CN102745345B - Ultraviolet fixed star simulator for calibrating ultraviolet navigation sensor - Google Patents
Ultraviolet fixed star simulator for calibrating ultraviolet navigation sensor Download PDFInfo
- Publication number
- CN102745345B CN102745345B CN201110099355.7A CN201110099355A CN102745345B CN 102745345 B CN102745345 B CN 102745345B CN 201110099355 A CN201110099355 A CN 201110099355A CN 102745345 B CN102745345 B CN 102745345B
- Authority
- CN
- China
- Prior art keywords
- ultraviolet
- optical fiber
- star
- light
- stars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 23
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims abstract description 21
- 229910052805 deuterium Inorganic materials 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 238000002211 ultraviolet spectrum Methods 0.000 claims abstract description 13
- 238000001228 spectrum Methods 0.000 claims description 11
- 230000005855 radiation Effects 0.000 abstract description 11
- 230000003595 spectral effect Effects 0.000 abstract description 7
- 230000003068 static effect Effects 0.000 abstract description 6
- 239000010453 quartz Substances 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000835 fiber Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Landscapes
- Navigation (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明公开了一种用于标定紫外导航敏感器的紫外恒星模拟器,包括黑色平板、LED灯、光纤、氘灯、滤光片和调制盘,黑色平板中间安装一个LED灯用于模拟地球,在LED灯周围开有N个透光孔用于模拟恒星,每个透光孔装配一根光纤和一个氘灯,氘灯作为光源输出360nm~200nm的紫外光谱,调制盘设置在光纤入口与氘灯之间,调制盘上安装不同紫外谱段的滤光片,通过马达驱动调制盘转动带带动滤光片转动使光纤辐射出不同谱段的紫外光。本发明采用石英光纤组合模拟恒星紫外光谱辐射,石英光纤以不同的组合方式模拟紫外单恒星、多恒星的紫外光谱辐射模型,本发明结构简单易于实现,解决了紫外导航敏感器紫外星点与星图静态、动态标定问题。
The invention discloses an ultraviolet star simulator for calibrating an ultraviolet navigation sensor, which comprises a black flat panel, an LED lamp, an optical fiber, a deuterium lamp, an optical filter and a modulation disc. An LED lamp is installed in the middle of the black flat panel for simulating the earth. There are N light-transmitting holes around the LED lamp for simulating stars. Each light-transmitting hole is equipped with an optical fiber and a deuterium lamp. The deuterium lamp is used as a light source to output the ultraviolet spectrum of 360nm to 200nm. Between the lamps, optical filters of different ultraviolet bands are installed on the modulation disc, and the rotation of the motor drives the modulation disc to drive the rotation of the optical filter to make the optical fiber radiate ultraviolet light of different spectral bands. The invention adopts the combination of quartz optical fiber to simulate the ultraviolet spectral radiation of stars, and the quartz optical fiber simulates the ultraviolet spectral radiation model of ultraviolet single star and multi-star in different combinations. Figure static and dynamic calibration problems.
Description
技术领域 technical field
本发明涉及一种紫外恒星模拟器,尤其涉及一种用于标定紫外导航敏感器的紫外恒星模拟器。The invention relates to an ultraviolet star simulator, in particular to an ultraviolet star simulator used for calibrating ultraviolet navigation sensors.
背景技术 Background technique
紫外导航敏感器的工作原理源于紫外三轴地球姿态敏感器,美国霍尼韦尔公司申请的专利号为US5837894名称为“WideField of View Sensor with diffrativeOptical Corrector”中公开的一种利用紫外谱段的三轴姿态敏感器,利用一个组合反射式二面镜反射阵列和一个球透镜系统,构成了一个具有超大视场角的组合光学系统,由于对地观测的是地球边缘的图像,所以可利用中心视场来观测其它天体目标,这样就构成了一个光学系统具有两个信息通道同时敏感来自两个信息通道(如恒星、地球)的非常规光学系统,紫外地球敏感器通过对提取的目标信息进行处理后,为卫星提供三轴姿态数据和自主导航数据。The working principle of the ultraviolet navigation sensor is derived from the ultraviolet three-axis earth attitude sensor. The patent No. US5837894 applied by Honeywell Company of the United States is called "WideField of View Sensor with diffrativeOptical Corrector". The three-axis attitude sensor uses a combined reflective dihedral reflective array and a ball lens system to form a combined optical system with a large field of view. The field of view is used to observe other celestial objects, which constitutes an optical system with two information channels and an unconventional optical system that is sensitive to two information channels (such as stars and the earth) at the same time. After processing, three-axis attitude data and autonomous navigation data are provided to the satellite.
