CN102761994A - Nano ceramic electric heating coating device and manufacturing method thereof - Google Patents
Nano ceramic electric heating coating device and manufacturing method thereof Download PDFInfo
- Publication number
- CN102761994A CN102761994A CN2011101036844A CN201110103684A CN102761994A CN 102761994 A CN102761994 A CN 102761994A CN 2011101036844 A CN2011101036844 A CN 2011101036844A CN 201110103684 A CN201110103684 A CN 201110103684A CN 102761994 A CN102761994 A CN 102761994A
- Authority
- CN
- China
- Prior art keywords
- nano
- glue
- electrothermal
- conductive
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 39
- 239000011248 coating agent Substances 0.000 title claims abstract description 37
- 239000000919 ceramic Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000005485 electric heating Methods 0.000 title abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000003989 dielectric material Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000002002 slurry Substances 0.000 claims abstract description 12
- 238000012360 testing method Methods 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 239000003292 glue Substances 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910002113 barium titanate Inorganic materials 0.000 claims description 6
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 6
- 229910001948 sodium oxide Inorganic materials 0.000 claims description 6
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 claims description 5
- 229910001950 potassium oxide Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 235000011187 glycerol Nutrition 0.000 claims description 3
- 238000007639 printing Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims 3
- 239000004020 conductor Substances 0.000 claims 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 23
- 239000002585 base Substances 0.000 description 9
- 239000000956 alloy Substances 0.000 description 4
- -1 iron-chromium-aluminum Chemical group 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011031 topaz Substances 0.000 description 2
- 229910052853 topaz Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
- H05B3/265—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/145—Carbon only, e.g. carbon black, graphite
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/04—Heating means manufactured by using nanotechnology
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Resistance Heating (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种纳米陶瓷电热涂层装置及其制造方法,尤其是利用由薄膜态的陶瓷介电材料及纳米导电热材料组成的纳米电热薄膜,增加有效导电率并且降低电阻值来快速地加热。The invention relates to a nano-ceramic electrothermal coating device and a manufacturing method thereof, especially utilizing a nano-electrothermal film composed of a thin-film ceramic dielectric material and a nano-conductive heat material to increase the effective conductivity and reduce the resistance value for rapid heating .
背景技术 Background technique
电发热技术从发明至今已经超过百年,主要加热的主要装置为电热丝,制作电热丝的电热合金材料可分为二大类:一类是铁铬铝合金系列,另一类是镍铬合金系列。铁铬铝合金(1Cr13Al4 0Cr25Al5 0Cr21Al60Cr21Al6Nb 0Cr27Al7Mo2等)系列其使用温度高,最高使用温度可达1400度,使用寿命长、表面负荷高、抗氧化性能好、电阻率高,价格便宜等优点。同时也有明显的缺点,主要是高温强度低,随着使用温度升高其塑性增大,组件易变形,不易弯曲和修复。Electric heating technology has been invented for more than a hundred years. The main heating device is electric heating wire. The electric heating alloy materials used to make electric heating wire can be divided into two categories: one is iron-chromium-aluminum alloy series, and the other is nickel-chromium alloy series. . The iron-chromium-aluminum alloy (1Cr13Al4 0Cr25Al5 0Cr21Al60Cr21Al6Nb 0Cr27Al7Mo2, etc.) series has the advantages of high service temperature, the maximum service temperature can reach 1400 degrees, long service life, high surface load, good oxidation resistance, high resistivity, and cheap price. At the same time, it also has obvious disadvantages, mainly low high temperature strength, its plasticity increases with the increase of use temperature, the components are easy to deform, and it is not easy to bend and repair.
