[go: up one dir, main page]

CN102738062A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
CN102738062A
CN102738062A CN2011100817856A CN201110081785A CN102738062A CN 102738062 A CN102738062 A CN 102738062A CN 2011100817856 A CN2011100817856 A CN 2011100817856A CN 201110081785 A CN201110081785 A CN 201110081785A CN 102738062 A CN102738062 A CN 102738062A
Authority
CN
China
Prior art keywords
layer
semiconductor substrate
dielectric material
metal layer
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100817856A
Other languages
Chinese (zh)
Other versions
CN102738062B (en
Inventor
张传宝
庄敏
唐建新
张斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201110081785.6A priority Critical patent/CN102738062B/en
Publication of CN102738062A publication Critical patent/CN102738062A/en
Application granted granted Critical
Publication of CN102738062B publication Critical patent/CN102738062B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种制作半导体器件的方法,包括:提供半导体衬底和形成在所述半导体衬底上的中间金属层;在中间金属层上形成顶金属层的刻蚀停止层;对所述半导体衬底进行烘烤步骤;使用冲洗剂对所述刻蚀停止层进行冲洗步骤;在所述刻蚀停止层上形成介电材料层。本发明的方法通过在形成顶金属层的工艺中增加烘烤和冲洗步骤,可以有效地避免后续形成介电材料层的过程中,刻蚀停止层释放应力而形成剥落源,进而可以避免在介电材料层中形成剥落缺陷以及可能发生的剥落现象。进一步,可以防止剥落缺陷和剥落现象对后续工艺产生影响,进而提高芯片的良品率。

The invention discloses a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate and an intermediate metal layer formed on the semiconductor substrate; forming an etching stop layer of a top metal layer on the intermediate metal layer; Baking the semiconductor substrate; washing the etching stop layer with a rinse agent; forming a dielectric material layer on the etching stop layer. In the method of the present invention, by adding baking and rinsing steps in the process of forming the top metal layer, it can effectively prevent the etch stop layer from releasing stress to form a peeling source in the subsequent process of forming a dielectric material layer, thereby avoiding the formation of peeling sources in the dielectric material layer. The formation of peeling defects and possible peeling phenomena in the electrical material layer. Further, it can prevent the peeling defect and peeling phenomenon from affecting the subsequent process, thereby improving the yield rate of the chip.

Description

制作半导体器件的方法Method of making semiconductor device

技术领域 technical field

本发明涉及半导体器件制造工艺,特别涉及一种制作半导体器件的方法。 The invention relates to a semiconductor device manufacturing process, in particular to a method for manufacturing a semiconductor device.

背景技术 Background technique

当今半导体器件制造技术飞速发展,半导体器件已经具有深亚微米结构,集成电路中包含巨大数量的半导体元件。在如此大规模集成电路中,元件之间高性能、高密度的连接不仅在单个互联层中互连,而且要在多层之间进行互连。因此,通常采用多层互连结构,特别是利用双镶嵌(dual-damascene)工艺形成的多层互连结构,其预先在层间介电层中形成沟槽(trench)和孔(via),然后用导电材料例如铜(Cu)填充上述沟槽和孔。最后,在顶金属层上形成铝布线层,以使器件中的互联结构都连接到表层的铝布线层。 Today's semiconductor device manufacturing technology is developing rapidly, semiconductor devices already have a deep submicron structure, and integrated circuits contain a huge number of semiconductor components. In such large-scale integrated circuits, high-performance, high-density connections between components are not only interconnected in a single interconnect layer, but also interconnected between multiple layers. Therefore, a multilayer interconnection structure is usually adopted, especially a multilayer interconnection structure formed by a dual-damascene process, which pre-forms trenches (trench) and holes (via) in the interlayer dielectric layer, The aforementioned trenches and holes are then filled with a conductive material such as copper (Cu). Finally, an aluminum wiring layer is formed on the top metal layer, so that interconnect structures in the device are all connected to the surface aluminum wiring layer.

图1A为现有的采用双镶嵌工艺形成的互连结构的截面图。如图1A所示, 该互连结构形成在多层层间介电层110、130和150中,层间介电层110、130和150依次沉积在半导体衬底(未示出)上。底金属层110b、中间金属层130b以及顶金属层150b分别形成于层间介电层120、130和150中。在互连结构中可能会包含多个中间金属层130b以及多个包围该中间金属层130b的层间介电层130。形成在层间介电层110中的接触孔110a用于连接底金属层110b以及形成在半导体衬底表面的元件(未示出)。同样地,形成在层间介电层130和150中的通孔130a和150a用于连接底金属层110b和中间金属层130b以及中间金属层130b和顶金属层150b。当该互连结构中包含多个中间金属层130b时,通孔130a还用于连接相邻的两个中间金属层130b。在顶金属层150b上形成有铝布线层170,该铝布线层170包括钝化层171-174以及铝焊盘(Al pad)170a。 FIG. 1A is a cross-sectional view of a conventional interconnection structure formed by a dual damascene process. As shown in FIG. 1A, the interconnection structure is formed in multiple interlayer dielectric layers 110, 130 and 150, which are sequentially deposited on a semiconductor substrate (not shown). The bottom metal layer 110b, the middle metal layer 130b and the top metal layer 150b are formed in the interlayer dielectric layers 120, 130 and 150, respectively. The interconnect structure may include a plurality of intermediate metal layers 130b and a plurality of interlayer dielectric layers 130 surrounding the intermediate metal layers 130b. The contact hole 110a formed in the interlayer dielectric layer 110 is used to connect the bottom metal layer 110b and an element (not shown) formed on the surface of the semiconductor substrate. Likewise, the via holes 130a and 150a formed in the interlayer dielectric layers 130 and 150 are used to connect the bottom metal layer 110b and the middle metal layer 130b and the middle metal layer 130b and the top metal layer 150b. When the interconnection structure includes multiple intermediate metal layers 130b, the via hole 130a is also used to connect two adjacent intermediate metal layers 130b. An aluminum wiring layer 170 is formed on the top metal layer 150b, and the aluminum wiring layer 170 includes passivation layers 171-174 and an aluminum pad (Al pad) 170a.

图1B示出了制作图1A中示出的顶金属层150b过程中的截面图。如图1B所示,首先,在层间介电层130上首先形成较薄的刻蚀停止层151,该刻蚀停止层151的材料通常为氮化硅;然后在刻蚀停止层151上形成较厚的介电材料层152,该介电材料层152的材料通常为不掺杂的硅玻璃(USG);然后,在介电材料层152上形成硬掩膜层153,所述硬掩膜层153的材料通常为氮氧化硅;最后,在硬掩膜层153上形成具有图案的光刻胶层,并经曝光、显影等步骤在层间介电层150中形成通孔和沟槽,然后在通孔和沟槽中填充Cu以形成顶金属层(未示出)。 FIG. 1B shows a cross-sectional view during fabrication of the top metal layer 150b shown in FIG. 1A. As shown in FIG. 1B , first, a thinner etch stop layer 151 is first formed on the interlayer dielectric layer 130, and the material of the etch stop layer 151 is usually silicon nitride; A thicker dielectric material layer 152, the material of the dielectric material layer 152 is usually undoped silica glass (USG); then, a hard mask layer 153 is formed on the dielectric material layer 152, the hard mask The material of layer 153 is usually silicon oxynitride; finally, a patterned photoresist layer is formed on the hard mask layer 153, and vias and grooves are formed in the interlayer dielectric layer 150 through steps such as exposure and development. The vias and trenches are then filled with Cu to form a top metal layer (not shown).

为了减小互连金属间的寄生电容,层间介电层130通常是由介电常数较小的材料制成,例如,黑钻石(black diamond,BD)等。然而,由于黑钻石与氮化硅之间的应力分布不均匀,导致刻蚀停止层151与层间介电层130之间的黏附性较差。当在刻蚀停止层151上再形成较厚的介电材料层152时,在刻蚀停止层151中很容易形成剥落源。在随后形成介电材料层152的过程中,刻蚀停止层151会在整个半导体衬底的边缘区域产生剥落,剥落颗粒会进一步嵌在介电材料层152中,而在介电材料层152中形成剥落缺陷,最终很可能导致介电材料层152也出现剥落现象。这些剥落缺陷以及剥落颗粒将会对后续工艺产生很大影响,并降低芯片的良品率。 In order to reduce the parasitic capacitance between interconnected metals, the interlayer dielectric layer 130 is usually made of a material with a low dielectric constant, for example, black diamond (black diamond, BD) and the like. However, due to the uneven stress distribution between the black diamond and the silicon nitride, the adhesion between the etch stop layer 151 and the interlayer dielectric layer 130 is poor. When a thicker dielectric material layer 152 is further formed on the etch stop layer 151 , the peeling source is easily formed in the etch stop layer 151 . In the subsequent process of forming the dielectric material layer 152, the etch stop layer 151 will peel off in the edge region of the entire semiconductor substrate, and the peeled particles will be further embedded in the dielectric material layer 152, and in the dielectric material layer 152 The formation of peeling defects may eventually lead to peeling of the dielectric material layer 152 . These peeling defects and peeling particles will have a great impact on subsequent processes and reduce the yield of chips.

因此,需要提供一种制作半导体器件的方法,以避免在形成顶金属层的过程中,在层间介电层中形成剥落缺陷或者可能发生的剥落现象,防止剥落缺陷和剥落现象对后续工艺产生影响,进而提高芯片的良品率。 Therefore, it is necessary to provide a method for making a semiconductor device, so as to avoid the formation of peeling defects or possible peeling phenomena in the interlayer dielectric layer in the process of forming the top metal layer, and prevent the peeling defects and peeling phenomena from affecting subsequent processes. Influence, and then improve the yield rate of the chip.

发明内容 Contents of the invention

为了避免在形成顶金属层的过程中,在层间介电层中形成剥落缺陷或者可能发生的剥落现象,本发明提出一种制作半导体器件的方法,包括:提供半导体衬底和形成在所述半导体衬底上的中间金属层;在所述中间金属层上形成顶金属层的刻蚀停止层;对所述半导体衬底进行烘烤步骤;使用冲洗剂对所述刻蚀停止层进行冲洗步骤;在所述刻蚀停止层上形成介电材料层。 In order to avoid the formation of peeling defects or possible peeling phenomena in the interlayer dielectric layer during the formation of the top metal layer, the present invention proposes a method for manufacturing a semiconductor device, including: providing a semiconductor substrate and forming An intermediate metal layer on a semiconductor substrate; forming an etch stop layer of a top metal layer on the intermediate metal layer; performing a baking step on the semiconductor substrate; performing a rinse step on the etch stop layer using a rinse agent ; forming a dielectric material layer on the etch stop layer.

优选地,所述方法还包括在所述介电材料层中形成通孔和顶金属层的步骤。 Preferably, said method further comprises the step of forming vias and a top metal layer in said layer of dielectric material.

优选地,所述烘烤步骤的烘烤温度与形成所述介电材料层的温度相同。 Preferably, the baking temperature in the baking step is the same as the temperature for forming the dielectric material layer.

优选地,所述烘烤步骤的烘烤时间与所述介电材料层的形成时间相同。 Preferably, the baking time of the baking step is the same as the forming time of the dielectric material layer.

优选地,所述介电材料层的材料为等离子体增强氧化物。 Preferably, the material of the dielectric material layer is plasma-enhanced oxide.

优选地,所述离子体增强氧化物为不掺杂的硅玻璃或含氟的硅玻璃。 Preferably, the plasma-enhanced oxide is undoped silica glass or fluorine-containing silica glass.

优选地,所述烘烤温度为350oC-450oC。 Preferably, the baking temperature is 350 ° C-450 ° C.

优选地,所述烘烤温度为380oC-420oC。 Preferably, the baking temperature is 380 ° C-420 ° C.

优选地,所述烘烤时间为50-250秒。 Preferably, the baking time is 50-250 seconds.

优选地,所述烘烤时间为100-200秒。 Preferably, the baking time is 100-200 seconds.

优选地,所述冲洗剂为氦气、氩气和氮气中的一种或多种。 Preferably, the flushing agent is one or more of helium, argon and nitrogen.

优选地,所述冲洗剂为氮气,所述氮气的流速为60-100立方厘米/分钟。 Preferably, the flushing agent is nitrogen, and the flow rate of the nitrogen is 60-100 cubic centimeters per minute.

优选地,所述冲洗剂还包括去离子水,所述去离子水在所述氮气冲压下喷出。 Preferably, the rinsing agent further includes deionized water, and the deionized water is sprayed out under the pressure of the nitrogen gas.

优选地,所述冲洗步骤结束后还包括旋转所述半导体衬底,以对所述半导体衬底进行甩干的步骤。 Preferably, after the rinsing step, the step of rotating the semiconductor substrate to dry the semiconductor substrate is also included.

优选地,在所述冲洗过程中,使所述半导体衬底旋转。 Preferably, during said rinsing, said semiconductor substrate is rotated.

优选地,所述半导体衬底的旋转速度为400-600转/分钟。 Preferably, the rotation speed of the semiconductor substrate is 400-600 rpm.

优选地,所述冲洗的时间为20-40秒。 Preferably, the flushing time is 20-40 seconds.

优选地,所述冲洗的时间为25-35秒。 Preferably, the flushing time is 25-35 seconds.

优选地,所述刻蚀停止层的材料为氮化硅或含碳的氮化硅。 Preferably, the material of the etching stop layer is silicon nitride or silicon nitride containing carbon.

本发明的方法通过在形成顶金属层的工艺中增加烘烤和冲洗步骤,可以有效地避免后续形成介电材料层的过程中,刻蚀停止层释放应力而形成剥落源,进而可以避免在介电材料层中形成剥落缺陷以及可能发生的剥落现象。进一步,可以防止剥落缺陷和剥落现象对后续工艺产生影响,进而提高芯片的良品率。 In the method of the present invention, by adding baking and rinsing steps in the process of forming the top metal layer, it can effectively prevent the etch stop layer from releasing stress to form a peeling source in the subsequent process of forming the dielectric material layer, thereby avoiding the formation of the peeling source in the dielectric material layer. The formation of peeling defects and possible peeling phenomena in the electrical material layer. Further, it can prevent the peeling defect and peeling phenomenon from affecting the subsequent process, thereby improving the yield rate of the chip.

附图说明 Description of drawings

本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。在附图中, The following drawings of the invention are hereby included as part of the invention for understanding the invention. The accompanying drawings illustrate embodiments of the invention and description thereof to explain principles of the invention. In the attached picture,

图1A为现有的采用双镶嵌工艺形成的互连结构的截面图; FIG. 1A is a cross-sectional view of an existing interconnection structure formed by a dual damascene process;

图1B示出了制作图1A中示出的顶金属层过程中的截面图; Figure 1B shows a cross-sectional view during the fabrication of the top metal layer shown in Figure 1A;

图2为采用根据本发明一个方面的制作半导体器件的方法的流程图; FIG. 2 is a flowchart of a method for manufacturing a semiconductor device according to one aspect of the present invention;

图3为根据本发明一个方面制作顶金属层过程中的截面图。 Figure 3 is a cross-sectional view during fabrication of a top metal layer in accordance with one aspect of the present invention.

具体实施方式 Detailed ways

在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其它的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。 In the following description, numerous specific details are given in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, some technical features known in the art are not described in order to avoid confusion with the present invention.

图2为采用根据本发明一个方面的制作半导体器件的方法的流程图,图3为根据本发明一个方面制作顶金属层过程中的截面图。下面结合图2和图3对本发明的制造半导体器件的方法进行描述。 FIG. 2 is a flowchart of a method for fabricating a semiconductor device according to one aspect of the present invention, and FIG. 3 is a cross-sectional view during fabrication of a top metal layer according to one aspect of the present invention. The method for manufacturing a semiconductor device of the present invention will be described below with reference to FIG. 2 and FIG. 3 .

执行步骤201,提供半导体衬底和形成在该半导体衬底上的中间金属层。 Step 201 is executed to provide a semiconductor substrate and an intermediate metal layer formed on the semiconductor substrate.

下面将结合图3对上述结构进行详细描述。首先提供半导体衬底(未示出),然后在该半导体衬底上形成底金属层310b和中间金属层330b,其中底金属层310b和中间金属层330b分别形成在层间介电层310和330中。应当理解的是,虽然图3中仅示出了一个中间金属层330b,但本领域的技术人员应当理解的是,通常情况下,上述结构可以包含多个中间金属层330b以及多个包围该中间金属层330b的层间介电层330。多个中间金属层330b和层间介电层330依次形成在底金属层310b和层间介电层310之上。为了减小互连金属层之间的寄生电容,层间介电层330通常是由介电常数较小的材料制成,例如,黑钻石(black diamond,BD)等。 The above structure will be described in detail below with reference to FIG. 3 . First provide a semiconductor substrate (not shown), and then form a bottom metal layer 310b and an intermediate metal layer 330b on the semiconductor substrate, wherein the bottom metal layer 310b and the intermediate metal layer 330b are respectively formed on the interlayer dielectric layers 310 and 330 middle. It should be understood that although only one intermediate metal layer 330b is shown in FIG. The interlayer dielectric layer 330 of the metal layer 330b. A plurality of intermediate metal layers 330 b and an interlayer dielectric layer 330 are sequentially formed on the bottom metal layer 310 b and the interlayer dielectric layer 310 . In order to reduce the parasitic capacitance between interconnected metal layers, the interlayer dielectric layer 330 is usually made of a material with a small dielectric constant, such as black diamond (black diamond, BD) and the like.

在层间介电层310中、底金属层310b的下方形成有接触孔310a,接触孔310a用于连接底金属层310b以及形成在半导体衬底表面的元件结构(未示出)。所述元件结构包括栅极、源极、漏极、字线或电阻等。在层间介电层330中、中间金属层330b的下方形成有通孔330a,通孔330a用于连接底金属层310b和中间金属层330b。当上述结构包含多个中间金属层330b时,通孔330a还用于连接相邻的两个中间金属层330b。 A contact hole 310 a is formed in the interlayer dielectric layer 310 below the bottom metal layer 310 b, and the contact hole 310 a is used to connect the bottom metal layer 310 b with an element structure (not shown) formed on the surface of the semiconductor substrate. The element structure includes a gate, a source, a drain, a word line or a resistor and the like. A via hole 330a is formed in the interlayer dielectric layer 330 below the intermediate metal layer 330b, and the via hole 330a is used to connect the bottom metal layer 310b and the intermediate metal layer 330b. When the above structure includes a plurality of intermediate metal layers 330b, the via hole 330a is also used to connect two adjacent intermediate metal layers 330b.

执行步骤202,在中间金属层上形成顶金属层的刻蚀停止层。 Step 202 is executed to form an etch stop layer of the top metal layer on the middle metal layer.

参照图3,在中间金属层330b和层间介电层330上形成刻蚀停止层351,刻蚀停止层351的材料可以为氮化硅或含碳的氮化硅(NDC)等。该刻蚀停止层351可以用作随后对介电材料层(未示出)进行刻蚀时的刻蚀停止层。刻蚀停止层351的形成方法可以为化学气相沉积法、物理气相沉积法或溅射法等等。 Referring to FIG. 3 , an etch stop layer 351 is formed on the intermediate metal layer 330 b and the interlayer dielectric layer 330 , and the material of the etch stop layer 351 may be silicon nitride or silicon nitride containing carbon (NDC). The etch stop layer 351 can be used as an etch stop layer when the dielectric material layer (not shown) is subsequently etched. The etching stop layer 351 may be formed by chemical vapor deposition, physical vapor deposition or sputtering.

执行步骤203,对半导体衬底进行烘烤。 Step 203 is executed to bake the semiconductor substrate.

优选地,该烘烤步骤的烘烤温度与随后形成介电材料层的温度相同,以避免对后续介电材料层的形成工艺产生影响,保证后续工艺的可靠性。根据本发明一个实施方式,介电材料层的材料为不掺杂的硅玻璃(USG),或含氟的硅玻璃(FSG)。通常,该介电材料层的沉积温度为350oC-450oC,因此,烘烤步骤的烘烤温度为350oC-450oC。优选地,该烘烤温度可以为380oC-420oC。 Preferably, the baking temperature in the baking step is the same as the temperature at which the dielectric material layer is formed later, so as to avoid affecting the formation process of the subsequent dielectric material layer and ensure the reliability of the subsequent process. According to an embodiment of the present invention, the material of the dielectric material layer is undoped silica glass (USG), or fluorine-containing silica glass (FSG). Usually, the deposition temperature of the dielectric material layer is 350 ° C-450 ° C, therefore, the baking temperature of the baking step is 350 ° C-450 ° C. Preferably, the baking temperature can be 380 ° C-420 ° C.

优选地,所述烘烤步骤的烘烤时间与随后介电材料层的形成时间相同。当介电材料层是采用化学气相沉积或物理气相沉积法形成的时,所述形成时间是指沉积介电材料层所使用的有效时间,不包括抽真空、升温和降温等附加工艺时间。当介电材料层是采用溅射法形成的时,所述形成时间是指溅射介电材料层所使用的有效时间,不包括抽真空、升温和降温等附加工艺时间。根据本发明一个实施方式,介电材料层的材料为不掺杂的硅玻璃,通常,该介电材料层的形成时间为50-250秒,因此,烘烤步骤的烘烤时间为50-250秒。优选地,该烘烤温度可以为100-200秒。 Preferably, the baking time of the baking step is the same as the subsequent forming time of the dielectric material layer. When the dielectric material layer is formed by chemical vapor deposition or physical vapor deposition, the formation time refers to the effective time used to deposit the dielectric material layer, excluding additional process time such as vacuuming, heating and cooling. When the dielectric material layer is formed by sputtering, the formation time refers to the effective time used for sputtering the dielectric material layer, excluding additional process time such as vacuuming, heating and cooling. According to one embodiment of the present invention, the material of the dielectric material layer is undoped silicon glass. Usually, the forming time of the dielectric material layer is 50-250 seconds, therefore, the baking time of the baking step is 50-250 seconds. Second. Preferably, the baking temperature may be 100-200 seconds.

执行步骤204,使用冲洗剂对刻蚀停止层进行冲洗。优选地,在冲洗过程中,使半导体衬底进行旋转。在冲洗过程中使半导体衬底旋转不但可以提高冲洗的均匀性,而且通过旋转半导体衬底可以避免冲洗剂在刻蚀停止层表面停留过长时间,进而防止冲洗剂对刻蚀停止层产生影响。通常情况下,半导体衬底被固定在底盘上,通过旋转底盘即可带动半导体衬底旋转。优选地,半导体衬底的旋转速度为400-600转/分钟。更优选地,半导体衬底的旋转速度为450-550转/分钟。优选地,所述冲洗的时间为20-40秒。更优选地,所述冲洗的时间为25-35秒。 Step 204 is executed, using a rinse agent to rinse the etch stop layer. Preferably, the semiconductor substrate is rotated during rinsing. Rotating the semiconductor substrate during the rinsing process can not only improve the uniformity of rinsing, but also prevent the rinsing agent from staying on the surface of the etching stop layer for a long time by rotating the semiconductor substrate, thereby preventing the rinsing agent from affecting the etching stop layer. Usually, the semiconductor substrate is fixed on the chassis, and the semiconductor substrate can be driven to rotate by rotating the chassis. Preferably, the rotation speed of the semiconductor substrate is 400-600 rpm. More preferably, the rotation speed of the semiconductor substrate is 450-550 rpm. Preferably, the flushing time is 20-40 seconds. More preferably, the flushing time is 25-35 seconds.

所述冲洗剂可以为氦气、氩气和氮气等惰性气体中的一种或多种。考虑到生产成本,优选地,所述冲洗剂为氮气。在冲洗过程中,氮气的流速为可以为60-100立方厘米/分钟,优选地,氮气的流速为80立方厘米/分钟。 The flushing agent may be one or more of inert gases such as helium, argon and nitrogen. Considering the production cost, preferably, the flushing agent is nitrogen. During flushing, the flow rate of nitrogen gas may be 60-100 cubic centimeters per minute, preferably, the flow rate of nitrogen gas is 80 cubic centimeters per minute.

为了提高对刻蚀停止层上颗粒的冲洗能力,优选地,所述冲洗剂还包括去离子水,并且去离子水在氮气冲压下喷出。但需要注意的是,当所述冲洗剂包括去离子水时,通常适用于刻蚀停止层为非吸水性材质。对于刻蚀停止层为易吸水性材质,例如,含碳的氮化硅(NDC)时,通常选择冲洗剂不包含去离子水的方案。此外,当冲洗剂包括去离子水时,所述冲洗步骤结束后还包括旋转半导体衬底,以对半导体衬底进行甩干的步骤。  In order to improve the rinsing capability of the particles on the etch stop layer, preferably, the rinsing agent further includes deionized water, and the deionized water is sprayed out under the pressure of nitrogen gas. However, it should be noted that when the rinsing agent includes deionized water, it is usually suitable for the etch stop layer to be made of non-water-absorbing material. When the etch stop layer is made of a water-absorbing material, such as carbon-containing silicon nitride (NDC), it is usually selected that the rinse agent does not contain deionized water. In addition, when the rinsing agent includes deionized water, the rinsing step further includes a step of rotating the semiconductor substrate to dry the semiconductor substrate. the

通过上述烘烤步骤,可以释放刻蚀停止层沉积过程中产生的应力。以刻蚀停止层的材料为氮化硅为例,通过烘烤步骤可以使氮化硅晶格内镶嵌的多余的氮和硅扩散至刻蚀停止层的表面,并形成氮化硅颗粒。接着通过随后的冲洗步骤,去除刻蚀停止层表面的氮化硅颗粒。这样可以避免后续形成介电材料层的过程中,刻蚀停止层释放应力,形成剥落源,进而避免在介电材料层中形成剥落缺陷或者可能发生的剥落现象。 Through the above baking step, the stress generated during the deposition of the etch stop layer can be released. Taking silicon nitride as the material of the etching stop layer as an example, excess nitrogen and silicon embedded in the silicon nitride lattice can be diffused to the surface of the etching stop layer through the baking step to form silicon nitride particles. Then, the silicon nitride particles on the surface of the etching stop layer are removed through the subsequent washing step. In this way, during the subsequent process of forming the dielectric material layer, the etch stop layer releases stress and forms a peeling source, thereby avoiding the formation of peeling defects or possible peeling phenomena in the dielectric material layer.

执行步骤205,在刻蚀停止层上形成介电材料层。 Step 205 is executed to form a dielectric material layer on the etching stop layer.

该介电材料层的材料可以为等离子体增强氧化物(PEOX),例如,不掺杂的硅玻璃(USG)或含氟的硅玻璃(FSG)等。介电材料层的形成方法可以为化学气相沉积法、物理气相沉积法或溅射法等等。 The material of the dielectric material layer may be plasma-enhanced oxide (PEOX), for example, undoped silica glass (USG) or fluorine-containing silica glass (FSG). The method for forming the dielectric material layer may be chemical vapor deposition, physical vapor deposition or sputtering.

此外,根据本发明的制作半导体器件的方法还包括在介电材料层中形成通孔和顶金属层的步骤,所述通孔用于连接中间金属层和顶金属层。形成通孔和顶金属层可以采用本领域常用的方法。根据本发明一个实施方式,在介电材料层上依次形成硬掩膜层和具有图案的光刻胶层;然后以具有图案的光刻胶层为掩膜依次对硬掩膜层和介电材料层进行刻蚀,在介电材料层中形成通孔和沟槽;最后,在通孔和沟槽内填充金属。可以理解的是,该方法仅为本发明的一个实施方式,并不构成对本发明的限制。 In addition, the method for manufacturing a semiconductor device according to the present invention further includes the step of forming a via hole and a top metal layer in the dielectric material layer, the via hole being used to connect the middle metal layer and the top metal layer. Forming the via hole and the top metal layer can adopt common methods in the field. According to one embodiment of the present invention, a hard mask layer and a patterned photoresist layer are sequentially formed on the dielectric material layer; The layer is etched to form vias and trenches in the dielectric material layer; finally, the vias and trenches are filled with metal. It can be understood that this method is only an embodiment of the present invention, and does not constitute a limitation of the present invention.

本发明的方法通过在形成顶金属层的工艺中增加烘烤和冲洗步骤,可以有效地避免后续形成介电材料层的过程中,刻蚀停止层释放应力而形成剥落源,进而可以避免在介电材料层中形成剥落缺陷以及可能发生的剥落现象。进一步,可以防止剥落缺陷和剥落现象对后续工艺产生影响,进而提高芯片的良品率。 In the method of the present invention, by adding baking and rinsing steps in the process of forming the top metal layer, it can effectively prevent the etch stop layer from releasing stress to form a peeling source in the subsequent process of forming a dielectric material layer, thereby avoiding the formation of peeling sources in the dielectric material layer. The formation of peeling defects and possible peeling phenomena in the electrical material layer. Further, it can prevent the peeling defect and peeling phenomenon from affecting the subsequent process, thereby improving the yield rate of the chip.

具有根据如上所述实施方式制造的半导体器件可应用于多种集成电路(IC)中。根据本发明的IC例如是存储器电路,如随机存取存储器(RAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、静态RAM(SRAM)、或只读存储器(ROM)等等。根据本发明的IC还可以是逻辑器件,如可编程逻辑阵列(PLA)、专用集成电路(ASIC)、合并式DRAM逻辑集成电路(掩埋式DRAM)、射频电路或任意其它电路器件。根据本发明的IC芯片可用于例如用户电子产品,如个人计算机、便携式计算机、游戏机、蜂窝式电话、个人数字助理、摄像机、数码相机、手机等各种电子产品中,尤其是射频产品中。 A semiconductor device manufactured according to the embodiments described above can be applied to various integrated circuits (ICs). An IC according to the invention is, for example, a memory circuit such as Random Access Memory (RAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Static RAM (SRAM), or Read Only Memory (ROM) or the like. An IC according to the invention may also be a logic device, such as a programmable logic array (PLA), an application specific integrated circuit (ASIC), a merged DRAM logic integrated circuit (buried DRAM), a radio frequency circuit or any other circuit device. The IC chip according to the present invention can be used in consumer electronic products such as personal computers, portable computers, game machines, cellular phones, personal digital assistants, video cameras, digital cameras, mobile phones, etc., especially in radio frequency products.

本发明已经通过上述实施方式进行了说明,但应当理解的是,上述实施方式只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施方式范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施方式,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。 The present invention has been described through the above embodiments, but it should be understood that the above embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention within the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can be made according to the teachings of the present invention, and these variations and modifications all fall within the claimed scope of the present invention. within the range. The protection scope of the present invention is defined by the appended claims and their equivalent scope.

Claims (19)

1.一种制作半导体器件的方法,包括: 1. A method of making a semiconductor device, comprising: 提供半导体衬底和形成在所述半导体衬底上的中间金属层; providing a semiconductor substrate and an intermediate metal layer formed on the semiconductor substrate; 在所述中间金属层上形成顶金属层的刻蚀停止层; forming an etch stop layer of a top metal layer on the middle metal layer; 对所述半导体衬底进行烘烤步骤; performing a baking step on the semiconductor substrate; 使用冲洗剂对所述刻蚀停止层进行冲洗步骤; performing a rinsing step on the etch stop layer using a rinsing agent; 在所述刻蚀停止层上形成介电材料层。 A dielectric material layer is formed on the etch stop layer. 2.如权利要求1所述的方法,其特征在于,所述方法还包括在所述介电材料层中形成通孔和顶金属层的步骤。 2. The method of claim 1, further comprising the step of forming vias and a top metal layer in the layer of dielectric material. 3.如权利要求1所述的方法,其特征在于,所述烘烤步骤的烘烤温度与形成所述介电材料层的温度相同。 3. The method according to claim 1, wherein the baking temperature in the baking step is the same as the temperature for forming the dielectric material layer. 4.如权利要求1所述的方法,其特征在于,所述烘烤步骤的烘烤时间与所述介电材料层的形成时间相同。 4. The method according to claim 1, wherein the baking time of the baking step is the same as the forming time of the dielectric material layer. 5.如权利要求1所述的方法,其特征在于,所述介电材料层的材料为等离子体增强氧化物。 5. The method of claim 1, wherein the material of the dielectric material layer is a plasma-enhanced oxide. 6.如权利要求5所述的方法,其特征在于,所述离子体增强氧化物为不掺杂的硅玻璃或含氟的硅玻璃。 6 . The method according to claim 5 , wherein the plasma-enhanced oxide is undoped silica glass or fluorine-containing silica glass. 7.如权利要求6所述的方法,其特征在于,所述烘烤温度为350oC-450oC。 7. The method according to claim 6, characterized in that, the baking temperature is 350 ° C-450 ° C. 8.如权利要求7所述的方法,其特征在于,所述烘烤温度为380oC-420oC 。 8. The method according to claim 7, characterized in that, the baking temperature is 380 ° C-420 ° C. 9.如权利要求6所述的方法,其特征在于,所述烘烤时间为50-250秒。 9. The method according to claim 6, characterized in that, the baking time is 50-250 seconds. 10.如权利要求9所述的方法,其特征在于,所述烘烤时间为100-200秒。 10. The method according to claim 9, characterized in that, the baking time is 100-200 seconds. 11.如权利要求1所述的方法,其特征在于,所述冲洗剂为氦气、氩气和氮气中的一种或多种。 11. The method according to claim 1, wherein the flushing agent is one or more of helium, argon and nitrogen. 12.如权利要求1所述的方法,其特征在于,所述冲洗剂为氮气,所述氮气的流速为60-100立方厘米/分钟。 12. The method according to claim 1, wherein the flushing agent is nitrogen, and the flow rate of the nitrogen is 60-100 cubic centimeters/min. 13.如权利要求12所述的方法,其特征在于,所述冲洗剂还包括去离子水,所述去离子水在所述氮气冲压下喷出。 13. The method according to claim 12, wherein the flushing agent further comprises deionized water, and the deionized water is sprayed under the nitrogen pressure. 14.如权利要求13所述的方法,其特征在于,所述冲洗步骤结束后还包括旋转所述半导体衬底,以对所述半导体衬底进行甩干的步骤。 14. The method according to claim 13, further comprising a step of rotating the semiconductor substrate to dry the semiconductor substrate after the rinsing step. 15.如权利要求1所述的方法,其特征在于,在所述冲洗过程中,使所述半导体衬底旋转。 15. The method of claim 1, wherein during the rinsing, the semiconductor substrate is rotated. 16.如权利要求15所述的方法,其特征在于,所述半导体衬底的旋转速度为400-600转/分钟。 16. The method according to claim 15, wherein the rotation speed of the semiconductor substrate is 400-600 rpm. 17.如权利要求1所述的方法,其特征在于,所述冲洗的时间为20-40秒。 17. The method according to claim 1, characterized in that, the flushing time is 20-40 seconds. 18.如权利要求17所述的方法,其特征在于,所述冲洗的时间为25-35秒。 18. The method according to claim 17, characterized in that the flushing time is 25-35 seconds. 19.如权利要求1所述的方法,其特征在于,所述刻蚀停止层的材料为氮化硅或含碳的氮化硅。 19. The method according to claim 1, wherein the etching stop layer is made of silicon nitride or silicon nitride containing carbon.
CN201110081785.6A 2011-04-01 2011-04-01 Method for manufacturing semiconductor device Active CN102738062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110081785.6A CN102738062B (en) 2011-04-01 2011-04-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110081785.6A CN102738062B (en) 2011-04-01 2011-04-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
CN102738062A true CN102738062A (en) 2012-10-17
CN102738062B CN102738062B (en) 2014-06-04

Family

ID=46993300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110081785.6A Active CN102738062B (en) 2011-04-01 2011-04-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
CN (1) CN102738062B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063085A (en) * 2017-11-29 2018-05-22 贵州大学 A kind of technique processing method for promoting long-term storing semiconductor silicon chip product yield

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147111A1 (en) * 2003-01-29 2004-07-29 International Business Machines Corporation Polycarbosilane buried etch stops in interconnect structures
US20050101154A1 (en) * 1999-06-18 2005-05-12 Judy Huang Plasma treatment to enhance adhesion and to minimize oxidation of carbon-containing layers
CN1767171A (en) * 2004-10-14 2006-05-03 三星电子株式会社 Etch stop structure and manufacture method, and semiconductor device and manufacture method
CN101154585A (en) * 2006-09-30 2008-04-02 中芯国际集成电路制造(上海)有限公司 Method for forming etch stop layer and double mosaic structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101154A1 (en) * 1999-06-18 2005-05-12 Judy Huang Plasma treatment to enhance adhesion and to minimize oxidation of carbon-containing layers
US20040147111A1 (en) * 2003-01-29 2004-07-29 International Business Machines Corporation Polycarbosilane buried etch stops in interconnect structures
CN1767171A (en) * 2004-10-14 2006-05-03 三星电子株式会社 Etch stop structure and manufacture method, and semiconductor device and manufacture method
CN101154585A (en) * 2006-09-30 2008-04-02 中芯国际集成电路制造(上海)有限公司 Method for forming etch stop layer and double mosaic structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063085A (en) * 2017-11-29 2018-05-22 贵州大学 A kind of technique processing method for promoting long-term storing semiconductor silicon chip product yield
CN108063085B (en) * 2017-11-29 2020-06-02 贵州大学 Process treatment method for improving yield of long-term storage semiconductor silicon wafer products

Also Published As

Publication number Publication date
CN102738062B (en) 2014-06-04

Similar Documents

Publication Publication Date Title
US10522463B2 (en) Semiconductor structure
CN101847597B (en) Integrated circuit structure
JP2010232661A (en) Via structure and via etching process to form it
US9524933B2 (en) Semiconductor structures and fabrication methods thereof
JP2001308097A (en) Semiconductor device and method of manufacturing
US8956974B2 (en) Devices, systems, and methods related to planarizing semiconductor devices after forming openings
CN102427054A (en) Manufacturing method for realizing high-performance metal-oxide-metal
CN107750389A (en) It is used for the maskless gap structure of the Doric order pillar support of electric capacity interests using via solution of not landing
US20130140688A1 (en) Through Silicon Via and Method of Manufacturing the Same
JP2000294634A (en) Semiconductor device and manufacture of the same
CN100372113C (en) Integrated circuit structure with air space and manufacturing method thereof
JP2003100869A (en) Semiconductor device and its manufacturing method
CN104143526A (en) Fabrication method of TSV structure
CN103050433A (en) Semiconductor contact hole structure and manufacturing method thereof
CN104022070A (en) Forming method of interconnection structure
US20150017798A1 (en) Method of manufacturing through-silicon-via
CN110838464A (en) Metal internal connection structure and its making method
CN104681484B (en) A kind of manufacture method of semiconductor devices
CN102738062A (en) Method for manufacturing semiconductor device
US8673768B2 (en) Fabrication method for improving surface planarity after tungsten chemical mechanical polishing
CN103165514B (en) Semiconductor structure and forming method thereof
TWI685040B (en) Methods of manufacturing semiconductor devices
JP5125743B2 (en) Manufacturing method of semiconductor device
WO2012048509A1 (en) Low-dielectric constant dielectric and copper interconnect structure and integration method thereof
CN102024790A (en) Semiconductor device for interconnection process and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant