CN101254417A - Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof - Google Patents
Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof Download PDFInfo
- Publication number
- CN101254417A CN101254417A CNA2007101602395A CN200710160239A CN101254417A CN 101254417 A CN101254417 A CN 101254417A CN A2007101602395 A CNA2007101602395 A CN A2007101602395A CN 200710160239 A CN200710160239 A CN 200710160239A CN 101254417 A CN101254417 A CN 101254417A
- Authority
- CN
- China
- Prior art keywords
- cross
- membrane
- hyperbranched
- hyperbranched polymer
- nanofiltration membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种交联超支化聚合物复合纳滤膜及其制备方法。该交联超支化聚合物复合纳滤膜是一超滤膜为基膜、以交联超支化聚合物为选择层、通过超支化聚合物与多元酸、多元酰氯、多元酐、多元胺的界面聚合制成的;该界面聚合以水与乙醇的混合溶液为水相,以正己烷、正庚烷或正辛烷为有机相。由于超支化聚合物具有近球状的结构,分子内部存在很多纳米孔洞,使该交联超支化聚合物复合纳滤膜的选择层较疏松,使该纳滤膜在较低的操作压力下保持高的通量和截留率。该纳滤膜可用于医药、食品、环保等领域;该复合纳滤膜适用于高价离子与低价离子、中性粒子、药物、食品添加剂等的分离与浓缩。The invention discloses a cross-linked hyperbranched polymer composite nanofiltration membrane and a preparation method thereof. The cross-linked hyperbranched polymer composite nanofiltration membrane is an ultrafiltration membrane as the base membrane, with a cross-linked hyperbranched polymer as the selective layer, through the interface between the hyperbranched polymer and polyacids, polyacid chlorides, polyanhydrides, and polyamines. Made by polymerization; the interfacial polymerization uses a mixed solution of water and ethanol as the water phase, and n-hexane, n-heptane or n-octane as the organic phase. Because the hyperbranched polymer has a nearly spherical structure, there are many nanopores inside the molecule, which makes the selective layer of the cross-linked hyperbranched polymer composite nanofiltration membrane loose, so that the nanofiltration membrane can maintain a high density under low operating pressure. flux and retention. The nanofiltration membrane can be used in medicine, food, environmental protection and other fields; the composite nanofiltration membrane is suitable for the separation and concentration of high-valent ions and low-valent ions, neutral particles, drugs, food additives, etc.
Description
技术领域 technical field
本发明涉及一种纳滤膜材料及其制备技术,具体地提供了一种交联超支化聚合物复合纳滤膜及其制备方法。The invention relates to a nanofiltration membrane material and its preparation technology, and specifically provides a cross-linked hyperbranched polymer composite nanofiltration membrane and a preparation method thereof.
背景技术 Background technique
纳滤膜(NF)是近几年国内外竞相开发的新型分离膜,其分离特性介于反渗透和超滤之间,在石化、生化、医药、食品、造纸、纺织、印染等领域以及水处理过程中已得到广泛应用。国外膜与膜组件已于80年代商品化,并步入工业化应用阶段。我国纳滤膜研究始于90年代初,国家海洋局水处理中心、清华大学、复旦大学、大连理工大学、北京化工大学等单位都开展大量的研究工作,取得较好效果,但多数处于实验室阶段。Nanofiltration membrane (NF) is a new type of separation membrane developed at home and abroad in recent years. Its separation characteristics are between reverse osmosis and ultrafiltration. processing has been widely used. Foreign membranes and membrane components have been commercialized in the 1980s and have entered the stage of industrial application. my country's nanofiltration membrane research began in the early 1990s. The Water Treatment Center of the State Oceanic Administration, Tsinghua University, Fudan University, Dalian University of Technology, Beijing University of Chemical Technology and other units have carried out a lot of research work and achieved good results, but most of them are in the laboratory. stage.
纳滤膜对无机盐的分离受化学势和电势梯度的影响,对中性不带电荷的物质(如葡萄糖、麦芽糖等)的截留主要由膜的纳米微孔的分子筛分效应引起,但其确切的传质机理尚无定论。The separation of inorganic salts by nanofiltration membranes is affected by chemical potential and potential gradient, and the interception of neutral uncharged substances (such as glucose, maltose, etc.) is mainly caused by the molecular sieving effect of the nanopores of the membrane, but its exact The mass transfer mechanism is still unclear.
为得到高通量的纳滤膜,通常制备复合膜。方法有涂敷法、界面聚合和就地聚合法等。最近有学者采用聚电解质层层自组装制备纳滤膜。In order to obtain high-flux nanofiltration membranes, composite membranes are usually prepared. Methods include coating method, interfacial polymerization and in-situ polymerization method. Recently, some scholars have used polyelectrolyte layer-by-layer self-assembly to prepare nanofiltration membranes.
界面聚合法是目前世界上最有效的制备纳滤膜的方法,也是工业化NF膜品种最多、产量最大的方法。界面聚合是利用两种反应活性很高的单体,在两个不互溶的溶剂界面处发生聚合反应,从而在多孔支撑体上形成一薄层。为了得到更好的膜性能,一般还需水解荷电化、离子辐射或热处理等后处理过程。界面聚合法的优点是:反应具有自抑制性;通过改变两种溶液的单体浓度,可以很好地调控选择性膜层的性能。该方法的关键是基膜的选取和制备、调控两类反应物在两相中的分配系数和扩散速度,以及优化界面缩合条件,使表层疏松程度合理化并且尽量薄。复合纳滤膜的表层化学结构和表面形貌对膜的性能也有很大的影响。The interfacial polymerization method is currently the most effective method for preparing nanofiltration membranes in the world, and it is also the method with the most varieties and the largest output of industrialized NF membranes. Interfacial polymerization is the use of two highly reactive monomers to polymerize at the interface of two immiscible solvents to form a thin layer on the porous support. In order to obtain better membrane performance, post-treatment processes such as hydrolysis charging, ion radiation or heat treatment are generally required. The advantages of the interfacial polymerization method are: the reaction is self-inhibiting; by changing the monomer concentration of the two solutions, the performance of the selective film layer can be well regulated. The key to this method is the selection and preparation of the base film, the adjustment of the distribution coefficient and diffusion rate of the two types of reactants in the two phases, and the optimization of the interface condensation conditions to rationalize the looseness of the surface layer and make it as thin as possible. The surface chemical structure and surface morphology of the composite nanofiltration membrane also have a great influence on the performance of the membrane.
通常使用荷电膜可以对带电粒子具有较高的脱除率,所以纳滤膜一般是荷电膜。荷电膜可以是整体带电荷也可以是表层荷电。前者主要是采用荷电材料直接成膜,后者则先成膜然后通过表面化学处理或含浸法荷电,Pama Mukherjee等采用离子植入法提高纳滤膜表面的电荷。Generally, the use of charged membranes can have a higher removal rate for charged particles, so nanofiltration membranes are generally charged membranes. The charged membrane can be charged as a whole or as a surface layer. The former mainly uses charged materials to directly form a film, while the latter forms a film first and then charges through surface chemical treatment or impregnation. Pama Mukherjee et al. use ion implantation to increase the charge on the surface of nanofiltration membranes.