镍铬电热合金(Cr20Ni80)系列最主要的优点是:高温时其抗张强度,虽然较“铁铬铝”材质为高,高温使用下不易变形,其结构不易改变,塑性较好,易修复,其辐射率高,无磁性,耐腐蚀性强,使用寿命长等。但其相对的缺点是:由于采用较为稀缺且价格较高的镍金属材料制成,故该系列产品价格高出铁铬铝最多达几倍,使用温度也较铁铬铝合金低。The main advantages of nickel-chromium electric heating alloy (Cr20Ni80) series are: its tensile strength at high temperature is higher than that of "iron-chromium-aluminum" material, it is not easy to deform under high temperature use, its structure is not easy to change, its plasticity is good, and it is easy to repair. Its radiation rate is high, non-magnetic, strong corrosion resistance, long service life, etc. But its relative disadvantages are: because it is made of relatively rare and expensive nickel metal materials, the price of this series of products is up to several times higher than that of Fe-Cr-Al, and the use temperature is lower than that of Fe-Cr-Al.
无论哪一种电热丝它们的发热机理是相同的,其电热转换效率很难突破90%的电热转换效率,也就是电热丝通电时,产生的热能量与所消耗的电能量的比值,另外,传统电热丝因为熔点高达1300℃以上,所以生产时需要加温到熔点以上的温度,能耗非常大,同时防止重金属污染也将提高成本。所以传统电热丝的综合能耗相当巨大,在节能、环保呼声日益高涨的今天,需要一种能耗效率更高、成本更低、应用方法更简单的电发热技术。No matter what kind of heating wire, their heating mechanism is the same, and its electrothermal conversion efficiency is difficult to break through 90% of the electrothermal conversion efficiency, that is, the ratio of the thermal energy generated to the consumed electrical energy when the heating wire is energized. In addition, Because the melting point of the traditional heating wire is as high as 1300°C, it needs to be heated to a temperature above the melting point during production, which consumes a lot of energy. At the same time, preventing heavy metal pollution will also increase the cost. Therefore, the comprehensive energy consumption of traditional electric heating wires is quite huge. Today, with the increasing calls for energy saving and environmental protection, an electric heating technology with higher energy consumption efficiency, lower cost, and simpler application methods is needed.
发明内容 Contents of the invention
本发明的主要目的是提供一种纳米陶瓷电热涂层装置。The main purpose of the present invention is to provide a nano-ceramic electrothermal coating device.
本发明所述装置包含一绝缘基座、纳米电热薄膜以及至少二导电接点,绝缘基座可以为平板状、管状、柱状,纳米电热薄膜设置于绝缘基座的一表面上,是由一介电材料、一纳米导电热材料以及一固化材料所组成,至少二导电接点设置于该纳米电热薄膜上,用以透过导线连接一电源的正极及负极,当该至少二导电接点透过导线与电源的正极及负极连接时,纳米电热薄膜能够迅速的产生热能。The device of the present invention comprises an insulating base, a nano-electrothermal film and at least two conductive contacts. The insulating base can be in the shape of a flat plate, a tube, or a column. Material, a nano-conductive heat material and a cured material, at least two conductive contacts are arranged on the nano-electric heating film, and are used to connect the positive pole and the negative pole of a power supply through a wire. When the at least two conductive contacts pass through the wire and the power supply When the positive and negative electrodes are connected, the nano electrothermal film can quickly generate heat.
该纳米电热薄膜中的介电材料,介电常数在900~1800W/M的范围,包含钛酸钡(BaTiO3)、钛酸锶(SrTiO3)、锆钛酸铅(Pb(ZrTi)O3,PZT)、氮化铝(AlN)、碳化硅(SiC)等,作为产生阻抗发热的物质,而纳米导电热材料主要为纳米碳管或石墨烯,用以快速地将热导入/输出,固化材料为氧化铁、氧化铝、氧化铬、氧化钠、氧化钾、氧化硅、氧化锶的至少其中之一,其中该介电材料占总重量的10%~35%,而纳米导电热材料占总重量的30~60%,该纳米导电热材料及该介电材料可以依照所需的发热功率来调整比例,而总电阻率4×10-4Ω·cm以下,而该绝缘基座的材料也可依照所需发热的温度产生范围来选择。该至少二导电接点可以为银胶、铜胶、金胶、碳胶、石墨胶等各种导电胶所形成。The dielectric material in the nano electrothermal film has a dielectric constant in the range of 900-1800W/M, including barium titanate (BaTiO3), strontium titanate (SrTiO3), lead zirconate titanate (Pb(ZrTi)O3, PZT) , aluminum nitride (AlN), silicon carbide (SiC), etc., as substances that generate resistance heating, and nano-conductive thermal materials are mainly carbon nanotubes or graphene, which are used to quickly import/export heat, and the cured material is oxide At least one of iron, aluminum oxide, chromium oxide, sodium oxide, potassium oxide, silicon oxide, and strontium oxide, wherein the dielectric material accounts for 10% to 35% of the total weight, and the nano-conductive thermal material accounts for 30% of the total weight ~60%, the ratio of the nano-conductive thermal material and the dielectric material can be adjusted according to the required heating power, and the total resistivity is below 4×10-4Ω·cm, and the material of the insulating base can also be adjusted according to the required The heating temperature generation range is selected. The at least two conductive contacts can be formed by various conductive glues such as silver glue, copper glue, gold glue, carbon glue, graphite glue and the like.
该装置进一步包含一温控装置,该温控装置与电源的正负极连接,并透过导线与至少二导电接点30连接,用以侦测该纳米电热薄膜的温度,并控制电流的开路或断路,以免造成过热。The device further includes a temperature control device, which is connected to the positive and negative poles of the power supply and connected to at least two
本发明的另一目的是提供一种纳米陶瓷电热涂层装置的制造方法,该方法包含纳米电热浆料制作步骤、涂布步骤、导电接点设置步骤、烘烤步骤、冷却及测试步骤以及控制芯片连接步骤。纳米电热浆料制作步骤是将介电材料、纳米导电热材料、添加剂以及固化材料先充分研磨、搅拌混合成泥浆状,再冷却浓缩而形成胶状的纳米电热浆料,其中该添加剂为甲苯、乙醇、甘油的至少其中之一,固化材料为氧化铁、氧化铝、氧化铬、氧化钠、氧化钾、氧化硅、氧化锶的至少其中之一,作为催化剂之用。涂布步骤,是将纳米电热浆料均匀涂布于绝缘基座的一表面上,而在干燥后形成纳米电热薄膜,涂布的方式可以为滚涂、喷涂或旋转涂布的至少其中之一。Another object of the present invention is to provide a method for manufacturing a nano-ceramic electrothermal coating device, which method includes the steps of making nano-electrothermal slurry, coating step, conductive contact setting step, baking step, cooling and testing step and control chip Connection steps. The production steps of nano electric heating slurry are to fully grind, stir and mix dielectric materials, nano conductive heat materials, additives and solidified materials to form a slurry, and then cool and concentrate to form a colloidal nano electric heating slurry, wherein the additives are toluene, At least one of ethanol and glycerin, and the solidified material is at least one of iron oxide, aluminum oxide, chromium oxide, sodium oxide, potassium oxide, silicon oxide, and strontium oxide, used as a catalyst. The coating step is to uniformly coat the nano electric heating slurry on one surface of the insulating base, and form a nano electric heating film after drying, and the coating method can be at least one of roll coating, spray coating or spin coating .
导电接点设置步骤,是在纳米电热薄膜上以印刷导电胶的方式形成至少二导电接点。烘烤步骤,是将完成的纳米陶瓷电热涂层装置放入烘箱中烘烤,以增加至少二导电接点的机械强度,并将纳米电热薄膜中的添加剂充分挥发,使结构更加均匀,其中烘烤温度为400~600℃,较佳为450~480℃,烘烤时间为1-5小时,较佳为2-3小时。冷却及测试步骤是将纳米陶瓷电热涂层装置冷却至室温,并作黏着性及导电性的测试。进一步地,本发明纳米陶瓷电热涂层装置的制造方法还包含一温控装置连接步骤,将控制芯片透过导线与至少二导电接点连接。The step of arranging the conductive contacts is to form at least two conductive contacts on the nano electrothermal film by printing conductive glue. The baking step is to put the completed nano-ceramic electrothermal coating device into an oven to bake, so as to increase the mechanical strength of at least two conductive contacts, and fully volatilize the additives in the nano-electrothermal film to make the structure more uniform. The temperature is 400-600°C, preferably 450-480°C, and the baking time is 1-5 hours, preferably 2-3 hours. The cooling and testing step is to cool the nano-ceramic electrothermal coating device to room temperature, and test the adhesion and conductivity. Further, the manufacturing method of the nano-ceramic electrothermal coating device of the present invention also includes a step of connecting the temperature control device, connecting the control chip to at least two conductive contacts through wires.
本发明的特点在于,纳米电热薄膜为准纳米级的金属氧化物透明导电膜,具有优良的耐酸碱腐蚀、与石英、黄玉相当的高硬度、电阻率低至4×10-4Ω·cm以下、功率密度可达40W/cm2、可见光透过率大于93%、安全工作温度高达650℃、使用寿命长达5万小时、将近98.2%的电热能转换效率,且制作过程只需要低于800℃的工业中温环境,与现有技术的镍铁铝等合金所制程的加热管或电热丝相比,本发明具有,能够在短时间达到瞬间加热的功效,而可以节省电能,而可以大量使用于工业用或家庭用的电器加热装置中,例如洗衣机的加热管、热水壶、电炉等。更进一步地,此装置所占的体积更小,而能减少原有电热丝或加热管的重量,有助于产品轻量的设计,并间接制作过程的功耗及减少后续的输送成本。The feature of the present invention is that the nano electrothermal film is a quasi-nano-scale metal oxide transparent conductive film, which has excellent acid and alkali corrosion resistance, high hardness comparable to quartz and topaz, and a resistivity as low as 4×10-4 Ω·cm or less , the power density can reach 40W/cm2, the visible light transmittance is greater than 93%, the safe working temperature is as high as 650°C, the service life is as long as 50,000 hours, the electric heat conversion efficiency is nearly 98.2%, and the production process only needs to be lower than 800°C Compared with the heating tubes or electric heating wires made of alloys such as nickel-iron-aluminum in the prior art, the present invention has the effect of instant heating in a short time, which can save electric energy, and can be used in large quantities in In industrial or household electric heating devices, such as heating pipes of washing machines, kettles, electric stoves, etc. Furthermore, the device occupies a smaller volume, which can reduce the weight of the original heating wire or heating tube, contribute to the lightweight design of the product, and indirectly reduce the power consumption of the manufacturing process and reduce the subsequent transportation cost.
附图说明 Description of drawings
图1为本发明的纳米陶瓷电热涂层装置第一实施例的剖面示意图。Fig. 1 is a schematic cross-sectional view of the first embodiment of the nano-ceramic electrothermal coating device of the present invention.
图2为本发明的纳米陶瓷电热涂层装置第二实施例的剖面示意图。Fig. 2 is a schematic cross-sectional view of the second embodiment of the nano-ceramic electrothermal coating device of the present invention.
图3为本发明的纳米陶瓷电热涂层装置的制造方法的流程图。Fig. 3 is a flow chart of the manufacturing method of the nano-ceramic electrothermal coating device of the present invention.
具体实施方式 Detailed ways
以下配合说明书附图对本发明的实施方式做更详细的说明,以使本领域技术人员在研读本说明书后能据以实施。The implementation of the present invention will be described in more detail below in conjunction with the accompanying drawings, so that those skilled in the art can implement it after studying this specification.
参阅图1,为本发明纳米陶瓷电热涂层装置第一实施例的剖面示意图。如图1所示,本发明的纳米陶瓷电热涂层装置1包含一绝缘基座10、一纳米电热薄膜20以及至少二导电接点30,绝缘基座10可以为平板状、管状、柱状,纳米电热薄膜20设置于绝缘基座10的一表面上,是由一介电材料、一纳米导电热材料以及一固化材料所组成,至少二导电接点30设置于该纳米电热薄膜20上,用以透过导线连接一电源的正极及负极,当该至少二导电接点30透过导线与电源的正极及负极连接时,纳米电热薄膜20能够迅速的产生热能。Referring to FIG. 1 , it is a schematic cross-sectional view of the first embodiment of the nano-ceramic electrothermal coating device of the present invention. As shown in Figure 1, the nano ceramic electrothermal coating device 1 of the present invention includes an
该纳米电热薄膜20中的介电材料,介电常数在900~1800W/M的范围,主要包含钛酸钡(BaTiO3)、钛酸锶(SrTiO3)、锆钛酸铅(Pb(ZrTi)O3,PZT)、氮化铝(AlN)、碳化硅(SiC)等,作为产生阻抗发热的物质,而纳米导电热材料主要为纳米碳管或石墨烯,用以快速地将热导入/输出,固化材料为氧化铁、氧化铝、氧化铬、氧化钠、氧化钾、氧化硅、氧化锶的至少其中之一,其中该介电材料占总重量的10%~35%,而纳米导电热材料占总重量的30~60%,使该纳米电热膜20的总电阻率在4×10-4Ω·cm以下。该纳米导电热材料及该介电材料可以依照所需的发热功率来调整比例,而该绝缘基座的材料也可依照所需发热的温度产生范围来选择。该至少二导电接点30可以为银胶、铜胶、金胶、碳胶、石墨胶等各种导电胶所形成。The dielectric material in the nano
参阅图2,为本发明纳米陶瓷电热涂层装置第二实施例的剖面示意图。本发明的第二实施例与第一实施例相比,进一步包含了一温控装置40,该温控装置40与电源的正负极连接,并透过导线与至少二导电接点30连接,用以侦测该纳米电热薄膜20的温度,并控制电流的开路或断路,以免造成过热。Referring to FIG. 2 , it is a schematic cross-sectional view of the second embodiment of the nano-ceramic electrothermal coating device of the present invention. Compared with the first embodiment, the second embodiment of the present invention further includes a
参阅图3,为本发明纳米陶瓷电热涂层装置的制造方法的流程图。如图3所示,本发明的纳米陶瓷电热涂层装置的制造方法S1包含纳米电热浆料制作步骤S10、涂布步骤S20、导电接点设置步骤S30、烘烤步骤S40、冷却及测试步骤S50以及控制芯片连接步骤S60。纳米电热浆料制作步骤S10是将介电材料、纳米导电热材料、添加剂以及催化剂先充分研磨、搅拌混合成泥浆状,再冷却浓缩而形成胶状的纳米电热浆料,其中该添加剂为甲苯、乙醇以及甘油的至少其中之一,固化材料为氧化铁、氧化铝、氧化铬、氧化钠、氧化钾、氧化硅、氧化锶的至少其中之一,作为催化剂之用。涂布步骤S20,是将纳米电热浆料均匀涂布于绝缘基座的一表面上,而在干燥后形成纳米电热薄膜,涂布的方式可以为滚涂、喷涂或旋转涂布的至少其中之一。Referring to FIG. 3 , it is a flow chart of the manufacturing method of the nano-ceramic electrothermal coating device of the present invention. As shown in Figure 3, the manufacturing method S1 of the nano-ceramic electrothermal coating device of the present invention comprises nano-electrothermal slurry preparation step S10, coating step S20, conductive contact setting step S30, baking step S40, cooling and testing step S50 and Control chip connection step S60. Nano electrothermal slurry production step S10 is to fully grind the dielectric material, nano conductive thermal material, additives and catalyst first, stir and mix them into a slurry, then cool and concentrate to form a colloidal nano electrothermal slurry, wherein the additives are toluene, At least one of ethanol and glycerin, and the solidified material is at least one of iron oxide, aluminum oxide, chromium oxide, sodium oxide, potassium oxide, silicon oxide, and strontium oxide, used as a catalyst. The coating step S20 is to uniformly coat the nano electric heating slurry on one surface of the insulating base, and form a nano electric heating film after drying, and the coating method can be at least one of roll coating, spray coating or spin coating one.
导电接点设置步骤S30,是在纳米电热薄膜上以印刷导电胶的方式形成至少二导电接点。烘烤步骤S40,是将完成的纳米陶瓷电热涂层装置放入烘箱中烘烤,以增加至少二导电接点的机械强度,并使该纳米电热薄膜中的添加剂充分挥发,使结构更加均匀,其中烘烤温度为400~600℃,较佳为450~480℃,烘烤时间为1-5小时,较佳为2-3小时。冷却及测试步骤S50是将纳米陶瓷电热涂层装置冷却至室温,并作黏着性及导电性的测试。进一步地,本发明纳米陶瓷电热涂层装置的制造方法S1还包含一控制芯片连接步骤S60,将控制芯片透过导线与至少二导电接点连接。The conductive contact setting step S30 is to form at least two conductive contacts on the nano electrothermal film by printing conductive glue. The baking step S40 is to bake the completed nano ceramic electrothermal coating device in an oven to increase the mechanical strength of at least two conductive contacts, and to fully volatilize the additives in the nano electrothermal film to make the structure more uniform, wherein The baking temperature is 400-600°C, preferably 450-480°C, and the baking time is 1-5 hours, preferably 2-3 hours. The cooling and testing step S50 is to cool down the nano-ceramic electrothermal coating device to room temperature, and test the adhesion and conductivity. Further, the manufacturing method S1 of the nano-ceramic electrothermal coating device of the present invention also includes a control chip connection step S60, connecting the control chip to at least two conductive contacts through wires.
本发明的特点在于,纳米电热薄膜为准纳米级的金属氧化物透明导电膜,具有优良的耐酸碱腐蚀、与石英、黄玉相当的高硬度、电阻率低至4×10-4Ω·cm、功率密度可达40W/cm2、可见光透过率大于93%、安全工作温度高达650℃、使用寿命长达5万小时、将近98.2%的电热能转换效率,且制作过程只需要低于800℃的工业中温环境,与现有技术的镍铁铝等合金所制程的加热管或电热丝相比,本发明具有,能够在短时间达到瞬间加热的功效,而可以节省电能,而可以大量使用于工业用或家庭用的电器加热装置中,例如洗衣机的加热管、热水壶、电炉等。更进一步地,此装置所占的体积更小,而能减少原有电热丝或加热管的重量,有助于产品轻量的设计,并间接制作过程的功耗及减少后续的输送成本。The feature of the present invention is that the nano electrothermal film is a quasi-nano-scale metal oxide transparent conductive film, which has excellent acid and alkali corrosion resistance, high hardness equivalent to quartz and topaz, and a resistivity as low as 4×10-4Ω·cm. The power density can reach 40W/cm2, the visible light transmittance is greater than 93%, the safe working temperature is as high as 650°C, the service life is as long as 50,000 hours, and the electric heat conversion efficiency is nearly 98.2%, and the production process only needs to be lower than 800°C. In the industrial medium temperature environment, compared with the heating tube or electric heating wire made of alloys such as nickel-iron-aluminum in the prior art, the present invention can achieve the effect of instant heating in a short time, and can save electric energy, and can be used in large quantities in industrial In household or household electrical heating devices, such as heating pipes of washing machines, kettles, electric stoves, etc. Furthermore, the device occupies a smaller volume, which can reduce the weight of the original heating wire or heating tube, contribute to the lightweight design of the product, and indirectly reduce the power consumption of the manufacturing process and reduce the subsequent transportation cost.
以上所述仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,因此,凡有在相同的创作精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。The above descriptions are only preferred embodiments for explaining the present invention, and are not intended to limit the present invention in any form. Therefore, any modification or change of the present invention made under the same creative spirit will be accepted. Still should be included in the category that the present invention intends to protect.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101036844A CN102761994A (en) | 2011-04-25 | 2011-04-25 | Nano ceramic electric heating coating device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101036844A CN102761994A (en) | 2011-04-25 | 2011-04-25 | Nano ceramic electric heating coating device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102761994A true CN102761994A (en) | 2012-10-31 |
Family
ID=47056281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101036844A Pending CN102761994A (en) | 2011-04-25 | 2011-04-25 | Nano ceramic electric heating coating device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102761994A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3179826A3 (en) * | 2015-12-09 | 2017-09-13 | Samsung Electronics Co., Ltd. | Heating element including nano-material filler |
CN107615888A (en) * | 2014-12-05 | 2018-01-19 | 北美Agc平板玻璃公司 | The method for reducing the plasma source of coating using grand particle and plasma source being used for depositing thin film coatings and surface modification |
CN107995708A (en) * | 2017-12-29 | 2018-05-04 | 大连恒宝四达科技发展有限公司 | Bank of power high-temperature nano silicon guided membrane heating tube |
CN108793752A (en) * | 2018-07-02 | 2018-11-13 | 福建省德化祥裕陶瓷文化有限责任公司 | A kind of microwave-medium glaze water and preparation method thereof |
CN109951900A (en) * | 2017-12-19 | 2019-06-28 | 纮茂股份有限公司 | Heating element and method of making the same |
CN111818675A (en) * | 2020-07-25 | 2020-10-23 | 东莞市中科智恒新材料有限公司 | Far infrared electrothermal film and preparation method thereof |
CN113621273A (en) * | 2021-10-13 | 2021-11-09 | 广东简一(集团)陶瓷有限公司 | A kind of self-limiting temperature conductive ink, preparation method and heating ceramic |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10199663A (en) * | 1997-01-08 | 1998-07-31 | Sigma Gijutsu Kenkyusho:Kk | Heat generating composition |
TW200530048A (en) * | 2004-01-20 | 2005-09-16 | Lexmark Int Inc | Micro-fluid ejection device having high resistance heater film |
TW200832453A (en) * | 2007-01-31 | 2008-08-01 | Mesotec Co | Composition for electric-heating film and electric-heating film and electric-heating device manufactured by the same |
US20080190912A1 (en) * | 2007-02-13 | 2008-08-14 | Wing Yiu Yeung | Heating Apparatus and Method for Making the Same |
CN1829396B (en) * | 2006-04-03 | 2010-07-21 | 李家俊 | Rare earth nanometer titanium film electrothermal tube |
CN202160293U (en) * | 2011-04-25 | 2012-03-07 | 艾尔莎光电科技股份有限公司 | Nano ceramic electrothermal coating device |
-
2011
- 2011-04-25 CN CN2011101036844A patent/CN102761994A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10199663A (en) * | 1997-01-08 | 1998-07-31 | Sigma Gijutsu Kenkyusho:Kk | Heat generating composition |
TW200530048A (en) * | 2004-01-20 | 2005-09-16 | Lexmark Int Inc | Micro-fluid ejection device having high resistance heater film |
CN1829396B (en) * | 2006-04-03 | 2010-07-21 | 李家俊 | Rare earth nanometer titanium film electrothermal tube |
TW200832453A (en) * | 2007-01-31 | 2008-08-01 | Mesotec Co | Composition for electric-heating film and electric-heating film and electric-heating device manufactured by the same |
US20080190912A1 (en) * | 2007-02-13 | 2008-08-14 | Wing Yiu Yeung | Heating Apparatus and Method for Making the Same |
CN202160293U (en) * | 2011-04-25 | 2012-03-07 | 艾尔莎光电科技股份有限公司 | Nano ceramic electrothermal coating device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107615888B (en) * | 2014-12-05 | 2022-01-04 | 北美Agc平板玻璃公司 | Plasma source utilizing macro-particle reduction coating and method of using plasma source for deposition of thin film coatings and surface modification |
CN107615888A (en) * | 2014-12-05 | 2018-01-19 | 北美Agc平板玻璃公司 | The method for reducing the plasma source of coating using grand particle and plasma source being used for depositing thin film coatings and surface modification |
US11875976B2 (en) | 2014-12-05 | 2024-01-16 | Agc Flat Glass North America, Inc. | Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces |
US10652957B2 (en) | 2015-12-09 | 2020-05-12 | Samsung Electronics Co., Ltd. | Heating element including nano-material filler |
EP3179826A3 (en) * | 2015-12-09 | 2017-09-13 | Samsung Electronics Co., Ltd. | Heating element including nano-material filler |
CN109951900A (en) * | 2017-12-19 | 2019-06-28 | 纮茂股份有限公司 | Heating element and method of making the same |
CN109951900B (en) * | 2017-12-19 | 2021-04-20 | 广州新纮茂科技有限公司 | Heating element and method for manufacturing the same |
CN107995708A (en) * | 2017-12-29 | 2018-05-04 | 大连恒宝四达科技发展有限公司 | Bank of power high-temperature nano silicon guided membrane heating tube |
CN108793752A (en) * | 2018-07-02 | 2018-11-13 | 福建省德化祥裕陶瓷文化有限责任公司 | A kind of microwave-medium glaze water and preparation method thereof |
CN108793752B (en) * | 2018-07-02 | 2021-09-24 | 福建省德化祥裕陶瓷文化有限责任公司 | Microwave medium glaze water and preparation method thereof |
CN111818675A (en) * | 2020-07-25 | 2020-10-23 | 东莞市中科智恒新材料有限公司 | Far infrared electrothermal film and preparation method thereof |
CN111818675B (en) * | 2020-07-25 | 2023-05-12 | 深圳市合元科技有限公司 | Far infrared electrothermal film and preparation method thereof |
CN113621273A (en) * | 2021-10-13 | 2021-11-09 | 广东简一(集团)陶瓷有限公司 | A kind of self-limiting temperature conductive ink, preparation method and heating ceramic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102761994A (en) | Nano ceramic electric heating coating device and manufacturing method thereof | |
CN107592685B (en) | A method of preparing double heating layer graphene Electric radiant Heating Films | |
CN205017608U (en) | Functional membrane ceramic resistor electricity heating element | |
WO2006010317A1 (en) | Controllable electrothermal element of ptc thick film circuit | |
CN102045900A (en) | A new electric heating unit | |
CN105916221A (en) | Graphene electrical heating body preparation method | |
JP6301558B2 (en) | Thick film heating element with high thermal conductivity on both sides | |
CN202210872U (en) | High-temperature nano infrared electrothermal film heating element | |
CN202160293U (en) | Nano ceramic electrothermal coating device | |
CN101616511B (en) | Preparation method of ceramic heating element | |
CN201303426Y (en) | Corrugated heater | |
CN207753880U (en) | A new type of instant heating ceramic heating tube | |
CN201328474Y (en) | Hair straightener heating board | |
CN101902846A (en) | Nano-silicon conductive ceramic electrical heating tube element and manufacture method thereof | |
CN210725383U (en) | Self-limiting temperature electrothermal film | |
CN208205098U (en) | A kind of efficient electric ceramic heaters | |
CN201401860Y (en) | Electric heater based on ceramic heating assembly | |
CN207011011U (en) | A carbon crystal medium-high temperature heating plate | |
CN204031468U (en) | A kind of built-in insulator anti-condensation device | |
CN108521076A (en) | A kind of gas discharge tube electrode and preparation method thereof | |
CN201418159Y (en) | Ceramic heating elements and ceramic heating components | |
CN208754573U (en) | A kind of film heating and energy saving electrical heating tube element | |
CN110493902A (en) | A kind of self limiting temperature Electric radiant Heating Film | |
WO2017067049A1 (en) | Processing technology for heating element | |
CN211831195U (en) | Heating ceramic component of electric water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121031 |