[go: up one dir, main page]

CN102738229B - 功率晶体管结构及其制作方法 - Google Patents

功率晶体管结构及其制作方法 Download PDF

Info

Publication number
CN102738229B
CN102738229B CN201110081027.4A CN201110081027A CN102738229B CN 102738229 B CN102738229 B CN 102738229B CN 201110081027 A CN201110081027 A CN 201110081027A CN 102738229 B CN102738229 B CN 102738229B
Authority
CN
China
Prior art keywords
conductivity type
gate
conductivity regions
regions
isolation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110081027.4A
Other languages
English (en)
Other versions
CN102738229A (zh
Inventor
黄勤
白玉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VERSINE SEMICONDUCTOR Co Ltd
Original Assignee
VERSINE SEMICONDUCTOR Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VERSINE SEMICONDUCTOR Co Ltd filed Critical VERSINE SEMICONDUCTOR Co Ltd
Priority to CN201110081027.4A priority Critical patent/CN102738229B/zh
Priority to TW100145688A priority patent/TWI488307B/zh
Priority to US13/414,292 priority patent/US8823098B2/en
Publication of CN102738229A publication Critical patent/CN102738229A/zh
Application granted granted Critical
Publication of CN102738229B publication Critical patent/CN102738229B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/441Vertical IGBTs
    • H10D12/461Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • H10D30/0295Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the source electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/662Vertical DMOS [VDMOS] FETs having a drift region having a doping concentration that is higher between adjacent body regions relative to other parts of the drift region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/141Anode or cathode regions of thyristors; Collector or emitter regions of gated bipolar-mode devices, e.g. of IGBTs
    • H10D62/142Anode regions of thyristors or collector regions of gated bipolar-mode devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • H10D64/518Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • H10D62/156Drain regions of DMOS transistors
    • H10D62/157Impurity concentrations or distributions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/256Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are recessed in semiconductor bodies

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种功率晶体管结构及制作方法。该结构包括下电极、衬底、漂移区、两个第一导电类型区、两个第二导电类型体区、两个栅区单元、隔离结构和上电极;其中两个第二导电类型体区分别位于两个第一导电类型区与漂移区之间,两个栅区单元分别位于两个第二导电类型体区之上,隔离结构覆盖两个栅区单元表面,上电极覆盖隔离结构表面并同时与两个第一导电类型区和两个第二导电类型体区电导通。当衬底采用第一导电类型时,该结构可作为场效应管;采用第二导电类型衬底时,该结构可作为绝缘栅双极型晶体管。这种结构的栅极实际覆盖面积小,能减小栅极电荷Qg和栅漏电荷Qgd及源漏导通电阻Rdson,提高器件性能,其制作工艺简单,生产成本较低。

Description

功率晶体管结构及其制作方法
技术领域
本发明涉及一种功率晶体管的结构及其制作工艺,尤其涉及一种金属氧化物半导体场效应管(MOSFET,Metal-Oxide-Semiconductor Field-Effect Transistor)和一种绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)及相关制作工艺,属于半导体器件和器件制造技术领域。
背景技术
纵向双扩散场效应管(VDMOS)和绝缘栅双极型晶体管(IGBT)是两种目前常用的功率晶体管。IGBT由BJT双极型三极管和MOS场效应管组成,兼有MOSFET的高输入阻抗和BJT的低导通压降两方面的优点,非常适合应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。VDMOS是一种电压控制型器件,在合适的栅极电压的控制下,半导体表面反型,形成导电沟道,于是漏极和源极之间纵向流过适量的电流。VDMOS兼有双极晶体管和普通MOS器件的优点。与双极晶体管相比,它的开关速度,开关损耗小;输入阻抗高,驱动功率小;频率特性好;跨导高度线性。特别值得指明出的是,它具有负的温度系数,没有双极功率的二次穿问题,安全工作出了区大。因此,不论是开关应用还是线性应用,VDMOS都是理想的功率器件。现在,VDMOS器件已广泛应用于各种领域,包括电机调速、逆变器、不间熠电源、开关电源、电子开关、汽车电器和电子镇流器等。
通常VDMOS器件采用传统的一体式栅区,器件工作时,沟道仅形成于栅区两侧,该结构由于硅晶栅与漏极之间有较大的重叠部分,即硅晶栅与漏极的相对的非沟道面积较大,所以栅极电荷Qgd较高;并且该传统结构的制造方法也比较复杂,通常需要六至七步掩膜工艺,因此生产成本较高。
鉴于此,为了提高器件性能并简化制作工艺降低生产成本,本发明将提出一种新型的平面型的功率晶体管结构。
发明内容
本发明要解决的技术问题在于提供一种功率晶体管结构及其制作方法。
为了解决上述技术问题,本发明采用如下技术方案:
一种功率晶体管结构,包括:
漏极;
第一导电类型衬底,位于所述漏极之上;
第一导电类型漂移区,位于所述第一导电类型衬底之上;
两个第一导电类型源区,分别位于所述第一导电类型漂移区上方的两侧;
两个第二导电类型体区,分别位于两个第一导电类型源区与第一导电类型漂移区之间;
两个栅区单元,分别位于所述两个第二导电类型体区之上;
隔离结构,覆盖于所述两个栅区单元的表面,并使两个栅区单元之间电隔离,即无直接连接;
源极,覆盖于所述隔离结构表面,并同时与两个第一导电类型源区和两个第二导电类型体区电导通。
其中,所述栅区单元包括栅介质层和位于栅介质层上的栅极层;优选地,在栅极层上还设有绝缘层。
作为本发明的优选方案,在所述第一导电类型漂移区中还设有一个第一导电类型区域,该第一导电类型区域位于两个第二导电类型体区之间。
另一种功率晶体管结构,包括:
集电极;
第二导电类型衬底,位于所述集电极之上;
第一导电类型漂移区,位于所述第二导电类型衬底之上;
两个第一导电类型发射区,分别位于所述第一导电类型漂移区上方的两侧;
两个第二导电类型体区,分别位于两个第一导电类型发射区与第一导电类型漂移区之间;
两个栅区单元,分别位于所述两个第二导电类型体区之上;
隔离结构,覆盖于所述两个栅区单元的表面,并使两个栅区单元之间电隔离;
发射极,覆盖于所述隔离结构表面,并同时与两个第一导电类型发射区和两个第二导电类型体区电导通。
其中,所述栅区单元包括栅介质层和位于栅介质层上的栅极层;优选地,在栅极层上还设有绝缘层。
作为本发明的优选方案,在所述第一导电类型漂移区中还设有一个第一导电类型区域,该第一导电类型区域位于两个第二导电类型体区之间。
一种制作上述功率晶体管结构的方法,包括以下步骤:
步骤一、在半导体衬底上形成浅掺杂的第一导电类型的外延层,并在所述外延层上分别制作两个栅区单元;该外延层的厚度可变;
步骤二、在所述两个栅区单元周围制作隔离结构,使其覆盖所述两个栅区单元的表面,并使两个栅区单元之间电隔离;
步骤三、在所述隔离结构两侧的外延层中分别形成两个重掺杂第一导电类型区和两个第二导电类型区,剩余的外延层作为漂移区;其中所述隔离结构每侧各有一个重掺杂第一导电类型区和一个第二导电类型区,每侧的重掺杂第一导电类型区分别向内延伸至所述隔离结构下方,且每侧的第二导电类型区分别延伸至与之邻近的栅区单元下方,将重掺杂第一导电类型区与漂移区隔开;
步骤四、刻蚀掉未被所述隔离结构遮挡的部分第一导电类型区;
步骤五、制作上电极,使其同时与所述隔离结构两侧的第一导电类型区和第二导电类型区接触;
步骤六、在所述半导体衬底下制作下电极。
其中,制作的是场效应管时,步骤一的半导体衬底采用第一导电类型衬底;制作的是绝缘栅双极型晶体管时,步骤一的半导体衬底采用第二导电类型衬底。
所述栅区单元包括栅介质层和位于栅介质层上的栅极层;优选地,在栅极层上还设有绝缘层。
优选地,步骤一中,还可采用第一导电类型离子注入的方法,增强外延层上部的第一导电类型离子浓度,用于在漂移区中形成一个额外的第一导电类型离子注入区,以增强漂移区的离子浓度,减小阻抗。
优选地,步骤三采用离子注入的方法,在所述隔离结构两侧的外延层中分别形成两个重掺杂第一导电类型区和两个第二导电类型区。
优选地,步骤三采用热处理扩散的方法,扩大重掺杂第一导电类型区和第二导电类型区,使每侧的重掺杂第一导电类型区分别向内延伸至所述隔离结构下方,且每侧的第二导电类型区分别延伸至与之邻近的栅区单元下方,将重掺杂第一导电类型区与漂移区隔开。
本发明的有益效果在于:
本发明的功率晶体管中采用了一个隔离结构包围两个栅区单元的新型结构,该新型结构与传统的整体式栅区结构相比,实际的栅极覆盖面积可以制作的更小,因而可以通过减小栅极覆盖面积从而减小栅极电荷Qg;并且该结构中栅区与衬底下方的电极(漏极)的实际相对面积与传统的整体式栅区结构相比更小,所以可有效的减小栅漏电荷Qgd;此外,通过对漂移区进行额外的离子注入,还可以有效的减小源漏导通电阻Rdson,进一步改善器件的FOM(品质因数)。其制作工艺较为简单,仅需要在制作栅区、刻蚀源区和制作源极时采用掩模版,仅采用三道掩膜版即可完成器件结构的制作,大大降低了生产成本。
附图说明
图1为实施例一中功率金属氧化物半导体场效应管的器件结构示意图;
图2为实施例一中增强型的功率金属氧化物半导体场效应管的器件结构示意图;
图3a-3f为实施例一中功率金属氧化物半导体场效应管的制作工艺流程示意图;
图4为实施例二中功率绝缘栅双极型晶体管的器件结构示意图。
具体实施方式
下面结合附图进一步说明本发明的器件结构,为了示出的方便附图并未按照比例绘制。
实施例一
本实施例提供一种功率金属氧化物半导体场效应管(MOSFET)的器件结构,如图1所示,该器件结构包括:漏极110,位于漏极110之上的第一导电类型衬底120,位于第一导电类型衬底120之上的漂移区130,分别位于漂移区130上方两侧的两个第一导电类型源区150,分别位于两个第一导电类型源区150与漂移区130之间的两个第二导电类型体区140,分别位于两个第二导电类型体区140之上的两个栅区单元160,覆盖于两个栅区单元160表面并使两个栅区单元160之间电隔离的隔离结构170,以及覆盖于隔离结构170表面的源极180。源极180同时与两个第一导电类型源区150和两个第二导电类型体区140电导通。
以NMOS为例,则第一导电类型衬底120采用N+型半导体衬底,漂移区130可以是N-型,第二导电类型体区140为P型体区,第一导电类型源区150为N+型源区。栅区单元160包括栅介质层161和位于栅介质层161上的栅极层162,优选地,在栅极层162上还设有绝缘层163。通常栅介质层的材料可以为二氧化硅、氮氧硅化合物、或铪基的高介电常数材料等,栅极层的材料可以为传统的多晶硅,或者钛、镍、钽、钨、氮化钽、氮化钨、氮化钛、硅化钛、硅化钨或硅化镍中的一种或其组合。
该MOS器件工作时,电流走向如图1中的箭头所示,通过控制两个栅区单元160可使它们下方的两个第二导电类型体区140表面反型,形成两个导电沟道,于是漏极和源极之间纵向流过电流。该器件结构采用两个栅区单元160代替传统VDMOS中的整体式栅区,两个栅区单元160之间是隔离结构,(相较于同尺寸的VDMOS而言)相当于将两个栅区单元之间的栅极去除了,因此实际的栅极覆盖面积更小,栅极电荷Qg更小;并且栅极与漏极的实际相对面积与传统的整体式栅区结构相比也更小,所以还可有效的减小栅漏电荷Qgd。
图2是基于上述器件结构的一种增强型器件结构示意图。通过对漂移区进行额外的第一导电类型(N)离子注入,在漂移区中形成一个第一导电类型离子注入区131(N型区),用以增强此处漂移区的离子浓度,从而可以有效的减小源漏导通电阻Rdson。
由于器件的品质因数FOM与栅极电荷Qg、栅漏电荷Qgd、源漏导通电阻Rdson有如下关系:
FOM1=Rdson*Qg
FOM2=Rdson*Qgd
可见,本实施例提供的器件结构通过减小栅极电荷Qg、栅漏电荷Qgd和源漏导通电阻Rdson,能有效提高器件性能,改善FOM。
参见图3a-3f,制作上述功率晶体管的方法,包括以下步骤:
步骤一、如图3a所示,在第一导电类型衬底120(N+型半导体衬底)上形成第一导电类型外延层1300(N-型外延层),并在第一导电类型外延层1300上分别制作两个栅区单元160;该外延层1300的厚度可变;
其中,还可采用第一导电类型离子注入(N离子注入)的方法,增强外延层上部的第一导电类型离子浓度,用于在漂移区中形成一个额外的第一导电类型离子注入区131(N型区),以增强漂移区的离子浓度,减小阻抗。
步骤二、如图3b所示,在两个栅区单元160周围制作隔离结构170,使其覆盖两个栅区单元160的表面,并使两个栅区单元160之间电隔离,即两个栅区单元160之间无直接连接。
步骤三、如图3c所示,通过P离子及N离子注入,在隔离结构170两侧的外延层1300中分别形成两个重掺杂第一导电类型区1500(N+型)和两个第二导电类型区1400(P型),每侧的第二导电类型区1400位于重掺杂第一导电类型区1500的下方,剩余的外延层1300将作为漂移区130。
然后,可以通过热处理等方法,扩大重掺杂第一导电类型区1500和第二导电类型区1400,使每侧的重掺杂第一导电类型区1500分别向内延伸至所述隔离结构170下方,且每侧的第二导电类型区1400分别延伸至与之邻近的栅区单元160下方;第二导电类型区1400将重掺杂第一导电类型区1500与漂移区130隔开,如图3d所示。
步骤四、如图3e所示,刻蚀掉未被所述隔离结构170遮挡的部分第一导电类型区1500,形成第一导电类型源区150,使得第二导电类型体区140暴露出来。
步骤五、如图3f所示,制作第一电极,即源极180,使其同时与所述隔离结构170两侧的第一导电类型源区150和第二导电类型体区140接触。
步骤六、在第一导电类型衬底120下制作第二电极,即漏极110,此步骤未绘制附图,可以图1参考。
可见该制作工艺较为简单,仅需要在制作栅区、刻蚀源区和制作源极时采用掩模版,仅采用三道掩模版即可完成器件结构的制作,大大降低了生产成本。
实施例二
本实施例提供一种功率绝缘栅双极型晶体管(IGBT)的器件结构,如图4所示,该器件结构包括:
集电极210,位于集电极210之上的第二导电类型衬底220,位于第二导电类型衬底220之上的漂移区230,分别位于第一导电类型漂移区230上方两侧的两个第一导电类型发射区250,分别位于两个第二导电类型发射区250与第一导电类型漂移区230之间的两个第二导电类型体区240,分别位于两个第二导电类型体区240之上的两个栅区单元260,覆盖于两个栅区单元260的表面并使两个栅区单元260之间电隔离的隔离结构270,以及覆盖于隔离结构270表面的发射极280。发射极280同时与两个第一导电类型发射区250和两个第二导电类型体区240电导通。
其中,栅区单元260包括栅介质层261和位于栅介质层261上的栅极层262;优选地,在栅极层262上还设有绝缘层263。
优选地,在所述漂移区230中还设有一个第一导电类型离子注入区231,该第一导电类型离子注入区231位于两个第二导电类型体区240之间,用以增强此处漂移区的离子浓度,有效减小导通电阻。
其制作方法与实施例一中的制作方法相类似,不同之处在于:制作MOS管时,步骤一的半导体衬底采用第一导电类型衬底;而制作IGBT时,步骤一的半导体衬底采用第二导电类型衬底。
本发明中涉及的其他技术属于本领域技术人员熟悉的范畴,在此不再赘述。上述实施例仅用以说明而非限制本发明的技术方案。任何不脱离本发明精神和范围的技术方案均应涵盖在本发明的专利申请范围当中。

Claims (6)

1.一种功率晶体管结构的制作方法,其特征在于,包括以下步骤:
步骤一、在半导体衬底上形成浅掺杂的第一导电类型的外延层,并在所述外延层上分别制作两个栅区单元;每一个栅极单元包括栅介质层和位于栅介质层上的栅极层,两个栅介质层无直接连接;在所述栅极层上还设有绝缘层;
步骤二、在所述两个栅区单元周围制作隔离结构,使其覆盖所述两个栅区单元的表面,并使两个栅区单元之间电隔离;
步骤三、以所述隔离结构为自对准掩膜,在所述隔离结构两侧的外延层中分别形成两个重掺杂第一导电类型区和两个第二导电类型区,剩余的外延层作为漂移区;其中所述隔离结构每侧各有一个重掺杂第一导电类型区和一个第二导电类型区,每侧的重掺杂第一导电类型区分别向内延伸至所述隔离结构下方,且每侧的第二导电类型区分别延伸至与之邻近的栅区单元下方,将重掺杂第一导电类型区与漂移区隔开;
步骤四、刻蚀掉未被所述隔离结构遮挡的部分第一导电类型区;
步骤五、制作上电极,使其同时与所述隔离结构两侧的第一导电类型区和第二导电类型区接触;
步骤六、在所述半导体衬底下制作下电极。
2.根据权利要求1所述的功率晶体管结构的制作方法,其特征在于:步骤一所述的半导体衬底采用第一导电类型衬底。
3.根据权利要求1所述的功率晶体管结构的制作方法,其特征在于:步骤一所述的半导体衬底采用第二导电类型衬底。
4.根据权利要求1所述的功率晶体管结构的制作方法,其特征在于:步骤一中,还采用了第一导电类型离子注入的方法,增强外延层上部的第一导电类型离子浓度。
5.根据权利要求1所述的功率晶体管结构的制作方法,其特征在于:步骤三中,采用离子注入的方法,在所述隔离结构两侧的外延层中分别形成两个重掺杂第一导电类型区和两个第二导电类型区。
6.根据权利要求1所述的功率晶体管结构的制作方法,其特征在于:步骤三中,采用热处理扩散的方法,扩大重掺杂第一导电类型区和第二导电类型区,使每侧的重掺杂第一导电类型区分别向内延伸至所述隔离结构下方,且每侧的第二导电类型区分别延伸至与之邻近的栅区单元下方,将重掺杂第一导电类型区与漂移区隔开。
CN201110081027.4A 2011-03-31 2011-03-31 功率晶体管结构及其制作方法 Expired - Fee Related CN102738229B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201110081027.4A CN102738229B (zh) 2011-03-31 2011-03-31 功率晶体管结构及其制作方法
TW100145688A TWI488307B (zh) 2011-03-31 2011-12-12 Power transistor structure and manufacturing method
US13/414,292 US8823098B2 (en) 2011-03-31 2012-03-07 Structures for power transistor and methods of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110081027.4A CN102738229B (zh) 2011-03-31 2011-03-31 功率晶体管结构及其制作方法

Publications (2)

Publication Number Publication Date
CN102738229A CN102738229A (zh) 2012-10-17
CN102738229B true CN102738229B (zh) 2015-01-28

Family

ID=46926080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110081027.4A Expired - Fee Related CN102738229B (zh) 2011-03-31 2011-03-31 功率晶体管结构及其制作方法

Country Status (3)

Country Link
US (1) US8823098B2 (zh)
CN (1) CN102738229B (zh)
TW (1) TWI488307B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810289A (zh) * 2014-01-27 2015-07-29 北大方正集团有限公司 一种vdmos管的制造方法和vdmos
US10957791B2 (en) * 2019-03-08 2021-03-23 Infineon Technologies Americas Corp. Power device with low gate charge and low figure of merit
CN113097300A (zh) * 2019-12-23 2021-07-09 华润微电子(重庆)有限公司 一种功率器件及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645624A (zh) * 2003-12-22 2005-07-27 半导体元件工业有限责任公司 具有低栅极电荷和低导通电阻的半导体器件及其制造方法
CN1808708A (zh) * 2004-09-16 2006-07-26 半导体元件工业有限责任公司 一种形成低电容半导体器件的方法及其结构
CN101490847A (zh) * 2006-05-31 2009-07-22 万国半导体股份有限公司 平面分离栅极高性能金属氧化物半导体场效应晶体管结构及制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121053A (ja) * 1995-08-21 1997-05-06 Matsushita Electric Ind Co Ltd 縦型の電界効果型トランジスタ及びその製造方法
US6627946B2 (en) * 2000-09-20 2003-09-30 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with control gates protruding portions
US7101758B2 (en) * 2003-10-15 2006-09-05 Taiwan Semiconductor Manufacturing Co., Ltd. Poly-etching method for split gate flash memory cell
KR100574952B1 (ko) * 2003-11-04 2006-05-02 삼성전자주식회사 스플릿 게이트형 비휘발성 반도체 메모리 소자 제조방법
US7397084B2 (en) * 2005-04-01 2008-07-08 Semiconductor Components Industries, L.L.C. Semiconductor device having enhanced performance and method
CN102646681B (zh) * 2006-10-04 2015-08-05 株式会社半导体能源研究所 半导体器件
TW201019473A (en) * 2008-11-13 2010-05-16 Anpec Electronics Corp Semiconductor device with a low JFET region resistance
CN103730515B (zh) * 2009-03-09 2016-08-17 株式会社半导体能源研究所 半导体器件
TWI398951B (zh) * 2009-03-13 2013-06-11 Univ Feng Chia 具分離式閘極垂直型金氧半電晶體元件結構及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645624A (zh) * 2003-12-22 2005-07-27 半导体元件工业有限责任公司 具有低栅极电荷和低导通电阻的半导体器件及其制造方法
CN1808708A (zh) * 2004-09-16 2006-07-26 半导体元件工业有限责任公司 一种形成低电容半导体器件的方法及其结构
CN101490847A (zh) * 2006-05-31 2009-07-22 万国半导体股份有限公司 平面分离栅极高性能金属氧化物半导体场效应晶体管结构及制造方法

Also Published As

Publication number Publication date
TWI488307B (zh) 2015-06-11
CN102738229A (zh) 2012-10-17
TW201244092A (en) 2012-11-01
US20120248534A1 (en) 2012-10-04
US8823098B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
CN203325907U (zh) 绝缘栅半导体装置结构
CN102738232B (zh) 超结功率晶体管结构及其制作方法
TWI407564B (zh) 具有溝槽底部多晶矽結構之功率半導體及其製造方法
TW201401521A (zh) 橫向電晶體及其製造方法
CN106663610A (zh) 具有改进的非钳位感应开关抗扰性的晶体管结构
KR101699585B1 (ko) 고전압 반도체 소자 및 그 제조 방법
WO2014083771A1 (ja) 半導体素子及びその製造方法
TWI488309B (zh) 溝渠式閘極金氧半場效電晶體及其製造方法
CN107910269B (zh) 功率半导体器件及其制造方法
CN107910266B (zh) 功率半导体器件及其制造方法
CN104377244A (zh) 一种降低ldmos导通电阻的器件结构
CN101207125A (zh) 半导体器件及其制造方法
CN104900691B (zh) 半导体元件及其制作方法
TWI698017B (zh) 高壓半導體裝置以及其製作方法
CN102738229B (zh) 功率晶体管结构及其制作方法
TWI447912B (zh) 半導體裝置及其製造方法
CN108565286B (zh) 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法
CN107910268B (zh) 功率半导体器件及其制造方法
CN114464674A (zh) Ldmosfet器件、制作方法及芯片
CN106129116B (zh) 一种具有变k介质折叠横向双扩散金属氧化物半导体场效应管
CN112993021A (zh) 横向双扩散金属氧化物半导体场效应管
TWI398951B (zh) 具分離式閘極垂直型金氧半電晶體元件結構及其製造方法
CN116364763A (zh) 一种mosfet器件及其制作方法
CN107910271A (zh) 功率半导体器件及其制造方法
CN108365010B (zh) 一种具有超结结构的vdmos器件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150128

Termination date: 20160331

CF01 Termination of patent right due to non-payment of annual fee