目前商品化纳滤膜的材质主要是聚酰胺(PA)、聚乙烯醇(PVA)、磺化聚砜(SPS)磺化聚醚砜(SPES)、醋酸纤维素(CA)等,多数带有负电荷。操作压力以0.6-1MPa居多,一价离子脱除率大于60%,二价离子脱除率大于90%。结合我国纳滤膜的现状,当前需要解决的问题主要有两点:一是通过选择层结构的控制进一步降低操作压力;二是减少纳滤膜的膜污染现象。这就要从纳滤膜的制备着手,合理调节表层的疏松程度,以形成大量具有纳米级(10-9m)的表层孔。At present, the materials of commercial nanofiltration membranes are mainly polyamide (PA), polyvinyl alcohol (PVA), sulfonated polysulfone (SPS), sulfonated polyethersulfone (SPES), cellulose acetate (CA), etc., most of which contain negative charge. The operating pressure is mostly 0.6-1MPa, the removal rate of monovalent ions is greater than 60%, and the removal rate of divalent ions is greater than 90%. Combined with the current situation of nanofiltration membranes in my country, there are two main problems that need to be solved at present: one is to further reduce the operating pressure through the control of selective layer structure; the other is to reduce the membrane fouling phenomenon of nanofiltration membranes. This starts with the preparation of nanofiltration membranes, and reasonably adjusts the porosity of the surface layer to form a large number of surface pores with nanometer scale (10 -9 m).
树状支化分子是一种具有独特拓扑结构的新型聚合物,分为Dendriemrs和超支化聚合物两大类,其中前者是一种理想的单分散支化大分子,具有规则的高度支化的三维结构和规则的球状外形,支化度约等于1;后者结构介于Dendrimers和线性聚合物之间,既不具有Dendrimers那么规整的结构也不存在线性分子那样的链缠结。与线性高聚物相比,树状支化分子具有结构高度支化、表面官能团密度高、化学稳定性良好、表面功能化简单易行、易于成膜等特点。因此人们在药物缓释、生物医学、信息材料、高吸水性材料、非线性光学材料、纳米材料、油漆、感光材料、导电材料、生物膜等领域开展了大量的研究工作,某些领域取得较大突破。申请者曾经用树枝状聚(酰胺-胺)(PAMAM)包埋得到粒径在4nm左右且分散均匀的纳米铜粒子,而用超支化聚(胺-酯)代替PAMAM分子包埋纳米铜粒子,可以制备出粒径在10nm左右且分散均匀的纳米铜粒子。目前树状支化分子在分离膜中的应用是一个新的研究方向,Chung等应用树枝状聚(酰胺-胺)(PAMAM)做支撑液膜提高CO2的气体分离系数;Kovvali等用PAMAM做交联剂交联线性聚酰亚胺末端酸酐以促进CO2的渗透等。Dendritic branched molecules are a new type of polymer with a unique topology, which can be divided into two categories: Dendriemrs and hyperbranched polymers. The former is an ideal monodisperse branched macromolecule with regular highly branched Three-dimensional structure and regular spherical shape, the degree of branching is approximately equal to 1; the latter structure is between Dendrimers and linear polymers, neither has the regular structure of Dendrimers nor the chain entanglement of linear molecules. Compared with linear polymers, dendritic branched molecules have the characteristics of highly branched structure, high density of surface functional groups, good chemical stability, simple and easy surface functionalization, and easy film formation. Therefore, people have carried out a lot of research work in the fields of drug sustained release, biomedicine, information materials, superabsorbent materials, nonlinear optical materials, nanomaterials, paints, photosensitive materials, conductive materials, biofilms, etc. Big breakthrough. The applicant once used dendritic poly(amide-amine) (PAMAM) to embed nano-copper particles with a particle size of about 4nm and uniform dispersion, and used hyperbranched poly(amine-ester) instead of PAMAM molecules to embed nano-copper particles. Nano-copper particles with a particle size of about 10nm and uniform dispersion can be prepared. At present, the application of dendritic branched molecules in separation membranes is a new research direction. Chung et al. used dendritic poly(amide-amine) (PAMAM) as a supporting liquid membrane to improve the gas separation coefficient of CO 2 ; Kovvali et al. used PAMAM to do The cross-linking agent cross-links the terminal anhydride of linear polyimide to promote the permeation of CO2 , etc.
最近,清华大学李连超等人通过树枝状聚(酰胺-胺)(PAMAM)与均苯三甲酰氯的界面聚合反应制备了纳滤膜,效果良好。申请者所在课题组曾将不同代的PAMAM通过界面聚合制备了复合纳滤膜,用该膜处理1g/l的MgSO4时脱盐率高达94%,且水通量较高。但是PAMAM分子合成复杂,分离纯化困难,难以实现规模化生产。目前,国内为对超支化聚合物功能化应用方面的研究主要集中在:制备催化剂、制备纳米金属粒子、气体分离膜、自组装膜等方面,尚未发现用超支化聚合物制备纳滤复合膜的报道。Recently, Li Lianchao from Tsinghua University and others prepared nanofiltration membranes through the interfacial polymerization reaction of dendritic poly(amide-amine) (PAMAM) and trimesoyl chloride, and the effect was good. The applicant's research group has used different generations of PAMAM to prepare composite nanofiltration membranes through interfacial polymerization. When using this membrane to treat 1g/l MgSO 4 , the desalination rate is as high as 94%, and the water flux is high. However, the synthesis of PAMAM molecules is complicated, separation and purification are difficult, and it is difficult to achieve large-scale production. At present, domestic research on the functional application of hyperbranched polymers is mainly focused on: preparation of catalysts, preparation of nano-metal particles, gas separation membranes, self-assembled membranes, etc., and the use of hyperbranched polymers to prepare nanofiltration composite membranes has not yet been found. reports.
发明内容 Contents of the invention
本发明的目的是克服现有技术的不足,提供一种含交联超支化聚合物的复合纳滤膜的制备方法:The purpose of the invention is to overcome the deficiencies in the prior art, a kind of preparation method of the composite nanofiltration membrane containing cross-linked hyperbranched polymer is provided:
交联超支化聚合物复合纳滤膜是以多孔的聚合物超滤膜为基膜、以交联超支化聚合物为选择层。The cross-linked hyperbranched polymer composite nanofiltration membrane uses a porous polymer ultrafiltration membrane as a base membrane and a cross-linked hyperbranched polymer as a selective layer.
所述的聚合物超滤膜为聚偏氟乙烯、聚醚砜、聚砜、聚丙烯腈、聚醚砜酮或聚氯乙烯超滤膜。The polymer ultrafiltration membrane is polyvinylidene fluoride, polyether sulfone, polysulfone, polyacrylonitrile, polyether sulfone ketone or polyvinyl chloride ultrafiltration membrane.
所述的超支化聚合物为:分子量1000到10万、末端基是羟基、氨基或羧基的超支化聚(酰胺-胺)、超支化聚(胺-酯)、超支化聚(丙烯-亚胺)、超支化聚酯或超支化聚丙烯酸。Described hyperbranched polymer is: molecular weight 1000 to 100,000, terminal group is the hyperbranched poly(amide-amine) of hydroxyl, amino or carboxyl group, hyperbranched poly(amine-ester), hyperbranched poly(propylene-imine) ), hyperbranched polyester or hyperbranched polyacrylic acid.
交联超支化聚合物复合纳滤膜的制备方法包括以下步骤:The preparation method of cross-linked hyperbranched polymer composite nanofiltration membrane comprises the following steps:
1)将聚合物超滤膜浸在乙醇与水的混合溶液中,浸泡时间为10s~1h;1) Immerse the polymer ultrafiltration membrane in the mixed solution of ethanol and water for 10s-1h;
2)将超支化聚合物溶解在乙醇与水的混合溶液中,配成水相溶液,超支化聚合物的浓度为:1×10-3~4×10-2mol/l;2) Dissolving the hyperbranched polymer in a mixed solution of ethanol and water to prepare an aqueous phase solution, the concentration of the hyperbranched polymer is: 1×10 -3 ~ 4×10 -2 mol/l;
3)在温度为10~40℃、相对湿度为40~90%的空气环境中,将步骤1)中浸泡后的聚合物超滤膜再浸泡到步骤2)所配成的水相溶液中,浸泡时间为10s~10h,取出聚合物超滤膜,阴干;3) In an air environment with a temperature of 10-40° C. and a relative humidity of 40-90%, soak the polymer ultrafiltration membrane soaked in step 1) into the aqueous phase solution prepared in step 2), The soaking time is 10s~10h, take out the polymer ultrafiltration membrane and dry in the shade;
4)将交联剂溶解在溶剂中,配成浓度为:4×10-3~8×10-2交联剂溶液,将步骤3)得到的阴干聚合物膜浸入交联剂溶液中,反应10s~10h;4) Dissolving the cross-linking agent in the solvent to prepare a cross-linking agent solution with a concentration of 4×10 -3 to 8×10 -2 , immersing the shade-dried polymer film obtained in step 3) into the cross-linking agent solution, and reacting 10s~10h;
5)将聚合物膜从交联剂溶液中取出,置于20~120℃的烘箱中5min~1h,得到交联超支化聚合物复合纳滤膜。5) The polymer membrane is taken out from the cross-linking agent solution, and placed in an oven at 20-120° C. for 5 min-1 h to obtain a cross-linked hyperbranched polymer composite nanofiltration membrane.
所述的交联的交联剂为:戊二醛、对苯二甲醛、3,3’,4,4’-二苯甲酮四甲酸二酐、丁二酐、均苯四甲酸酐、丁二酸、己二酸、均苯四酸、对苯二甲酸、1,4-丁二胺、乙二胺、己二胺、1,4-丁二醇、乙二醇、二乙二醇醚、1,3-丙二醇、1,6-己二醇、均苯三甲酰氯、对苯二甲酰氯、二氯苄或分子量为200~2000的双羟基端基聚乙二醇。乙醇与水的混合溶液,其中水体积百分含量为:1%~80%。聚合物超滤膜在水相溶液的浸泡时间为20s~8h。交联剂的溶剂为正己烷、正庚烷或正辛烷。The cross-linked cross-linking agent is: glutaraldehyde, terephthalaldehyde, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, succinic anhydride, pyromellitic anhydride, butyl Diacid, adipic acid, pyromellitic acid, terephthalic acid, 1,4-butanediamine, ethylenediamine, hexamethylenediamine, 1,4-butanediol, ethylene glycol, diethylene glycol ether , 1,3-propanediol, 1,6-hexanediol, trimesoyl chloride, terephthaloyl chloride, benzyl dichloride or polyethylene glycol with a molecular weight of 200-2000 dihydroxyl end groups. A mixed solution of ethanol and water, wherein the volume percentage of water is: 1% to 80%. The immersion time of the polymer ultrafiltration membrane in the aqueous phase solution is 20s-8h. The solvent of the crosslinking agent is n-hexane, n-heptane or n-octane.
本发明具有的有益效果:The beneficial effect that the present invention has:
1)超支化聚合物具有近球状的结构,分子内部存在很多纳米孔洞,使该交联超支化聚合物复合纳滤膜的选择层较疏松,从而使该纳滤膜在较低的操作压力下保持高的通量和高的截留率;1) The hyperbranched polymer has a nearly spherical structure, and there are many nanopores inside the molecule, which makes the selective layer of the cross-linked hyperbranched polymer composite nanofiltration membrane looser, so that the nanofiltration membrane can operate at a lower operating pressure. Maintain high flux and high retention;
2)超支化聚合物带有大量的末端基团,通过末端基团改性可以方便的调节超支化聚合物末端基团的种类,制备不同荷电性的纳滤膜;2) The hyperbranched polymer has a large number of terminal groups, and the type of terminal group of the hyperbranched polymer can be easily adjusted by modifying the terminal group to prepare nanofiltration membranes with different charges;
3)超支化聚合物带有大量的末端基团,可以方便的通过调节交联度调节纳滤膜的亲疏水性,调节纳滤膜适用的水介质;3) The hyperbranched polymer has a large number of terminal groups, which can easily adjust the hydrophilicity and hydrophobicity of the nanofiltration membrane by adjusting the degree of crosslinking, and adjust the applicable water medium of the nanofiltration membrane;
4)超滤膜在乙醇与水混合溶液中预处理,使超支化聚合物更容易吸附在超滤膜表面,从而使选择层更容易复合在超滤膜表面;4) The ultrafiltration membrane is pretreated in a mixed solution of ethanol and water, so that the hyperbranched polymer is more easily adsorbed on the surface of the ultrafiltration membrane, so that the selective layer is more easily compounded on the surface of the ultrafiltration membrane;
5)超支化聚合物已经产业化生产,材料简单易得,使该交联超支化聚合物复合纳滤膜更易于实现产业化。5) The hyperbranched polymer has been produced industrially, and the material is simple and easy to obtain, which makes it easier to realize the industrialization of the cross-linked hyperbranched polymer composite nanofiltration membrane.
具体实施方式 Detailed ways
本发明中所述含交联超支化聚合物复合纳滤膜的制备方法,其制备过程有三个核心步骤,依次为:The preparation method of the composite nanofiltration membrane containing cross-linked hyperbranched polymer described in the present invention has three core steps in the preparation process, which are as follows:
(1)水相溶液的配制:将超支化聚合物溶解在乙醇中,在10~60℃下搅拌10min~2h小时溶解;然后向该溶液中缓慢加入水,再于20~60℃温度下继续搅拌10min~2h小时,形成水相溶液。(1) Preparation of aqueous phase solution: dissolve the hyperbranched polymer in ethanol, stir at 10-60°C for 10min-2h to dissolve; then slowly add water to the solution, and then continue at 20-60°C Stir for 10min to 2h to form an aqueous phase solution.
超支化分子为:分子量为1000~10万、末端基为羟基、氨基或羧基的超支化聚(酰胺-胺)、超支化聚(胺-酯)、超支化聚(丙烯-亚胺)、超支化聚酯或超支化聚丙烯酸。Hyperbranched molecules are: hyperbranched poly(amide-amine), hyperbranched poly(amine-ester), hyperbranched poly(propylene-imine), hyperbranched poly(propylene-imine) with a molecular weight of 1,000 to 100,000 and terminal groups of hydroxyl, amino or carboxyl groups polyester or hyperbranched polyacrylic acid.
(2)有机相溶液的配制:将交联剂分子溶解在有机溶剂中,在10~60℃下搅拌10min~2h小时溶解,形成有机相溶液。(2) Preparation of organic phase solution: dissolve the cross-linking agent molecules in an organic solvent, stir at 10-60° C. for 10 min-2 h to dissolve, and form an organic phase solution.
交联剂为:可以与采用超支化聚合物的羟基、氨基或羧基端基基团反应、使超支化分子形成交联的二醛、酸酐、多元酸、二胺或二醇;其中二醛为:戊二醛(GA)或对苯二甲醛(DBA);酸酐为:3,3’,4,4’-二苯甲酮四甲酸二酐(BTDA)、丁二酐或均苯四甲酸酐(PMDA);多元酸为:丁二酸(BDAC)、均苯四酸(BTA)或对苯二甲酸;二胺为:1,4-丁二胺(BDAA),乙二胺、或己二胺;二元醇为:1,4-丁二醇(BDAH)、乙二醇、二乙二醇醚、1,3-丙二醇、1,6-己二醇、均苯三甲酰氯、对苯二甲酰氯、二氯苄或分子量为200~2000的双端羟基聚乙二醇。The crosslinking agent is: dialdehyde, acid anhydride, polybasic acid, diamine or diol that can react with the hydroxyl group, amino group or carboxyl end group of the hyperbranched polymer to make the hyperbranched molecule form a crosslink; wherein the dialdehyde is : glutaraldehyde (GA) or terephthalaldehyde (DBA); acid anhydride: 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), succinic anhydride or pyromellitic anhydride (PMDA); polybasic acid: succinic acid (BDAC), pyromellitic acid (BTA) or terephthalic acid; diamine: 1,4-butanediamine (BDAA), ethylenediamine, or hexamethylenediamine Amines; diols are: 1,4-butanediol (BDAH), ethylene glycol, diethylene glycol ether, 1,3-propanediol, 1,6-hexanediol, trimesoyl chloride, terephthalate Formyl chloride, benzyl dichloride or double-end hydroxyl polyethylene glycol with a molecular weight of 200-2000.
有机溶剂为:正己烷、正庚烷或正辛烷。The organic solvent is: n-hexane, n-heptane or n-octane.
(3)后处理:将聚合物膜从交联剂溶液中取出,置于20~120℃的烘箱中保持5min~1h,得到超支化聚合物复合纳滤膜。(3) Post-treatment: take the polymer membrane out of the crosslinking agent solution, place it in an oven at 20-120° C. for 5 min-1 h, and obtain a hyperbranched polymer composite nanofiltration membrane.
所述的超支化分子的合成方法没有限制,可以是用逐步法合成,也可以是一步法或准一步法合成的。由于该发明中分子量在1000以上,超支化分子也可以称做超支化聚合物分子或超支化聚合物。The synthesis method of the hyperbranched molecule is not limited, it can be synthesized by a step-by-step method, or by a one-step method or a quasi-one-step method. Since the molecular weight in this invention is above 1000, hyperbranched molecules can also be called hyperbranched polymer molecules or hyperbranched polymers.
超支化分子的交联反应中,交联剂反应基团的化学量相当于采用超支化分子中端基基团化学当量的5~50%。一般地,交联剂的种类取决于超支化分子端基的化学结构和所需要交联链节,如:氨基与多元酸、多元酰氯或酐反应形成酰胺交联键,羟基与多元酸、多元酰氯或酐反应形成酯交联键,羟基与二元醛反应形成缩醛、半缩醛交联键;交联剂的用量取决于超支化分子交联度的选择,一般大孔膜的交联度较小、交联剂用量少;交联反应温度与时间取决于交联反应的类型,其中羧基与氨基、羟基的交联反应需要温度较高、时间较长;酸酐与氨基、羟基的反应需要温度稍低、时间稍短;羧基、羟基或氨基与酰氯的反应需要温度低、时间短。In the crosslinking reaction of the hyperbranched molecule, the chemical amount of the reactive group of the crosslinking agent is equivalent to 5-50% of the chemical equivalent of the terminal group in the hyperbranched molecule. Generally, the type of crosslinking agent depends on the chemical structure of the end group of the hyperbranched molecule and the required crosslinking chains, such as: amino groups react with polyacids, polyacid chlorides or anhydrides to form amide crosslinks, hydroxyl groups react with polyacids, polybasic Acid chlorides or anhydrides react to form ester crosslinks, and hydroxyl groups react with binary aldehydes to form acetal and hemiacetal crosslinks; the amount of crosslinking agent depends on the selection of the degree of crosslinking of hyperbranched molecules. The degree of crosslinking is small, and the amount of crosslinking agent is small; the temperature and time of crosslinking reaction depend on the type of crosslinking reaction, and the crosslinking reaction of carboxyl group, amino group and hydroxyl group needs higher temperature and longer time; The reaction requires slightly lower temperature and shorter time; the reaction of carboxyl, hydroxyl or amino with acid chloride requires lower temperature and shorter time.
下面以实施例详细阐述本发明,但所述实施例不构成对本发明的限制。The present invention is described in detail below with examples, but the examples do not constitute a limitation to the present invention.
实施例中超支化分子为发明人合成,超支化分子的种类和合成过程见专利(ZL 200410067256.0)。The hyperbranched molecules in the examples were synthesized by the inventor, and the types and synthesis process of the hyperbranched molecules are shown in the patent (ZL 200410067256.0).
实施例中的超滤基膜均为购买的商业化产品。The ultrafiltration base membranes in the examples are all purchased commercial products.
实施例1:Example 1:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持20min;然后将该聚砜超滤膜浸入含有超支化聚酯的4.6×10-3mol/l的水相溶液中,40min后取出,自然阴干;然后将该膜浸泡在均苯三甲酰氯的5.8×10-3mol/l正己烷溶液中,20min后取出;然后将该膜置于60℃的烘箱中保持20min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为79.1l/m2h,Na2SO4的脱除率为80.4%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为115.4l/m2h,Na2SO4的脱除率为85.6%。Soak the purchased polysulfone ultrafiltration base membrane in a mixed solution of ethanol and water with a volume ratio of 3:2 for 20 minutes; then immerse the polysulfone ultrafiltration membrane in 4.6×10 -3 mol/l In the aqueous phase solution, take it out after 40 minutes, and dry it naturally; then soak the film in a 5.8×10 -3 mol/l n-hexane solution of trimesoyl chloride, take it out after 20 minutes; then place the film in an oven at 60°C Keep in the medium for 20min to obtain hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 79.1l/m 2 h, and the removal rate of Na 2 SO 4 is 80.4%. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 115.4l/m 2 h, and the removal rate of Na 2 SO 4 is 85.6%.
实施例2:Example 2:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持10min;然后将该聚砜超滤膜浸入含有超支化聚酯的4.6×10-3mol/l的水相溶液中,50min后取出,自然阴干;然后将该膜浸泡在均苯三甲酰氯的8.3×10-3mol/l正己烷溶液中,10min后取出;然后将该膜置于90℃的烘箱中保持10min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为38.9l/m2h,Na2SO4的脱除率为86.4%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为56.1l/m2h,Na2SO4的脱除率为90.2%。Soak the purchased polysulfone ultrafiltration base membrane in the mixed solution of ethanol and water with a volume ratio of 3:2 for 10 minutes; then immerse the polysulfone ultrafiltration membrane in 4.6×10 -3 mol/l In the aqueous phase solution, take it out after 50 minutes, and dry it naturally; then soak the film in 8.3×10 -3 mol/l n-hexane solution of trimesoyl chloride, take it out after 10 minutes; then put the film in an oven at 90°C Keep in the medium for 10min to obtain hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 38.9l/m 2 h, and the removal rate of Na 2 SO 4 is 86.4%. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 56.1l/m 2 h, and the removal rate of Na 2 SO 4 is 90.2%.
实施例3:Example 3:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持50min;然后将该聚砜超滤膜浸入含有超支化聚酯的4.6×10-3mol/l的水相溶液中,20min后取出,自然阴干;然后将该膜浸泡在均苯三甲酰氯的6.7×10-3mol/l正己烷溶液中,30s后取出;然后将该膜置于40℃的烘箱中保持50min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为57.5l/m2h,Na2SO4的脱除率为85.3%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为96.5l/m2h,Na2SO4的脱除率为89.8%。Soak the purchased polysulfone ultrafiltration base membrane in the mixed solution of ethanol and water with a volume ratio of 3:2 for 50 minutes; then immerse the polysulfone ultrafiltration membrane in 4.6×10 -3 mol/l In the aqueous phase solution, take it out after 20 minutes, and dry it naturally; then soak the film in a 6.7×10 -3 mol/l n-hexane solution of trimesoyl chloride, take it out after 30 seconds; then place the film in an oven at 40°C Keep in the medium for 50min to obtain hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 57.5l/m 2 h, and the removal rate of Na 2 SO 4 is 85.3%. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 96.5l/m 2 h, and the removal rate of Na 2 SO 4 is 89.8%.
实施例4:Example 4:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持30s;然后将该聚砜超滤膜浸入含有超支化聚酯的8.9×10-3mol/l的水相溶液中,30s后取出,自然阴干;然后将该膜浸泡在均苯三甲酰氯的1.3×10-2mol/l正己烷溶液中,20s后取出;然后将该膜置于100℃的烘箱中保持5min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为30.5l/m2h,Na2SO4的脱除率为89.7%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为41.3l/m2h,Na2SO4的脱除率为91.3%。Soak the purchased polysulfone ultrafiltration base membrane in a mixed solution of ethanol and water with a volume ratio of 3:2 for 30 seconds; then immerse the polysulfone ultrafiltration membrane in 8.9×10 -3 mol/l In the aqueous phase solution, take it out after 30s, and dry it naturally; then soak the film in a 1.3×10 -2 mol/l n-hexane solution of trimesoyl chloride, take it out after 20s; then place the film in an oven at 100°C Keep in the medium for 5min to obtain hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 30.5l/m 2 h, and the removal rate of Na 2 SO 4 is 89.7%. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 41.3l/m 2 h, and the removal rate of Na 2 SO 4 is 91.3%.
实施例5:Example 5:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持20s;然后将该聚砜超滤膜浸入含有超支化聚酯的8.9×10-3mol/l的水相溶液中,10s后取出,自然阴干;然后将该膜浸泡在对苯二甲酰氯的2.4×10-2mol/l正己烷溶液中,5min后取出;然后将该膜置于70℃的烘箱中保持10min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为8-20l/m2h,Na2SO4的脱除率为94.3%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为10.3-30l/m2h,Na2SO4的脱除率为96.8%。Soak the purchased polysulfone ultrafiltration base membrane in a mixed solution of ethanol and water with a volume ratio of 3:2 for 20 seconds; then immerse the polysulfone ultrafiltration membrane in 8.9×10 -3 mol/l In the water phase solution, take it out after 10s, and dry it naturally; then soak the film in a 2.4×10 -2 mol/l n-hexane solution of terephthaloyl chloride, take it out after 5 minutes; then place the film in a 70°C Keep it in the oven for 10 minutes to obtain a hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 8-20l/m 2 h, and the removal rate of Na 2 SO 4 is 94.3%. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 10.3-30l/m 2 h, and the removal rate of Na 2 SO 4 is 96.8%.
实施例6:Embodiment 6:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持1h;然后将该聚砜超滤膜浸入含有超支化聚酯的1.5×10-3mol/l的水相溶液中,1.5h后取出,自然阴干;然后将该膜浸泡在均苯四甲酸酐的4.5×10-3mol/l正己烷溶液中,2h后取出;然后将该膜置于120℃的烘箱中保持5min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为24l/m2h,Na2SO4的脱除率为80.4%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为45.4l/m2h,Na2SO4的脱除率为86.6%。Soak the purchased polysulfone ultrafiltration base membrane in a mixed solution of ethanol and water with a volume ratio of 3:2 for 1 hour; then immerse the polysulfone ultrafiltration membrane in 1.5×10 -3 mol/l In the aqueous phase solution, take it out after 1.5h, and dry it naturally; then soak the film in a 4.5×10 -3 mol/l n-hexane solution of pyromellitic anhydride, take it out after 2 hours; then place the film at 120°C kept in the oven for 5min to obtain a hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 24l/m 2 h, and the removal rate of Na 2 SO 4 is 80.4%. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 45.4l/m 2 h, and the removal rate of Na 2 SO 4 is 86.6%.
实施例7:Embodiment 7:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持20min;然后将该聚砜超滤膜浸入含有超支化聚(胺-酯)的4.6×10-3mol/l的水相溶液中,3h后取出,自然阴干;然后将该膜浸泡在均苯三甲酰氯的4.6×10-3mol/l正己烷溶液中,40min后取出;然后将该膜置于80℃的烘箱中保持10min,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为69.41/m2h,Na2SO4的脱除率为81.4%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为75.4l/m2h,Na2SO4的脱除率为86.6%。Soak the purchased polysulfone ultrafiltration base membrane in a mixed solution of ethanol and water with a volume ratio of 3:2 for 20 minutes; then immerse the polysulfone ultrafiltration membrane in 4.6×10 -3 mol/l aqueous phase solution, take it out after 3h, and dry it naturally; then soak the film in 4.6×10 -3 mol/l n-hexane solution of trimesoyl chloride, take it out after 40min; then place the film in Keep it in an oven at 80° C. for 10 minutes to obtain a hyperbranched polyester composite nanofiltration membrane. The water flux of the membrane is 69.41/m 2 h and the removal rate of Na 2 SO 4 is 81.4% under the pressure of 0.3Mpa. Tested with 1g/l Na 2 SO 4 under the pressure of 0.6Mpa, the water flux of the membrane is 75.4l/m 2 h, and the removal rate of Na 2 SO 4 is 86.6%.
实施例8:Embodiment 8:
将购买的聚砜超滤基膜浸在乙醇与水体积比3∶2的混合溶液中保持20min;然后将该聚砜超滤膜浸入含有超支化聚(丙稀-亚胺)的4.6×10-3mol/l的水相溶液中,40min后取出,自然阴干;然后将该膜浸泡在丁二酸酐的5.8×10-2mol/l正己烷溶液中,15min后取出;然后将该膜置于30℃的烘箱中保持1h,得到超支化聚酯复合纳滤膜。在0.3Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为60l/m2h,Na2SO4的脱除率为70.4%。在0.6Mpa压力下用浓度为1g/l的Na2SO4进行测试,该膜的水通量为85.41/m2h,Na2SO4的脱除率为82.6%。Soak the purchased polysulfone ultrafiltration base membrane in a mixed solution of ethanol and water with a volume ratio of 3:2 for 20 minutes; then immerse the polysulfone ultrafiltration membrane in a 4.6×10 -3 mol/l water phase solution, take it out after 40min, and dry it naturally; then soak the membrane in 5.8×10 -2 mol/l n-hexane solution of succinic anhydride, take it out after 15min; then place the membrane Keep it in an oven at 30° C. for 1 hour to obtain a hyperbranched polyester composite nanofiltration membrane. Tested with 1g/l Na 2 SO 4 under the pressure of 0.3Mpa, the water flux of the membrane is 60l/m 2 h, and the removal rate of Na 2 SO 4 is 70.4%. The water flux of the membrane is 85.41/m 2 h, and the removal rate of Na 2 SO 4 is 82.6% under the pressure of 0.6Mpa.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101602395A CN101254417B (en) | 2007-12-14 | 2007-12-14 | Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101602395A CN101254417B (en) | 2007-12-14 | 2007-12-14 | Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101254417A true CN101254417A (en) | 2008-09-03 |
CN101254417B CN101254417B (en) | 2010-09-22 |
Family
ID=39889722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101602395A Expired - Fee Related CN101254417B (en) | 2007-12-14 | 2007-12-14 | Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101254417B (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101879416A (en) * | 2010-04-30 | 2010-11-10 | 浙江大学 | A kind of preparation method of cellulose composite nanofiltration membrane |
CN101954251A (en) * | 2010-09-30 | 2011-01-26 | 浙江工业大学 | Hydrophilic modification method for flat membrane by using hyperbranched polymer |
CN101961612A (en) * | 2010-09-30 | 2011-02-02 | 浙江工业大学 | Method for carrying out hydrophilic modification on hollow fiber membrane by utilizing hyperbranched polymer |
CN102151490A (en) * | 2011-01-30 | 2011-08-17 | 哈尔滨工业大学 | Method for preparing nano-filtration membrane from tree polyamide-amine embedded inorganic nano particles |
WO2012022406A1 (en) * | 2010-08-18 | 2012-02-23 | Merck Patent Gmbh | Membrane comprising a selectively permeable polymer layer of a highly branched polymer |
WO2012087428A1 (en) * | 2010-12-21 | 2012-06-28 | General Electric Company | Polyamide membranes via interfacial polymersation with monomers comprising a protected amine group |
CN102698620A (en) * | 2012-06-12 | 2012-10-03 | 浙江大学 | Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer |
CN102711967A (en) * | 2010-01-12 | 2012-10-03 | 国际商业机器公司 | Nanoporous semi-permeable membrane and methods for fabricating the same |
CN103263858A (en) * | 2013-05-15 | 2013-08-28 | 北京工业大学 | Cross-linking hyperbranched polymer composite nano filtration membrane prepared by one step method in water phase, preparation method and application |
CN104472771A (en) * | 2014-12-12 | 2015-04-01 | 嘉应学院医学院 | Method for enriching and separating metal elements in camellia nitidissima by using composite nanofiltration membrane |
CN104689716A (en) * | 2014-11-27 | 2015-06-10 | 辽宁师范大学 | Application of crossed type polyarylether polymer porous film to solvent resistance separation process |
CN104689717A (en) * | 2014-11-27 | 2015-06-10 | 辽宁师范大学 | Application of cross-linked polyether sulfone porous separating membrane material in solvent-resistant nanofiltration process |
US9212238B2 (en) | 2012-12-28 | 2015-12-15 | Industrial Technology Research Institute | Microparticle, addition agent and filtering membrane |
CN105289318A (en) * | 2015-11-18 | 2016-02-03 | 新疆德蓝股份有限公司 | Hollow fiber composite nanofiltration membrane and preparation method thereof |
CN105771672A (en) * | 2016-04-18 | 2016-07-20 | 天津工业大学 | Antipollution and antibacterial aromatic polyamide reverse osmosis composite membrane and preparation method |
CN107546355A (en) * | 2016-06-29 | 2018-01-05 | 中南大学 | A kind of preparation method of modified lithium-sulfur cell dedicated diaphragm |
CN107824057A (en) * | 2017-10-18 | 2018-03-23 | 天津工业大学 | A kind of dissaving polymer modifying polymer film and preparation method and application |
CN107899432A (en) * | 2017-12-21 | 2018-04-13 | 段艳玲 | A kind of plate compounding NF membrane for water filter purification and preparation method thereof |
CN108393074A (en) * | 2018-03-19 | 2018-08-14 | 哈尔滨工程大学 | The preparation method of hyperbranched amine polymer-modified cotton fiber sorbing material |
CN109224865A (en) * | 2018-11-22 | 2019-01-18 | 广州奈诺科技有限公司 | A kind of preparation method of high selection separation property nanofiltration membrane |
CN110038453A (en) * | 2019-04-29 | 2019-07-23 | 厦门理工学院 | A kind of enhanced PVC hollow fiber ultrafiltration membrane and preparation method |
US10369529B2 (en) | 2012-01-30 | 2019-08-06 | California Institute Of Technology | Mixed matrix membranes with embedded polymeric particles and networks and related compositions, methods, and systems |
CN110314562A (en) * | 2019-07-01 | 2019-10-11 | 中国石油大学(华东) | Modified seperation film of branching molecule and preparation method thereof, composite separating film and application |
US10532330B2 (en) | 2011-08-08 | 2020-01-14 | California Institute Of Technology | Filtration membranes, and related nano and/or micro fibers, composites, methods and systems |
CN110975645A (en) * | 2019-12-09 | 2020-04-10 | 南方科技大学 | Preparation method of composite film and composite film |
CN111001317A (en) * | 2019-12-05 | 2020-04-14 | 浙江工业大学 | Novel high-flux high-selectivity composite nanofiltration membrane and preparation method thereof |
CN111151137A (en) * | 2020-01-03 | 2020-05-15 | 浙江工业大学 | High-flux high-salt-rejection reverse osmosis composite membrane and preparation method thereof |
CN111592653A (en) * | 2020-04-13 | 2020-08-28 | 浙江大学 | Preparation method of topological elastomer with highly branched structure and low-modulus high elasticity |
CN111644075A (en) * | 2020-06-10 | 2020-09-11 | 青岛森晨环保科技有限责任公司 | Application of graphene oxide nanofiltration membrane under high operating pressure |
CN113019146A (en) * | 2021-04-07 | 2021-06-25 | 河北工业大学 | Preparation method of ultrahigh-flux composite nanofiltration membrane |
CN113144915A (en) * | 2021-05-13 | 2021-07-23 | 清华大学 | Modified polyamide composite nanofiltration membrane and preparation method thereof |
US11090616B2 (en) | 2012-01-30 | 2021-08-17 | California Institute Of Technology | Filtration membranes and related compositions, methods and systems |
CN113413760A (en) * | 2021-07-28 | 2021-09-21 | 浙江美易膜科技有限公司 | Acid and alkali resistant layer-by-layer cross-linked nanofiltration membrane and preparation method thereof |
CN114191989A (en) * | 2021-12-01 | 2022-03-18 | 贵州省材料产业技术研究院 | Preparation method of strongly-combined double-layer nanofiltration membrane |
CN114405157A (en) * | 2021-12-27 | 2022-04-29 | 重庆再升科技股份有限公司 | High-strength fluid separation medium |
CN114749038A (en) * | 2021-01-11 | 2022-07-15 | 中化(宁波)润沃膜科技有限公司 | High-flux reverse osmosis composite membrane and preparation method thereof |
CN115138211A (en) * | 2022-08-11 | 2022-10-04 | 安徽智泓净化科技股份有限公司 | Negatively charged modified nanofiltration membrane and production process thereof |
CN115178113A (en) * | 2022-08-25 | 2022-10-14 | 启成(江苏)净化科技有限公司 | Preparation method of polyethylene-based high-water-flux reverse osmosis membrane |
CN116020264A (en) * | 2022-12-29 | 2023-04-28 | 南京水诺环保科技有限公司 | Method for improving ultrafiltration membrane into nanofiltration membrane |
CN119015897A (en) * | 2024-10-28 | 2024-11-26 | 河南师范大学 | A polyamide nanomembrane with precisely adjustable ordered pore structure and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123594A1 (en) * | 2015-01-30 | 2016-08-04 | California Institute Of Technology | Dendrimer particles and related mixed matrix filtration membranes, compositions, methods, and systems |
-
2007
- 2007-12-14 CN CN2007101602395A patent/CN101254417B/en not_active Expired - Fee Related
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102711967A (en) * | 2010-01-12 | 2012-10-03 | 国际商业机器公司 | Nanoporous semi-permeable membrane and methods for fabricating the same |
CN102711967B (en) * | 2010-01-12 | 2014-07-16 | 国际商业机器公司 | Nanoporous semi-permeable membrane and methods for fabricating the same |
CN101879416A (en) * | 2010-04-30 | 2010-11-10 | 浙江大学 | A kind of preparation method of cellulose composite nanofiltration membrane |
WO2012022406A1 (en) * | 2010-08-18 | 2012-02-23 | Merck Patent Gmbh | Membrane comprising a selectively permeable polymer layer of a highly branched polymer |
CN101961612B (en) * | 2010-09-30 | 2012-11-14 | 浙江工业大学 | Method for carrying out hydrophilic modification on hollow fiber membrane by utilizing hyperbranched polymer |
CN101961612A (en) * | 2010-09-30 | 2011-02-02 | 浙江工业大学 | Method for carrying out hydrophilic modification on hollow fiber membrane by utilizing hyperbranched polymer |
CN101954251A (en) * | 2010-09-30 | 2011-01-26 | 浙江工业大学 | Hydrophilic modification method for flat membrane by using hyperbranched polymer |
CN105536555B (en) * | 2010-12-21 | 2019-05-07 | Bl 科技公司 | The PA membrane generated by the monomer of the amine groups containing protection through interfacial polymerization |
WO2012087428A1 (en) * | 2010-12-21 | 2012-06-28 | General Electric Company | Polyamide membranes via interfacial polymersation with monomers comprising a protected amine group |
CN105536555A (en) * | 2010-12-21 | 2016-05-04 | 通用电气公司 | Polymeric matrices formed from monomers comprising a protected amine group |
CN103260732A (en) * | 2010-12-21 | 2013-08-21 | 通用电气公司 | Polyamide membranes via interfacial polymersation with monomers comprising protected amine group |
CN103260732B (en) * | 2010-12-21 | 2016-02-24 | 通用电气公司 | The PA membrane generated through interfacial polymerization by the monomer of the amine groups containing protection |
KR20140005919A (en) * | 2010-12-21 | 2014-01-15 | 제너럴 일렉트릭 캄파니 | Polyamide membranes via interfacial polymersation with monomers comprising a protected amine group |
US8839960B2 (en) | 2010-12-21 | 2014-09-23 | General Electric Company | Polymeric matrices formed from monomers comprising a protected amine group |
US9636643B2 (en) | 2010-12-21 | 2017-05-02 | General Electric Company | Polymeric matrices formed from monomers comprising a protected amine group |
CN102151490A (en) * | 2011-01-30 | 2011-08-17 | 哈尔滨工业大学 | Method for preparing nano-filtration membrane from tree polyamide-amine embedded inorganic nano particles |
US10532330B2 (en) | 2011-08-08 | 2020-01-14 | California Institute Of Technology | Filtration membranes, and related nano and/or micro fibers, composites, methods and systems |
US11090616B2 (en) | 2012-01-30 | 2021-08-17 | California Institute Of Technology | Filtration membranes and related compositions, methods and systems |
US10369529B2 (en) | 2012-01-30 | 2019-08-06 | California Institute Of Technology | Mixed matrix membranes with embedded polymeric particles and networks and related compositions, methods, and systems |
CN102698620A (en) * | 2012-06-12 | 2012-10-03 | 浙江大学 | Method for preparing reverse osmosis composite membrane by taking hyperbranched polymer as monomer |
US9212238B2 (en) | 2012-12-28 | 2015-12-15 | Industrial Technology Research Institute | Microparticle, addition agent and filtering membrane |
CN103263858A (en) * | 2013-05-15 | 2013-08-28 | 北京工业大学 | Cross-linking hyperbranched polymer composite nano filtration membrane prepared by one step method in water phase, preparation method and application |
CN103263858B (en) * | 2013-05-15 | 2015-05-27 | 北京工业大学 | Cross-linking hyperbranched polymer composite nano filtration membrane prepared by one step method in water phase, preparation method and application |
CN104689717A (en) * | 2014-11-27 | 2015-06-10 | 辽宁师范大学 | Application of cross-linked polyether sulfone porous separating membrane material in solvent-resistant nanofiltration process |
CN104689716A (en) * | 2014-11-27 | 2015-06-10 | 辽宁师范大学 | Application of crossed type polyarylether polymer porous film to solvent resistance separation process |
CN104472771B (en) * | 2014-12-12 | 2017-10-20 | 嘉应学院医学院 | Biosorption of Metal Elements separation method in a kind of plant of theaceae tea based on composite nanometer filtering film |
CN104472771A (en) * | 2014-12-12 | 2015-04-01 | 嘉应学院医学院 | Method for enriching and separating metal elements in camellia nitidissima by using composite nanofiltration membrane |
CN105289318A (en) * | 2015-11-18 | 2016-02-03 | 新疆德蓝股份有限公司 | Hollow fiber composite nanofiltration membrane and preparation method thereof |
CN105771672A (en) * | 2016-04-18 | 2016-07-20 | 天津工业大学 | Antipollution and antibacterial aromatic polyamide reverse osmosis composite membrane and preparation method |
CN107546355A (en) * | 2016-06-29 | 2018-01-05 | 中南大学 | A kind of preparation method of modified lithium-sulfur cell dedicated diaphragm |
CN107824057A (en) * | 2017-10-18 | 2018-03-23 | 天津工业大学 | A kind of dissaving polymer modifying polymer film and preparation method and application |
CN107824057B (en) * | 2017-10-18 | 2020-07-28 | 天津工业大学 | Hyperbranched polymer modified polymer film and preparation method and application thereof |
CN107899432A (en) * | 2017-12-21 | 2018-04-13 | 段艳玲 | A kind of plate compounding NF membrane for water filter purification and preparation method thereof |
CN107899432B (en) * | 2017-12-21 | 2019-08-23 | 庆阳能源化工集团沃德石油技术有限公司 | A kind of plate compounding nanofiltration membrane and preparation method thereof for water filter purification |
CN108393074A (en) * | 2018-03-19 | 2018-08-14 | 哈尔滨工程大学 | The preparation method of hyperbranched amine polymer-modified cotton fiber sorbing material |
CN108393074B (en) * | 2018-03-19 | 2020-12-08 | 哈尔滨工程大学 | Preparation method of hyperbranched amine polymer modified cotton fiber adsorption material |
CN109224865A (en) * | 2018-11-22 | 2019-01-18 | 广州奈诺科技有限公司 | A kind of preparation method of high selection separation property nanofiltration membrane |
CN110038453A (en) * | 2019-04-29 | 2019-07-23 | 厦门理工学院 | A kind of enhanced PVC hollow fiber ultrafiltration membrane and preparation method |
CN110314562A (en) * | 2019-07-01 | 2019-10-11 | 中国石油大学(华东) | Modified seperation film of branching molecule and preparation method thereof, composite separating film and application |
CN110314562B (en) * | 2019-07-01 | 2022-02-11 | 中国石油大学(华东) | Dendritic branched molecule modified separation membrane and preparation method thereof, composite separation membrane and application |
CN111001317B (en) * | 2019-12-05 | 2022-02-11 | 浙江工业大学 | High-flux high-selectivity composite nanofiltration membrane and preparation method thereof |
CN111001317A (en) * | 2019-12-05 | 2020-04-14 | 浙江工业大学 | Novel high-flux high-selectivity composite nanofiltration membrane and preparation method thereof |
CN110975645A (en) * | 2019-12-09 | 2020-04-10 | 南方科技大学 | Preparation method of composite film and composite film |
CN111151137A (en) * | 2020-01-03 | 2020-05-15 | 浙江工业大学 | High-flux high-salt-rejection reverse osmosis composite membrane and preparation method thereof |
CN111151137B (en) * | 2020-01-03 | 2022-03-15 | 浙江工业大学 | A kind of high flux high salt cut-off reverse osmosis composite membrane and preparation method thereof |
CN111592653A (en) * | 2020-04-13 | 2020-08-28 | 浙江大学 | Preparation method of topological elastomer with highly branched structure and low-modulus high elasticity |
CN111644075A (en) * | 2020-06-10 | 2020-09-11 | 青岛森晨环保科技有限责任公司 | Application of graphene oxide nanofiltration membrane under high operating pressure |
CN111644075B (en) * | 2020-06-10 | 2021-10-15 | 庄秀萍 | Application of graphene oxide nanofiltration membrane under high operating pressure |
CN114749038A (en) * | 2021-01-11 | 2022-07-15 | 中化(宁波)润沃膜科技有限公司 | High-flux reverse osmosis composite membrane and preparation method thereof |
CN113019146A (en) * | 2021-04-07 | 2021-06-25 | 河北工业大学 | Preparation method of ultrahigh-flux composite nanofiltration membrane |
CN113144915A (en) * | 2021-05-13 | 2021-07-23 | 清华大学 | Modified polyamide composite nanofiltration membrane and preparation method thereof |
CN113144915B (en) * | 2021-05-13 | 2023-02-28 | 清华大学 | Modified polyamide composite nanofiltration membrane and preparation method thereof |
CN113413760A (en) * | 2021-07-28 | 2021-09-21 | 浙江美易膜科技有限公司 | Acid and alkali resistant layer-by-layer cross-linked nanofiltration membrane and preparation method thereof |
CN114191989A (en) * | 2021-12-01 | 2022-03-18 | 贵州省材料产业技术研究院 | Preparation method of strongly-combined double-layer nanofiltration membrane |
CN114191989B (en) * | 2021-12-01 | 2024-10-01 | 贵州省材料产业技术研究院 | Preparation method of strong-binding double-layer nanofiltration membrane |
CN114405157A (en) * | 2021-12-27 | 2022-04-29 | 重庆再升科技股份有限公司 | High-strength fluid separation medium |
CN115138211A (en) * | 2022-08-11 | 2022-10-04 | 安徽智泓净化科技股份有限公司 | Negatively charged modified nanofiltration membrane and production process thereof |
CN115138211B (en) * | 2022-08-11 | 2023-05-23 | 安徽智泓净化科技股份有限公司 | Negatively charged modified nanofiltration membrane and production process thereof |
CN115178113A (en) * | 2022-08-25 | 2022-10-14 | 启成(江苏)净化科技有限公司 | Preparation method of polyethylene-based high-water-flux reverse osmosis membrane |
CN116020264A (en) * | 2022-12-29 | 2023-04-28 | 南京水诺环保科技有限公司 | Method for improving ultrafiltration membrane into nanofiltration membrane |
CN116020264B (en) * | 2022-12-29 | 2023-10-20 | 南京水诺环保科技有限公司 | Method for improving ultrafiltration membrane into nanofiltration membrane |
CN119015897A (en) * | 2024-10-28 | 2024-11-26 | 河南师范大学 | A polyamide nanomembrane with precisely adjustable ordered pore structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101254417B (en) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101254417B (en) | Cross-linked hyperbranched polymer composite nanofiltration membrane and preparation method thereof | |
Zhan et al. | How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane | |
Wang et al. | One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination | |
Wang et al. | Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal | |
CN109925896B (en) | Hybrid composite membrane, preparation method and application thereof | |
CN102553461B (en) | A kind of inorganic/organic composite nanofiltration membrane and preparation method thereof | |
CN112973653B (en) | Preparation method and uranium extraction method of Mxene membrane adsorption material based on polyamidoxime | |
CN110141978B (en) | Ultrathin composite film and preparation method thereof | |
WO2020177274A1 (en) | Composite membrane, preparation method therefor and application thereof | |
CN106215720A (en) | Preparation method, prepared ultrafilter membrane and the application of this ultrafilter membrane of a kind of doped graphene quantum dot organic solvent-resistant ultrafilter membrane | |
CN106890570A (en) | A kind of preparation method of the hollow fiber nanofiltration membrane of graphene oxide doped | |
WO2021227330A1 (en) | Solvent-resistant polymer nanofiltration membrane, preparation method therefor, and use thereof | |
CN110548415B (en) | Large-flux positively-charged polyamide hybrid forward osmosis membrane and preparation method thereof | |
Lee et al. | Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration | |
Tsai et al. | The preparation of polyelectrolyte/hydrolyzed polyacrylonitrile composite hollow fiber membrane for pervaporation | |
CN113750818B (en) | High-permeability polyamide reverse osmosis composite membrane and preparation method thereof | |
CN110394070A (en) | A kind of multilayer cross-linked graphene oxide, its preparation method and application | |
Lai et al. | Controllable preparation of novel homogenous reinforcement poly (p-phenylene terephthamide) hollow fiber nanofiltration membrane with nanoscale ordered structures for organic solvent nanofiltration | |
CN111498827A (en) | 3D thermally-induced rearrangement polymer-based porous nitrogen-doped carbon material and its preparation method | |
CN118320634B (en) | Dendritic silica nano-thorn ball modified ultrafiltration membrane, preparation method and application thereof | |
CN111715083B (en) | Modified polyamide desalting layer, reverse osmosis membrane and preparation method and application thereof | |
CN113117530B (en) | Composite membrane for improving permselectivity of polyamide nanofiltration composite membrane and preparation method thereof | |
Mansourpanah et al. | Improvement of the performance of PDMS top layer of mixed matrix membrane incorporated with treated ZIF-8 for gas separation | |
JPWO2013172330A1 (en) | Semipermeable membrane and method for producing the same, concentration difference power generation method using semipermeable membrane | |
CN114471197B (en) | A mixed charged nanofiltration membrane and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100922 Termination date: 20141214 |
|
EXPY | Termination of patent right or utility model |