专利号为200810057342.1的专利公开了一种紫外导航敏感器光学系统,其光学系统包括:斜装反射镜、平面反射镜、N面锥反射镜、N个滤光镜、组合球透镜、二元光学器件、光纤组合面板、CCD接收器。该专利可以用来接收恒星和地球的紫外光。Patent No. 200810057342.1 discloses an optical system of an ultraviolet navigation sensor, the optical system includes: inclined mirrors, plane mirrors, N-face cone mirrors, N filter mirrors, combined ball lenses, binary optics Components, fiber optic combination panels, CCD receivers. The patent can be used to receive ultraviolet light from stars and the earth.
目前高轨道上采用紫外导航敏感器是一种在300nm附近的日盲紫外谱段能够同时观测恒星与地球,且同时成像在CCD的紫外导航敏感器,在紫外导航敏感器研制过程中,需要对紫外导航敏感器进行标定,由于地面无法获知紫外导航感器在空间的真实情况,因此必须建立一种紫外谱段的恒星模拟器用于对紫外导航敏感器进行标定。目前现有的恒星模拟器都是可见光谱段,发光靶面用液晶光阀实现,由软件控制事先安装的星图,可以任意显示空间星点的分布,由于该种类型的恒星模拟器中的液晶光阀无法透过紫外光,也不能采用液晶光阀模拟星体辐射和星体分布,因此无法作为紫外恒星敏感器的标定装置。At present, the ultraviolet navigation sensor used in high orbit is a solar-blind ultraviolet spectrum near 300nm that can observe stars and the earth at the same time, and simultaneously image the ultraviolet navigation sensor on the CCD. During the development of the ultraviolet navigation sensor, it is necessary to Since the ground cannot know the real situation of the ultraviolet navigation sensor in space, it is necessary to establish a star simulator in the ultraviolet spectrum to calibrate the ultraviolet navigation sensor. At present, the existing star simulators are all in the visible spectrum, and the luminous target surface is realized by a liquid crystal light valve. The pre-installed star map is controlled by software, and the distribution of space star points can be displayed arbitrarily. Liquid crystal light valves cannot pass through ultraviolet light, nor can liquid crystal light valves be used to simulate star radiation and star distribution, so they cannot be used as a calibration device for ultraviolet star sensors.
发明内容 Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供一种用于标定紫外导航敏感器的紫外恒星模拟器,本发明组成简单,能够模拟紫外单恒星、多恒星的紫外光谱,实现了对紫外导航敏感器的标定。The technical solution problem of the present invention is: overcome the deficiencies in the prior art, provide a kind of ultraviolet star simulator that is used for calibrating the ultraviolet navigation sensor, the composition of the present invention is simple, can simulate the ultraviolet spectrum of ultraviolet single star, multi-star, realized Calibration of UV navigation sensors.
本发明的技术解决方案是:一种用于标定紫外导航敏感器的紫外恒星模拟器,包括黑色平板、LED灯、光纤、氘灯、滤光片和调制盘,黑色平板中间安装一个LED灯用于模拟地球,在LED灯周围开有N个透光孔用于模拟恒星,每个透光孔装配一根光纤和一个氘灯,氘灯作为光源输出360nm~200nm的紫外光谱,调制盘设置在光纤入口与氘灯之间,调制盘上安装不同紫外谱段的滤光片,通过马达驱动调制盘转动带动滤光片转动使光纤辐射出不同谱段的紫外光,其中滤光片的谱段范围为360nm~200nm。The technical solution of the present invention is: a kind of ultraviolet star simulator that is used for calibrating the ultraviolet navigation sensor, comprises black panel, LED lamp, optical fiber, deuterium lamp, optical filter and modulation disc, and a LED lamp is installed in the middle of black panel To simulate the earth, there are N light-transmitting holes around the LED lamp for simulating stars. Each light-transmitting hole is equipped with an optical fiber and a deuterium lamp. The deuterium lamp is used as a light source to output the ultraviolet spectrum of 360nm to 200nm. The modulation disc is set at Between the optical fiber entrance and the deuterium lamp, filters of different ultraviolet spectrums are installed on the modulation disc, and the rotation of the motor drives the modulation disc to drive the rotation of the filter to make the optical fiber radiate ultraviolet light of different spectrums. The range is 360nm ~ 200nm.
本发明与现有技术相比的有益效果是:本发明采用石英光纤组合模拟恒星紫外光谱辐射,紫外波段的范围为360nm~200nm,石英光纤以不同的组合方式模拟紫外单恒星、多恒星的紫外光谱辐射模型,本发明结构简单易于实现,解决了紫外导航敏感器紫外星点与星图静态、动态标定问题。Compared with the prior art, the present invention has the beneficial effects that: the present invention uses a combination of quartz fibers to simulate the ultraviolet spectrum radiation of stars, and the range of the ultraviolet band is 360nm to 200nm. Spectral radiation model, the invention has a simple structure and is easy to implement, and solves the problem of static and dynamic calibration of ultraviolet star points and star maps of ultraviolet navigation sensors.
附图说明 Description of drawings
图1为本发明的星点分布示意图;Fig. 1 is the star point distribution schematic diagram of the present invention;
图2为本发明的发光系统组成原理图;Fig. 2 is a schematic diagram of the composition of the lighting system of the present invention;
图3为利用本发明对紫外导航敏感器进行静态标定的效果图。Fig. 3 is an effect diagram of static calibration of an ultraviolet navigation sensor by using the present invention.
具体实施方式 Detailed ways
本发明采用石英光纤组合模拟空间的紫外恒星分布与相应的紫外光谱辐射。用一个由LED器件组成的直径为Ф200的均匀发光平面模拟紫外地球,准紫外地球边缘的光谱为395nm。用多束光纤分布在模拟紫外地球周围,每束由多根光纤组成,构成不同数量的模拟紫外恒星,光纤束用紫外光源照明,每束光纤的模拟紫外恒星的闪烁,可对每束光纤进行间隔照明实现,将它们分布在紫外地球的周围。以此模拟紫外单恒星、多恒星的分布和紫外光谱辐射模型。恒星群、单恒星可以作为静态目标,也可作为动态目标,通过对不同恒星群光源的调制,控制各恒星群在不同的时刻分别发出辐射光,以此模拟敏感器对星空扫描的效果。供地面紫外敏感器进行紫外星点与星图静态、动态模拟测试与标定。The invention adopts quartz optical fiber to simulate space ultraviolet star distribution and corresponding ultraviolet spectral radiation. A uniform luminous plane with a diameter of Ф200 composed of LED devices is used to simulate the ultraviolet earth, and the spectrum at the edge of the quasi-ultraviolet earth is 395nm. Multiple bundles of optical fibers are distributed around the simulated ultraviolet earth, and each bundle is composed of multiple optical fibers to form different numbers of simulated ultraviolet stars. Interval lighting is implemented, distributing them around the UV globe. In this way, the distribution of ultraviolet single stars and multi-stars and the ultraviolet spectral radiation model are simulated. Star groups and single stars can be used as static targets or as dynamic targets. By modulating the light sources of different star groups, each star group is controlled to emit radiant light at different times, thereby simulating the effect of the sensor scanning the starry sky. It is used for static and dynamic simulation testing and calibration of UV star points and star maps for ground UV sensors.
如图1、2所示,本发明包括黑色平板、LED灯、光纤、氘灯、滤光片和调制盘,黑色平板作为紫外星模拟器的背景,黑色平板中间安装一个LED灯用于模拟地球,在LED灯周围开有N个透光孔用于模拟恒星,每个透光孔装配一根光纤和一个氘灯,氘灯作为光源输出360nm~200nm的紫外光谱,调制盘设置在光纤入口与氘灯之间,调制盘上安装不同紫外谱段的滤光片,通过马达驱动调制盘使得光纤辐射出不同谱段的紫外光,其中滤光片的谱段范围为360nm~200nm。星点的配置可多星点配置、也可多组混合设置。As shown in Figures 1 and 2, the present invention includes a black flat panel, LED lights, optical fibers, deuterium lamps, optical filters and modulation discs, the black flat panel is used as the background of the ultraviolet star simulator, and an LED lamp is installed in the middle of the black flat panel for simulating the earth , there are N light holes around the LED lamp for simulating stars, each light hole is equipped with an optical fiber and a deuterium lamp, the deuterium lamp is used as a light source to output the ultraviolet spectrum of 360nm ~ 200nm, and the modulation disc is set between the entrance of the fiber and a deuterium lamp. Between the deuterium lamps, filters of different ultraviolet spectrums are installed on the modulation disc, and the modulation disc is driven by a motor to make the optical fiber radiate ultraviolet light of different spectrums, and the spectral range of the filters is 360nm to 200nm. The configuration of star points can be configured with multiple star points, or multiple groups of mixed settings.
本发明选择直径为0.5mm的石英光纤制作了直径0.22mm的星点,单根光纤可模拟单星、多根光纤组合可模拟多星,多星间角距分布可自由组合。The present invention selects a quartz optical fiber with a diameter of 0.5mm to manufacture a star point with a diameter of 0.22mm. A single optical fiber can simulate a single star, and a combination of multiple optical fibers can simulate multiple stars. The angular distance distribution between multiple stars can be freely combined.
在地球大气层外的空间背景是辐射温度约3.5k的深空冷背景。恒星在黑色背景中闪闪发光,由于恒星的温度不同,因而发出的光谱也不同。<300nm紫外恒星发出的紫外光谱是不可见的,用于紫外的氘灯辐射光谱几乎包含了整个紫外光谱范围,是紫外光源的最佳选择。光源采用紫外光源氘灯,氘灯是目前最理想的紫外光源,可辐射出190nm~400nm连续光谱,具有良好的辐射强度、稳定性。不同波段的选择,可通过滤光器实现。本发明根据观测对象的辐射光谱特点,氘灯的输出光谱范围选择在360nm~200nm。紫外光源氘灯的型号采用DD2.5。The space background outside the Earth's atmosphere is the cold background of deep space with a radiation temperature of about 3.5K. Stars glow against a black background, emitting different spectra due to the temperature of the stars. The ultraviolet spectrum emitted by <300nm ultraviolet stars is invisible, and the radiation spectrum of the deuterium lamp used for ultraviolet almost covers the entire ultraviolet spectrum range, which is the best choice for ultraviolet light source. The light source adopts the ultraviolet light source deuterium lamp, the deuterium lamp is the most ideal ultraviolet light source at present, it can radiate a continuous spectrum of 190nm ~ 400nm, and has good radiation intensity and stability. The selection of different wavelength bands can be realized through optical filters. In the present invention, according to the characteristics of the radiation spectrum of the observation object, the output spectrum range of the deuterium lamp is selected from 360nm to 200nm. The model of the ultraviolet light source deuterium lamp adopts DD2.5.
紫外星模可设计成静态和动态两种测试模式,星点可单星或多星显示,星点的辐射亮度可通过改变光源与光纤输入端的距离实现;可通过更换相应滤光片选择光谱。在对紫外敏感器进行静态标定时,根据敏感器光学系统视场角的大小,设置模拟器与敏感器之间的距离;开启模拟紫外地球与紫外恒星光源;开启紫外敏感器电源与控制器电源,如图3所示,这时在显示器上应显示出目标经敏感器光学系统成的目标像,即模拟紫外地球与其周围的紫外恒星群。按照显示器上目标像对应的灰度值,可调节光源与光纤间的距离,实现目标像灰度值的增加与减小。若进行动态测试时,各组星点的显示频率,可通过对各组合光纤组输入端进行光的调制实现,可开启调制盘转动,调制器先后扫描几个光纤组,这时对应的光纤组闪烁辐射出相应的波段,调制盘由马达驱动,转速可调。The ultraviolet star mode can be designed into static and dynamic test modes. The star point can be displayed as a single star or multiple stars. The radiance of the star point can be realized by changing the distance between the light source and the fiber input end; the spectrum can be selected by changing the corresponding filter. When statically calibrating the UV sensor, set the distance between the simulator and the sensor according to the field of view of the sensor optical system; turn on the simulated UV Earth and UV star light sources; turn on the power of the UV sensor and the controller , as shown in Figure 3, the target image formed by the sensor optical system should be displayed on the display at this time, that is, the simulated ultraviolet earth and the ultraviolet star groups around it. According to the gray value corresponding to the target image on the display, the distance between the light source and the optical fiber can be adjusted to realize the increase and decrease of the gray value of the target image. If the dynamic test is carried out, the display frequency of each group of star points can be realized by modulating the light at the input end of each combined fiber group. The modulation disc can be turned on and the modulator scans several fiber groups successively. At this time, the corresponding fiber group The scintillation radiates the corresponding band, and the modulation disc is driven by a motor with adjustable speed.
星点提取算法按照传统方式由恒星阈值确定、星点搜索组成,程中还将根据恒星尺寸等特征去掉伪星,之后进行质心计算、星图识别,这里直接借鉴紫外导航敏感器的星图识别、跟踪以及姿态计算方法,不再详述。The star point extraction algorithm is composed of star threshold determination and star point search in the traditional way. In the process, pseudo stars will be removed according to the characteristics of the star size, etc., and then the centroid calculation and star map recognition will be performed. Here we directly refer to the star map recognition of the ultraviolet navigation sensor. , tracking and attitude calculation methods will not be described in detail.
依据紫外导航敏感器的验证数据,地球姿态角在0.02°量级、恒星得到的惯性姿态在27°,因此高轨道紫外敏感器可以获得相近似的导航精度2km。According to the verification data of the ultraviolet navigation sensor, the attitude angle of the earth is on the order of 0.02°, and the inertial attitude obtained by the stars is 27°. Therefore, the high-orbit ultraviolet sensor can obtain a similar navigation accuracy of 2km.
本发明未详细描述内容为本领域技术人员公知技术。The content not described in detail in the present invention is well known to those skilled in the art.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110099355.7A CN102745345B (en) | 2011-04-20 | 2011-04-20 | Ultraviolet fixed star simulator for calibrating ultraviolet navigation sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110099355.7A CN102745345B (en) | 2011-04-20 | 2011-04-20 | Ultraviolet fixed star simulator for calibrating ultraviolet navigation sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102745345A CN102745345A (en) | 2012-10-24 |
CN102745345B true CN102745345B (en) | 2015-02-11 |
Family
ID=47025944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110099355.7A Active CN102745345B (en) | 2011-04-20 | 2011-04-20 | Ultraviolet fixed star simulator for calibrating ultraviolet navigation sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102745345B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604443B (en) * | 2013-11-14 | 2016-06-22 | 清华大学 | Starlight analog device |
CN104290931B (en) * | 2014-09-17 | 2018-07-20 | 长春理工大学 | A kind of ultraviolet fixed star earth simulator for earth |
CN104197961B (en) * | 2014-09-19 | 2017-02-15 | 北京仿真中心 | Star simulator based on bifocal optical system |
CN105224731B (en) * | 2015-09-17 | 2018-04-27 | 南京大学 | The radiomimesis emulation mode of geostationary satellite ultraviolet imagery sensor |
CN106960621B (en) * | 2017-04-06 | 2020-12-11 | 中国人民解放军装备学院 | Starry sky target optical simulation device |
CN114633906B (en) * | 2022-04-12 | 2023-12-22 | 中国科学院光电技术研究所 | Ultraviolet dynamic earth simulator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0589387B1 (en) * | 1992-09-21 | 1997-04-02 | Honeywell Inc. | Method and system for determining 3-axis spacecraft attitude |
CN2264366Y (en) * | 1996-05-24 | 1997-10-08 | 清华大学 | Dynamic temp field real time detecting sensor |
CN1580746A (en) * | 2003-08-06 | 2005-02-16 | 北京航空航天大学 | Matrix type biochip CCD scanning fetch device |
CN1912547A (en) * | 2006-08-23 | 2007-02-14 | 北京航空航天大学 | High precision low cost starlight simulator |
-
2011
- 2011-04-20 CN CN201110099355.7A patent/CN102745345B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0589387B1 (en) * | 1992-09-21 | 1997-04-02 | Honeywell Inc. | Method and system for determining 3-axis spacecraft attitude |
CN2264366Y (en) * | 1996-05-24 | 1997-10-08 | 清华大学 | Dynamic temp field real time detecting sensor |
CN1580746A (en) * | 2003-08-06 | 2005-02-16 | 北京航空航天大学 | Matrix type biochip CCD scanning fetch device |
CN1912547A (en) * | 2006-08-23 | 2007-02-14 | 北京航空航天大学 | High precision low cost starlight simulator |
Non-Patent Citations (2)
Title |
---|
孙高飞等.星敏感器标定方法的研究现状与发展趋势.《长春理工大学学报(自然科学版)》.2010,第33卷(第4期),第8-14页. * |
星模拟器的设计与标定;刘亚平等;《红外与激光工程》;20061015;第35卷;第331-334页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102745345A (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102745345B (en) | Ultraviolet fixed star simulator for calibrating ultraviolet navigation sensor | |
Sánchez de Miguel et al. | Sky Quality Meter measurements in a colour-changing world | |
McCluney | Introduction to radiometry and photometry | |
CN104457785B (en) | Dynamic LCOS splicing star simulator and star sensor ground calibration device | |
CN106885632B (en) | A kind of vacuum ultraviolet spectroscopy radiation meter calibrating method and device | |
CN104290931B (en) | A kind of ultraviolet fixed star earth simulator for earth | |
CN103018909B (en) | Efficient solar simulator for solar corona observation experiments | |
CN113029195B (en) | A static star simulator based on LED switching of three sky areas and its production method | |
CN106643788B (en) | Star Sensor Vacuum Calibration Set | |
CN203259248U (en) | Portable colorimeter | |
CN103207063A (en) | Spectrum weight adjustable spectrum simulation system | |
Kocifaj et al. | Retrieval of Garstang's emission function from all-sky camera images | |
CN104266757B (en) | Light source simulation method capable of automatically calibrating spectrum and continuously adjusting spectrum | |
CN214951383U (en) | Auto-collimation single-star simulator | |
CN105606388B (en) | The variable static star simulator of the split type magnitude with sky background is adjustable star chart | |
CN109541714B (en) | Optical target simulation method under distributed dynamic scene | |
Fanelli et al. | An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk | |
CN104197961B (en) | Star simulator based on bifocal optical system | |
CN204161630U (en) | A kind of ultraviolet fixed star earth simulator for earth | |
CN106932896A (en) | Improve the splice type collimating mirror method for designing of light beam parallelism | |
Kocifaj | Ground albedo impacts on higher-order scattering spectral radiances of night sky | |
CN103791275B (en) | A kind of extensive parallel optical simulator | |
Chen et al. | Clusters in the luminous giant H II regions in M101 | |
CN105892031B (en) | The method that bright source and dark source are observed simultaneously in multi-object fiber spectrographs observation | |
CN105609026B (en) | A kind of device for detecting performance and method of panel drive circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |