CN102698620A - Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer - Google Patents
Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer Download PDFInfo
- Publication number
- CN102698620A CN102698620A CN2012101965559A CN201210196555A CN102698620A CN 102698620 A CN102698620 A CN 102698620A CN 2012101965559 A CN2012101965559 A CN 2012101965559A CN 201210196555 A CN201210196555 A CN 201210196555A CN 102698620 A CN102698620 A CN 102698620A
- Authority
- CN
- China
- Prior art keywords
- reverse osmosis
- phase solution
- composite membrane
- osmosis composite
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 112
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 52
- 239000002131 composite material Substances 0.000 title claims abstract description 50
- 239000000178 monomer Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 21
- 229920000587 hyperbranched polymer Polymers 0.000 title abstract description 19
- 239000000243 solution Substances 0.000 claims abstract description 61
- 239000012071 phase Substances 0.000 claims abstract description 44
- 239000008346 aqueous phase Substances 0.000 claims abstract description 27
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 239000007864 aqueous solution Substances 0.000 claims abstract description 13
- 239000003054 catalyst Substances 0.000 claims abstract description 11
- 238000010406 interfacial reaction Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 16
- 239000004760 aramid Substances 0.000 claims description 13
- 229920003235 aromatic polyamide Polymers 0.000 claims description 13
- 150000002148 esters Chemical class 0.000 claims description 13
- 229920002873 Polyethylenimine Polymers 0.000 claims description 11
- RGUKYNXWOWSRET-UHFFFAOYSA-N 4-pyrrolidin-1-ylpyridine Chemical compound C1CCCN1C1=CC=NC=C1 RGUKYNXWOWSRET-UHFFFAOYSA-N 0.000 claims description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229920003169 water-soluble polymer Polymers 0.000 claims description 2
- 125000003368 amide group Chemical group 0.000 claims 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims 2
- 150000001263 acyl chlorides Chemical class 0.000 claims 1
- -1 isocyanide ester Chemical class 0.000 claims 1
- 238000006557 surface reaction Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 32
- 125000003277 amino group Chemical group 0.000 abstract description 12
- 230000004907 flux Effects 0.000 abstract description 10
- 229920001228 polyisocyanate Polymers 0.000 abstract description 9
- 239000005056 polyisocyanate Substances 0.000 abstract description 9
- 150000003928 4-aminopyridines Chemical class 0.000 abstract description 8
- 150000003839 salts Chemical class 0.000 abstract description 5
- 238000010612 desalination reaction Methods 0.000 abstract description 3
- 239000013535 sea water Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 8
- 238000012695 Interfacial polymerization Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000004695 Polyether sulfone Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical group CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HJLHTTJLVALHOP-UHFFFAOYSA-N hexane;hydron;chloride Chemical compound Cl.CCCCCC HJLHTTJLVALHOP-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种以超支化聚合物为单体制备反渗透复合膜的方法,其特征在于,包括如下步骤:(1)将多孔支撑膜浸泡于水相溶液中一段时间后,去除多孔支撑膜表面多余水相溶液;(2)将所得多孔支撑膜置于空气中阴干,再浸泡于油相溶液,进行界面反应,得到初生态膜;(3)初生态膜热处理后,室温下阴干,得到反渗透复合膜;所述水相溶液为含催化剂4-胺基吡啶衍生物的末端为胺基或羟基的水溶性超支化聚合物水溶液;所述油相溶液中反应单体为多元酰氯或多元异腈酸酯中的一种或几种的混合物。本发明一种以超支化聚合物为单体制备反渗透复合膜的方法,可以快速制备得到性能优良的反渗透复合膜,操作简单,在实现高膜通量的同时,具备较高的盐截留率,可应用于海水淡化等水处理领域。The invention discloses a method for preparing a reverse osmosis composite membrane using a hyperbranched polymer as a monomer. excess water phase solution on the membrane surface; (2) place the obtained porous support membrane in the air to dry in the shade, and then soak in the oil phase solution to carry out interfacial reaction to obtain the nascent eco-film; (3) after the nascent eco-film is heat-treated, dry it in the shade at room temperature, A reverse osmosis composite membrane is obtained; the aqueous phase solution is an aqueous solution of a water-soluble hyperbranched polymer containing a catalyst 4-aminopyridine derivative whose end is an amino group or a hydroxyl group; the reaction monomer in the oil phase solution is a multi-acid chloride or One or more mixtures of polyisocyanates. The invention discloses a method for preparing a reverse osmosis composite membrane using a hyperbranched polymer as a monomer, which can rapidly prepare a reverse osmosis composite membrane with excellent performance, is simple to operate, and has high salt rejection while realizing high membrane flux. It can be used in water treatment fields such as seawater desalination.
Description
技术领域 technical field
本发明涉及膜科学技术中的反渗透膜领域,具体涉及一种以超支化聚合物为单体,通过界面聚合制备反渗透复合膜的方法。The invention relates to the field of reverse osmosis membranes in membrane science and technology, in particular to a method for preparing reverse osmosis composite membranes by using hyperbranched polymers as monomers through interfacial polymerization.
背景技术 Background technique
水资源危机加剧促使膜法处理水技术快速发展,其中反渗透膜在水处理领域内的应用受到人们越来越多的关注,特别是高通量的反渗透膜,可以大大提高水处理能力,降低水处理成本。The intensification of the water resource crisis has prompted the rapid development of membrane water treatment technology. Among them, the application of reverse osmosis membrane in the field of water treatment has attracted more and more attention, especially the high-flux reverse osmosis membrane, which can greatly improve the water treatment capacity. Reduce water treatment costs.
目前最常用的反渗透膜制备方法为复合法,即在微孔基膜(多孔支撑膜)上复合上一层具有分离性能的纳米孔径级的超薄膜从而获得复合膜,其中界面聚合法由于操作简单,反应迅速,可用于制备超薄膜,并且成膜后膜通量大,亲水性好,因此被广泛采用。At present, the most commonly used reverse osmosis membrane preparation method is the composite method, that is, a layer of nano-pore ultra-thin film with separation performance is composited on the microporous base membrane (porous support membrane) to obtain a composite membrane. The interfacial polymerization method is due to the operation Simple, rapid reaction, can be used to prepare ultra-thin films, and after film formation, the membrane flux is large and the hydrophilicity is good, so it is widely used.
申请号为200580033707.1的发明公开了一种可工业上稳定且连续地制造复合反渗透膜的方法,是包括聚酰胺系表皮层、和支撑其的多孔性支撑体构成的复合反渗透膜的制造方法,包括:工序A,其一边使多孔性支撑体移动,一边在该多孔性支撑体上涂敷含有具有2个以上活性胺基的化合物的水溶液A,形成水溶液被覆层;工序B,其在多孔性支撑体上保持所述水溶液被覆层0.2~15秒钟,使所述水溶液A渗透多孔性支撑体的微孔内;工序C,其一边使所述水溶液A保持在多孔性支撑体的微孔内,一边除去所述水溶液被覆层;及工序D,其在工序C后,在多孔性支撑体表面上涂敷含有多官能酰基卤的有机溶液B,使该有机溶液B和所述水溶液A接触进行界面聚合,由此形成聚酰胺系表皮层,且连续地制作复合反渗透膜。The invention with application number 200580033707.1 discloses a method for manufacturing composite reverse osmosis membranes in an industrially stable and continuous manner. , including: step A, which moves the porous support while applying an aqueous solution A containing a compound having two or more active amine groups on the porous support to form an aqueous solution coating layer; step B, which moves the porous support Keep the aqueous solution coating layer on the support body for 0.2 to 15 seconds, so that the aqueous solution A penetrates into the micropores of the porous support body; step C, while maintaining the aqueous solution A in the micropores of the porous support body Inside, while removing the aqueous solution coating layer; and step D, after step C, apply an organic solution B containing a polyfunctional acid halide on the surface of the porous support, and bring the organic solution B into contact with the aqueous solution A Interfacial polymerization is carried out to form a polyamide-based skin layer, and a composite reverse osmosis membrane is continuously manufactured.
申请号为88106576.5的发明公开了一种改进的复合聚酰胺膜及其制造方法。制备该种改进的膜是应用一种阳离子型聚合物润湿剂在一种含有多官能团胺反应物的水溶液中与一种酰基卤进行界面聚合反应,从而在一种微孔载体上形成一层薄膜聚酰胺抑制层;另一种方法是,将该润湿剂直接涂布于该基质上,而界面聚合反应可在所述处理的基质上进行。The invention whose application number is 88106576.5 discloses an improved composite polyamide membrane and its manufacturing method. The improved membrane is prepared by interfacial polymerization of a cationic polymeric wetting agent with an acid halide in an aqueous solution containing a polyfunctional amine reactant to form a layer on a microporous support. Thin film polyamide inhibitory layer; alternatively, the wetting agent is applied directly to the substrate and interfacial polymerization can take place on the treated substrate.
反渗透膜的膜性能测试是在高压阀提供的分离所需压力下,原料盐溶液以错流全循环方式进入膜组件,经过膜处理得到渗透液。通过记录稳定运行时,在一定时间内透过反渗透膜的液体量获得膜通量,比较渗透液与原料液的离子浓度获得膜截留率。膜通量也可以通过记录稳定运行时,通过一定液体量所需要的时间获得。The membrane performance test of the reverse osmosis membrane is that under the pressure required for separation provided by the high-pressure valve, the raw salt solution enters the membrane module in a cross-flow full circulation mode, and the permeate is obtained after membrane treatment. By recording the amount of liquid that passes through the reverse osmosis membrane within a certain period of time during stable operation, the membrane flux is obtained, and the membrane rejection rate is obtained by comparing the ion concentration of the permeate and the raw material. Membrane flux can also be obtained by recording the time required to pass a certain amount of liquid during stable operation.
针对日益增长的水资源短缺问题,需要制备得到具有更高膜通量及盐截留率的反渗透复合膜,将其应用于海水淡化处理,可以大大缓解现在很多国家和地区的水资源紧张问题。In response to the growing shortage of water resources, it is necessary to prepare reverse osmosis composite membranes with higher membrane flux and salt rejection rate, which can be applied to seawater desalination treatment, which can greatly alleviate the current water resource shortage in many countries and regions.
为了得到具有更好膜分离性能的反渗透复合膜,可以在现有的以多元酰氯和多元胺为单体制备反渗透复合膜的基础上,寻找新的单体。In order to obtain a reverse osmosis composite membrane with better membrane separation performance, new monomers can be found on the basis of existing reverse osmosis composite membranes prepared from polyacyl chlorides and polyamines.
发明内容 Contents of the invention
本发明提供了一种以超支化聚合物为单体制备反渗透复合膜的方法,操作简单,制备时间短,且制备得到的膜性能优良,在保持高膜通量的同时,实现较高的盐截留率。The invention provides a method for preparing a reverse osmosis composite membrane using a hyperbranched polymer as a monomer. The operation is simple, the preparation time is short, and the prepared membrane has excellent performance. While maintaining a high membrane flux, a higher Salt rejection.
一种以超支化聚合物为单体制备反渗透复合膜的方法,其特征在于,包括如下步骤:A kind of method that takes hyperbranched polymer as monomer to prepare reverse osmosis composite membrane is characterized in that, comprises the steps:
(1)将多孔支撑膜浸泡于水相溶液中一段时间后,去除多孔支撑膜表面多余水相溶液;(1) After soaking the porous support membrane in the aqueous phase solution for a period of time, remove the excess aqueous phase solution on the surface of the porous support membrane;
(2)将所得多孔支撑膜置于空气中阴干,再浸泡于油相溶液,进行界面反应,得到初生态膜;(2) Place the obtained porous support membrane in the air to dry in the shade, then soak in the oil phase solution, carry out interfacial reaction, and obtain the nascent eco-membrane;
(3)初生态膜热处理后,室温下阴干,得到反渗透复合膜;(3) After heat treatment of the nascent membrane, dry in the shade at room temperature to obtain a reverse osmosis composite membrane;
所述水相溶液为含催化剂4-胺基吡啶衍生物的末端为胺基或羟基的水溶性超支化聚合物水溶液;The aqueous phase solution is an aqueous solution of a water-soluble hyperbranched polymer containing a catalyst 4-aminopyridine derivative whose end is an amino group or a hydroxyl group;
所述油相溶液中反应单体为多元酰氯或多元异腈酸酯中的一种或几种。The reactive monomer in the oil phase solution is one or more of polyacyl chloride or polyisocyanate.
所述多孔支撑膜需具有一定的支撑强度及合适的孔径,并且不参与界面反应,例如聚砜膜,聚醚砜膜,聚丙烯腈,聚偏氟乙烯等。The porous support membrane must have a certain support strength and a suitable pore size, and not participate in interfacial reactions, such as polysulfone membrane, polyethersulfone membrane, polyacrylonitrile, polyvinylidene fluoride and the like.
所述水相溶液中4-胺基吡啶衍生物做催化剂,末端为胺基或羟基的水溶性超支化聚合物为做水相单体。The 4-aminopyridine derivative in the water phase solution is used as a catalyst, and the water-soluble hyperbranched polymer with an amino group or hydroxyl group at the end is used as a water phase monomer.
由于多元酰氯和多元异氰酸酯可以溶于正己烷、环己烷等不与水互溶的有机溶剂,多元酰氯含有多个酰氯基团,多元异氰酸酯上含有多个异氰酸酯基团,所述酰氯基团和异氰酸酯基团可与胺基或羟基发生缩聚反应,形成聚合物,因此,油相溶液中的多元酰氯或多元异氰酸酯可以在油相和水相界面处与水相溶液中含胺基或羟基的水溶性超支化聚合物反应形成聚合物超薄膜。Since polyacyl chlorides and polyisocyanates can be dissolved in non-water-miscible organic solvents such as n-hexane and cyclohexane, polyacyl chlorides contain multiple acid chloride groups, and polyisocyanate contains multiple isocyanate groups. The acid chloride groups and isocyanate The group can undergo polycondensation reaction with amine group or hydroxyl group to form a polymer. Therefore, the polyacyl chloride or polyisocyanate in the oil phase solution can be water-soluble with the amino group or hydroxyl group in the water phase solution at the interface between the oil phase and the water phase Hyperbranched polymers react to form polymer ultrathin films.
所述多元酰氯包括均苯三甲酰氯、间苯二甲酰氯等,所述多元异氰酸酯包括甲苯二异氰酸酯等,所述油相中的反应单体可以为几种多元酰氯的混合物,也可以为几种多元异氰酸酯的混合物,还可以是至少一种多元酰氯和至少一种多元异氰酸酯的混合物。The polyacyl chlorides include trimesoyl chloride, isophthaloyl chloride, etc., the polyisocyanates include toluene diisocyanate, etc., and the reaction monomer in the oil phase can be a mixture of several polyacyl chlorides, or several The mixture of polyisocyanates can also be a mixture of at least one polyacyl chloride and at least one polyisocyanate.
多孔性支撑膜为界面聚合反应的载体,并且也是合成的反渗透复合膜的组成部分,可以提高反渗透复合膜的强度,将多孔性支撑膜浸入所述的水相溶液中,使水相溶液充分扩散入多孔性支撑膜的微孔中,然后将多孔支撑膜取出,除去表面多余的水相溶液和气泡后,将多孔性支撑膜置于空气中阴干至表面均匀分布一层稀薄的水相溶液,然后将该多孔性支撑膜置于油相溶液中,水相溶液中末端为胺基或羟基的超支化水溶性聚合物和油相溶液中反应单体在两相界面接触后迅速进行反应,一段时间后,形成均匀致密的具有纳米级孔径的超薄初生态膜。The porous support membrane is the carrier of the interfacial polymerization reaction, and is also a component of the synthetic reverse osmosis composite membrane, which can improve the strength of the reverse osmosis composite membrane. The porous support membrane is immersed in the aqueous phase solution to make the aqueous phase solution Fully diffuse into the micropores of the porous support membrane, then take out the porous support membrane, remove the excess water phase solution and air bubbles on the surface, and place the porous support membrane in the air to dry in the shade until a thin layer of water phase is evenly distributed on the surface solution, and then the porous support membrane is placed in the oil phase solution, and the hyperbranched water-soluble polymer whose terminal is an amine or hydroxyl group in the water phase solution and the reactive monomer in the oil phase solution react rapidly after the two-phase interface contacts After a period of time, a uniform and dense ultra-thin nascent membrane with nano-scale pores is formed.
将界面聚合得到的复合膜置于50-60℃条件下,热处理10-30分钟,浸入纯水中保存待用。The composite film obtained by interfacial polymerization is placed under the condition of 50-60° C., heat-treated for 10-30 minutes, and then immersed in pure water for storage until use.
为了克服末端为胺基或羟基的水溶性超支化聚合物的高分子量在水相和油相界面处与多元酰氯或多元异氰酸酯进行聚合反应时,存在较大反应位阻和传递阻力,因此需在水相溶液中加入可同时做相转移催化剂和酰化反应催化剂4-胺基吡啶类衍生物,以提高胺基或羟基的活性,从而促进胺基或羟基发生反应。In order to overcome the high molecular weight of the water-soluble hyperbranched polymer whose terminal is an amine group or a hydroxyl group, when it is polymerized with polyacyl chloride or polyisocyanate at the interface of the water phase and the oil phase, there is a large reaction steric hindrance and transmission resistance. Adding 4-aminopyridine derivatives into the aqueous phase solution can be used as a phase transfer catalyst and an acylation reaction catalyst at the same time, so as to improve the activity of the amine group or hydroxyl group, thereby promoting the reaction of the amine group or hydroxyl group.
作为优选,所述的超支化聚合物为水溶性超支化芳香族聚酰胺酯、超支化聚乙烯亚胺、超支化聚氨酯。Preferably, the hyperbranched polymer is water-soluble hyperbranched aromatic polyamide ester, hyperbranched polyethyleneimine, hyperbranched polyurethane.
所述超支化聚合物的末端为胺基或羟基取代,能够溶解于纯水中,形成水相溶液。The end of the hyperbranched polymer is substituted by amino group or hydroxyl group, and can be dissolved in pure water to form an aqueous phase solution.
作为优选,所述水相溶液中末端为胺基或羟基的水溶性超支化聚合物的质量分数为0.5%~3%。Preferably, the mass fraction of the water-soluble hyperbranched polymer whose terminal is an amino group or a hydroxyl group in the aqueous phase solution is 0.5% to 3%.
针对不同的反应体系,水相溶液中末端为胺基或羟基的水溶性超支化聚合物(即水相单体)的质量分数略有不同,水相单体的质量分数过大,不利于水相溶液在多孔性支撑膜中的扩散,水相单体的质量分数过小,则参与界面反应的水相单体过少,不利于反应的进行,进而影响得到的反渗透复合膜的膜性能。For different reaction systems, the mass fraction of water-soluble hyperbranched polymers (i.e., water phase monomers) with amino or hydroxyl groups at the end in the aqueous phase solution is slightly different, and the mass fraction of the aqueous phase monomers is too large, which is not conducive to water The diffusion of phase solution in the porous support membrane, the mass fraction of the water phase monomer is too small, the water phase monomer participating in the interface reaction is too little, which is not conducive to the progress of the reaction, and then affects the membrane performance of the obtained reverse osmosis composite membrane .
作为优选,所述水相溶液中末端为胺基或羟基的水溶性超支化聚合物的质量分数为2%。Preferably, the mass fraction of the water-soluble hyperbranched polymer whose terminal is an amino group or a hydroxyl group in the aqueous phase solution is 2%.
当水相溶液中末端为胺基或羟基的水溶性超支化聚合物的质量分数为2%,制备得到的反渗透复合膜的膜性能最好。When the mass fraction of the water-soluble hyperbranched polymer whose terminal is amine or hydroxyl group in the aqueous phase solution is 2%, the membrane performance of the prepared reverse osmosis composite membrane is the best.
作为优选,所述水相溶液中催化剂4-胺基吡啶衍生物与末端为胺基或羟基的水溶性超支化聚合物的质量比为1~16∶100。Preferably, the mass ratio of the catalyst 4-aminopyridine derivative to the water-soluble hyperbranched polymer whose terminal is an amino or hydroxyl group in the aqueous phase solution is 1-16:100.
催化剂4-胺基吡啶衍生物的用量过少,不能起到良好的催化效果,用量过多,造成浪费,当催化剂4-胺基吡啶衍生物与末端为胺基或羟基的超支化水溶性聚合物的质量比为1~16∶100时,可兼顾催化结果和催化效率。The amount of catalyst 4-aminopyridine derivatives is too small, can not play a good catalytic effect, too much, resulting in waste, when the catalyst 4-aminopyridine derivatives and the end of the hyperbranched water-soluble polymerization When the mass ratio of the catalyst is 1-16:100, both the catalytic effect and the catalytic efficiency can be taken into account.
作为优选,所述催化剂4-胺基吡啶类衍生物为4-二甲胺基吡啶或4-吡咯烷基吡啶中的一种。Preferably, the catalyst 4-aminopyridine derivative is one of 4-dimethylaminopyridine or 4-pyrrolidinylpyridine.
4-二甲胺基吡啶或4-吡咯烷基吡啶可以获得较高的催化效率,得到性能优良的反渗透复合膜。4-dimethylaminopyridine or 4-pyrrolidinylpyridine can obtain higher catalytic efficiency and obtain a reverse osmosis composite membrane with excellent performance.
作为优选,所述油相溶液中所用的有机溶剂为正己烷、环己烷或乙酸乙酯中的一种或几种的混合物。Preferably, the organic solvent used in the oil phase solution is one or a mixture of n-hexane, cyclohexane or ethyl acetate.
所述有机溶剂应是油相溶液中反应单体的良溶剂,性质稳定,不参加反应,且与水不相溶。正己烷、环己烷或乙酸乙酯是常用溶剂,并且满足要求,用作油相溶液中反应单体的溶剂,可以得到膜性能良好的反渗透复合膜。The organic solvent should be a good solvent for the reaction monomer in the oil phase solution, has stable properties, does not participate in the reaction, and is incompatible with water. Normal hexane, cyclohexane or ethyl acetate are commonly used solvents and meet the requirements. They can be used as solvents for reactive monomers in the oil phase solution to obtain reverse osmosis composite membranes with good membrane performance.
作为优选,所述油相溶液中反应单体的质量分数为0.1%~2.0%。Preferably, the mass fraction of the reactive monomer in the oil phase solution is 0.1%-2.0%.
油相溶液中反应单体的质量分数依据水相溶液中水相单体的质量分数而定,水相溶液中水相单体的质量分数在0.5~3%,可依据化学反应计量数及反应条件,计算得到油相溶液中合适的油相单体的质量分数。The mass fraction of the reaction monomer in the oil phase solution depends on the mass fraction of the water phase monomer in the water phase solution, and the mass fraction of the water phase monomer in the water phase solution is 0.5 to 3%, which can be determined according to the stoichiometric number and reaction Conditions, calculate the mass fraction of the appropriate oil phase monomer in the oil phase solution.
作为优选,所述步骤(1)中在水相溶液中的浸泡时间为10~30min。Preferably, the soaking time in the aqueous phase solution in the step (1) is 10-30 minutes.
在水相溶液中的浸泡时间应保证水相溶液可以充分扩散入多孔支撑膜的微孔内,以利于后续将多孔支撑膜浸入油相溶液中时,水相溶液中的水相单体和油相溶液中的反应单体在水油界面处迅速反应。The immersion time in the aqueous phase solution should ensure that the aqueous phase solution can fully diffuse into the micropores of the porous support membrane, so that when the porous support membrane is immersed in the oil phase solution, the water phase monomer and oil in the aqueous phase solution The reactive monomers in the phase solution react rapidly at the water-oil interface.
作为优选,所述步骤(2)中界面反应时间至少为4min。Preferably, the interfacial reaction time in the step (2) is at least 4 minutes.
界面反应进行至油相溶剂挥发完全为止,至少应为4min。The interfacial reaction is carried out until the oil phase solvent is completely volatilized, which should be at least 4 minutes.
本发明一种以超支化聚合物为单体制备反渗透复合膜的方法,可以快速制备得到性能优良的反渗透复合膜,操作简单,在实现高膜通量的同时,具备较高的盐截留率,可应用于海水淡化等水处理领域。The invention discloses a method for preparing a reverse osmosis composite membrane using a hyperbranched polymer as a monomer, which can rapidly prepare a reverse osmosis composite membrane with excellent performance, is simple to operate, and has high salt rejection while realizing high membrane flux. It can be used in water treatment fields such as seawater desalination.
附图说明 Description of drawings
图1为实施例1制备得到的反渗透复合膜扫描电镜图;Fig. 1 is the scanning electron micrograph of the reverse osmosis composite membrane that embodiment 1 prepares;
图2为实施例2制备得到的反渗透复合膜扫描电镜图;Fig. 2 is the scanning electron micrograph of the reverse osmosis composite membrane that
图3为实施例16制备得到的反渗透复合膜扫描电镜图;Fig. 3 is the scanning electron micrograph of the reverse osmosis composite membrane that embodiment 16 prepares;
图4为实施例15制备得到的反渗透复合膜扫描电镜图。Fig. 4 is a scanning electron micrograph of the reverse osmosis composite membrane prepared in Example 15.
具体实施方式 Detailed ways
实施例1Example 1
(1)聚砜底膜置于含4-二甲胺基吡啶(DMAP)的2%wt/v八羟基超支化芳香族聚酰胺酯PS-1200(荷兰DSM公司)水溶液中浸泡20min,4-二甲胺基吡啶与八羟基超支化芳香族聚酰胺酯PS-1200的质量比为2∶100,去除聚砜底膜表面多余溶液及气泡;(1) The polysulfone base film is soaked in 2%wt/v octahydroxyl hyperbranched aromatic polyamide ester PS-1200 (Netherlands DSM Company) aqueous solution containing 4-dimethylaminopyridine (DMAP) for 20min, 4- The mass ratio of dimethylaminopyridine to octahydroxy hyperbranched aromatic polyamide ester PS-1200 is 2:100 to remove excess solution and air bubbles on the surface of the polysulfone bottom film;
(2)将所得初生态膜置于空气中阴干至聚砜底膜表面均匀分布一层稀薄的水相溶液,再浸泡于1%wt/v均苯三甲酰氯正己烷溶液,进行界面反应,直至正己烷完全挥发得到初生态膜;(2) Place the gained nascent eco-film in the air to dry in the shade until a layer of thin water phase solution is evenly distributed on the surface of the polysulfone base film, then soak in 1% wt/v trimesoyl chloride-n-hexane solution, and carry out interfacial reaction until The n-hexane is completely volatilized to obtain the nascent eco-film;
(3)初生态膜热在60℃下处理20min,室温下阴干,得到反渗透复合膜,并浸入纯水中保存;(3) Treat the nascent membrane at 60°C for 20 minutes, dry it in the shade at room temperature to obtain a reverse osmosis composite membrane, and immerse it in pure water for preservation;
将待处理盐溶液加入原料罐中,将制备得到的反渗透复合膜装入膜组件,开启原料泵,原料液经过转子流量计和阀门,调节阀门使原料液以3.0L/min的流速以错流全循环的方式进入膜组件,同时调节高压,使压力差在半小时内缓慢升至0.6MPa,稳定运行一小时后,记录组件出口处收集10mL渗透液所需要的时间,获得膜通量,并使用电导率仪测定渗透电导率获得其离子浓度,通过比较渗透液与原料液的离子浓度得到截留率。Add the salt solution to be treated into the raw material tank, put the prepared reverse osmosis composite membrane into the membrane module, turn on the raw material pump, the raw material liquid passes through the rotameter and the valve, and adjust the valve so that the raw material liquid flows at a rate of 3.0L/min at a different rate. The flow enters the membrane module in the way of full circulation, and adjust the high pressure at the same time, so that the pressure difference rises slowly to 0.6MPa within half an hour. After one hour of stable operation, record the time required to collect 10mL of permeate at the outlet of the module to obtain the membrane flux. And use a conductivity meter to measure the permeation conductivity to obtain its ion concentration, and obtain the rejection rate by comparing the ion concentration of the permeate and the raw material solution.
原料液为2000ppm NaCl水溶液,获得的反渗透复合膜的膜性能见表1。The raw material solution is 2000ppm NaCl aqueous solution, and the membrane properties of the obtained reverse osmosis composite membrane are shown in Table 1.
实施例2~7
仅改变4-二甲胺基吡啶与八羟基超支化芳香族聚酰胺酯PS-1200的质量比(见表1),其余实验操作及实验条件同实施例1,制备得到的反渗透复合膜的膜性能见表1。Only change the mass ratio of 4-dimethylaminopyridine and octahydroxyl hyperbranched aromatic polyamide ester PS-1200 (see Table 1), all the other experimental operations and experimental conditions are the same as in Example 1, the prepared reverse osmosis composite membrane The membrane properties are listed in Table 1.
表1Table 1
实施例8~14Embodiment 8-14
4-二甲胺基吡啶与八羟基超支化芳香族聚酰胺酯PS-1200的质量比为8∶100,八羟基超支化芳香族聚酰胺酯PS-1200的质量浓度见表2,其余实验操作及实验条件同实施例1,制备得到的反渗透复合膜的膜性能见表2。The mass ratio of 4-dimethylaminopyridine to octahydroxyl hyperbranched aromatic polyamide ester PS-1200 is 8:100, and the mass concentration of octahydroxyl hyperbranched aromatic polyamide ester PS-1200 is shown in Table 2. The remaining experimental operations And the experimental conditions are the same as in Example 1, and the membrane properties of the prepared reverse osmosis composite membrane are shown in Table 2.
表2Table 2
实施例15~20Examples 15-20
用甲苯二异氰酸酯(TDI)替换均苯三甲酰氯,4-二甲胺基吡啶与八羟基超支化芳香族聚酰胺酯PS-1200的质量比为8∶100,八羟基超支化芳香族聚酰胺酯PS-1200的质量浓度为2.0%,其余实验操作及实验条件同实施例1,制备得到的反渗透复合膜的膜性能见表3。Replace trimesoyl chloride with toluene diisocyanate (TDI), the mass ratio of 4-dimethylaminopyridine to octahydroxy hyperbranched aromatic polyamide ester PS-1200 is 8:100, octahydroxy hyperbranched aromatic polyamide ester The mass concentration of PS-1200 was 2.0%, and the rest of the experimental operation and experimental conditions were the same as in Example 1. The membrane properties of the prepared reverse osmosis composite membrane are shown in Table 3.
表3table 3
实施例21Example 21
用聚醚砜超滤底膜(PES)替换聚砜超滤底膜,4-二甲胺基吡啶与八羟基超支化芳香族聚酰胺酯PS-1200质量比为8∶100,八羟基超支化芳香族聚酰胺酯PS-1200的质量浓度为2.0%,其余实验操作及实验条件同实施例1,制备得到的反渗透复合膜的膜通量为58.3L·m-2·h-1,盐截留率为91.8%。The polysulfone ultrafiltration bottom membrane was replaced with polyethersulfone ultrafiltration bottom membrane (PES), the mass ratio of 4-dimethylaminopyridine to octahydroxy hyperbranched aromatic polyamide ester PS-1200 was 8:100, and octahydroxy hyperbranched The mass concentration of aromatic polyamide ester PS-1200 is 2.0%. The rest of the experimental operation and experimental conditions are the same as in Example 1. The membrane flux of the prepared reverse osmosis composite membrane is 58.3L·m -2 ·h -1 . The rejection rate was 91.8%.
实施例22~28Examples 22-28
用重均分子量为2万的超支化聚乙烯亚胺(PEI)替换八羟基超支化芳香族聚酰胺酯PS-1200,4-吡咯烷基吡啶(4-PPY)替换4-二甲胺基吡啶,超支化聚乙烯亚胺的质量浓度为1%(wt/v)(4-吡咯烷基吡啶与超支化聚乙烯亚胺的质量比见表3),除操作压力变为1.6MPa外,其余实验操作及实验条件同实施例1,制备得到的反渗透复合膜的膜性能见表3。Replace octahydroxy hyperbranched aromatic polyamide ester PS-1200 with hyperbranched polyethyleneimine (PEI) with a weight average molecular weight of 20,000, and replace 4-dimethylaminopyridine with 4-pyrrolidinylpyridine (4-PPY) , the mass concentration of hyperbranched polyethyleneimine is 1% (wt/v) (the mass ratio of 4-pyrrolidinopyridine and hyperbranched polyethyleneimine is shown in Table 3), except that the operating pressure becomes 1.6MPa, the other The experimental operation and experimental conditions are the same as in Example 1, and the membrane properties of the prepared reverse osmosis composite membrane are shown in Table 3.
表3table 3
实施例29~32Examples 29-32
用重均分子量为2万的超支化聚乙烯亚胺(PEI)替换八羟基超支化芳香族聚酰胺酯PS-1200,4-吡咯烷基吡啶(4-PPY)替换4-二甲胺基吡啶,(水相溶液中超支化聚乙烯亚胺的质量浓度见表4),4-吡咯烷基吡啶与超支化聚乙烯亚胺的质量比为4∶100,除操作压力为1.6MPa外,其余实验操作及实验条件同实施例1,制备得到的反渗透复合膜的膜性能见表4。Replace octahydroxy hyperbranched aromatic polyamide ester PS-1200 with hyperbranched polyethyleneimine (PEI) with a weight average molecular weight of 20,000, and replace 4-dimethylaminopyridine with 4-pyrrolidinylpyridine (4-PPY) , (the mass concentration of hyperbranched polyethyleneimine in the aqueous phase solution is shown in Table 4), the mass ratio of 4-pyrrolidinopyridine and hyperbranched polyethyleneimine is 4: 100, except that the operating pressure is 1.6MPa, the other The experimental operation and experimental conditions are the same as in Example 1, and the membrane properties of the prepared reverse osmosis composite membrane are shown in Table 4.
表4Table 4
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101965559A CN102698620A (en) | 2012-06-12 | 2012-06-12 | Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101965559A CN102698620A (en) | 2012-06-12 | 2012-06-12 | Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102698620A true CN102698620A (en) | 2012-10-03 |
Family
ID=46891844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101965559A Pending CN102698620A (en) | 2012-06-12 | 2012-06-12 | Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102698620A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104056557A (en) * | 2014-06-18 | 2014-09-24 | 南京理工大学 | Polyether sulfone ultrafiltration membrane preparation method capable of improving permeability and selectivity simultaneously |
CN104069749A (en) * | 2014-07-21 | 2014-10-01 | 山东九章膜技术有限公司 | Hyperbranched polymer polyamide composite reverse osmosis membrane and preparation method thereof |
CN104524990A (en) * | 2014-12-15 | 2015-04-22 | 南京工业大学 | Gas separation membrane, preparation method thereof and membrane type gas separation device |
CN106076129A (en) * | 2016-08-05 | 2016-11-09 | 武汉工程大学 | A kind of preparation method of polyamide nanofiltration membrane |
CN106345308A (en) * | 2016-10-13 | 2017-01-25 | 哈尔滨工业大学 | Preparation method for polyesteramide compound nanofiltration membrane with strong chlorine resistance and pollution resistance |
CN107649009A (en) * | 2017-11-06 | 2018-02-02 | 天津工业大学 | A kind of high flux antibacterial composite nanometer filtering film and preparation method thereof |
CN110141982A (en) * | 2019-04-26 | 2019-08-20 | 浙江工业大学 | A kind of mixed matrix reverse osmosis membrane with high flux and high desalination rate and its preparation method and application |
CN114432900A (en) * | 2020-11-04 | 2022-05-06 | 沃顿科技股份有限公司 | Preparation method of anti-pollution composite reverse osmosis membrane and anti-pollution composite reverse osmosis membrane prepared by same |
CN114534491A (en) * | 2022-03-22 | 2022-05-27 | 浙江大学 | Reverse osmosis membrane with high water flux and preparation method and application thereof |
CN114749038A (en) * | 2021-01-11 | 2022-07-15 | 中化(宁波)润沃膜科技有限公司 | High-flux reverse osmosis composite membrane and preparation method thereof |
WO2023092781A1 (en) * | 2021-11-25 | 2023-06-01 | 沃顿科技股份有限公司 | Preparation method for reverse osmosis membrane, and reverse osmosis membrane prepared thereby |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1525878A (en) * | 2000-05-23 | 2004-09-01 | Ge��˹Ī���˹��˾ | Acid stable membranes for nanofiltration |
CN101254417A (en) * | 2007-12-14 | 2008-09-03 | 浙江大学 | Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof |
CN101980767A (en) * | 2008-03-27 | 2011-02-23 | 通用电气公司 | Aromatic halsulfonyl isocyanate compositions and polymers therefrom |
-
2012
- 2012-06-12 CN CN2012101965559A patent/CN102698620A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1525878A (en) * | 2000-05-23 | 2004-09-01 | Ge��˹Ī���˹��˾ | Acid stable membranes for nanofiltration |
CN101254417A (en) * | 2007-12-14 | 2008-09-03 | 浙江大学 | Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof |
CN101980767A (en) * | 2008-03-27 | 2011-02-23 | 通用电气公司 | Aromatic halsulfonyl isocyanate compositions and polymers therefrom |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104056557A (en) * | 2014-06-18 | 2014-09-24 | 南京理工大学 | Polyether sulfone ultrafiltration membrane preparation method capable of improving permeability and selectivity simultaneously |
CN104056557B (en) * | 2014-06-18 | 2016-07-06 | 南京理工大学 | A kind of preparation method simultaneously improving permeability and selective poly (ether-sulfone) ultrafiltration membrane |
CN104069749A (en) * | 2014-07-21 | 2014-10-01 | 山东九章膜技术有限公司 | Hyperbranched polymer polyamide composite reverse osmosis membrane and preparation method thereof |
CN104069749B (en) * | 2014-07-21 | 2016-06-22 | 山东九章膜技术有限公司 | A kind of dissaving polymer polyamide composite reverse osmosis membrane and preparation method thereof |
CN104524990A (en) * | 2014-12-15 | 2015-04-22 | 南京工业大学 | Gas separation membrane, preparation method thereof and membrane type gas separation device |
CN106076129B (en) * | 2016-08-05 | 2018-11-06 | 武汉工程大学 | A kind of preparation method of polyamide nanofiltration membrane |
CN106076129A (en) * | 2016-08-05 | 2016-11-09 | 武汉工程大学 | A kind of preparation method of polyamide nanofiltration membrane |
CN106345308A (en) * | 2016-10-13 | 2017-01-25 | 哈尔滨工业大学 | Preparation method for polyesteramide compound nanofiltration membrane with strong chlorine resistance and pollution resistance |
CN106345308B (en) * | 2016-10-13 | 2019-06-14 | 哈尔滨工业大学 | A kind of preparation method of polyester amide composite nanofiltration membrane with strong chlorine resistance and anti-pollution |
CN107649009A (en) * | 2017-11-06 | 2018-02-02 | 天津工业大学 | A kind of high flux antibacterial composite nanometer filtering film and preparation method thereof |
CN107649009B (en) * | 2017-11-06 | 2020-07-21 | 天津工业大学 | High-flux antibacterial composite nanofiltration membrane and preparation method thereof |
CN110141982A (en) * | 2019-04-26 | 2019-08-20 | 浙江工业大学 | A kind of mixed matrix reverse osmosis membrane with high flux and high desalination rate and its preparation method and application |
CN110141982B (en) * | 2019-04-26 | 2021-08-24 | 浙江工业大学 | A kind of mixed matrix reverse osmosis membrane with high flux and high desalination rate and its preparation method and application |
CN114432900A (en) * | 2020-11-04 | 2022-05-06 | 沃顿科技股份有限公司 | Preparation method of anti-pollution composite reverse osmosis membrane and anti-pollution composite reverse osmosis membrane prepared by same |
CN114749038A (en) * | 2021-01-11 | 2022-07-15 | 中化(宁波)润沃膜科技有限公司 | High-flux reverse osmosis composite membrane and preparation method thereof |
WO2023092781A1 (en) * | 2021-11-25 | 2023-06-01 | 沃顿科技股份有限公司 | Preparation method for reverse osmosis membrane, and reverse osmosis membrane prepared thereby |
CN114534491A (en) * | 2022-03-22 | 2022-05-27 | 浙江大学 | Reverse osmosis membrane with high water flux and preparation method and application thereof |
CN114534491B (en) * | 2022-03-22 | 2022-11-25 | 浙江大学 | Reverse osmosis membrane with high water flux and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102698620A (en) | Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer | |
CN105642129A (en) | Positively charged nano-filtration membrane based on tertiary amine type amphiphilic copolymer and preparation method thereof | |
CN105854630B (en) | A kind of forward osmosis membrane and preparation method thereof | |
CN106975371A (en) | A kind of composite nanometer filtering film of polyolefin micropore substrate based on hydrophilic modifying and preparation method thereof | |
EP2883600B1 (en) | Manufacturing of polyamide-based water-treatment separation membrane | |
CN107158980A (en) | Utilized thin film composite membranes reacted based on air liquid interface and its preparation method and application | |
JP2015231624A (en) | Reverse osmosis separation membrane excellent in salt removal rate and permeation flow characteristics and production method of the same | |
CN111408281B (en) | Composite forward osmosis membrane and preparation method thereof | |
CN101890315A (en) | Carbon nanotube-polymer composite nanofiltration membrane and preparation method thereof | |
CN112426894B (en) | Preparation method of polyamide composite reverse osmosis membrane and obtained reverse osmosis membrane | |
US10143974B2 (en) | Forward osmosis-based separation membrane based on multilayer thin film, using crosslinking between organic monomers, and preparation method therefor | |
WO2021128886A1 (en) | Method for preparing nanofiltration membrane and nanofiltration membrane prepared therefrom | |
JP2014521499A (en) | Polyamide-based reverse osmosis separation membrane excellent in initial permeate flow rate and method for producing the same | |
CN113750818A (en) | High-permeability polyamide reverse osmosis composite membrane and preparation method thereof | |
JP2016068019A (en) | Composite semipermeable membrane and manufacturing method for the same, and spiral type separation membrane | |
CN112619438B (en) | Methanol-resistant polyamide reverse osmosis membrane and preparation method thereof | |
CN109647222A (en) | Method for preparing high-flux high-rejection-rate aromatic polyamide composite reverse osmosis membrane by using tannic acid modified base membrane | |
KR101076221B1 (en) | Method for fabricating of reverse osmosis membrane from polyelectrolyte multilayers and reverse osmosis membrane of fabricated using the same | |
CN114432896A (en) | Preparation method of nanofiltration membrane | |
KR20070017740A (en) | Method for producing aromatic polyamide composite membrane | |
CN115430296B (en) | Composite nanofiltration membrane with catalytic intermediate layer and preparation method and application thereof | |
JP2013223861A (en) | Composite diaphragm | |
CN102188916A (en) | Method for controlling thickness of active layer of polyamide composite membrane | |
CN113181783B (en) | Polyamide composite membrane and preparation method thereof | |
KR100322235B1 (en) | Fabrication of high permeable reverse osmosis membranes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121003 |