensor comprises steps:

步骤1:选择一个基片;Step 1: Select a substrate;

步骤2:沉积第一磁敏探测器薄膜的缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时分别加上一面内诱导磁场,并且参考磁性层与探测磁性层诱导磁场方向相互垂直;Step 2: Deposit the buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer of the first magnetosensitive detector film; when depositing the reference magnetic layer and depositing the detection magnetic layer, respectively add an in-plane induced magnetic field, and reference The direction of the magnetic field induced by the magnetic layer and the detection magnetic layer is perpendicular to each other;

步骤3:沉积第二磁敏探测器薄膜的缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时分别加上一面内诱导磁场,参考磁性层与探测磁性层诱导磁场方向相互垂直,并且参考磁性层所加诱导磁场方向与步骤2中参考磁性层所加诱导磁场方向垂直;Step 3: Deposit the buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer of the second magnetosensitive detector film; when depositing the reference magnetic layer and depositing the detection magnetic layer, respectively add an in-plane induced magnetic field, the reference magnetic The direction of the induced magnetic field of the layer and the detection magnetic layer is perpendicular to each other, and the direction of the induced magnetic field applied by the reference magnetic layer is perpendicular to the direction of the induced magnetic field applied by the reference magnetic layer in step 2;

步骤4:沉积第三磁敏探测器薄膜的缓冲层,参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层时不加诱导磁场或施加垂直膜面的诱导磁场,并且利用铁磁层/非磁层界面诱导的垂直各向异性,通过控制铁磁层厚度使第三磁敏探测器参考磁性层具有垂直膜面的易磁化方向;沉积探测磁性层时通过控制铁磁层厚度使第三磁敏探测器探测磁性层具有弱的面内各项异性,同时加上一面内诱导磁场,诱导磁场方向与步骤3中探测磁性层磁场方向一致;Step 4: Deposit the buffer layer of the third magnetosensitive detector film, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer; wherein when depositing the reference magnetic layer, do not add an induced magnetic field or apply an induced magnetic field perpendicular to the film surface, and use The vertical anisotropy induced by the ferromagnetic layer/non-magnetic layer interface, by controlling the thickness of the ferromagnetic layer, the reference magnetic layer of the third magnetosensitive detector has an easy magnetization direction perpendicular to the film surface; when depositing the detection magnetic layer, by controlling the thickness of the ferromagnetic layer The thickness makes the third magnetosensitive detector detect the magnetic layer have weak in-plane anisotropy, and add an in-plane induced magnetic field at the same time, and the direction of the induced magnetic field is consistent with the direction of the magnetic field in the detection magnetic layer in step 3;

步骤5:对于参考磁性层和探测磁性层均为钉扎结构的GMR或TMR磁敏探测器薄膜,按奈尔温度TN由高到低,依次在高于奈尔温度下施加与生长时诱导磁场一致的外磁场退火,使各个磁敏探测器薄膜参考磁性层与探测磁性层易磁化方向相互垂直。Step 5: For the GMR or TMR magnetosensitive detector film whose reference magnetic layer and detection magnetic layer are both pinned structures, according to the Neel temperature T N from high to low, sequentially apply and grow at a temperature higher than Neel temperature. Annealing in an external magnetic field with a consistent magnetic field makes the easy magnetization directions of the reference magnetic layer and the detection magnetic layer of each magnetosensitive detector thin film perpendicular to each other.

步骤6:对上述三个磁敏探测器薄膜GMR或TMR磁性纳米多层膜结构经过常规微加,加工成尺寸大小从数十纳米到数十微米的不同形状的GMR或TMR磁敏探测器单元,如,空心或实心的椭圆、矩形、正多边形和其他特定形状的三个GMR或TMR器件,构成一个面内集成的三维空间磁敏测器。Step 6: The above three magnetosensitive detector thin film GMR or TMR magnetic nano-multilayer film structures are conventionally micro-processed into GMR or TMR magnetosensitive detector units of different shapes ranging from tens of nanometers to tens of microns , For example, three GMR or TMR devices of hollow or solid ellipse, rectangle, regular polygon and other specific shapes constitute an in-plane integrated three-dimensional magnetic sensor.

本发明利用铁磁层/非磁层界面诱导的垂直各向异性调制参考磁性层和探测磁性层的磁各向异性:在铁磁层较薄处获得易磁化轴垂直膜面的参考层,在铁磁层较厚处获得易磁化轴在面内的参考层;再利用钉扎结构或诱导磁场生长实现参考磁性层和探测磁性层磁各向异性在三维空间的调制,其磁敏探测器工艺简单,一致性好,且集成度高。The present invention utilizes the perpendicular anisotropy induced by the ferromagnetic layer/non-magnetic layer interface to modulate the magnetic anisotropy of the reference magnetic layer and detect the magnetic layer: obtain the reference layer on the film plane with the easy magnetization axis perpendicular to the thinner part of the ferromagnetic layer. The reference layer with the easy magnetization axis in the plane is obtained at the thicker ferromagnetic layer; then the pinning structure or induced magnetic field growth is used to realize the modulation of the magnetic anisotropy of the reference magnetic layer and the detection magnetic layer in three-dimensional space. Simple, consistent, and highly integrated.

附图说明 Description of drawings

图1a为本发明铁磁层/非磁层界面诱导的磁各向异性示意图基本原理示意图;Figure 1a is a schematic diagram of the basic principle of the magnetic anisotropy induced by the ferromagnetic layer/nonmagnetic layer interface of the present invention;

图1b为实验测量所得MgO/CoFeB薄膜在CoFeB 1nm时磁滞回线,表现出垂直磁各向异性;Figure 1b is the hysteresis loop of the MgO/CoFeB thin film measured experimentally at CoFeB 1nm, showing perpendicular magnetic anisotropy;

图1c为实验测量所得MgO/CoFeB薄膜在CoFeB 1.6nm时磁滞回线,表现面内磁各向异性;Figure 1c is the hysteresis loop of the MgO/CoFeB thin film measured experimentally at CoFeB 1.6nm, showing in-plane magnetic anisotropy;

图2a~2c为本发明提供的一种面内集磁敏探测器阵列、单元和磁性纳米多层薄膜结构示意图;Figures 2a to 2c are structural schematic diagrams of an in-plane magnetosensitive detector array, unit and magnetic nano-multilayer film provided by the present invention;

图3a为本发明提供的两种制备面内集成磁敏探测器阵列所用掩模示意图;Figure 3a is a schematic diagram of two masks used in the preparation of in-plane integrated magnetosensitive detector arrays provided by the present invention;

图3b、3c为本发明提供的两种制备面内集成磁敏探测器的掩膜单元结构示意图。以下参考图3a、3b、3c具体说明本发明的制备方案;3b and 3c are structural schematic diagrams of two mask units for preparing in-plane integrated magnetosensitive detectors provided by the present invention. The preparation scheme of the present invention is specifically described below with reference to FIGS. 3a, 3b, and 3c;

图4a为本发明提供的面内集成磁敏探测器测量三维磁场的原理示意图;Figure 4a is a schematic diagram of the principle of measuring the three-dimensional magnetic field by the in-plane integrated magnetosensitive detector provided by the present invention;

图4b为本发明提供的面内集成磁敏探测器中单个磁敏探测器单元接线方式示意图;Figure 4b is a schematic diagram of the wiring mode of a single magnetosensitive detector unit in the in-plane integrated magnetosensitive detector provided by the present invention;

图4c为外加垂直膜面时CoFeB/MgO/CoFeB磁性隧道结实测磁电阻曲线,其中磁电阻率的定义为平行态电阻与反平行态电阻之差与平行态电阻的比值。Figure 4c is the measured magnetoresistance curve of the CoFeB/MgO/CoFeB magnetic tunnel junction when the vertical film surface is applied, where the magnetoresistivity is defined as the ratio of the difference between the parallel state resistance and the antiparallel state resistance and the parallel state resistance.

其中,附图标记Among them, reference signs

A铁磁层A ferromagnetic layer

B非磁层B non-magnetic layer

具体实施方式 Detailed ways

本发明的基本原理是:利用铁磁层/非磁层界面诱导的磁各向异性,改变铁磁层厚度,使同一磁性薄膜在不同铁磁层薄膜厚度处具有不同的垂直或面内磁各向异性,并结合钉扎结构或诱导磁场生长调制面内易磁化取向。The basic principle of the present invention is: use the magnetic anisotropy induced by the ferromagnetic layer/nonmagnetic layer interface to change the thickness of the ferromagnetic layer, so that the same magnetic film has different vertical or in-plane magnetic properties at different thicknesses of the ferromagnetic layer. Anisotropy, combined with pinning structures or induced magnetic field growth to modulate the in-plane easy magnetization orientation.

图1a铁磁层/非磁层界面诱导的垂直磁各向异性示意图,在如图1示的楔形薄膜中,在铁磁层较薄的条件下将获得具有垂直膜面磁各向异性的磁性薄膜(设为Z方向,Θ=0°),在铁磁层较厚的条件下获得具有面内磁各向异性的磁性薄膜(在XY平面内,Θ=90°)。Figure 1a is a schematic diagram of the perpendicular magnetic anisotropy induced by the ferromagnetic layer/nonmagnetic layer interface. In the wedge-shaped thin film shown in Figure 1, a magnetic film with perpendicular film surface magnetic anisotropy will be obtained under the condition of a thin ferromagnetic layer. Thin film (set as Z direction, Θ=0°), obtain a magnetic film with in-plane magnetic anisotropy (in XY plane, Θ=90°) under the condition that the ferromagnetic layer is thicker.

依据上述原理,本发明提出了磁性层磁各向异性在三维空间可调制的GMR或TMR磁性纳米多层薄膜结构。该结构利用了前述铁磁层非磁层/界面诱导的垂直各向异性调制参考磁性层(Reference Layer,RL)和探测磁性层(FreeLayer,FL)的垂直磁各向异性:在铁磁层较薄处获得易磁化轴垂直膜面的参考层,在铁磁层较厚处获得易磁化轴在面内的参考层;再利用钉扎结构及诱导磁场生长实现参考磁性层和探测磁性层(Free Layer,FL)磁各向异性在三维空间的调制。Based on the above principles, the present invention proposes a GMR or TMR magnetic nano-multilayer film structure in which the magnetic anisotropy of the magnetic layer can be modulated in three-dimensional space. This structure utilizes the perpendicular anisotropy induced by the non-magnetic layer/interface of the aforementioned ferromagnetic layer to modulate the perpendicular magnetic anisotropy of the reference magnetic layer (Reference Layer, RL) and the detection magnetic layer (FreeLayer, FL): The reference layer with the easy magnetization axis perpendicular to the film surface is obtained at the thinner part, and the reference layer with the easy magnetization axis in the plane is obtained at the thicker part of the ferromagnetic layer; then the reference magnetic layer and the detection magnetic layer (Free Layer, FL) Modulation of magnetic anisotropy in three dimensions.

本发明提出的磁各向异性在三维空间可调制的GMR或TMR磁性纳米多层薄膜结构,依次包括:基片(Sub)和其上的缓冲层(Buffer Layer,BL),参考磁性层(Reference Layer,RL)、中间层(Space)、探测磁性层(Free Layer)和覆盖层(Capping Layer);所述参考磁性层和探测磁性层利用了铁磁层A/非磁层B界面诱导的垂直各向异性,通过调节参考磁性层中铁磁层厚度使得其易磁化方向为面内,设为XY方向,或垂直膜面,设为Z方向。The GMR or TMR magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in the three-dimensional space proposed by the present invention comprises in turn: a substrate (Sub) and a buffer layer (Buffer Layer, BL) thereon, a reference magnetic layer (Reference Layer, RL), intermediate layer (Space), detection magnetic layer (Free Layer) and cover layer (Capping Layer); the reference magnetic layer and the detection magnetic layer have utilized the vertical force induced by the ferromagnetic layer A/nonmagnetic layer B interface Anisotropy, by adjusting the thickness of the ferromagnetic layer in the reference magnetic layer so that its easy magnetization direction is in-plane, set as XY direction, or perpendicular to the film surface, set as Z direction.

其中,当易磁化方向在面内时采用钉扎结构或诱导磁场生长的方式调制易磁化轴在面内的取向。Among them, when the easy magnetization direction is in the plane, the orientation of the easy magnetization axis in the plane is modulated by the way of pinning structure or induced magnetic field growth.

其中,所述参考磁性层矫顽力Hc1大于探测磁性层矫顽力Hc2Wherein, the coercive force Hc 1 of the reference magnetic layer is greater than the coercive force Hc 2 of the detection magnetic layer.

其中,所述中间层是非磁性金属层或绝缘势垒层,其中,对应GMR磁性纳米多层薄膜结构,所述中间层为非磁性金属层,对应TMR磁性纳米多层薄膜结构,所述中间层为绝缘势垒层。Wherein, the intermediate layer is a non-magnetic metal layer or an insulating barrier layer, wherein, corresponding to the GMR magnetic nano-multilayer thin film structure, the intermediate layer is a non-magnetic metal layer, corresponding to the TMR magnetic nano-multi-layer thin film structure, and the intermediate layer is an insulating barrier layer.

其中,所述参考磁性层和探测磁性层可以由单一铁磁层(FM)构成,也可以由是铁磁层、反铁磁层(AFM)和非磁金属层(NM)构成的直接或间接钉扎结构;所述直接钉扎是指反铁磁材料层直接和铁磁性层接触FM/AFM,所述的间接钉扎是指在反铁磁材料层和铁磁性层之间插一层很薄的非磁性金属层,构成结构FM/NM/AFM或者插入复合层FM1/NM/FM11/AFM,所述磁性纳米多层薄膜结构为以下结构:Wherein, the reference magnetic layer and the detection magnetic layer can be composed of a single ferromagnetic layer (FM), or can be directly or indirectly composed of a ferromagnetic layer, an antiferromagnetic layer (AFM) and a nonmagnetic metal layer (NM). Pinning structure; the direct pinning means that the antiferromagnetic material layer directly contacts the FM/AFM with the ferromagnetic layer, and the indirect pinning means inserting a very thin layer between the antiferromagnetic material layer and the ferromagnetic layer. A thin non-magnetic metal layer, which constitutes the structure FM/NM/AFM or inserts the composite layer FM1/NM/FM11/AFM, and the structure of the magnetic nano-multilayer film is the following structure:

Sub/BL/AFM1/FM11/NM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;Sub/BL/AFM1/FM11/NM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;

或Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/FM2/AFM2/CL;or Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/FM2/AFM2/CL;

或Sub/BL/AFM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;or Sub/BL/AFM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;

或Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/AFM2/CL;or Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/AFM2/CL;

或Sub/BL/AFM1/FM1/Space/FM2/NM2/AFM2/CL;or Sub/BL/AFM1/FM1/Space/FM2/NM2/AFM2/CL;

或Sub/BL/AFM1/FM1/Space/FM2/AFM2/CLor Sub/BL/AFM1/FM1/Space/FM2/AFM2/CL

或Sub/BL/AFM1/FM11/NM/FM1/Speace/FM2/CLor Sub/BL/AFM1/FM11/NM/FM1/Speace/FM2/CL

或Sub/BL/AFM1/NM1/FM1/Speace/FM2/CLor Sub/BL/AFM1/NM1/FM1/Speace/FM2/CL

或Sub/BL/AFM1/FM1/Speace/FM2/CLor Sub/BL/AFM1/FM1/Speace/FM2/CL

其中,所述铁磁层的材料优选Co、Fe、Ni或者铁磁性金属合金材料,或者半金属材料,按所需磁各向异性不同厚度在0.2~10nm变化。Wherein, the material of the ferromagnetic layer is preferably Co, Fe, Ni or a ferromagnetic metal alloy material, or a semi-metal material, and the thickness varies from 0.2 to 10 nm according to the required magnetic anisotropy.

其中,所述铁磁性金属合金薄膜优选CoFe、CoFeB、NiFeCr或NiFe,所述半金属材料优选CoFeAl、CoMnAl、CoMnGe或CoMnGa。Wherein, the ferromagnetic metal alloy thin film is preferably CoFe, CoFeB, NiFeCr or NiFe, and the semi-metal material is preferably CoFeAl, CoMnAl, CoMnGe or CoMnGa.

其中,所述反铁磁性材料优选PtMn、IrMn、FeMn、NiMn,或者选自具有反铁磁性的氧化物,所述具有反铁磁性的氧化物优选CoO或NiO,所述PtMn、IrMn、FeMn及NiMn的厚度为3~30nm,所述具有反铁磁性的氧化物的厚度为5~50nm。Wherein, the antiferromagnetic material is preferably PtMn, IrMn, FeMn, NiMn, or selected from oxides with antiferromagnetism, the oxide with antiferromagnetism is preferably CoO or NiO, and the PtMn, IrMn, FeMn and The thickness of NiMn is 3-30nm, and the thickness of the antiferromagnetic oxide is 5-50nm.

其中,所述非磁性金属层优选Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au或其合金,厚度为0.2~10nm。Wherein, the non-magnetic metal layer is preferably Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or alloys thereof, with a thickness of 0.2-10 nm.

其中,所述中间层为势垒时,优选AlOx(0<x<3/2)、MgO、Mg1-xZnxO(0<x<1)、MgxAl2/3(1-x)O(0<x<1)、AlN、Ta2O5、ZnO、HfO2、TiO2无机氧化物,厚度为0.5~5nm;所述当中间层为非磁金属时,优选Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au金属材料,厚度为0.4~10nm。其中,AlOx所指为三氧化二铝Al2O3,但在实际制备中由于制备材料不完美(如有氧空位等)铝氧比例通常不能恰为2∶3,在本领域通常标示为AlOxWherein, when the intermediate layer is a potential barrier, AlO x (0<x<3/2), MgO, Mg 1-x Zn x O (0<x<1), Mg x Al 2/3 (1- x) O (0<x<1), AlN, Ta 2 O 5 , ZnO, HfO 2 , TiO 2 inorganic oxides, with a thickness of 0.5-5 nm; when the intermediate layer is a non-magnetic metal, Cu and Cr are preferred , V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au metal materials, the thickness is 0.4 ~ 10nm. Among them, AlO x refers to aluminum oxide Al 2 O 3 , but in actual preparation, due to imperfect preparation materials (such as oxygen vacancies, etc.), the ratio of aluminum to oxygen cannot be exactly 2:3, and it is usually marked as AlO x .

其中,所述覆盖层为不易被氧化和腐蚀且导电性较好的金属层,用于保护结构不被氧化和腐蚀,所述覆盖层的结构为Ta、Cu、Al、Ru、Au、Ag、Pt的单层的金属层,或者为上述金属的多层薄膜,所述覆盖层的厚度为2~100nm。Wherein, the covering layer is a metal layer that is not easy to be oxidized and corroded and has good conductivity, and is used to protect the structure from being oxidized and corroded. The structure of the covering layer is Ta, Cu, Al, Ru, Au, Ag, A single-layer metal layer of Pt, or a multi-layer thin film of the above-mentioned metal, the thickness of the covering layer is 2-100 nm.

而且,本发明提出基于上述的磁性纳米多层薄膜结构制备的磁敏传感器。所述磁敏传感器为面内集成的三维空间磁敏测器,所述面内集成的三维空间磁敏测器包括同一基片上不同位置的三个独立的磁敏探测器单元,所述磁敏探测器单元均采用权利要求1所述磁性纳米多层薄膜结构制备。其中,无外磁场时,每个磁敏探测器单元的参考层磁矩方向分别与其探测层磁矩方向垂直;三个磁敏探测器参考层易磁化轴方向相互垂直,其中一个磁敏探测器单元参考层易磁化轴方向垂直于膜面,另两个磁敏探测器单元参考层易磁化轴方向平行于膜面且相互垂直。Moreover, the present invention proposes a magnetic sensor prepared based on the above-mentioned magnetic nano-multilayer film structure. The magnetic sensor is an in-plane integrated three-dimensional space magnetic sensor, and the in-plane integrated three-dimensional space magnetic sensor includes three independent magnetic detector units at different positions on the same substrate. The detector units are all prepared by adopting the magnetic nano-multilayer film structure described in claim 1. Among them, when there is no external magnetic field, the direction of the magnetic moment of the reference layer of each magnetosensitive detector unit is perpendicular to the direction of the magnetic moment of the detection layer; The direction of the easy magnetization axis of the reference layer of the unit is perpendicular to the film surface, and the directions of the easy magnetization axes of the reference layers of the other two magnetosensitive detector units are parallel to the film surface and perpendicular to each other.

而且,本发明提出一种上述磁敏传感器的制备方法,所述磁敏传感器为面内集成的三维空间磁敏测器,所述面内集成的三维空间磁敏测器为利用掩膜遮挡方式在基片不同单元中不同位置依次沉积三个独立的、纳米磁性GMR或TMR多层薄膜,即第一磁敏探测器薄膜、第二磁敏探测器薄膜和第三磁敏探测器薄膜,再经过微加工获得三个独立的GMR或TMR磁敏探测器单元(图2b示D1,D2和D3),构成一个三维空间磁敏测器,其中,所述第一磁敏探测器薄膜、第二磁敏探测器薄膜和第三磁敏探测器薄膜都采用权利要求1所述的磁各向异性在三维空间可调制的GMR或TMR磁性纳米多层薄膜结构(图2c示)。Moreover, the present invention proposes a method for preparing the above magnetic sensor, the magnetic sensor is an in-plane integrated three-dimensional space magnetic sensor, and the in-plane integrated three-dimensional space magnetic sensor uses a mask shielding method Three independent, nano-magnetic GMR or TMR multilayer films are sequentially deposited at different positions in different units of the substrate, namely the first magneto-sensitive detector film, the second magneto-sensitive detector film and the third magneto-sensitive detector film, and then Obtain three independent GMR or TMR magnetosensitive detector units (D1, D2 and D3 shown in Fig. 2b) through micromachining, constitute a three-dimensional magnetic sensor, wherein, the first magnetosensitive detector thin film, the second Both the magnetosensitive detector thin film and the third magnetic sensitive detector thin film adopt the GMR or TMR magnetic nano-multilayer thin film structure whose magnetic anisotropy can be modulated in three-dimensional space according to claim 1 (shown in FIG. 2c ).

其中,上述方法包括步骤:Wherein, the above-mentioned method comprises steps:

步骤1:选择一个基片;Step 1: Select a substrate;

步骤2:沉积第一磁敏探测器薄膜的缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时分别加上一面内诱导磁场,并且参考磁性层与探测磁性层诱导磁场方向相互垂直;Step 2: Deposit the buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer of the first magnetosensitive detector film; when depositing the reference magnetic layer and depositing the detection magnetic layer, add an in-plane induced magnetic field respectively, and reference The direction of the magnetic field induced by the magnetic layer and the detection magnetic layer is perpendicular to each other;

步骤3:沉积第二磁敏探测器薄膜的缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时分别加上一面内诱导磁场,参考磁性层与探测磁性层诱导磁场方向相互垂直,并且参考磁性层所加诱导磁场方向与步骤2中参考磁性层所加诱导磁场方向垂直;Step 3: Deposit the buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer of the second magnetosensitive detector film; when depositing the reference magnetic layer and depositing the detection magnetic layer, respectively add an in-plane induced magnetic field, the reference magnetic The direction of the induced magnetic field of the layer and the detection magnetic layer is perpendicular to each other, and the direction of the induced magnetic field applied by the reference magnetic layer is perpendicular to the direction of the induced magnetic field applied by the reference magnetic layer in step 2;

步骤4:沉积第三磁敏探测器薄膜的缓冲层,参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层时不加诱导磁场或施加垂直膜面的诱导磁场,并且利用铁磁层/非磁层界面诱导的垂直各向异性,通过控制铁磁层厚度使第三磁敏探测器参考磁性层具有垂直膜面的易磁化方向;沉积探测磁性层时通过控制铁磁层厚度使第三磁敏探测器探测磁性层具有弱的面内各项异性,同时加上一面内诱导磁场,诱导磁场方向与步骤3中探测磁性层磁场方向一致;Step 4: Deposit the buffer layer of the third magnetosensitive detector film, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer; wherein when depositing the reference magnetic layer, do not add an induced magnetic field or apply an induced magnetic field perpendicular to the film surface, and use The vertical anisotropy induced by the ferromagnetic layer/non-magnetic layer interface, by controlling the thickness of the ferromagnetic layer, the reference magnetic layer of the third magnetosensitive detector has an easy magnetization direction perpendicular to the film surface; when depositing the detection magnetic layer, by controlling the thickness of the ferromagnetic layer The thickness makes the third magnetosensitive detector detect the magnetic layer have weak in-plane anisotropy, and add an in-plane induced magnetic field at the same time, and the direction of the induced magnetic field is consistent with the direction of the magnetic field in the detection magnetic layer in step 3;

步骤5:对于参考磁性层和探测磁性层均为钉扎结构的GMR或TMR磁敏探测器薄膜,按奈尔温度TN由高到低,依次在高于奈尔温度下施加与生长时诱导磁场一致的外磁场退火,使各个磁敏探测器薄膜参考磁性层与探测磁性层易磁化方向相互垂直。Step 5: For the GMR or TMR magnetosensitive detector film whose reference magnetic layer and detection magnetic layer are both pinned structures, according to the Neel temperature T N from high to low, sequentially apply and grow at a temperature higher than Neel temperature. Annealing in an external magnetic field with a consistent magnetic field makes the easy magnetization directions of the reference magnetic layer and the detection magnetic layer of each magnetosensitive detector thin film perpendicular to each other.

步骤6:对上述三个磁敏探测器薄膜GMR或TMR磁性纳米多层膜结构经过常规微加,加工成尺寸大小从数十纳米到数十微米的不同形状的GMR或TMR磁敏探测器单元,如,空心或实心的椭圆、矩形、正多边形和其他特定形状的三个GMR或TMR器件,构成一个面内集成的三维空间磁敏测器。Step 6: The above three magnetosensitive detector thin film GMR or TMR magnetic nano-multilayer film structures are conventionally micro-processed into GMR or TMR magnetosensitive detector units of different shapes ranging from tens of nanometers to tens of microns , For example, three GMR or TMR devices of hollow or solid ellipse, rectangle, regular polygon and other specific shapes constitute an in-plane integrated three-dimensional magnetic sensor.

具体而言,本发明的技术方案如下:本发明提供一种磁各向异性在三维空间可调制的GMR或TMR磁性纳米多层薄膜结构,该结构包括生长在基片(Sub)上的缓冲层(Buffer Layer,BL)、参考磁性层(Reference Layer,RL)、中间层(Space)、探测磁性层(Free Layer,FL)和覆盖层(Capping Layer,CL);其中,所述参考磁性层利用了前述铁磁层/非磁层界面诱导的垂直各向异性,通过调节参考磁性层和探测磁性层中铁磁层厚度使得其易磁化方向为面内(设为XY方向)或垂直膜面(设为Z方向);当易磁化轴在面内时采用钉扎结构或诱导磁场生长的方式调制易磁化轴在面内的取向;所述磁性纳米多层薄膜结构中参考磁性层矫顽力(Hc1)大于探测磁性层矫顽力(Hc2);所述中间层是非磁性金属层或绝缘势垒层,其中,中间层为非磁性金属层时,所述磁性纳米多层薄膜适用于基于GMR效应的磁敏探测器,中间层为绝缘势垒层时所述磁性纳米多层薄膜适用于基于TMR效应的磁敏探测器。Specifically, the technical scheme of the present invention is as follows: the present invention provides a GMR or TMR magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in three-dimensional space, and the structure includes a buffer layer grown on a substrate (Sub) (Buffer Layer, BL), reference magnetic layer (Reference Layer, RL), intermediate layer (Space), detection magnetic layer (Free Layer, FL) and cover layer (Capping Layer, CL); wherein, the reference magnetic layer utilizes The vertical anisotropy induced by the aforementioned ferromagnetic layer/non-magnetic layer interface is eliminated, and the thickness of the ferromagnetic layer in the reference magnetic layer and the detection magnetic layer is adjusted so that the easy magnetization direction is in-plane (set as XY direction) or perpendicular to the film plane (set as XY direction) is the Z direction); when the easy magnetization axis is in the plane, the orientation of the easy magnetization axis is modulated by the mode of pinning structure or induced magnetic field growth; the reference magnetic layer coercive force (Hc 1 ) Greater than the coercive force (Hc 2 ) of the detection magnetic layer; the intermediate layer is a non-magnetic metal layer or an insulating barrier layer, wherein, when the intermediate layer is a non-magnetic metal layer, the magnetic nano-multilayer film is suitable for GMR-based The magnetosensitive detector based on TMR effect, when the intermediate layer is an insulating barrier layer, the magnetic nano multi-layer thin film is suitable for the magnetosensitive detector based on TMR effect.

上述技术方案中,所述基片(Sub)可以是玻璃衬底、Si衬底、Si/SiO2衬底、SiC衬底等无机衬底,也可以为聚乙烯、聚丙烯、聚苯乙烯、据对苯二甲酸二醇酯、聚酰亚胺、聚碳酸酯等有机柔性衬底等,厚度为0.3~1mm。In the above technical scheme, the substrate (Sub) can be glass substrate, Si substrate, Si/SiO 2 substrate, SiC substrate and other inorganic substrates, also can be polyethylene, polypropylene, polystyrene, According to organic flexible substrates such as terephthalate, polyimide, and polycarbonate, the thickness is 0.3 to 1 mm.

在上述的技术方案中,所述的缓冲层(BL)为电阻较大且与衬底结合紧密的金属材料,优选Ta、Ru、Cr、Pt,或者上述金属多层膜结构如Ta/Ru/Ta,厚度为3~30nm。In the above technical scheme, the buffer layer (BL) is a metal material with high resistance and tight bonding with the substrate, preferably Ta, Ru, Cr, Pt, or the above-mentioned metal multilayer film structure such as Ta/Ru/ Ta has a thickness of 3 to 30 nm.

在上述的技术方案中,所述的参考磁性层(RL)可以是一单层铁磁层(FM1)构成,也可以是铁磁层、反铁磁层(AFM1)和非磁金属层(NM1)构成的直接或间接钉扎结构;通过调节铁磁层厚度可调制参考磁性层的垂直磁各向异性;所述参考磁性层矫顽力(Hc1)大于探测磁性层矫顽力(Hc2)。所述铁磁层材料优选Co、Fe、Ni,或者铁磁性金属合金薄膜,优选CoFe、CoFeB、NiFeCr或NiFe(如:Ni81Fe19)等,厚度一般在0.2~10nm变化。所述的反铁磁性层包括具有反铁磁性的合金材料,优选PtMn、IrMn、FeMn和NiMn,厚度为3~30nm;以及具有反铁磁性的氧化物,优选CoO、NiO,厚度为5~50nm;所述非磁性金属层一般采用Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au或其合金,厚度一般为0.2~10nm。In the above technical scheme, the reference magnetic layer (RL) can be a single-layer ferromagnetic layer (FM1), or it can be a ferromagnetic layer, an antiferromagnetic layer (AFM1) and a nonmagnetic metal layer (NM1). ) constitutes a direct or indirect pinning structure; the perpendicular magnetic anisotropy of the reference magnetic layer can be modulated by adjusting the thickness of the ferromagnetic layer; the coercive force (Hc 1 ) of the reference magnetic layer is greater than the coercive force (Hc 2 ). The material of the ferromagnetic layer is preferably Co, Fe, Ni, or ferromagnetic metal alloy film, preferably CoFe, CoFeB, NiFeCr or NiFe (such as: Ni81Fe19), etc., and the thickness generally varies from 0.2 to 10 nm. The antiferromagnetic layer includes alloy materials with antiferromagnetism, preferably PtMn, IrMn, FeMn and NiMn, with a thickness of 3-30 nm; and oxides with antiferromagnetism, preferably CoO, NiO, with a thickness of 5-50 nm ; The non-magnetic metal layer generally adopts Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or their alloys, and the thickness is generally 0.2-10 nm.

在上述的技术方案中,所述当中间层(Space)为势垒时,一般采用AlOx(0<x<3/2)、MgO、Mg1-xZnxO(0<x<1)、MgxAl2/3(1-x)O(0<x<1)、AlN、Ta2O5、ZnO、HfO2、TiO2等无机氧化物,优选AlOx(0<x<3/2)、MgO、Mg1-xZnxO(0<x<1)、MgxAl2/3 (1-x)O(0<x<1)、AlN,厚度为0.5~5nm;所述当中间层为非磁金属优选Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au等金属材料,厚度为0.2~10nm。In the above technical scheme, when the intermediate layer (Space) is a potential barrier, generally AlO x (0<x<3/2), MgO, Mg 1-x Zn x O (0<x<1) , Mg x Al 2/3(1-x) O (0<x<1), AlN, Ta 2 O 5 , ZnO, HfO 2 , TiO 2 and other inorganic oxides, preferably AlO x (0<x<3/ 2), MgO, Mg 1-x Zn x O (0<x<1), Mg x Al 2/3 (1-x) O (0<x<1), AlN, the thickness is 0.5-5nm; When the intermediate layer is made of non-magnetic metal, it is preferably Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au and other metal materials, and the thickness is 0.2-10 nm.

上述技术方案中,探测层(FL)可由单一铁磁层(FM2)构成,也可以由是铁磁层、反铁磁层(AFM2)和非磁金属层(NM2)构成的直接或间接钉扎结构;其中,通过钉扎结构或采用诱导磁场生长方式可调节探测磁性层面内易磁化方向;并且探测磁性层矫顽力(Hc2)小于参考磁性层矫顽力(Hc1)。探测磁性层中铁磁层厚度一般在1~10nm。In the above technical scheme, the detection layer (FL) can be composed of a single ferromagnetic layer (FM2), or can be directly or indirectly pinned by a ferromagnetic layer, an antiferromagnetic layer (AFM2) and a nonmagnetic metal layer (NM2). structure; wherein, the easy magnetization direction in the detection magnetic layer can be adjusted through the pinning structure or the growth method of the induced magnetic field; and the coercive force (Hc 2 ) of the detection magnetic layer is smaller than the coercive force (Hc 1 ) of the reference magnetic layer. The thickness of the ferromagnetic layer in the detection magnetic layer is generally 1-10 nm.

上述技术方案中,所述覆盖层(CL)为不易被氧化和被腐蚀且导电性较好的金属层,用于保护结构不被氧化和腐蚀。覆盖层结构可以是单层的金属层,材料优选Ta、Cu、Al、Ru、Au、Ag、Pt等,也可以是上述金属构成的多层薄膜,如Cu/Au、Ta/Ru等,厚度为2~100nm。In the above technical solution, the cover layer (CL) is a metal layer that is not easily oxidized and corroded and has good conductivity, and is used to protect the structure from oxidation and corrosion. The cover layer structure can be a single-layer metal layer, and the material is preferably Ta, Cu, Al, Ru, Au, Ag, Pt, etc., or it can be a multilayer film composed of the above metals, such as Cu/Au, Ta/Ru, etc., the thickness 2 to 100nm.

上述技术方案中的直接钉扎是指反铁磁材料层(AFM)直接和铁磁性层(FM)接触FM/AFM。所述的间接钉扎是指在反铁磁材料层和铁磁性层之间插一层很薄的非磁性金属层,如FM/NM/AFM结构;或者插入复合层FM1/NM/FM11/AFM,以减小和调控这种钉扎效果。满足上述方案的磁性纳米多层膜结构包括:The direct pinning in the above technical solution refers to that the antiferromagnetic material layer (AFM) directly contacts the FM/AFM with the ferromagnetic layer (FM). The indirect pinning refers to inserting a thin non-magnetic metal layer between the antiferromagnetic material layer and the ferromagnetic layer, such as FM/NM/AFM structure; or inserting a composite layer FM1/NM/FM11/AFM , to reduce and regulate this pinning effect. The magnetic nano multilayer film structure satisfying the above scheme includes:

(1)Sub/BL/AFM1/FM11/NM11/FM1/Space/FM2/NM2/FM22/AFM2/CL;(1)Sub/BL/AFM1/FM11/NM11/FM1/Space/FM2/NM2/FM22/AFM2/CL;

(2)Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;(2)Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;

(3)Sub/BL/AFM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;(3)Sub/BL/AFM1/FM1/Space/FM2/NM2/FM22/AFM2/CL;

(4)Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/AFM2/CL;(4)Sub/BL/AFM1/NM1/FM1/Space/FM2/NM2/AFM2/CL;

(5)Sub/BL/AFM1/FM1/Space/FM2/NM2/AFM2/CL;(5)Sub/BL/AFM1/FM1/Space/FM2/NM2/AFM2/CL;

(6)Sub/BL/AFM1/FM1/Space/FM2/AFM2/CL(6)Sub/BL/AFM1/FM1/Space/FM2/AFM2/CL

(7)Sub/BL/AFM1/FM11/NM/FM1/Speace/FM2/CL(7)Sub/BL/AFM1/FM11/NM/FM1/Speace/FM2/CL

(8)Sub/BL/AFM1/NM1/FM1/Speace/FM2/CL(8)Sub/BL/AFM1/NM1/FM1/Speace/FM2/CL

(9)Sub/BL/AFM1/FM1/Speace/FM2/CL(9)Sub/BL/AFM1/FM1/Speace/FM2/CL

其中参考磁性层和探测磁性层均为钉扎结构的GMR或TMR磁性纳米多层膜结构(1)-(6),要求参考磁性层反铁磁材料奈尔温度与探测磁性层反铁磁材料奈尔温度不同。通过选择具有不同的奈尔(Neel)温度TN的反铁磁材料,如NiMn(TN NiMn=1073K)[Magnetic Properties of Metals H.P.J.Wijin,Spinger-Verlag金属磁性手册 斯伯林格出版社 编辑H.P.J.Wijin]、IrMn(TN IrMn=975K)[J.W.Cai et.al.Phy.Rev.B 70 214428(2004)-有序Mn3Ir的磁性中字散射研究I.Tomeno等,应用物理]、PtMn(TN PtMn=693K)[J.W.Caiet.al.Phy.Rev.B 70 214428(2004)-自由层与引线层间具固定磁化层的层状结构磁电阻头S.Koji,T Yoshihiro,and T.Koichi美国专利号6982855]、FeMn(TN FeMn=500K)[1Magnetic Properties of Metals H.P.J.Wijin,Spinger-Verlag-金属磁性手册斯伯林格出版社 编辑H.P.J.Wijin]等通过不同温度下外加磁场退火实现或调节反铁磁层与铁磁层间非磁层厚度实现。Wherein the reference magnetic layer and the detection magnetic layer are GMR or TMR magnetic nano-multilayer film structures (1)-(6) with a pinning structure, and the Neel temperature of the antiferromagnetic material of the reference magnetic layer and the antiferromagnetic material of the detection magnetic layer are required Nair temperature is different. By selecting antiferromagnetic materials with different Neel temperatures T N , such as NiMn (T N NiMn = 1073K) [Magnetic Properties of Metals HPJWijin, Spinger-Verlag Metal Magnetic Handbook, edited by Springer Publishing House HPJWijin] , IrMn (T N IrMn =975K) [JWCai et.al.Phy.Rev.B 70 214428 (2004)-ordered Mn3Ir magnetic midword scattering research I.Tomeno etc., applied physics], PtMn (T N PtMn =693K )[JWCaiet.al.Phy.Rev.B 70 214428(2004)-Layered structure magnetoresistive head with fixed magnetization layer between free layer and lead layer S.Koji, T Yoshihiro, and T.Koichi US Patent No. 6982855] , FeMn(T N FeMn =500K)[1Magnetic Properties of Metals HPJWijin, Spinger-Verlag-Metal Magnetic Handbook Springer Linger Publishing House editor HPJWijin] etc. realize or adjust the antiferromagnetic layer and ferromagnetic layer by annealing at different temperatures Interlayer non-magnetic layer thickness is achieved.

本发明还提供制备上述参考磁性层磁各向异性三维空间可调制的GMR或TMR磁性纳米薄膜和相应磁敏探测器,特别是大规模、均一的制备面内集成三维磁敏探测器的方法。具体而言,其为利用掩膜遮挡方式在基片不同单元中的不同位置依次沉积三个独立的GMR或TMR纳米磁性多层薄膜,即第一磁敏探测器薄膜、第二磁敏探测器薄膜和第三磁敏探测器薄膜,再经过微加工获得三个独立的GMR或TMR磁敏探测器(D1、D2和D3)构成一个三维磁敏探测器单元(Unit),请参见图2,图2为本发明提供的面内集成磁敏探测器(a)阵列(b)单元(unit)和(c)磁性纳米多层薄膜结构示意图。The present invention also provides the preparation of the GMR or TMR magnetic nano-film and the corresponding magnetosensitive detectors whose magnetic anisotropy of the reference magnetic layer can be modulated in three-dimensional space, especially the large-scale and uniform method for preparing the in-plane integrated three-dimensional magnetosensitive detectors. Specifically, it is to deposit three independent GMR or TMR nano-magnetic multilayer films sequentially at different positions in different units of the substrate by means of mask blocking, that is, the first magneto-sensitive detector film, the second magneto-sensitive detector film Thin film and the third magnetosensitive detector film, and then obtain three independent GMR or TMR magnetosensitive detectors (D1, D2 and D3) through microprocessing to form a three-dimensional magnetosensitive detector unit (Unit), see Figure 2, Fig. 2 is a schematic diagram of the structure of the in-plane integrated magnetosensitive detector (a) array (b) unit (unit) and (c) magnetic nano-multilayer film provided by the present invention.

图3a为本发明提供的两种制备面内集成磁敏探测器阵列所用掩模示意图;图3b、3c为本发明提供的两种制备面内集成磁敏探测器的掩膜单元结构示意图。以下参考图3a、3b、3c具体说明本发明的制备方案。Fig. 3a is a schematic diagram of masks used in the preparation of two in-plane integrated magnetosensitive detector arrays provided by the present invention; Fig. 3b and 3c are schematic diagrams of the structure of mask units used in the preparation of two in-plane integrated magnetosensitive detectors provided by the present invention. The preparation scheme of the present invention will be specifically described below with reference to FIGS. 3a, 3b, and 3c.

制备方案1Preparation scheme 1

1)选择一个基片,经过常规方法清洗。1) Select a substrate and clean it by conventional methods.

2)用开有孔洞并可在XY平面移动的掩膜在与基片间距d处遮挡基片(0<d<1mm);利用超高真空磁控溅射仪沉积第一磁敏探测器薄膜的缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时要分别加上一面内诱导磁场,并且参考磁性层与探测磁性层诱导磁场方向相互垂直。2) Use a mask that has holes and can move on the XY plane to block the substrate at a distance d from the substrate (0<d<1mm); use an ultra-high vacuum magnetron sputtering device to deposit the first magnetic sensitive detector film The buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer; when depositing the reference magnetic layer and depositing the detection magnetic layer, an in-plane induced magnetic field should be added respectively, and the directions of the induced magnetic fields of the reference magnetic layer and the detection magnetic layer are mutually vertical.

所述有孔洞并可在XY平面移动的掩膜为面积不小于基片的掩膜板,沿X方向和Y方向分别包含m列和n行边长为a×b矩形单元,每个矩形单元内在距离单元矩形边a0、b0处开有面积1×w的孔洞,其中1、w范围从0.01mm到5mm;该掩膜板可以是铜板、铝板或不锈钢板等金属模板,也可以是聚四氟乙烯等有机模板,厚度t在0.2~3mm;并可在X和Y方向移动,如图3a和3b所示。其中a0、b0满足w+w0<a0<a-2w-w0,l+l0<b0<b-2l-l0,并且l0>l,w0>w。The mask with holes and movable on the XY plane is a mask plate with an area not smaller than the substrate, and includes m columns and n rows along the X direction and Y direction respectively, and the side length is a×b rectangular units, each rectangular unit There are holes with an area of 1×w in the distance from the rectangular sides a 0 and b 0 of the unit, where 1 and w range from 0.01mm to 5mm; the mask plate can be a metal template such as a copper plate, an aluminum plate or a stainless steel plate, or it can be a Organic templates such as polytetrafluoroethylene have a thickness t of 0.2-3mm; and can move in the X and Y directions, as shown in Figures 3a and 3b. Where a 0 and b 0 satisfy w+w 0 <a 0 <a-2w-w 0 , l+l 0 <b 0 <b-2l-l 0 , and l 0 > l, w 0 >w.

3)沿Y方向移动掩膜板位置l+l0,满足l0>l且b0+2l+l0<b,使掩膜板所开孔洞不与第一磁敏探测器薄膜重叠(Y方向上与第一磁敏探测器薄膜间距l0),在掩膜开孔处沉积第二磁敏探测器薄膜的缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时要分别加上一面内诱导磁场,参考磁性层与探测磁性层诱导磁场方向相互垂直,并且参考磁性层所加诱导磁场方向与2)中参考磁性层所加诱导磁场方向垂直。3) Move the position of the mask plate l+l 0 along the Y direction, satisfying l 0 >l and b 0 +2l+l 0 <b, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film (Y The distance from the first magnetosensitive detector film in the direction is l 0 ), and the buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer of the second magnetosensitive detector film are deposited at the opening of the mask; where the reference When the magnetic layer and the detection magnetic layer are deposited, an inductive magnetic field should be added on one side respectively. The directions of the induced magnetic fields of the reference magnetic layer and the detection magnetic layer are perpendicular to each other, and the direction of the induced magnetic field applied by the reference magnetic layer is the same as that of the induced magnetic field applied by the reference magnetic layer in 2). Direction is vertical.

4)沿X方向移动掩膜板位置w+w0,并满足a0+2w+w0<a且w0>w,使掩膜板所开孔洞既不与第一磁敏探测器薄膜又不与第二磁敏探测器薄膜重叠(X方向上与第二磁敏探测器薄膜间隔w0),在掩膜开孔处沉积第三磁敏探测器薄膜的缓冲层,参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层时不加诱导磁场或施加一垂直膜面的诱导磁场,并且使与中间层接触的铁磁薄膜足够薄,从而使第三磁敏探测器薄膜具有垂直膜面的易磁化方向;沉积探测磁性层时要加上一面内诱导磁场,并且诱导磁场方向与3)中探测磁性层磁场方向一致,同时通过控制探测磁性层厚度使其面内各各向异性较弱,易于沿Z方向翻转。4) Move the position of the mask plate along the X direction w+w 0 , and satisfy a 0 +2w+w 0 <a and w 0 >w, so that the holes opened in the mask plate are neither in contact with the first magnetosensitive detector film nor Do not overlap with the second magnetosensitive detector film (the distance w 0 from the second magnetosensitive detector film in the X direction), deposit the buffer layer of the third magnetosensitive detector film at the opening of the mask, refer to the magnetic layer, the middle layer, detection magnetic layer and cover layer; wherein when depositing the reference magnetic layer, no induced magnetic field or an induced magnetic field perpendicular to the film surface are applied, and the ferromagnetic thin film in contact with the intermediate layer is thin enough, so that the third magnetosensitive detector The thin film has an easy magnetization direction perpendicular to the film surface; when depositing the detection magnetic layer, an in-plane induced magnetic field is added, and the direction of the induced magnetic field is consistent with the magnetic field direction of the detection magnetic layer in 3). The anisotropy is weak, and it is easy to flip along the Z direction.

上述3)和4)顺序可以调换。经上述步骤后在基片上获得m×n个面内集成三维磁敏探测器薄膜单元,每个三维磁敏探测器薄膜单元由第一磁敏探测薄膜、第二磁敏探测薄膜和第三磁敏探测薄膜构成。The above 3) and 4) order can be exchanged. After the above steps, m×n in-plane integrated three-dimensional magnetosensitive detector thin film units are obtained on the substrate, and each three-dimensional magnetic sensitive detector thin film unit is composed of a first magnetic sensitive detection film, a second magnetic sensitive detection film and a third magnetic sensitive detector film. Sensitive detection thin film composition.

5)对于参考磁性层和探测磁性层均为钉扎结构的GMR或TMR磁敏探测器薄膜,按奈尔温度TN由高到低,依次在高于奈尔温度下施加与生长时诱导磁场一致的外磁场退火,使各个磁敏探测器薄膜参考磁性层与探测磁性层易磁化方向相互垂直。5) For the GMR or TMR magnetosensitive detector thin film whose reference magnetic layer and detection magnetic layer are both pinned structures, according to the Neel temperature T N from high to low, the induced magnetic field is applied and grown at a temperature higher than the Neel temperature Consistent external magnetic field annealing makes the easy magnetization directions of the reference magnetic layer and the detection magnetic layer of each magnetosensitive detector thin film perpendicular to each other.

6)对上述GMR或TMR磁性纳米多层膜结构经过常规微加工,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光,或采用电子束曝光、显影、定影、后烘,离子束刻蚀、沉积绝缘层、丙酮去胶获得底电极和位于底电极上的巨磁电阻多层薄膜或磁性纳米隧道结,再经过沉积顶部导电电极、涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀等,可以加工成尺寸大小从数十纳米到数十微米的不同形状的GMR或TMR磁敏探测器单元,如,空心或实心的椭圆、矩形、正多边形和其他特定形状的GMR或TMR器件。6) The above-mentioned GMR or TMR magnetic nano-multilayer film structure undergoes conventional microprocessing, including: glue coating, pre-baking, ultraviolet exposure using a photolithographic plate with patterns to be processed, or electron beam exposure, development, fixing, and post-baking , ion beam etching, deposition of insulating layer, acetone degumming to obtain the bottom electrode and the giant magnetoresistance multilayer film or magnetic nano-tunnel junction on the bottom electrode, and then through the deposition of the top conductive electrode, glue coating, pre-baking, using a The patterned photolithography plate can be processed into different shapes of GMR or TMR magnetosensitive detectors with sizes ranging from tens of nanometers to tens of microns by ultraviolet exposure or electron beam exposure, development, fixing, post-baking, ion beam etching, etc. Device elements, such as hollow or solid ellipse, rectangle, regular polygon and other specific shapes of GMR or TMR devices.

制备方案2Preparation scheme 2

本发明提供另一种利用有孔洞并可在Y方向移动的掩膜板制备上述平面集成三维磁敏探测器磁性纳米薄膜的方法:The present invention provides another method for preparing the above-mentioned planar integrated three-dimensional magnetosensitive detector magnetic nano-film using a mask plate that has holes and can move in the Y direction:

1)选择一个基片,经过常规方法清洗。1) Select a substrate and clean it by conventional methods.

2)用开有孔洞并可在XY平面移动的掩膜在与基片间距d处遮挡基片(0<d<1mm);利用超高真空磁控溅射仪沉积第一磁敏探测器单元缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时要分别加上一面内诱导磁场,并且参考磁性层与探测磁性层诱导磁场方向相互垂直。2) Use a mask that has holes and can move on the XY plane to block the substrate at a distance d from the substrate (0<d<1mm); use an ultra-high vacuum magnetron sputtering apparatus to deposit the first magnetic sensitive detector unit Buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer, and cover layer; when depositing the reference magnetic layer and the detection magnetic layer, an inductive magnetic field in one plane should be added respectively, and the directions of the induced magnetic fields of the reference magnetic layer and the detection magnetic layer are perpendicular to each other .

所述有孔洞并可在Y方向移动的掩膜为面积不小于基片的掩膜板,沿X方向和Y方向分别包含m列和n行边长为a×b矩形单元,每个矩形单元内在距离矩形边a0、b0处开有开有面积l×w的孔洞,其中l、w范围从0.01mm到5mm,该掩膜板可以是铜板、铝板或不锈钢板等金属模板,也可以是聚四氟乙烯等有机板,厚度t在0.2~3mm;并可在Y方向移动,如图3a和3c所示。其中a0、b0满足其中a0、b0满足a0+w<a,2l+2l0<b0<b-3l-2l0,并且l0>l。The mask that has holes and can move in the Y direction is a mask plate with an area not smaller than the substrate, and includes m columns and n rows along the X direction and Y direction respectively, and the side length is a×b rectangular units, and each rectangular unit There are holes with an area of l×w at the inner distance from the sides a 0 and b 0 of the rectangle, where l and w range from 0.01mm to 5mm. The mask plate can be a metal template such as a copper plate, an aluminum plate or a stainless steel plate, or it can be It is an organic plate such as polytetrafluoroethylene, with a thickness t of 0.2-3mm; and it can move in the Y direction, as shown in Figure 3a and 3c. where a 0 and b 0 satisfy where a 0 and b 0 satisfy a 0 +w<a, 2l+2l 0 <b 0 <b-3l-2l 0 , and l 0 >l.

3)沿Y方向移动掩膜板位置l+l0,使掩膜板所开孔洞不与第一磁敏探测器薄膜重叠(Y方向上与第一磁敏探测器薄膜间距l0),在掩膜开孔处沉积第二磁敏探测器单元薄膜缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层和沉积探测磁性层时要分别加上一面内诱导磁场,参考磁性层与探测磁性层诱导磁场方向相互垂直,并且参考磁性层所加诱导磁场方向与2)中参考磁性层所加诱导磁场方向垂直。3) Move the position of the mask plate l+l 0 along the Y direction, so that the hole opened by the mask plate does not overlap with the film of the first magnetosensitive detector (the distance from the film of the first magnetosensitive detector in the Y direction is l 0 ). Deposit the second magnetosensitive detector unit film buffer layer, reference magnetic layer, intermediate layer, detection magnetic layer and cover layer at the opening of the mask; when depositing the reference magnetic layer and deposition of the detection magnetic layer, an in-plane induced magnetic field should be added respectively , the direction of the induced magnetic field of the reference magnetic layer and the detection magnetic layer are perpendicular to each other, and the direction of the induced magnetic field applied by the reference magnetic layer is perpendicular to the direction of the induced magnetic field applied by the reference magnetic layer in 2).

4)继续沿Y方向移动掩膜板位置l+l0,使掩膜板所开孔洞即不与第一磁敏探测器薄膜又不与第二磁敏探测器薄膜重叠(Y方向上与第一磁敏探测器薄膜和第二磁敏探测器薄膜分别间距2l0+l和l0),在掩膜开孔处沉积第三磁敏探测器薄膜缓冲层、参考磁性层、中间层、探测磁性层和覆盖层;其中沉积参考磁性层时不加诱导磁场或施加一垂直膜面的诱导磁场,并且使与中间层接触的铁磁薄膜足够薄,从而使第三磁敏探测器薄膜具有垂直膜面的易磁化方向;沉积探测磁性层时要加上一面内诱导磁场,并且诱导磁场方向与3)中探测磁性层磁场方向一致,同时通过控制探测磁性层厚度使其面内各各向异性较弱,易于沿Z方向翻转。4) Continue to move the position of the mask plate l+l 0 along the Y direction, so that the hole opened by the mask plate does not overlap with the film of the first magnetosensitive detector or the film of the second magnetosensitive detector (in the Y direction, it overlaps with the film of the second magnetosensitive detector). A magnetosensitive detector thin film and a second magnetic sensitive detector thin film have a distance of 2l 0 +l and l 0 ), and a third magnetic sensitive detector thin film buffer layer, a reference magnetic layer, an intermediate layer, and a detection layer are deposited at the mask opening. Magnetic layer and cover layer; Wherein when depositing reference magnetic layer, do not add induction magnetic field or apply the induction magnetic field of a vertical film surface, and make the ferromagnetic thin film that contacts with middle layer be thin enough, thereby make the 3rd magnetosensitive detector thin film have vertical The easy magnetization direction of the film surface; when depositing the detection magnetic layer, an in-plane induced magnetic field should be added, and the direction of the induced magnetic field is consistent with the magnetic field direction of the detection magnetic layer in 3). Weaker, prone to flipping in the Z direction.

只要掩模板尺寸满足b0+l<b,2w+2w0<a0<a-3w-2w0,并且w0>w,掩模板也可在X方向上相继移动w+w0两次,使得第一磁敏探测器薄膜、第二磁敏探测器薄膜和第三磁敏探测器薄膜相互无重叠。经上述步骤后也可在基片上获得m×n个面内集成三维磁敏探测器薄膜单元,每个三维磁敏探测器薄膜单元由第一磁敏探测薄膜、第二磁敏探测薄膜和第三磁敏探测薄膜构成。As long as the size of the mask plate satisfies b 0 +l<b, 2w+2w 0 <a 0 <a-3w-2w 0 , and w 0 >w, the mask plate can also move w+w 0 twice in the X direction successively, The first magnetosensitive detector film, the second magnetosensitive detector film and the third magnetosensitive detector film are not overlapped with each other. After the above steps, m×n in-plane integrated three-dimensional magnetosensitive detector thin film units can also be obtained on the substrate, and each three-dimensional magnetic sensitive detector thin film unit is composed of a first magnetic sensitive detection film, a second magnetic sensitive detection film and a second magnetic sensitive detector film. It consists of three magnetosensitive detection films.

5)对于参考磁性层和探测磁性层均为钉扎结构的GMR或TMR磁敏探测器薄膜,按奈尔温度TN由高到低,依次在高于奈尔温度下施加与生长时诱导磁场一致的外磁场退火,使各个磁敏探测器薄膜参考磁性层与探测磁性层易磁化方向相互垂直。5) For the GMR or TMR magnetosensitive detector thin film whose reference magnetic layer and detection magnetic layer are both pinned structures, according to the Neel temperature T N from high to low, the induced magnetic field is applied and grown at a temperature higher than the Neel temperature Consistent external magnetic field annealing makes the easy magnetization directions of the reference magnetic layer and the detection magnetic layer of each magnetosensitive detector thin film perpendicular to each other.

6)对上述GMR或TMR磁性纳米多层膜结构经过常规微加工,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光,或采用电子束曝光、显影、定影、后烘,离子束刻蚀、沉积绝缘层、丙酮去胶获得底电极和位于底电极上的的巨磁电阻多层薄膜或磁性纳米隧道结,再经过沉积顶部导电电极、涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀等,可以加工成尺寸大小从数十纳米到数十微米的不同形状的GMR或TMR磁敏探测器单元,如,空心或实心的椭圆、矩形、正多边形和其他特定形状的GMR或TMR器件。6) The above-mentioned GMR or TMR magnetic nano-multilayer film structure undergoes conventional microprocessing, including: glue coating, pre-baking, ultraviolet exposure using a photolithographic plate with patterns to be processed, or electron beam exposure, development, fixing, and post-baking , ion beam etching, deposition of insulating layer, acetone degumming to obtain the bottom electrode and the giant magnetoresistance multilayer film or magnetic nano-tunnel junction on the bottom electrode, and then through the deposition of the top conductive electrode, glue coating, pre-baking, and tape The photoresist plate to be processed can be processed into GMR or TMR magnetosensitive sensors with sizes ranging from tens of nanometers to tens of microns by ultraviolet exposure or electron beam exposure, development, fixing, post-baking, ion beam etching, etc. Detector elements, such as hollow or solid ellipses, rectangles, regular polygons and other specific shapes of GMR or TMR devices.

本发明还提供利用上述磁敏探测器,特别是平面集成三维磁敏探测器探测三维空间中磁场分布的方法。图4a为本发明提供的面内集成磁敏探测器测量三维磁场的原理示意图:图4b为本发明提供的面内集成磁敏探测器中单个磁敏探测器单元接线方式示意图。如下图4a所示,参考磁性层易磁化方向相互垂直且在面内的两个磁敏探测器单元D1和D2探测X和Y方向磁场,参考层易磁化方向垂直于薄膜的磁敏探测器单元D3探测Z方向磁场;在每个磁敏探测器单元的上下电极所构成的一对电极上输入恒压(a和b)或恒流(c和d),,在每个磁敏探测器单元另外上下电极所构成的一对电极接收电流信号(c和d)或电压(a和b)信号,如图4b示。当有外磁场时磁敏探测器单元电阻发生改变,导致输出信号的变化。由于参考磁性层与探测磁性层易磁化方向垂直,在一定范围内磁敏探测器单元输出电流/电压信号与磁场的变化呈线性关系,通过外围电路放大并处理磁敏探测器单元电流/电压的变化,即可得出外磁场的大小。The present invention also provides a method for detecting magnetic field distribution in three-dimensional space by using the above-mentioned magnetosensitive detector, especially a planar integrated three-dimensional magnetosensitive detector. Fig. 4a is a schematic diagram of the principle of measuring a three-dimensional magnetic field by the in-plane integrated magnetosensitive detector provided by the present invention; Fig. 4b is a schematic diagram of the wiring mode of a single magnetosensitive detector unit in the in-plane integrated magnetosensitive detector provided by the present invention. As shown in Figure 4a below, the easy magnetization directions of the reference magnetic layer are perpendicular to each other and the two magnetosensitive detector units D1 and D2 in the plane detect the magnetic field in the X and Y directions, and the easy magnetization direction of the reference layer is perpendicular to the magnetosensitive detector unit of the film D3 detects the magnetic field in the Z direction; input constant voltage (a and b) or constant current (c and d) on a pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector unit, and in each magnetosensitive detector unit In addition, a pair of electrodes composed of upper and lower electrodes receives current signals (c and d) or voltage signals (a and b), as shown in FIG. 4b. When there is an external magnetic field, the resistance of the magnetosensitive detector unit changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the easy magnetization direction of the detection magnetic layer, the output current/voltage signal of the magnetic sensitive detector unit has a linear relationship with the change of the magnetic field within a certain range, and the current/voltage of the magnetic sensitive detector unit is amplified and processed by the peripheral circuit. Change, you can get the size of the external magnetic field.

下面结合具体实施例说明本发明提供的GMR或TMR磁性纳米多层薄膜结构和相应的磁敏探测器,特别是面内集成三维磁敏探测器的制备方法。The GMR or TMR magnetic nano-multilayer film structure provided by the present invention and the corresponding magnetosensitive detector, especially the preparation method of the in-plane integrated three-dimensional magnetosensitive detector will be described below in conjunction with specific examples.

实施例1本实施例中磁各向异性在三维空间可调制的磁性纳米多层膜结构用于一维GMR磁敏探测器,并且随参考磁性层中铁磁层厚度不同,其探测磁场方向可以是面内磁场或垂直于膜面磁场。Embodiment 1 In this embodiment, the magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in three-dimensional space is used in a one-dimensional GMR magnetosensitive detector, and with the difference in thickness of the ferromagnetic layer in the reference magnetic layer, the direction of the detection magnetic field can be The in-plane magnetic field or the magnetic field perpendicular to the membrane plane.

1)选择一个厚度为1mm的Si/SiO2衬底作为基片(Sub),并在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,沉积时氩气压为0.07Pa的条件,在该基片上沉积Ta 5nm/Ru 20nm/Ta 5nm的缓冲层。1) Select a Si/SiO 2 substrate with a thickness of 1mm as the substrate (Sub), and use a vacuum better than 2×10 -6 Pa on the magnetron sputtering equipment, and the deposition rate is 0.1nm/s. A buffer layer of Ta 5nm/Ru 20nm/Ta 5nm was deposited on the substrate under the condition that the argon pressure was 0.07Pa.

2)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在缓冲层上沉积反铁磁层IrMn 15nm。2) On the magnetron sputtering equipment, the antiferromagnetic layer IrMn 15nm is deposited on the buffer layer under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa.

3)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.06nm/s,氩气压为0.07Pa的条件,在反铁磁层IrMn上沉积铁磁性层Co 3nm或0.3nm。3) Deposit a ferromagnetic layer of Co 3nm or 0.3nm.

4)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.07nm/s,氩气压为0.07Pa的条件,在铁磁性层上沉积中间层2.5nm的Cu。4) On the magnetron sputtering equipment, under the conditions of vacuum better than 2×10 -6 Pa, deposition rate of 0.07nm/s, and argon pressure of 0.07Pa, Cu of 2.5nm in the middle layer is deposited on the ferromagnetic layer.

5)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.06nm/s,氩气压为0.07Pa的条件,在中间层上沉积磁性层3nm的Co。5) On the magnetron sputtering equipment, under the conditions of vacuum better than 2×10 -6 Pa, deposition rate of 0.06nm/s, and argon pressure of 0.07Pa, a magnetic layer of 3nm Co is deposited on the intermediate layer.

6)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在磁性层上沉积0.85nm的非磁性金属层Ru。6) Deposit a 0.85nm non-magnetic metal layer Ru on the magnetic layer on the magnetron sputtering equipment under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa.

7)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在非磁性金属层上沉积8nm的反铁磁层PtMn。7) Deposit an 8nm antiferromagnetic layer PtMn on the non-magnetic metal layer on the magnetron sputtering equipment under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa .

8)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在反铁磁性层上沉积5nm的Ta覆盖层。8) Deposit a 5nm Ta capping layer on the antiferromagnetic layer on the magnetron sputtering equipment under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa.

9)对3)中铁磁层Co3nm的薄膜,在真空条优于1×10-4Pa的件下,首先在高于IrMn奈尔温度TN IrMn下沿面内施加一200Oe的磁场对上述薄膜退火;待温度降低至IrMn奈尔温度以下后,再在高于PtMn奈尔温度TN PtMn下进行二次退火,二次退火时沿薄膜面内施加一与首次退火磁场方向垂直大小相同的磁场,从而获得用于面内磁场探测的GMR纳米磁性多层薄膜。9) For the 3nm ferromagnetic layer Co3nm thin film in 3), under the condition that the vacuum bar is better than 1×10 -4 Pa, first apply a 200Oe magnetic field along the plane to anneal the above thin film at a temperature T N IrMn higher than the Neel temperature of IrMn ; After the temperature is lowered to below the IrMn Neel temperature, perform secondary annealing at a temperature higher than the PtMn Neel temperature T N PtMn , and apply a magnetic field perpendicular to the first annealing magnetic field direction along the film surface during the secondary annealing, Thus, the GMR nano-magnetic multilayer film for in-plane magnetic field detection is obtained.

对3)中铁磁层Co 0.3nm的薄膜,在真空条优于1×10-4Pa的件下,首先在高于IrMn奈尔温度TN IrMn下垂直膜面施加一200Oe的磁场对上述薄膜退火;待温度降低至IrMn奈尔温度以下后,再在高于PtMn奈尔温度TN PtMn下进行二次退火,二次退火时沿膜面施加一与首次退火磁场大小相同的磁场,从而获得用于垂直磁场探测的GMR纳米磁性多层薄膜。For the 0.3nm Co thin film in the middle ferromagnetic layer in 3), under the condition that the vacuum bar is better than 1×10 -4 Pa, first apply a 200Oe magnetic field perpendicular to the film surface at a temperature higher than IrMn Neel temperature T N IrMn to the above thin film Annealing; after the temperature is lowered to below the IrMn Neel temperature, a second annealing is performed at a temperature higher than the PtMn Neel temperature T N PtMn . During the second annealing, a magnetic field with the same magnitude as the first annealing magnetic field is applied along the film surface, thereby obtaining GMR nanomagnetic multilayer films for perpendicular magnetic field detection.

10)对上述薄膜采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得多个独立的GMR器件,每个GMR器件构成一个一维GMR磁敏探测器。10) Adopt conventional semiconductor micromachining process to the above film, including: gluing, pre-baking, using a photolithography plate with a pattern to be processed to carry out ultraviolet exposure or electron beam exposure, developing, fixing, post-baking, ion beam etching, Acetone degumming, etc., to obtain multiple independent GMR devices, and each GMR device constitutes a one-dimensional GMR magnetosensitive detector.

11)对每个GMR磁敏探测器的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。11) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each GMR magnetosensitive detector, and receive current/voltage signals at the pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the direction of the magnetic moment of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the current/voltage signal.

实施例2本实施例中磁各向异性在三维空间可调制的磁性纳米多层膜结构用于一维TMR磁敏探测器,并且随参考磁性层中铁磁层厚度和退火磁场方向不同,其探测磁场方向可以是面内磁场或垂直于膜面磁场。Embodiment 2 In this embodiment, the magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in three-dimensional space is used in a one-dimensional TMR magnetosensitive detector, and the thickness of the ferromagnetic layer in the reference magnetic layer and the direction of the annealing magnetic field are different, and its detection The direction of the magnetic field can be an in-plane magnetic field or a magnetic field perpendicular to the membrane plane.

1)选择一个厚度为1mm的Si/SiO2衬底作为基片,并在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,沉积时氩气压为0.07Pa的条件,在该基片上沉积Ta 5nm/Ru 20nm/Ta 5nm的缓冲层。1) Select a Si/SiO 2 substrate with a thickness of 1mm as the substrate, and use a vacuum better than 2×10 -6 Pa on the magnetron sputtering equipment, the deposition rate is 0.1nm/s, and the argon pressure during deposition is A buffer layer of Ta 5nm/Ru 20nm/Ta 5nm was deposited on the substrate under the condition of 0.07Pa.

2)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在缓冲层上沉积反铁磁层IrMn 15nm。2) On the magnetron sputtering equipment, the antiferromagnetic layer IrMn 15nm is deposited on the buffer layer under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa.

3)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.06nm/s,氩气压为0.07Pa的条件,在反铁磁层IrMn上沉积铁磁层CoFeB 2.5nm或1.3nm。3) Deposit a ferromagnetic layer CoFeB 2.5nm on the antiferromagnetic layer IrMn on the magnetron sputtering equipment under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.06nm/s, and an argon pressure of 0.07Pa or 1.3nm.

4)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.07nm/s,氩气压为0.07Pa的条件,在铁磁层CoFeB上沉积绝缘中间层1.0nm的MgO。4) On the magnetron sputtering equipment, under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.07nm/s, and an argon pressure of 0.07Pa, deposit an insulating interlayer of 1.0nm MgO on the ferromagnetic layer CoFeB .

5)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.06nm/s,氩气压为0.07Pa的条件,在绝缘中间层上沉积铁磁层3nm的CoFeB。5) CoFeB with a ferromagnetic layer of 3nm was deposited on the insulating interlayer on the magnetron sputtering equipment under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.06nm/s, and an argon pressure of 0.07Pa.

6)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在铁磁层上沉积非磁层Ru0.9nm。6) On the magnetron sputtering equipment, the non-magnetic layer Ru0.9nm is deposited on the ferromagnetic layer under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa.

7)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在非磁层上沉积6.5nm的反铁磁层PtMn。7) Deposit a 6.5nm antiferromagnetic layer of PtMn on the non-magnetic layer with a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa on the magnetron sputtering equipment .

8)在磁控溅射设备上以真空优于2×10-6Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在反铁磁层上沉积覆盖层:Ta 5nm/Ru 5nm。8) On the magnetron sputtering equipment, under the conditions of a vacuum better than 2×10 -6 Pa, a deposition rate of 0.1nm/s, and an argon pressure of 0.07Pa, a covering layer is deposited on the antiferromagnetic layer: Ta 5nm/Ru 5nm.

9)对3)中铁磁层CoFeB 3nm的薄膜,在真空条优于1×10-4Pa的件下,首先在高于IrMn奈尔温度TN IrMn下沿面内施加一200Oe的磁场对上述薄膜退火;待温度降低至IrMn奈尔温度以下后,再在高于PtMn奈尔温度TN PtMn下进行二次退火,二次退火时沿薄膜面内施加一与首次退火磁场方向垂直大小相同的磁场,从而获得用于面内磁场探测的GMR纳米磁性多层薄膜。9) For the thin film of CoFeB 3nm in the middle ferromagnetic layer in 3), under the condition that the vacuum bar is better than 1×10 -4 Pa, firstly apply a magnetic field of 200Oe along the surface of the above thin film at the temperature T N IrMn higher than the Neel temperature of IrMn Annealing: After the temperature drops below the Neel temperature of IrMn, perform a second annealing at a temperature higher than the Neel temperature T N PtMn of PtMn. During the second annealing, apply a magnetic field perpendicular to the direction of the first annealing magnetic field along the film surface during the second annealing. , so as to obtain the GMR nanomagnetic multilayer film for in-plane magnetic field detection.

对3)中铁磁层CoFeB 1.3nm的薄膜,在真空条优于1×10-4Pa的件下,首先在高于IrMn奈尔温度TN IrMn下沿垂直膜面施加一200Oe的磁场对上述薄膜退火;待温度降低至IrMn奈尔温度以下后,再在高于PtMn奈尔温度TN PtMn下进行二次退火,二次退火时沿膜面施加一大小相同的磁场,从而获得用于垂直磁场探测的GMR纳米磁性多层薄膜。For 3) CoFeB 1.3nm thin film in the middle ferromagnetic layer, under the condition that the vacuum bar is better than 1×10 -4 Pa, firstly apply a 200Oe magnetic field along the vertical film surface at a temperature higher than IrMn Neel temperature T N IrMn . Thin film annealing; after the temperature is lowered below the Neel temperature of IrMn, a second annealing is performed at a temperature higher than the Neel temperature T N PtMn of PtMn. During the second annealing, a magnetic field of the same size is applied along the film surface to obtain a vertical GMR nanomagnetic multilayer films for magnetic field detection.

10)对上述薄膜采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得多个独立的TMR器件,每个TMR器件构成一个一维TMR磁敏探测器。10) Adopt conventional semiconductor micromachining process to the above film, including: gluing, pre-baking, using a photolithography plate with a pattern to be processed to carry out ultraviolet exposure or electron beam exposure, developing, fixing, post-baking, ion beam etching, Acetone degumming, etc., to obtain multiple independent TMR devices, and each TMR device constitutes a one-dimensional TMR magnetosensitive detector.

11)对每个TMR磁敏探测器的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。11) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each TMR magnetosensitive detector, and receive the current/voltage signal at the pair of electrodes formed by the upper and lower electrodes of each magnetic sensitive detector; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the direction of the magnetic moment of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the current/voltage signal.

实施例3~20给出具有不同结构的用于GMR一维磁敏探测器的磁性纳米多层膜结构(见表1)。Embodiments 3-20 provide magnetic nano-multilayer film structures with different structures used in GMR one-dimensional magnetosensitive detectors (see Table 1).

实施例20~38给出具有不同结构的用于TMR一维磁敏探测器的磁性纳米多层膜结构(见表2)。Embodiments 20-38 provide magnetic nano-multilayer film structures with different structures for TMR one-dimensional magnetosensitive detectors (see Table 2).

Figure BSA00000507303800201
Figure BSA00000507303800201

实施例39采用可在XY平面内移动的掩模板制备基于单侧钉扎Co/Cu-GMR磁性纳米多层薄膜的三维磁敏探测器Example 39 Using a mask that can move in the XY plane to prepare a three-dimensional magnetosensitive detector based on single-sided pinned Co/Cu-GMR magnetic nano-multilayer films

1)选择一个长宽高为30mm×30mm×1mm的Si/SiO2为基片。1) Select a Si/SiO 2 with a length, width and height of 30mm×30mm×1mm as the substrate.

2)选用一长宽高30mm×300mm×2mm的矩形Cu掩膜,该掩膜有10行10列3mm×3mm(a=b=3mm)的正方形单元,每个单元在距离单元左下方边界长宽0.5mm(a0=b0=1mm)处开有一长宽均为0.25mm(l=w=0.25mm)的孔洞。使Cu掩膜距离基片d=0.2mm。在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第一磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层IrMn 8nm/Co 3nm、中间层Cu 2.5nm、探测磁性层Co 4nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿X方向的磁场200Oe,在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。2) Select a rectangular Cu mask with a length, width, and height of 30mm×300mm×2mm. The mask has 10 rows and 10 columns of 3mm×3mm (a=b=3mm) square units, and each unit is at a distance from the lower left boundary of the unit. A hole with a length and a width of 0.25 mm (l=w=0.25 mm) is opened at a width of 0.5 mm (a 0 =b 0 =1 mm). Make the Cu mask distance d=0.2mm from the substrate. On the magnetron sputtering equipment, the buffer of the first magnetic sensitive detector film was deposited on Si/SiO 2 under the conditions of vacuum better than 5×10 -5 Pa, deposition rate of 0.1nm/s, and argon pressure of 0.07Pa. Layer Ta 5nm, reference magnetic layer IrMn 8nm/Co 3nm, intermediate layer Cu 2.5nm, detection magnetic layer Co 4nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the X direction in one side, When depositing the detection magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane.

3)沿Y方向移动掩膜板0.5mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第二磁敏探测器薄膜的缓冲层Ta5nm,参考磁性层PtMn 8nm/Co 3nm、中间层Cu 2.5nm、探测磁性层Co 4nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿Y方向的磁场200Oe,在沉积探测磁性层时加上一面内沿X方向的磁场200Oe。3) Move the mask plate 0.5mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film. On the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, and the deposition rate Under the conditions of 0.1nm/s and argon pressure of 0.07Pa, the buffer layer Ta5nm of the second magnetosensitive detector film is deposited on Si/SiO 2 , the reference magnetic layer PtMn 8nm/Co 3nm, the intermediate layer Cu 2.5nm, the detection magnetic Layer Co 4nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane, and add a magnetic field of 200Oe along the X direction within one plane when depositing the detection magnetic layer.

4)再沿X方向移动掩膜板0.5mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠又不与第二磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第三磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层FeMn 4nm/Co 1.0nm、中间层Cu 2.5nm、探测磁性层Co1.6nm和覆盖层Ta 5nm/Ru 5nm;其中在沉积参考磁性层时不加外磁场或施加一垂直于膜面的200Oe的诱导磁场,沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。4) Move the mask plate 0.5mm along the X direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film and does not overlap with the second magnetosensitive detector film. The vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the third magnetosensitive detector film is deposited on Si/SiO 2 , and the reference magnetic layer is FeMn 4nm/Co 1.0nm, middle layer Cu 2.5nm, detection magnetic layer Co1.6nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, no external magnetic field is applied or an induced magnetic field of 200Oe perpendicular to the film surface is applied When depositing the detection magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane.

5)对每个单元内沉积了三个磁敏探测器薄膜的基片同时采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得三个独立的GMR器件从而构成一三维磁敏探测器单元,最后按掩模板单元划分将基片切割为100个磁敏探测器单元。5) For the substrate on which three magnetosensitive detector films are deposited in each unit, the conventional semiconductor micromachining process is adopted at the same time, including: gluing, pre-baking, ultraviolet exposure using a photolithography plate with a pattern to be processed or electronic Beam exposure, development, fixing, post-baking, ion beam etching, acetone degumming, etc., to obtain three independent GMR devices to form a three-dimensional magnetic sensitive detector unit, and finally cut the substrate into 100 according to the mask template unit Magnetic detector unit.

6)对每个GMR磁敏探测器单元的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。6) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each GMR magnetosensitive detector unit, and receive current/voltage signals at the pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the magnetic moment direction of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained by outputting the current/voltage signal.

实施例40采用可在Y方向移动的掩模板制备基于单侧钉扎Co/Au-GMR磁性纳米多层薄膜三维磁敏测器Example 40 Using a mask that can move in the Y direction to prepare a three-dimensional magnetic sensor based on single-sided pinned Co/Au-GMR magnetic nano-multilayer films

1)选择一个长宽高为30mm×30mm×1mm的Si/SiO2为基片。1) Select a Si/SiO 2 with a length, width and height of 30mm×30mm×1mm as the substrate.

2)选用一长宽高30mm×30mm×2mm的矩形Cu掩膜,该掩膜板有10行15列2mm×3mm(a=2mm,b=3mm)的矩形单元,每个单元距离单元左下方边界长宽分别为a0=0.25mm和b0=0.9mm处开有一长宽分别为l=0.15mm和w=1.5mm的孔洞。使Cu掩膜板距离基片0.1mm,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第一磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性NiMn8nm/Fe2nm、中间层Au 2.5nm、探测磁性层Fe 3nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿X方向的磁场200Oe,在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。2) Select a rectangular Cu mask with a length, width, and height of 30mm×30mm×2mm. The mask plate has 10 rows and 15 columns of 2mm×3mm (a=2mm, b=3mm) rectangular units, and each unit is at the bottom left of the unit. A hole with a length and width of l=0.15mm and w=1.5mm is opened at the boundary where the length and width are respectively a 0 =0.25mm and b 0 =0.9mm. Make the Cu mask plate 0.1mm away from the substrate, on the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa . Deposit the buffer layer Ta 5nm of the first magnetosensitive detector thin film, reference magnetic NiMn8nm/Fe2nm, middle layer Au 2.5nm, detection magnetic layer Fe 3nm and covering layer Ta 5nm/Ru 5nm; The inner magnetic field 200Oe along the X direction is added to the inner magnetic field 200Oe along the Y direction when depositing the detection magnetic layer.

3)再继续沿Y方向移动掩膜板0.3mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第二磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层IrMn 8nm/Fe 2nm、中间层Au 2.5nm、探测磁性层Fe3nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿Y方向的磁场200Oe,在沉积探测磁性层时加上一面内沿X方向的磁场200Oe。3) Continue to move the mask plate 0.3mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film. On the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, The deposition rate is 0.1nm/s, the argon pressure is 0.07Pa, the buffer layer Ta 5nm of the second magnetosensitive detector film is deposited on Si/SiO 2 , the reference magnetic layer IrMn 8nm/Fe 2nm, the intermediate layer Au 2.5nm , Detection magnetic layer Fe3nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane, and add a magnetic field of 200Oe along the X direction within one plane when depositing the detection magnetic layer.

4)沿Y方向移动掩膜板0.3mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠又不与第二磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第三磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层PtMn 4nm/Fe 1nm、中间层Au 2.5nm、探测磁性层Fe1.5nm和覆盖层Ta 5nm/Ru 5nm;其中在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。4) Move the mask plate 0.3mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film and does not overlap with the second magnetosensitive detector film. Better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the third magnetosensitive detector thin film is deposited on Si/SiO 2 , and the reference magnetic layer PtMn 4nm /Fe 1nm, middle layer Au 2.5nm, detection magnetic layer Fe1.5nm and cover layer Ta 5nm/Ru 5nm; when depositing the detection magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane.

5)对每个单元内沉积了三个磁敏探测器薄膜的基片同时采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得三个独立的GMR器件从而构成一三维磁敏探测器单元,在按单元划分将基片切割为150个磁敏探测器单元。5) For the substrate on which three magnetosensitive detector films are deposited in each unit, the conventional semiconductor micromachining process is adopted at the same time, including: gluing, pre-baking, ultraviolet exposure using a photolithography plate with a pattern to be processed or electronic Beam exposure, development, fixing, post-baking, ion beam etching, acetone degumming, etc., to obtain three independent GMR devices to form a three-dimensional magnetosensitive detector unit, and divide the substrate into 150 magnetosensitive detectors by unit division. detector unit.

6)对每个GMR磁敏探测器单元的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器单元另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。6) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each GMR magnetic sensitive detector unit, and receive the current/voltage signal on the pair of electrodes formed by the upper and lower electrodes of each magnetic sensitive detector unit ; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the direction of the magnetic moment of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the output current/voltage signal.

实施例41采用可在XY平面内移动的掩模板制备基于单侧钉扎CoFeB/MgO/CoFeB-TMR磁性纳米多层薄膜的三维磁敏测器Example 41 Preparation of a three-dimensional magnetic sensor based on single-sided pinned CoFeB/MgO/CoFeB-TMR magnetic nano-multilayer films using a mask that can move in the XY plane

1)选择一个长宽高为30mm×30mm×1mm的Si/SiO2为基片。1) Select a Si/SiO 2 with a length, width and height of 30mm×30mm×1mm as the substrate.

2)选用一长宽高30mm×300mm×2mm的矩形不锈钢掩膜,该掩膜有10行10列3mm×3mm(a=b=3mm)的正方形单元,每个单元距离单元左下方边界长宽1mm(a0=b0=1mm)处开有一长宽均为0.25mm(l=w=0.25mm)的孔洞。使不锈钢掩膜距离基片0.2mm,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第一磁敏探测器薄膜的缓冲层Ta5nm,参考磁性层IrMn 8nm/CoFeB 3nm、中间层MgO 2nm、探测磁性层CoFe 4nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿X方向的磁场200Oe,在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。2) Select a rectangular stainless steel mask with a length, width, and height of 30mm×300mm×2mm. The mask has 10 rows and 10 columns of 3mm×3mm (a=b=3mm) square units, and each unit is the length and width from the lower left boundary of the unit A hole with a length and a width of 0.25 mm (l=w=0.25 mm) is opened at 1 mm (a 0 =b 0 =1 mm). The distance between the stainless steel mask and the substrate is 0.2mm, on the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa, on Si/SiO 2 Deposit the buffer layer Ta5nm of the first magnetosensitive detector film, the reference magnetic layer IrMn 8nm/CoFeB 3nm, the middle layer MgO 2nm, the detection magnetic layer CoFe 4nm and the cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add one side The inner magnetic field 200Oe along the X direction is added to the inner magnetic field 200Oe along the Y direction when depositing the detection magnetic layer.

3)再沿X方向移动掩膜板0.5mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第二磁敏探测器单元薄膜的缓冲层Ta 5nm,参考磁性层PtMn8nm/CoFeB 3nm、中间层MgO 2nm、探测磁性层CoFeB4nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿Y方向的磁场200Oe,在沉积探测磁性层时加上一面内沿X方向的磁场200Oe。3) Move the mask plate 0.5mm along the X direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film. On the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, deposit The speed is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the second magnetosensitive detector unit film is deposited on Si/SiO 2 , the reference magnetic layer is PtMn8nm/CoFeB 3nm, the middle layer MgO is 2nm, and the detection Magnetic layer CoFeB4nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane, and add a magnetic field of 200Oe along the X direction within one plane when depositing the detection magnetic layer.

4)沿Y方向移动掩膜板0.5mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠又不与第二磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第三磁敏探测器单元薄膜的缓冲层Ta 5nm,参考磁性层FeMn 4nm/CoFeB 1.3nm、中间层MgO 1nm、探测磁性层CoFeB 1.5nm和覆盖层Ta 5nm/Ru 5nm;其中在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe;在沉积参考磁性层时不施加磁场或施加200Oe垂直于薄膜的磁场。4) Move the mask plate 0.5mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetic sensitive detector film and does not overlap with the second magnetic sensitive detector film. It is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the third magnetosensitive detector unit film is deposited on Si/SiO 2 , and the reference magnetic layer is FeMn 4nm/CoFeB 1.3nm, middle layer MgO 1nm, detection magnetic layer CoFeB 1.5nm and cover layer Ta 5nm/Ru 5nm; when depositing the detection magnetic layer, add a magnetic field 200Oe along the Y direction in one plane; when depositing the reference magnetic layer Either no magnetic field was applied or a 200 Oe magnetic field was applied perpendicular to the film.

5)对每个单元内沉积了三个磁敏探测器薄膜的基片同时采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得三个独立的TMR器件从而构成三维磁敏探测器单元,在按单元划分将基片切割为150个磁敏探测器单元。5) For the substrate on which three magnetosensitive detector films are deposited in each unit, the conventional semiconductor micromachining process is adopted at the same time, including: gluing, pre-baking, ultraviolet exposure using a photolithography plate with a pattern to be processed or electronic Beam exposure, development, fixing, post-baking, ion beam etching, acetone degumming, etc., to obtain three independent TMR devices to form a three-dimensional magnetosensitive detector unit, and cut the substrate into 150 magnetosensitive detectors according to the unit division. device unit.

6)对每个TMR磁敏探测器单元的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器单元另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层易磁化方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。6) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each TMR magnetosensitive detector unit, and receive the current/voltage signal on the pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector unit ; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the easy magnetization direction of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the output current/voltage signal.

实施例42采用可在Y方向内移动的掩模板制备基于单侧钉扎CoFeB/MgO/CoFeB-TMR磁性纳米多层薄膜的三维磁敏探测器Example 42 Using a mask that can move in the Y direction to prepare a three-dimensional magnetosensitive detector based on single-sided pinned CoFeB/MgO/CoFeB-TMR magnetic nano-multilayer films

1)选择一个长宽高为30mm×30mm×1mm的Si/SiO2为基片。1) Select a Si/SiO 2 with a length, width and height of 30mm×30mm×1mm as the substrate.

2)选用一长宽高30mm×30mm×2mm的矩形Cu掩膜,该掩膜有10行10列2mm×3mm(a=2mm,b=3mm)的矩形单元,每个单元距离单元左下方边界长宽分别为a0=0.25mm和b0=0.9mm处开有一长宽分别为l=0.15mm和w=1.5mm的孔洞。使Cu掩膜距离基片0.1mm,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第一磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层IrMn 12nm/CoFeB 3nm、中间层MgO 1.5nm、探测磁性层CoFeB 4nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿X方向的磁场200Oe,在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。2) Select a rectangular Cu mask with a length, width, and height of 30mm×30mm×2mm. The mask has 10 rows and 10 columns of 2mm×3mm (a=2mm, b=3mm) rectangular units, and each unit is far from the lower left boundary of the unit A hole with a length and width of l=0.15mm and w=1.5mm is opened at a 0 =0.25mm and b 0 =0.9mm respectively. Make the Cu mask 0.1mm away from the substrate, on the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa, on the Si/SiO 2 Deposit the buffer layer Ta 5nm of the first magnetosensitive detector thin film, reference magnetic layer IrMn 12nm/CoFeB 3nm, intermediate layer MgO 1.5nm, detect magnetic layer CoFeB 4nm and cover layer Ta 5nm/Ru 5nm; Wherein add when depositing reference magnetic layer A magnetic field of 200Oe along the X direction in the upper plane is applied, and a magnetic field of 200Oe along the Y direction in the plane is added when depositing the detection magnetic layer.

3)再沿Y方向移动掩膜板0.3mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第二磁敏探测器薄膜的缓冲层Ta5nm,参考磁性层PtMn 12nm/CoFeB 3nm、中间层MgO 1.5nm、探测磁性层CoFeB4nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿Y方向的磁场200Oe,在沉积探测磁性层时加上一面内沿X方向的磁场200Oe。3) Move the mask plate 0.3mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film. On the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, deposit The rate is 0.1nm/s, the argon pressure is 0.07Pa, the buffer layer Ta5nm of the second magnetosensitive detector thin film is deposited on Si/ SiO2 , the reference magnetic layer PtMn 12nm/CoFeB 3nm, the middle layer MgO 1.5nm, the detection Magnetic layer CoFeB4nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane, and add a magnetic field of 200Oe along the X direction within one plane when depositing the detection magnetic layer.

4)沿Y方向移动掩膜板0.3mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠又不与第二磁敏探测器单元薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第三磁敏探测器单元薄膜的缓冲层Ta 5nm,参考磁性层FeMn 4nm/CoFeB 1.nm、中间层MgO 1.5nm、探测磁性层CoFeB 1.5nm和覆盖层Ta 5nm/Ru 5nm;其中在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。4) Move the mask plate 0.3mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film and does not overlap with the second magnetosensitive detector unit film. The vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the third magnetosensitive detector unit film is deposited on Si/SiO 2 , and the reference magnetic layer FeMn 4nm/CoFeB 1.nm, middle layer MgO 1.5nm, detection magnetic layer CoFeB 1.5nm and cover layer Ta 5nm/Ru 5nm; when depositing the detection magnetic layer, add a magnetic field of 200Oe along the Y direction within one side.

5)对每个单元内沉积了三个磁敏探测器薄膜的基片同时采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得三个独立的TMR器件从而构成一三维磁敏探测器单元,在按单元划分将基片切割为150个磁敏探测器单元。5) For the substrate on which three magnetosensitive detector films are deposited in each unit, the conventional semiconductor micromachining process is adopted at the same time, including: gluing, pre-baking, ultraviolet exposure using a photolithography plate with a pattern to be processed or electronic Beam exposure, development, fixing, post-baking, ion beam etching, acetone degumming, etc., to obtain three independent TMR devices to form a three-dimensional magnetosensitive detector unit, and divide the substrate into 150 magnetosensitive detectors according to the unit division. detector unit.

6)对每个TMR磁敏探测器单元的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器单元另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。6) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each TMR magnetosensitive detector unit, and receive the current/voltage signal on the pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector unit ; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the direction of the magnetic moment of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the output current/voltage signal.

实施例43采用可在XY平面内移动的掩模板制备基于双侧钉扎Co/Cu-GMR磁性纳米多层薄膜三维磁敏探测器Example 43 Using a mask that can move in the XY plane to prepare a three-dimensional magnetosensitive detector based on double-sided pinned Co/Cu-GMR magnetic nano-multilayer films

1)选择一个长宽高为30mm×30mm×1mm的Si/SiO2为基片。1) Select a Si/SiO 2 with a length, width and height of 30mm×30mm×1mm as the substrate.

2)选用一长宽高30mm×300mm×2mm的矩形Cu掩膜,该掩膜有10行10列3mm×3mm(a=b=3mm)的正方形单元,每个单元在距离单元左下方边界长宽0.5mm(a0=b0=1mm)处开有一长宽均为0.25mm(l=w=0.25mm)的孔洞。使Cu掩膜距离基片d=0.2mm。在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第一磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层NiMn 5nm/Co 3nm、中间层Cu 2.5nm、探测磁性层Co 4nm/IrMn 5nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿X方向的磁场200Oe,在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。2) Select a rectangular Cu mask with a length, width, and height of 30mm×300mm×2mm. The mask has 10 rows and 10 columns of 3mm×3mm (a=b=3mm) square units, and each unit is at a distance from the lower left boundary of the unit. A hole with a length and a width of 0.25 mm (l=w=0.25 mm) is opened at a width of 0.5 mm (a 0 =b 0 =1 mm). Make the Cu mask distance d=0.2mm from the substrate. On the magnetron sputtering equipment, the buffer of the first magnetic sensitive detector film was deposited on Si/SiO 2 under the conditions of vacuum better than 5×10 -5 Pa, deposition rate of 0.1nm/s, and argon pressure of 0.07Pa. Layer Ta 5nm, reference magnetic layer NiMn 5nm/Co 3nm, intermediate layer Cu 2.5nm, detection magnetic layer Co 4nm/IrMn 5nm and cover layer Ta 5nm/Ru 5nm; where the reference magnetic layer is deposited along the X direction The magnetic field is 200Oe, and a magnetic field of 200Oe along the Y direction within one plane is added when depositing the detection magnetic layer.

3)沿Y方向移动掩膜板0.5mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第二磁敏探测器薄膜的缓冲层Ta5nm,参考磁性层IrMn 5nm/Co 3nm、中间层Cu 2.5nm、探测磁性层Co 4nm/FeMn 5nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿Y方向的磁场200Oe,在沉积探测磁性层时加上一面内沿X方向的磁场200Oe。3) Move the mask plate 0.5mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film. On the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, and the deposition rate Under the conditions of 0.1nm/s and argon pressure of 0.07Pa, the buffer layer Ta5nm of the second magnetosensitive detector film is deposited on Si/SiO 2 , the reference magnetic layer IrMn 5nm/Co 3nm, the intermediate layer Cu 2.5nm, the detection magnetic Layer Co 4nm/FeMn 5nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane, and add a magnetic field of 200Oe along the X direction within one plane when depositing the detection magnetic layer.

4)再沿X方向移动掩膜板0.5mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠又不与第二磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第三磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层PtMn 5nm/Co 1nm、中间层Cu 2.5nm、探测磁性层Co 1.5nm/FeMn 5nm和覆盖层Ta 5nm/Ru 5nm;其中在沉积参考磁性层时加上垂直膜面沿Z方向的磁场200O,沉积探测磁性层时加上一面内沿X方向的磁场200Oe。4) Move the mask plate 0.5mm along the X direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film and does not overlap with the second magnetosensitive detector film. The vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the third magnetosensitive detector film is deposited on Si/SiO 2 , and the reference magnetic layer is PtMn 5nm/Co 1nm, intermediate layer Cu 2.5nm, detection magnetic layer Co 1.5nm/FeMn 5nm and cover layer Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field 200O perpendicular to the film surface along the Z direction, and the deposition detection For the magnetic layer, a magnetic field of 200Oe along the X direction within one plane is applied.

5)在真空条优于1×10-4Pa的件下,先在高于NiMn奈尔温度TN NiMn下沿膜面X方向施加一200Oe的磁场对上述薄膜进行首次退火;待温度降低至NiMn奈尔温度TN NiMn以下后撤除磁场;在温度高于IrMn奈尔温度TN IrMn下沿面内Y方向施加200Oe的磁场进行第二次退火,待温度降至IrMn奈尔温度TN IrMn以下后撤除磁场;再在高于PtMn奈尔温度TN PtMn沿沿垂直膜面Z方向施加200Oe的磁场进行第三次退火,待温度降至PtMn奈尔温度TN PtMn以下后撤除磁场;最后在高于FeMn奈尔温度TN FeMn施加一沿膜面X方向200Oe的磁场退火,待待温度降至常温度后撤除磁场。5) Under the condition that the vacuum bar is better than 1×10 -4 Pa, firstly apply a magnetic field of 200Oe along the X direction of the film surface at a temperature higher than the NiMn Neel temperature T N NiMn to anneal the above film for the first time; wait until the temperature drops to Remove the magnetic field after the NiMn Neel temperature T N NiMn is below; when the temperature is higher than the IrMn Neel temperature T N IrMn , apply a magnetic field of 200Oe along the in-plane Y direction for the second annealing, and wait until the temperature drops below the IrMn Neel temperature T N IrMn Afterwards, the magnetic field is removed; then the third annealing is performed on PtMn with a magnetic field of 200Oe applied along the Z direction perpendicular to the film surface at a temperature higher than the PtMn Neel temperature T N PtMn , and the magnetic field is removed after the temperature drops below the PtMn Neel temperature T N PtMn ; Higher than the FeMn Neel temperature T N FeMn is annealed with a magnetic field of 200Oe along the X direction of the film surface, and the magnetic field is removed after the temperature drops to normal temperature.

6)对每个单元内沉积了三个磁敏探测器薄膜的基片同时采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得三个独立的GMR器件从而构成一三维磁敏探测器单元,最后按单元划分将基片切割为100个磁敏探测器单元。6) For the substrate on which three magnetosensitive detector thin films are deposited in each unit, the conventional semiconductor micromachining process is adopted at the same time, including: glue coating, pre-baking, ultraviolet exposure using a photolithography plate with patterns to be processed or electronic Beam exposure, development, fixing, post-baking, ion beam etching, acetone degumming, etc., to obtain three independent GMR devices to form a three-dimensional magnetosensitive detector unit, and finally divide the substrate into 100 magnetosensitive detectors according to the unit division. detector unit.

7)对每个GMR磁敏探测器单元的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器单元另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。7) Input a constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each GMR magnetosensitive detector unit, and receive current/voltage signals on the pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector unit ; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the direction of the magnetic moment of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the output current/voltage signal.

实施例44采用可在Y方向内移动的掩模板制备基于双侧钉扎CoFeB/MgO/CoFeB-TMR磁性纳米多层薄膜的三维磁敏探测器Example 44 Preparation of a three-dimensional magnetosensitive detector based on double-sided pinned CoFeB/MgO/CoFeB-TMR magnetic nano-multilayer films using a mask that can move in the Y direction

1)选择一个长宽高为30mm×30mm×1mm的Si/SiO2为基片。1) Select a Si/SiO 2 with a length, width and height of 30mm×30mm×1mm as the substrate.

2)选用一长宽高30mm×30mm×2mm的矩形Cu掩膜,该掩膜有10行10列2mm×3mm(a=2mm,b=3mm)的矩形单元,每个单元距离单元左下方边界长宽分别为a0=0.25mm和b0=0.9mm处开有一长宽分别为l=0.15mm和w=1.5mm的孔洞。使Cu掩膜距离基片0.1mm,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第一磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层NiMn 12nm/CoFeB 3nm、中间层MgO 1.5nm、探测磁性层CoFeB 4nm/IrMn5nm/和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿X方向的磁场200Oe,在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。2) Select a rectangular Cu mask with a length, width, and height of 30mm×30mm×2mm. The mask has 10 rows and 10 columns of 2mm×3mm (a=2mm, b=3mm) rectangular units, and each unit is far from the lower left boundary of the unit A hole with a length and width of l=0.15mm and w=1.5mm is opened at a 0 =0.25mm and b 0 =0.9mm respectively. Make the Cu mask 0.1mm away from the substrate, on the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa, on the Si/SiO 2 Deposit the buffer layer Ta 5nm of the first magnetosensitive detector film, the reference magnetic layer NiMn 12nm/CoFeB 3nm, the middle layer MgO 1.5nm, the detection magnetic layer CoFeB 4nm/IrMn5nm/ and the covering layer Ta 5nm/Ru 5nm; Add a magnetic field of 200Oe along the X direction within one plane when depositing the magnetic layer, and add a magnetic field of 200Oe along the Y direction within one plane when depositing the detection magnetic layer.

3)再沿Y方向移动掩膜板0.3mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第二磁敏探测器薄膜的缓冲层Ta5nm,参考磁性层IrMn 5nm/CoFeB 3nm、中间层MgO 1.5nm、探测磁性层CoFeB4nm/FeMn 5nm和覆盖层Ta 5nm/Ru 5nm;其中沉积参考磁性层时加上一面内沿Y方向的磁场200Oe,在沉积探测磁性层时加上一面内沿X方向的磁场200Oe。3) Move the mask plate 0.3mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film. On the magnetron sputtering equipment, the vacuum is better than 5×10 -5 Pa, deposit The speed is 0.1nm/s, the argon pressure is 0.07Pa, the buffer layer Ta5nm of the second magnetosensitive detector film is deposited on Si/ SiO2 , the reference magnetic layer IrMn 5nm/CoFeB 3nm, the middle layer MgO 1.5nm, the detection The magnetic layer is CoFeB4nm/FeMn 5nm and the cover layer is Ta 5nm/Ru 5nm; when depositing the reference magnetic layer, add a magnetic field of 200Oe along the Y direction within one plane, and add a magnetic field of 200Oe along the X direction within one plane when depositing the detection magnetic layer.

4)沿Y方向移动掩膜板0.3mm,使得掩膜板所开孔洞不与第一磁敏探测器薄膜重叠又不与第二磁敏探测器薄膜重叠,在磁控溅射设备上以真空优于5×10-5Pa,沉积速率为0.1nm/s,氩气压为0.07Pa的条件,在Si/SiO2上沉积第三磁敏探测器薄膜的缓冲层Ta 5nm,参考磁性层PtMn 5nm/CoFeB 1nm、中间层MgO 1.5nm、探测磁性层CoFeB 1.5nm/FeMn 5nm和覆盖层Ta 5nm/Ru 5nm;其中在沉积探测磁性层时加上一面内沿Y方向的磁场200Oe。4) Move the mask plate 0.3mm along the Y direction, so that the hole opened by the mask plate does not overlap with the first magnetosensitive detector film and does not overlap with the second magnetosensitive detector film. It is better than 5×10 -5 Pa, the deposition rate is 0.1nm/s, and the argon pressure is 0.07Pa. The buffer layer Ta 5nm of the third magnetosensitive detector film is deposited on Si/SiO 2 , and the reference magnetic layer PtMn 5nm /CoFeB 1nm, middle layer MgO 1.5nm, detection magnetic layer CoFeB 1.5nm/FeMn 5nm and cover layer Ta 5nm/Ru 5nm; when depositing the detection magnetic layer, add a magnetic field of 200Oe along the Y direction within one side.

5)在真空条优于1×10-4Pa的件下,先在高于NiMn奈尔温度TN NiMn下沿膜面X方向施加一200Oe的磁场对上述薄膜进行首次退火;待温度降低至NiMn奈尔温度TN NiMn以下后撤除磁场;在温度高于IrMn奈尔温度TN IrMn下沿面内Y方向施加200Oe的磁场进行第二次退火,待温度降至IrMn奈尔温度TN IrMn以下后撤除磁场;再在高于PtMn奈尔温度TN PtMn沿垂直膜面方向即Z方向施加200Oe的磁场进行第三次退火,待温度降至PtMn奈尔温度TN PtMn以下后撤除磁场;最后在高于FeMn奈尔温度TN FeMn施加沿面内X方向200Oe的磁场退火,待温度降至常温度后撤除磁场。5) Under the condition that the vacuum bar is better than 1×10 -4 Pa, firstly apply a magnetic field of 200Oe along the X direction of the film surface at a temperature higher than the NiMn Neel temperature T N NiMn to anneal the above film for the first time; wait until the temperature drops to Remove the magnetic field after the NiMn Neel temperature T N NiMn is below; when the temperature is higher than the IrMn Neel temperature T N IrMn , apply a magnetic field of 200Oe along the in-plane Y direction for the second annealing, and wait until the temperature drops below the IrMn Neel temperature T N IrMn Then remove the magnetic field; then apply a magnetic field of 200Oe in the direction perpendicular to the film surface, that is, the Z direction, for the third annealing at a temperature higher than the PtMn Neel temperature T N PtMn , and remove the magnetic field after the temperature drops below the PtMn Neel temperature T N PtMn ; finally Apply a magnetic field annealing along the in-plane X direction of 200Oe at T N FeMn , which is higher than the Neel temperature of FeMn, and remove the magnetic field after the temperature drops to normal temperature.

6)对每个单元内沉积了三个磁敏探测器薄膜的基片同时采用常规的半导体微加工工艺,包括:涂胶、前烘、采用带有待加工图形的光刻板进行紫外曝光或采用电子束曝光、显影、定影、后烘,离子束刻蚀、丙酮去胶等,获得三个独立的TMR器件从而构成一三维磁敏探测器单元,最后按单元划分将基片切割为150个磁敏探测器单元。6) For the substrate on which three magnetosensitive detector thin films are deposited in each unit, the conventional semiconductor micromachining process is adopted at the same time, including: glue coating, pre-baking, ultraviolet exposure using a photolithography plate with patterns to be processed or electronic Beam exposure, development, fixing, post-baking, ion beam etching, acetone degumming, etc., to obtain three independent TMR devices to form a three-dimensional magnetosensitive detector unit, and finally divide the substrate into 150 magnetosensitive detectors according to the unit division. detector unit.

7)对每个TMR磁敏探测器单元的上下电极所构成的一对电极上输入恒压/恒流,在每个磁敏探测器单元另外上下电极所构成的一对电极接收电流/电压信号;当有外磁场时磁敏探测器电阻发生改变,导致输出信号的变化,由于参考磁性层与探测磁性层磁矩方向垂直,在一定范围内输出电流/电压信号与磁场的变化呈线性关系,由输出电流/电压信号即可得出外磁场的大小。7) Input constant voltage/constant current to the pair of electrodes formed by the upper and lower electrodes of each TMR magnetosensitive detector unit, and receive the current/voltage signal on the pair of electrodes formed by the upper and lower electrodes of each magnetosensitive detector unit ; When there is an external magnetic field, the resistance of the magnetosensitive detector changes, resulting in a change in the output signal. Since the reference magnetic layer is perpendicular to the direction of the magnetic moment of the detection magnetic layer, the output current/voltage signal has a linear relationship with the change of the magnetic field within a certain range. The magnitude of the external magnetic field can be obtained from the output current/voltage signal.

应该说明的是,此处提出的各个实施例是为了更好地解释本发明的实际应用,并使得本技术领域的熟练人员可以利用本发明。但是本领域的一般熟练人员可以理解,上面的描述和实施例仅仅是为了说明而举的例子。本发明的核心内容是提供一种磁各向异性在三维空间可调制的磁性纳米多层薄膜结构;其核心设计原理是:利用铁磁层/非磁层界面诱导的垂直磁各向异性,通过改变磁性层厚度在不同厚度处获得垂直磁化或面内磁化的磁性层,同时利用钉扎结构和诱导磁场生长以及后续磁场退火方式实现磁性纳米薄膜磁各向异性在三维空间上的调制。It should be noted that the various embodiments presented here are intended to better explain the practical application of the present invention and enable those skilled in the art to utilize the present invention. However, those skilled in the art will appreciate that the above descriptions and examples are examples for illustration only. The core content of the present invention is to provide a magnetic nano-multilayer film structure whose magnetic anisotropy can be modulated in three-dimensional space; Change the thickness of the magnetic layer to obtain perpendicular magnetization or in-plane magnetization at different thicknesses. At the same time, the magnetic anisotropy of the magnetic nano-film can be modulated in three dimensions by using the pinning structure, induced magnetic field growth and subsequent magnetic field annealing.

本发明的效果:本发明利用铁磁层/非磁层界面诱导的垂直各向异性调制参考磁性层和探测磁性层的磁各向异性:在铁磁层较薄处获得易磁化轴垂直膜面的参考层,在铁磁层较厚处获得易磁化轴在面内的参考层;再利用钉扎结构或诱导磁场生长以及后续磁场中退火实现参考磁性层和探测磁性层磁各向异性在三维空间的调制,其磁敏探测器工艺简单,一致性好,且集成度高。The effect of the present invention: the present invention uses the perpendicular anisotropy induced by the ferromagnetic layer/non-magnetic layer interface to modulate the magnetic anisotropy of the reference magnetic layer and the detection magnetic layer: the easy magnetization axis vertical film surface is obtained at the thinner ferromagnetic layer The reference layer of the ferromagnetic layer is obtained at the thicker part of the ferromagnetic layer, and the reference layer with the easy axis of magnetization in the plane is obtained; the pinning structure or induced magnetic field growth and subsequent annealing in the magnetic field are used to realize the magnetic anisotropy of the reference magnetic layer and the detection magnetic layer in three dimensions Spatial modulation, the magnetosensitive detector has simple process, good consistency, and high integration.

当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。Certainly, the present invention also can have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes All changes and modifications should belong to the protection scope of the claims of the present invention.

Claims (19)

1. a GMR or the TMR magnetic Nano multi-layer film structure that magnetic anisotropy can be modulated at three dimensions comprises: substrate and the resilient coating on it, reference magnetic layer, intermediate layer, detection magnetosphere and cover layer successively; It is characterized in that said reference magnetic layer has utilized the interface induced perpendicular magnetic anisotropy of ferromagnetic layer/non-magnetosphere, ferromagnetic layer thickness makes that its direction of easy axis is in the face in the reference magnetic layer through regulating, and is made as the XY direction, or vertical face, is made as the Z direction.
2. magnetic Nano multi-layer film structure according to claim 1 is characterized in that, when direction of easy axis is in face, adopts the mode of pinning structure and induced magnetic field growth to modulate the orientation of easy magnetizing axis in face.
3. magnetic Nano multi-layer film structure according to claim 1 is characterized in that, said reference magnetic layer coercivity H 1Greater than surveying the magnetosphere coercivity H 2
4. magnetic Nano multi-layer film structure according to claim 1; It is characterized in that said intermediate layer is non-magnetic metal layer or insulative barriers layer, wherein; Corresponding GMR magnetic Nano multi-layer film structure; Said intermediate layer is a non-magnetic metal layer, corresponding TMR magnetic Nano multi-layer film structure, and said intermediate layer is the insulative barriers layer.
5. magnetic Nano multi-layer film structure according to claim 1; It is characterized in that; Said reference magnetic layer can be made up of single ferromagnetic layer with the detection magnetosphere, also can be by being the direct or indirect pinning structure that ferromagnetic layer, inverse ferric magnetosphere and nonmagnetic metal layer constitute; Said direct pinning is meant that the antiferromagnet layer directly contacts FM/AFM with ferromagnetic layer, and described indirect pinning is meant to be inserted the very thin non-magnetic metal layer FM/NM/AFM of one deck or insert composite bed FM1/NM/FM11/AFM between antiferromagnet layer and ferromagnetic layer.
6. according to the said magnetic Nano multi-layer film structure of claim 1; It is characterized in that; The material of said ferromagnetic layer is selected from Co, Fe, Ni or ferromagnetic metal alloy material, and perhaps semi-metallic changes at 0.2~10nm by required magnetic anisotropy different-thickness.
7. according to the said magnetic Nano multi-layer film structure of claim 6, it is characterized in that said ferromagnetic metal alloy firm is selected from CoFe, CoFeB, NiFeCr or NiFe, said semi-metallic is selected from CoFeAl, CoMnAl, CoMnGe or CoMnGa.
8. according to the said magnetic Nano multi-layer film structure of claim 1; It is characterized in that; Said antiferromagnetic materials are selected from PtMn, IrMn, FeMn, NiMn, perhaps are selected to have anti-ferromagnetic oxide, and said have anti-ferromagnetic oxide and be selected from CoO or NiO; The thickness of said PtMn, IrMn, FeMn and NiMn is 3~30nm, and said thickness with anti-ferromagnetic oxide is 5~50nm.
9. according to the said magnetic Nano multi-layer film structure of claim 1, it is characterized in that said non-magnetic metal layer is selected from Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or its alloy, thickness is 0.2~10nm.
10. according to the said magnetic Nano multi-layer film structure of claim 1, it is characterized in that, when said intermediate layer is potential barrier, be selected from AlO x, MgO, Mg 1-xZn xO, MgxAl 2/3 (1-x)O, AlN, Ta 2O 5, ZnO, HfO 2, TiO 2Inorganic oxide, thickness are 0.5~5nm, wherein, and for AlO x, 0<x<3/2 is for Mg 1-xZn xO and Mg xAl 2/3 (1-x)O, 0<x<1; Said when the intermediate layer is nonmagnetic metal, be selected from Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au metal material, thickness is 0.2~10nm.
11., it is characterized in that said resilient coating is the big and metal material that closely contact with substrate of resistance according to the said magnetic Nano multi-layer film structure of claim 1, described buffer layer thickness is 3~30nm.
12., it is characterized in that said resilient coating is selected from Ta, Ru, Cr, Pt, perhaps the multi-layer film structure of above-mentioned metal according to the said magnetic Nano multi-layer film structure of claim 11.
13. according to the said magnetic Nano multi-layer film structure of claim 1; It is characterized in that; Said cover layer is used to protect the not oxidized and corrosion of structure for being difficult for oxidized and corrosion and better conductivity metal level, and said tectal structure is the metal level of the individual layer of Ta, Cu, Al, Ru, Au, Ag, Pt; Perhaps be the plural layers of above-mentioned metal, said tectal thickness is 2~100nm.
14., it is characterized in that said substrate is glass substrate, Si substrate, Si/SiO according to the said magnetic Nano multi-layer film structure of claim 1 2The inorganic substrate of substrate, SiC substrate perhaps is polyethylene, polypropylene, polystyrene, according to organic flexible substrate of terephthalic acid (TPA) diol ester, polyimides, Merlon, the thickness of said substrate is 0.3~1mm.
15. magneto-dependent sensor based on the described magnetic Nano multi-layer film structure preparation of claim 1.
16. magneto-dependent sensor according to claim 15; It is characterized in that; Said magneto-dependent sensor is that three dimensions magnetosensitive integrated in the face is surveyed device; Integrated three dimensions magnetosensitive is surveyed device and is comprised three of diverse location on the same substrate independently magnetosensitive detector cells in said, and said magnetosensitive detector cells all adopts the said magnetic Nano multi-layer film structure preparation of claim 1.
17. magneto-dependent sensor according to claim 16 is characterized in that, during no external magnetic field, the reference layer magnetic moment direction of each magnetosensitive detector cells is vertical with its detecting layer magnetic moment direction respectively; Three magnetosensitive detector reference layer easy axis are vertical each other, and one of them magnetosensitive detector cells reference layer easy axis is perpendicular to face, and two magnetosensitive detector cells reference layer easy axis are parallel to face and vertical each other in addition.
18. the preparation method of the magneto-dependent sensor of a claim 16; It is characterized in that; Said magneto-dependent sensor is that three dimensions magnetosensitive integrated in the face is surveyed device; In said integrated three dimensions magnetosensitive survey device for utilize mask shielding mode diverse location in the substrate different units deposit successively three independently, nano-magnetic GMR or TMR plural layers; Be respectively the first magnetosensitive detector film, the second magnetosensitive detector film and the 3rd magnetosensitive detector film, obtain three independently GMR or TMR magnetosensitive detector cells through little processing again, constitute a three dimensions magnetosensitive and survey device; Wherein, the said first magnetosensitive detector film, the second magnetosensitive detector film and the 3rd magnetosensitive detector film all adopt GMR or the TMR magnetic Nano multi-layer film structure that the described magnetic anisotropy of claim 1 can be modulated at three dimensions.
19. the preparation method according to the magneto-dependent sensor of claim 18 is characterized in that, comprises step:
Step 1: select a substrate;
Step 2: the resilient coating, reference magnetic layer, intermediate layer, detection magnetosphere and the cover layer that deposit the first magnetosensitive detector film; Wherein deposit when reference magnetic layer and deposition are surveyed magnetosphere and add induced magnetic field in the one side respectively, and the reference magnetic layer is vertical each other with detection magnetosphere induced magnetic field direction;
Step 3: the resilient coating, reference magnetic layer, intermediate layer, detection magnetosphere and the cover layer that deposit the second magnetosensitive detector film; Wherein deposit and add induced magnetic field in the one side when reference magnetic layer is surveyed magnetosphere with deposition respectively; The reference magnetic layer is with to survey magnetosphere induced magnetic field direction vertical each other, and the reference magnetic layer adds in induced magnetic field direction and the step 2 the reference magnetic layer, and to add the induced magnetic field direction vertical;
Step 4: deposit the resilient coating of the 3rd magnetosensitive detector film, reference magnetic layer, intermediate layer, detection magnetosphere and cover layer; Do not add induced magnetic field when wherein depositing the reference magnetic layer or apply the induced magnetic field of a vertical face, and make the 3rd magnetosensitive detector film have the direction of easy axis of vertical face; Deposition adds induced magnetic field in the one side when surveying magnetosphere, and detection magnetospheric magnetic field direction is consistent in induced magnetic field direction and the step 3;
Step 5: for the reference magnetic layer with survey GMR or the TMR magnetosensitive detector film that magnetosphere is the pinning structure, press N T NFrom high to low, under being higher than N, apply the consistent external magnetic field annealing of induced magnetic field when growing successively, make each magnetosensitive detector film reference magnetic layer vertical each other with detection magnetosphere direction of easy axis;
Step 6: to above-mentioned three magnetosensitive detector film GMR or the little processing of TMR magnetic Nano multi-layer film structure process; Be processed into GMR or TMR magnetosensitive detector cells, constitute three dimensions magnetosensitive integrated in the face and survey three dimensions magnetosensitive survey device integrated in face of device formation.
CN201110143364.1A 2011-05-30 2011-05-30 Magnetic film structure, magneto-dependent sensor and preparation method that anisotropy can be modulated Active CN102810630B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110143364.1A CN102810630B (en) 2011-05-30 2011-05-30 Magnetic film structure, magneto-dependent sensor and preparation method that anisotropy can be modulated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110143364.1A CN102810630B (en) 2011-05-30 2011-05-30 Magnetic film structure, magneto-dependent sensor and preparation method that anisotropy can be modulated

Publications (2)

Publication Number Publication Date
CN102810630A true CN102810630A (en) 2012-12-05
CN102810630B CN102810630B (en) 2015-11-25

Family

ID=47234280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110143364.1A Active CN102810630B (en) 2011-05-30 2011-05-30 Magnetic film structure, magneto-dependent sensor and preparation method that anisotropy can be modulated

Country Status (1)

Country Link
CN (1) CN102810630B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235274A (en) * 2013-04-19 2013-08-07 中国科学院物理研究所 Antiferromagnetic spin flop phenomenon-based sensor
CN103913709A (en) * 2014-03-28 2014-07-09 江苏多维科技有限公司 Single-chip three-axis magnetic field sensor and manufacturing method thereof
CN104900800A (en) * 2014-03-03 2015-09-09 北京嘉岳同乐极电子有限公司 GMR magnetic nanometer multilayer film used for magneto-dependent sensor
CN105699920A (en) * 2016-01-14 2016-06-22 西安交通大学 Area-array giant-magnetoresistance magnetic sensor and manufacturing method thereof
CN106129244A (en) * 2016-06-29 2016-11-16 中国科学院半导体研究所 L10-MnGa or MnAl-based wide linear response magnetic sensor and preparation method
CN109754985A (en) * 2019-03-15 2019-05-14 电子科技大学 A method for improving anisotropic magnetoresistance of permalloy thin films
CN109884563A (en) * 2019-02-26 2019-06-14 电子科技大学 A kind of testing method of easy magnetization direction of magnetic metal film
CN110144611A (en) * 2019-06-10 2019-08-20 河北工业大学 Corrosion-resistant and wear-resistant composite coating on magnesium alloy surface and preparation method thereof
CN110373589A (en) * 2019-07-08 2019-10-25 中国科学院物理研究所 W-Cr alloy and pure spin current device comprising W-Cr alloy
CN111624525A (en) * 2020-05-26 2020-09-04 中国人民解放军国防科技大学 Integrated three-axis magnetic sensor for suppressing magnetic noise by utilizing magnetic stress regulation and control
CN111740010A (en) * 2020-06-18 2020-10-02 电子科技大学 An Anisotropic Magnetoresistance Based on Multilayer Magnetic Composite Structure
CN111929625A (en) * 2020-08-13 2020-11-13 中国科学院微电子研究所 Magnetic field sensor and test method
CN113075596A (en) * 2021-03-19 2021-07-06 中国科学院半导体研究所 Tunneling magnetoresistance effect magnetic sensor based on superparamagnetic film
CN113257995A (en) * 2021-06-23 2021-08-13 北京科技大学 Single-layer film with magnetic field-free auxiliary magnetization switching effect and preparation method thereof
CN113437210A (en) * 2021-06-24 2021-09-24 杭州电子科技大学 Current regulation and control magnetic random access memory based on spin orbit torque
CN114420836A (en) * 2022-01-05 2022-04-29 北京科技大学 Ru intercalation-regulated ultrahigh anisotropy magnetoresistance film and preparation method thereof
CN114814674A (en) * 2021-01-20 2022-07-29 Tdk株式会社 Design method and manufacturing method of magnetic sensor
CN116288157A (en) * 2023-02-14 2023-06-23 杭州睿笛生物科技有限公司 Nanoparticle composite magneto-optical film and preparation method and application thereof
CN117858613A (en) * 2024-01-15 2024-04-09 甘肃省科学院传感技术研究所 Structure for improving stress of flexible artificial antiferromagnetic film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979210A (en) * 2005-12-09 2007-06-13 中国科学院物理研究所 3-D magnetic-field sensor integrated by planes, preparing method and use
CN101276879A (en) * 2008-04-01 2008-10-01 北京科技大学 A Double Free Layer Vertical Ferromagnetic Tunnel Junction Structure
CN101546807A (en) * 2008-03-27 2009-09-30 株式会社东芝 Magnetoresistive element and magnetic memory
WO2010001018A1 (en) * 2008-06-09 2010-01-07 Commissariat A L'energie Atomique Three-layer magnetic element, method for the production thereof, magnetic field sensor, magnetic memory, and magnetic logic gate using such an element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979210A (en) * 2005-12-09 2007-06-13 中国科学院物理研究所 3-D magnetic-field sensor integrated by planes, preparing method and use
CN101546807A (en) * 2008-03-27 2009-09-30 株式会社东芝 Magnetoresistive element and magnetic memory
CN101276879A (en) * 2008-04-01 2008-10-01 北京科技大学 A Double Free Layer Vertical Ferromagnetic Tunnel Junction Structure
WO2010001018A1 (en) * 2008-06-09 2010-01-07 Commissariat A L'energie Atomique Three-layer magnetic element, method for the production thereof, magnetic field sensor, magnetic memory, and magnetic logic gate using such an element

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Applied Physics Letters》 20110317 Khalili Amiri et al. Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions 第112507-1页右栏第1行至112507-3页左栏第28行,图1-4 1-19 第98卷, 第11期 *
IKEDA ET AL.: "A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction", 《NATURE MATERIALS》 *
KHALILI AMIRI ET AL.: "Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions", 《APPLIED PHYSICS LETTERS》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235274A (en) * 2013-04-19 2013-08-07 中国科学院物理研究所 Antiferromagnetic spin flop phenomenon-based sensor
CN103235274B (en) * 2013-04-19 2015-12-23 中国科学院物理研究所 A kind of sensor based on antiferromagnetic spin flop phenomenon
CN104900800A (en) * 2014-03-03 2015-09-09 北京嘉岳同乐极电子有限公司 GMR magnetic nanometer multilayer film used for magneto-dependent sensor
CN103913709A (en) * 2014-03-28 2014-07-09 江苏多维科技有限公司 Single-chip three-axis magnetic field sensor and manufacturing method thereof
CN103913709B (en) * 2014-03-28 2017-05-17 江苏多维科技有限公司 Single-chip three-axis magnetic field sensor and manufacturing method thereof
CN105699920A (en) * 2016-01-14 2016-06-22 西安交通大学 Area-array giant-magnetoresistance magnetic sensor and manufacturing method thereof
CN106129244A (en) * 2016-06-29 2016-11-16 中国科学院半导体研究所 L10-MnGa or MnAl-based wide linear response magnetic sensor and preparation method
CN106129244B (en) * 2016-06-29 2018-10-09 中国科学院半导体研究所 L10- MnGa or L10- MnAl sound stage width linear response magneto-dependent sensors and preparation method
CN109884563A (en) * 2019-02-26 2019-06-14 电子科技大学 A kind of testing method of easy magnetization direction of magnetic metal film
CN109754985A (en) * 2019-03-15 2019-05-14 电子科技大学 A method for improving anisotropic magnetoresistance of permalloy thin films
CN110144611B (en) * 2019-06-10 2021-10-22 河北工业大学 A kind of magnesium alloy surface corrosion-resistant and wear-resistant composite coating and preparation method thereof
CN110144611A (en) * 2019-06-10 2019-08-20 河北工业大学 Corrosion-resistant and wear-resistant composite coating on magnesium alloy surface and preparation method thereof
CN110373589A (en) * 2019-07-08 2019-10-25 中国科学院物理研究所 W-Cr alloy and pure spin current device comprising W-Cr alloy
CN111624525B (en) * 2020-05-26 2022-06-14 中国人民解放军国防科技大学 An Integrated Triaxial Magnetic Sensor Using Magnetic Stress Control to Suppress Magnetic Noise
CN111624525A (en) * 2020-05-26 2020-09-04 中国人民解放军国防科技大学 Integrated three-axis magnetic sensor for suppressing magnetic noise by utilizing magnetic stress regulation and control
CN111740010A (en) * 2020-06-18 2020-10-02 电子科技大学 An Anisotropic Magnetoresistance Based on Multilayer Magnetic Composite Structure
CN111929625A (en) * 2020-08-13 2020-11-13 中国科学院微电子研究所 Magnetic field sensor and test method
CN111929625B (en) * 2020-08-13 2023-03-28 中国科学院微电子研究所 Magnetic field sensor and testing method
CN114814674A (en) * 2021-01-20 2022-07-29 Tdk株式会社 Design method and manufacturing method of magnetic sensor
CN113075596A (en) * 2021-03-19 2021-07-06 中国科学院半导体研究所 Tunneling magnetoresistance effect magnetic sensor based on superparamagnetic film
CN113075596B (en) * 2021-03-19 2023-12-05 中国科学院半导体研究所 Tunneling magneto-resistance effect magneto-sensitive sensor based on superparamagnetism film
CN113257995A (en) * 2021-06-23 2021-08-13 北京科技大学 Single-layer film with magnetic field-free auxiliary magnetization switching effect and preparation method thereof
CN113437210A (en) * 2021-06-24 2021-09-24 杭州电子科技大学 Current regulation and control magnetic random access memory based on spin orbit torque
CN114420836A (en) * 2022-01-05 2022-04-29 北京科技大学 Ru intercalation-regulated ultrahigh anisotropy magnetoresistance film and preparation method thereof
CN114420836B (en) * 2022-01-05 2022-09-30 北京科技大学 Ru intercalation-regulated ultrahigh anisotropy magnetoresistance film and preparation method thereof
CN116288157A (en) * 2023-02-14 2023-06-23 杭州睿笛生物科技有限公司 Nanoparticle composite magneto-optical film and preparation method and application thereof
CN117858613A (en) * 2024-01-15 2024-04-09 甘肃省科学院传感技术研究所 Structure for improving stress of flexible artificial antiferromagnetic film and preparation method thereof

Also Published As

Publication number Publication date
CN102810630B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
CN102810630B (en) Magnetic film structure, magneto-dependent sensor and preparation method that anisotropy can be modulated
CN102270736B (en) Magnetic nano-multilayer film used for magnetic sensor and manufacturing method for magnetic nano-multilayer film
CN101183704B (en) Tunneling magnetoresistance device, its manufacture method, magnetic head and magnetic memory using tmr device
US9099119B2 (en) Magnetic read sensor using spin hall effect
JP3793725B2 (en) Magnetic detection element, method of manufacturing the same, and magnetic detection apparatus using the magnetic detection element
US20030133232A1 (en) FeTa nano-oxide layer as a capping layer for enhancement of giant magnetoresistance in bottom spin valve structures
KR101105069B1 (en) Magnetoresistive element
KR19990072763A (en) A spin dependent conduction device
JPH10112562A (en) Magneto resistance effect type sensor, and its manufacture, and magnetic head equipped with the sensor
CN105449096B (en) Magnetic film structure and its manufacture, application method and magnetosensitive sensing unit, array
Mohiuddin et al. Graphene in multilayered CPP spin valves
US20070030603A1 (en) Stabilizer for magnetoresistive head in current perpendicular to plane mode and method of manufacture
US6730395B2 (en) Magnetic tunnel junction using nanoparticle monolayers and applications therefor
US6807033B2 (en) Magnetic sensor with reduced wing region magnetic sensitivity
CN101071574A (en) Cpp-gmr magnetic head using gmr screen layer
Jia et al. Magnetic sensors for data storage: perspective and future outlook
CN100505360C (en) A kind of magnetic multilayer film with linear magnetoresistance effect and its application
KR19980070402A (en) Magnetoresistive thin film and its manufacturing method
JP2007194327A (en) Tunnel-type magnetic detecting element
Grünberg Layered magnetic structures: history, facts and figures
US8023232B2 (en) Film and method for producing nano-particles for magnetoresistive device
Wu Nano spintronics for data storage
CN102623018A (en) A magnetic multilayer film based on a perpendicular magnetization free layer and a magnetic sensor
CN106129244A (en) L10-MnGa or MnAl-based wide linear response magnetic sensor and preparation method
JP2003249700A (en) Magnetoresistive element, magnetoresistive head including the same, magnetic storage device, and method of manufacturing magnetoresistive head

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant