[go: up one dir, main page]

CN102696116A - Barrier-coated thin-film photovoltaic cells - Google Patents

Barrier-coated thin-film photovoltaic cells Download PDF

Info

Publication number
CN102696116A
CN102696116A CN2010800450728A CN201080045072A CN102696116A CN 102696116 A CN102696116 A CN 102696116A CN 2010800450728 A CN2010800450728 A CN 2010800450728A CN 201080045072 A CN201080045072 A CN 201080045072A CN 102696116 A CN102696116 A CN 102696116A
Authority
CN
China
Prior art keywords
photovoltaic cell
layer
thin film
cell device
film photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800450728A
Other languages
Chinese (zh)
Inventor
P·F·卡西亚
R·S·麦利恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN102696116A publication Critical patent/CN102696116A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/167Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/30Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种薄膜光伏电池,所述薄膜光伏电池抵抗湿气或大气对光伏电池的水敏感层和/或氧敏感层的侵入,其中所述电池的一个或多个层通过原子层沉积用无机氧化物阻挡层来涂覆。

The present invention discloses a thin film photovoltaic cell which resists the intrusion of moisture or atmosphere to the water sensitive layer and/or the oxygen sensitive layer of the photovoltaic cell, wherein one or more layers of the cell are deposited by atomic layer Coated with an inorganic oxide barrier layer.

Description

涂覆阻挡层的薄膜光伏电池Barrier-coated thin-film photovoltaic cells

本专利申请要求2010年8月5日提交的美国临时专利申请61/231493的优先权。前述专利申请中的每一个全文均以引用到其中的方式并入本文中。This patent application claims priority to US Provisional Patent Application 61/231,493, filed August 5, 2010. Each of the foregoing patent applications is hereby incorporated by reference in its entirety.

发明领域 field of invention

本发明提供薄膜光伏电池,其中一个或多个层通过原子层沉积用无机氧化物阻挡层涂覆以防止湿气或大气对光伏电池的水敏感层和/或氧敏感层的侵入。The present invention provides thin film photovoltaic cells wherein one or more layers are coated by atomic layer deposition with an inorganic oxide barrier layer to prevent ingress of moisture or atmosphere to the water sensitive and/or oxygen sensitive layers of the photovoltaic cell.

发明背景Background of the invention

将太阳辐射或光照转化成电能的光伏(PV)电池需要整年在通常苛刻的室外条件下操作。为了确保25年或更长的使用期限,太阳能电池需要坚固耐用的包装。为了将太阳能电池作为屋顶式薄膜整合到建筑物中,还期望光伏电池为卷筒形式的柔性产品。Photovoltaic (PV) cells, which convert solar radiation or sunlight into electrical energy, need to operate year-round in often harsh outdoor conditions. To ensure a lifetime of 25 years or more, solar cells require robust and durable packaging. In order to integrate solar cells into buildings as rooftop membranes, photovoltaic cells are also expected to be flexible products in the form of rolls.

薄膜光伏电池能够被加工为金属箔或塑料基板上的卷筒产品。柔性光伏电池的顶片或前片(通过所述顶片或前片来收集太阳辐射)必须具有光学透明性、耐候性和防垢性,对湿气及其它大气具有低的渗透性。Thin film photovoltaic cells can be processed as roll products on metal foil or plastic substrates. The top or front sheet of a flexible photovoltaic cell through which solar radiation is collected must be optically transparent, weather and scale resistant, and have low permeability to moisture and other atmospheres.

薄膜光伏电池可基于无机材料如非晶硅(a-Si)、碲化镉(CdTe)或铜铟(镓)二硒(CIS/CIGS),或者基于新兴技术,所述新兴技术基于染料敏化、有机和纳米材料。湿气敏感性为所有薄膜光伏技术面临的问题,但是对于铜铟镓二硒尤其严峻。就实现期望的25年使用期限的铜铟镓二硒光伏电池而言,据信阻挡层必须提供小于5×10-4g-H2O/m2/天的水蒸汽传输速率。尽管该要求严格,但是铜铟镓二硒光伏电池仍由于其高效率(就小型实验室规模电池而言为~20%)而吸引人。Thin-film photovoltaic cells can be based on inorganic materials such as amorphous silicon (a-Si), cadmium telluride (CdTe) or copper indium (gallium) diselenide (CIS/CIGS), or on emerging technologies based on dye-sensitized , organic and nanomaterials. Moisture sensitivity is a problem for all thin-film photovoltaic technologies, but especially for CIGDS. For a copper indium gallium diselenide photovoltaic cell to achieve the desired lifetime of 25 years, it is believed that the barrier layer must provide a water vapor transmission rate of less than 5×10 −4 gH 2 O/m 2 /day. Despite this stringent requirement, copper indium gallium diselenide photovoltaic cells are attractive due to their high efficiency (~20% for small lab scale cells).

用于柔性基板上的薄膜光伏电池的典型包装方案示于图1中。该结构包括光伏电池10在其上加工的基板12、包封材料14和透明的前片16,所述基板12可为金属箔或聚合物。无防潮层时,该结构将具有有限的使用期限,就湿气敏感的薄膜光伏电池而言通常小于1年。前片提供某些防潮特性,并且也可存在居间聚合物片材18,其可包括聚合物(例如,聚酯、含氟聚合物)的一个或多个层(例如,18a和18b)。然而,聚合物的固有渗透性通常过高而不能实现铜铟镓二硒光伏电池所需的保护水平。A typical packaging scheme for thin-film photovoltaic cells on flexible substrates is shown in Fig. 1. The structure includes a substrate 12, which may be a metal foil or a polymer, on which a photovoltaic cell 10 is processed, an encapsulation material 14, and a transparent front sheet 16. Without a moisture barrier, the structure would have a limited lifetime, typically less than 1 year for moisture sensitive thin film photovoltaic cells. The front panel provides some moisture barrier properties, and there may also be an intervening polymer sheet 18, which may comprise one or more layers (eg, 18a and 18b) of a polymer (eg, polyester, fluoropolymer). However, the inherent permeability of polymers is often too high to achieve the level of protection required for CIGDS photovoltaic cells.

借助原子层沉积方法的Al2O3薄膜的沉积已被公开用于包封有机发光二极管(OLED),产生用于此类装置的电位阻挡膜。在原子层沉积方法中,水和臭氧均已用作氧化剂。The deposition of Al2O3 thin films by means of atomic layer deposition methods has been disclosed for the encapsulation of organic light emitting diodes (OLEDs), resulting in potential barrier films for such devices. In atomic layer deposition methods, both water and ozone have been used as oxidizing agents.

也已公开了并五苯/C60异质结有机太阳能电池在顶衬构型中的包封,所述构型具有通过原子层沉积的Al2O3层。在此类装置中,通过玻璃基板来采集光线。The encapsulation of pentacene/C 60 heterojunction organic solar cells in superstrate configurations with Al 2 O 3 layers by atomic layer deposition has also been disclosed. In such devices, light is collected through a glass substrate.

目前使用的防潮层无一提供用于薄膜光伏电池(尤其是铜铟镓二硒)的足以获得期望功能使用期限的保护水平。因此,仍需本发明提供的改善的防潮层。None of the currently used moisture barriers provide a level of protection sufficient for the desired functional lifetime for thin film photovoltaic cells, especially copper indium gallium diselenide. Accordingly, there remains a need for improved moisture barriers provided by the present invention.

发明概述Summary of the invention

在不同的实施方案中,本发明提供光伏电池装置及其制造方法。In various embodiments, the present invention provides photovoltaic cell devices and methods of making the same.

在一个实施方案中,提供了一种薄膜光伏电池装置,所述薄膜光伏电池装置包括:基板、连结到所述基板的光伏电池、以及至少一个采用水蒸汽前体和三甲基铝反应物通过原子层沉积方法形成的气体渗透阻挡层。光伏电池包括Cu(In,Ga)Se2吸收层和CdS窗口层、以及任选的附加层。In one embodiment, there is provided a thin-film photovoltaic cell device comprising: a substrate, a photovoltaic cell bonded to the substrate, and at least one passthrough using a water vapor precursor and a trimethylaluminum reactant. Gas permeation barrier layer formed by atomic layer deposition method. The photovoltaic cell includes a Cu(In,Ga) Se2 absorber layer and a CdS window layer, and optionally additional layers.

在另一个实施方案中,提供了构造光伏电池装置的方法,所述方法包括:(i)提供基板;(ii)在基板上形成包括Cu(In,Ga)Se2吸收层和CdS窗口层的光伏电池;和(iii)使光伏电池涂覆有采用水蒸汽前体和三甲基铝反应物通过原子层沉积方法形成的气体渗透阻挡层。In another embodiment, there is provided a method of constructing a photovoltaic cell device, the method comprising: (i) providing a substrate; (ii) forming a Cu(In,Ga) Se absorber layer and a CdS window layer on the substrate a photovoltaic cell; and (iii) coating the photovoltaic cell with a gas permeation barrier formed by an atomic layer deposition process using a water vapor precursor and a trimethylaluminum reactant.

在另一个实施方案中,本发明的原子层沉积方法在装有真空室的反应器内实施并按顺序包括以下步骤:(i)使前体蒸汽进入所述室;(ii)从所述室吹扫前体蒸汽以留下薄的前体吸附层;(iii)在热条件下将反应物引入到室中,所述热条件促进与前体的反应以形成期望的气体渗透阻挡层的材料次层;(iv)吹扫室内的反应物及由反应生成的反应产物;和(v)重复前述步骤足够的次数以形成具有预选厚度的气体渗透阻挡层。In another embodiment, the atomic layer deposition method of the present invention is carried out in a reactor equipped with a vacuum chamber and comprises the following steps in sequence: (i) allowing precursor vapor to enter said chamber; (ii) removing from said chamber Sweeping the precursor vapor to leave a thin precursor adsorbed layer; (iii) introducing reactants into the chamber under thermal conditions that promote reaction with the precursor to form the desired gas permeation barrier material sublayer; (iv) purging the reactants within the chamber and reaction products resulting from the reaction; and (v) repeating the preceding steps a sufficient number of times to form a gas permeation barrier layer having a preselected thickness.

附图简述Brief description of the drawings

当参考本发明的以下优选实施方案详述及附图时,本发明将被更充分理解并且其它优点将变得显而易见,其中类似的附图编号指示所有若干视图的相似元件,并且其中:The invention will be more fully understood and other advantages will become apparent when reference is made to the following detailed description of preferred embodiments of the invention and accompanying drawings, wherein like reference numerals indicate like elements throughout the several views, and in which:

图1示出了现有技术的光伏电池装置,其包括光伏电池构造在其上的金属箔或聚合物基质、包封材料及透明的前片;Figure 1 shows a prior art photovoltaic cell device comprising a metal foil or polymer matrix on which photovoltaic cells are constructed, an encapsulating material and a transparent front sheet;

图2示出了本发明的原子层沉积涂覆的光伏电池的一个实施方案的构型;Figure 2 shows the configuration of one embodiment of an atomic layer deposition coated photovoltaic cell of the present invention;

图3示出了本发明的原子层沉积涂覆的光伏电池的另一个实施方案的构型;Figure 3 shows the configuration of another embodiment of an atomic layer deposition coated photovoltaic cell of the present invention;

图4A-4D示出了黄铜矿与CdTe太阳能电池的某些构型;Figures 4A-4D illustrate certain configurations of chalcopyrite and CdTe solar cells;

图5示出了非晶态或纳米晶薄膜硅太阳能电池的构型;Figure 5 shows the configuration of an amorphous or nanocrystalline thin film silicon solar cell;

图6示出了实例的电池的顶视示意图;并且Figure 6 shows a schematic top view of an example battery; and

图7为开路电压Voc相对时间的图,其示出了实例的涂覆且包封的铜铟镓二硒光伏电池在85℃和85%相对湿度下的稳定性。7 is a graph of open circuit voltage V oc versus time showing the stability of an example coated and encapsulated copper indium gallium diselenide photovoltaic cell at 85° C. and 85% relative humidity.

发明详述Detailed description of the invention

原子层沉积(ALD)为制备潜在地满足低渗透的许多标准的薄膜的薄膜生长方法。原子层沉积方法的描述可见于Tuomo Suntola的“AtomicLayer Epitaxy”,Thin Solid Films,第216卷(1992),第84-89页。顾名思义,原子层沉积方法使得材料逐层沉积。一般来讲,所述方法在室内利用两步反应来实现,并且重复进行以积累层,从而形成所需厚度的涂层。首先,将薄膜前体蒸汽引入到室中。不受任何理论的约束,据信通常基本为单层的薄前体层被吸附在室内的基板或装置上。如本文所用,应当了解术语“吸附层”是指其原子被微弱地键合到基板表面的层。其后,通过例如抽空室或通过使惰性的吹扫气体流动而从室吹扫蒸汽,以除去任何过量的或未吸附的蒸汽。然后在热条件下将反应物引入到室中,所述热条件促进与吸附前体的反应以形成期望阻挡材料的次层。然后将挥发性的反应产物与过量前体从所述室泵出。材料的附加次层通过重复前述步骤足够的次数以形成具有预选厚度的层而形成。Atomic layer deposition (ALD) is a thin film growth method for preparing thin films that potentially meet many criteria for low permeability. A description of the atomic layer deposition method can be found in Tuomo Suntola, "AtomicLayer Epitaxy", Thin Solid Films, Vol. 216 (1992), pp. 84-89. As the name implies, the atomic layer deposition method deposits material layer by layer. In general, the process is accomplished indoors using a two-step reaction that is repeated to build up layers to form a coating of desired thickness. First, film precursor vapor is introduced into the chamber. Without being bound by any theory, it is believed that a thin precursor layer, usually substantially monolayer, is adsorbed on the substrate or device within the chamber. As used herein, it is understood that the term "adsorption layer" refers to a layer whose atoms are weakly bonded to the surface of the substrate. Thereafter, any excess or non-adsorbed vapor is removed by purging the vapor from the chamber, for example by evacuating the chamber or by flowing an inert purge gas. The reactants are then introduced into the chamber under thermal conditions that promote reaction with the adsorbed precursor to form a sublayer of the desired barrier material. Volatile reaction products and excess precursor are then pumped from the chamber. Additional sub-layers of material are formed by repeating the preceding steps a sufficient number of times to form a layer having a preselected thickness.

常见的化学气相沉积和物理气相沉积方法需要在离散的成核位点处引发及薄膜生长。物理气相沉积方法尤其易于产生具有边界的圆柱状微观结构,气体会易于沿着所述边界渗透。相比之下,原子层沉积可制备具有极低气体渗透性的非常薄的膜,使得此类膜作为用于保护诸如光伏电池的敏感性电子器件的阻挡层而具有吸引力。原子层沉积由于其形成高度共形涂层而成为用于保护湿气和/或氧气敏感装置的尤其吸引人的方法。这使得具有复杂地形学的装置被充分涂覆和保护。Common chemical vapor deposition and physical vapor deposition methods require initiation and film growth at discrete nucleation sites. Physical vapor deposition methods are particularly prone to producing cylindrical microstructures with boundaries along which gases can readily permeate. In contrast, atomic layer deposition can produce very thin films with extremely low gas permeability, making such films attractive as barrier layers for protecting sensitive electronic devices such as photovoltaic cells. Atomic layer deposition is a particularly attractive method for protecting moisture and/or oxygen sensitive devices because it forms highly conformal coatings. This allows devices with complex topography to be adequately coated and protected.

本发明的一个实施方案提供包括一个或多个层的光伏电池,所述一个或多个层涂覆有通过原子层沉积而形成的阻挡层以阻止大气气体通过。此类光伏电池装置的代表性实施方案一般以图2中的20示出。光伏电池22被构造在柔性基板24的顶上,所述基板可由金属或聚合物制成。利用原子层沉积方法将保护层26施加在电池22上。层26为不可渗透的,即其降低包括氧气和水蒸汽的大气气体的渗透至少105倍,所述氧气和水蒸汽已知降低典型的光伏装置的性能。对原子层沉积层26和光伏电池22两者的进一步的保护由防风雨的顶层28提供。One embodiment of the invention provides a photovoltaic cell comprising one or more layers coated with a barrier layer formed by atomic layer deposition to prevent the passage of atmospheric gases. A representative embodiment of such a photovoltaic cell device is shown generally at 20 in FIG. 2 . Photovoltaic cells 22 are constructed atop a flexible substrate 24, which may be made of metal or polymer. The protective layer 26 is applied to the cell 22 using the atomic layer deposition method. Layer 26 is impermeable, ie it reduces the penetration of atmospheric gases including oxygen and water vapor, which are known to degrade the performance of typical photovoltaic devices, by a factor of at least 10 5 . Further protection to both the ALD layer 26 and the photovoltaic cell 22 is provided by a weatherproof top layer 28 .

由原子层沉积形成并适于阻挡的材料包括元素周期表中第IVB、VB、VIB、IIIA和IVA族的氧化物和氮化物以及它们的组合。该组中尤其受关注的为SiO2、Al2O3和Si3N4。该组中氧化物的一个优点为对于可见光必须离开或进入装置的光电装置有吸引力的光学透明性,所述光电装置包括光伏电池。应当了解如本文所用的术语“可见光”包括具有落在红外线和紫外线光谱区域内的波长以及一般人眼可察觉的波长的电磁辐射,所有波长均在典型的光电装置的操作限制内。硅和铝的氮化物在可见光谱内也为透明的。Materials formed by atomic layer deposition and suitable for barriers include oxides and nitrides of Groups IVB, VB, VIB, IIIA, and IVA of the Periodic Table of the Elements, and combinations thereof. Of particular interest in this group are SiO 2 , Al 2 O 3 and Si 3 N 4 . One advantage of oxides in this group is attractive optical transparency for optoelectronic devices, including photovoltaic cells, where visible light must exit or enter the device. It should be understood that the term "visible light" as used herein includes electromagnetic radiation having wavelengths falling within the infrared and ultraviolet spectral regions and wavelengths generally detectable by the human eye, all within the operating limits of typical optoelectronic devices. Nitrides of silicon and aluminum are also transparent in the visible spectrum.

用于原子层沉积方法中以形成有效地用于本发明装置中的阻挡材料的前体和反应物可选自本领域的技术人员已知且在发表的参考文献中制成表格的物质,所述参考文献例如M.Leskela和M.Ritala的“ALD precursorchemistry:Evolution and future challenges”,Journal de Physique IV,第9卷,第837-852页(1999)及其内的参考文献。水蒸汽和臭氧有益地用作前体。The precursors and reactants used in the atomic layer deposition process to form barrier materials effective for use in the devices of the present invention can be selected from those known to those skilled in the art and tabulated in published references, so References mentioned, for example, "ALD precursor chemistry: Evolution and future challenges" by M. Leskela and M. Ritala, Journal de Physique IV, Vol. 9, pp. 837-852 (1999) and references therein. Water vapor and ozone are advantageously used as precursors.

在代表性的具体实施中,原子层沉积方法可由以下总反应描述:In a representative implementation, the atomic layer deposition process can be described by the following overall reaction:

2Al(CH3)3+3H2O→Al2O3+6CH42Al(CH 3 ) 3 +3H 2 O→Al 2 O 3 +6CH 4 .

在实际过程中,所述反应在表面上以两个半反应进行,所述两个半反应可表示为:In practice, the reaction proceeds on the surface as two half-reactions that can be expressed as:

Al-(CH3)*+H2O→Al-OH*+CH4 Al-(CH 3 ) * +H 2 O→Al-OH * +CH 4

Al-OH*+Al(CH3)3→Al-O-Al(CH3)2+CH4Al-OH * +Al(CH 3 ) 3 →Al-O-Al(CH 3 ) 2 +CH 4 ,

其中“*”表示在涂覆的材料表面上存在的物质。当然,原子层沉积方法可用其它前体和反应物实施。Where "*" indicates a substance present on the surface of the coated material. Of course, the atomic layer deposition method can be practiced with other precursors and reactants.

本发明的原子层沉积阻挡综合体可随着光伏电池保持在约50℃至250℃范围内的温度下实施。过高的温度(>250℃)被发现与温敏型聚合物基板的加工不相容,这是因为一种或多种聚合物的化学降解或由于基板的大尺寸改变而导致的原子层沉积涂层破裂。反应动力学一般被发现在低于50℃时过慢。The ALD barrier complex of the present invention can be practiced with the photovoltaic cell maintained at a temperature in the range of about 50°C to 250°C. Excessively high temperatures (>250°C) were found to be incompatible with the processing of temperature-sensitive polymeric substrates due to chemical degradation of one or more polymers or atomic layer deposition due to large dimensional changes in the substrate Coating cracked. Reaction kinetics were generally found to be too slow below 50°C.

发现适于阻挡膜的厚度为2nm至100nm。更优选的范围为2nm至50nm。较薄的层将更耐挠曲而不会使薄膜断裂。这对于柔韧性为期望特性的聚合物基质来讲是重要的。薄膜断裂将危害阻隔性能。薄阻挡膜也增加透明性。可存在对应于连续薄膜覆盖百分比的最小厚度,就该覆盖百分比而言,基本上所有的基板瑕疵均被阻挡膜覆盖。就几乎完美的基板而言,用于可接受的阻隔性能的阈值厚度估计为至少2nm,但是可厚至10nm。已发现25nm厚的原子层沉积阻挡层通常足以降低氧气传输通过聚合物膜至低于0.0005g-H2O/m2/天的测量灵敏度的水平。A thickness of 2 nm to 100 nm was found suitable for the barrier film. A more preferable range is 2nm to 50nm. Thinner layers will be more resistant to flexing without breaking the film. This is important for polymer matrices where flexibility is a desired characteristic. Film breakage will compromise barrier properties. Thin barrier films also increase transparency. There may be a minimum thickness corresponding to the percentage coverage of the continuous film for which substantially all of the substrate imperfections are covered by the barrier film. For an almost perfect substrate, the threshold thickness for acceptable barrier performance is estimated to be at least 2 nm, but can be as thick as 10 nm. It has been found that a 25 nm thick ALD barrier layer is generally sufficient to reduce oxygen transport through the polymer film to a level below the measurement sensitivity of 0.0005 gH2O / m2 /day.

通过原子层沉积形成的一些氧化物和氮化物阻挡层可受益于包含“起始层”或“粘附层”以促进原子层沉积层向光伏电池所需保护的粘附力。例如,本发明的光伏电池装置可包括夹置在光伏电池的半导体与保护性原子层沉积气体渗透阻挡层之间的粘附层。粘附层的厚度在1nm至100nm的范围内。优选地,用于粘附层的材料选自与阻挡材料相同的组。氧化铝和氧化硅优选用于也可通过原子层沉积来沉积的粘附层,尽管其它方法例如化学和物理气相沉积或本领域已知的其它沉积方法也可为适宜的。Some oxide and nitride barrier layers formed by ALD may benefit from the inclusion of an "initiation layer" or "adhesion layer" to facilitate the adhesion of the ALD layer to the photovoltaic cell for the desired protection. For example, photovoltaic cell devices of the present invention may include an adhesion layer interposed between the semiconductor of the photovoltaic cell and the protective ALD gas permeation barrier layer. The thickness of the adhesion layer is in the range of 1 nm to 100 nm. Preferably, the material used for the adhesion layer is selected from the same group as the barrier material. Aluminum oxide and silicon oxide are preferred for the adhesion layer, which can also be deposited by atomic layer deposition, although other methods such as chemical and physical vapor deposition or other deposition methods known in the art may also be suitable.

薄膜光伏电池装置的另一个实施方案一般以图3中的30描绘。此处,铜铟镓二硒光伏电池32在玻璃基板34上形成并受原子层沉积防潮涂层26的保护。电池32和涂层26由环氧化物涂层36包封,其继而被顶层38覆盖,所述顶层38可为TEFLON

Figure BPA00001531347400061
FEP 260C含氟聚合物。Another embodiment of a thin film photovoltaic cell device is depicted generally at 30 in FIG. 3 . Here, a CIGDS photovoltaic cell 32 is formed on a glass substrate 34 and protected by an ALD moisture barrier coating 26 . The cell 32 and coating 26 are encapsulated by an epoxy coating 36 which is in turn covered by a top layer 38 which may be TEFLON
Figure BPA00001531347400061
FEP 260C Fluoropolymer.

包括原子层沉积阻挡层的本发明光伏电池装置的其它有用且示例性的构型示于图4和图5中。一般来讲,每个电池装置包括基板、形成前触点(f-触点)的透明导电氧化物(TCO)层、一个或多个吸收层、以及用于后触点(b-触点)的层。通过连接至如“+”和“-”指示灯所示的前触点和后触点,电力以常规方式得自光伏电池。一些电池装置实施方案还包括一个或多个选自以下的层:窗口层、缓冲层和互连层、以及它们的组合。Other useful and exemplary configurations of photovoltaic cell devices of the present invention comprising ALD barrier layers are shown in FIGS. 4 and 5 . In general, each battery device includes a substrate, a transparent conductive oxide (TCO) layer forming the front contact (f-contact), one or more absorber layers, and a substrate for the rear contact (b-contact). layer. Power is derived conventionally from photovoltaic cells by connection to the front and rear contacts as indicated by the "+" and "-" indicator lights. Some battery device embodiments also include one or more layers selected from the group consisting of window layers, buffer layers, and interconnect layers, and combinations thereof.

一般来讲,基板基本上由金属、聚合物、或玻璃组成。薄金属和聚合物基板具有柔性的优点;玻璃和一些聚合物具有透明或半透明的优点。适宜的聚合物包括聚酯(例如,PET、PEN)、聚酰胺、聚丙烯酸酯和聚酰亚胺。当基板为柔性的且对大气或可降低光伏电池性能的扩散离子源可渗透时,可将原子层沉积层涂覆在基板的一侧或两侧上。除了原子层沉积涂层之外,基板还可包括用于增强光伏装置的光学、电学或机械特性的其它功能性涂层。Generally, the substrate consists essentially of metal, polymer, or glass. Thin metal and polymer substrates have the advantage of being flexible; glass and some polymers have the advantage of being transparent or translucent. Suitable polymers include polyesters (eg, PET, PEN), polyamides, polyacrylates, and polyimides. When the substrate is flexible and permeable to the atmosphere or sources of diffuse ions that can degrade photovoltaic cell performance, the ALD layer can be coated on one or both sides of the substrate. In addition to ALD coatings, the substrate may also include other functional coatings for enhancing the optical, electrical or mechanical properties of the photovoltaic device.

透明导电氧化物层通常包括In2O3、SnO2、ZnO、CdO和Ga2O3的混合物或掺杂氧化物,并且提供导电通路,由光伏电池的基本全部活性区域产生的电流可流经该通路。光伏电池中的常见实例包括ITO(掺入有约9原子%锡的In2O3)和AZO(掺入有约3-5原子%铝的ZnO)。The transparent conductive oxide layer typically includes a mixture of In 2 O 3 , SnO 2 , ZnO, CdO, and Ga 2 O 3 or a doped oxide and provides a conductive path through which the current generated by substantially all of the active area of the photovoltaic cell can flow the pathway. Common examples in photovoltaic cells include ITO ( In2O3 doped with about 9 atomic % tin) and AZO (ZnO doped with about 3-5 atomic % aluminum).

吸收层吸收来自入射光谱(400-1200nm)的光线。适宜的吸收材料包括三元黄铜矿化合物和CdTe及相关化合物,所述三元黄铜矿化合物例如CuInSe2、CuInS2、CuGaSe2、CuInS2、CuGaS2、CuAlSe2、CuAlS2、CuAlTe2、CuGaTe2以及它们的组合。The absorbing layer absorbs light from the incident spectrum (400-1200nm). Suitable absorbing materials include ternary chalcopyrite compounds such as CuInSe 2 , CuInS 2 , CuGaSe 2 , CuInS 2 , CuGaS 2 , CuAlSe 2 , CuAlS 2 , CuAlTe 2 , and CdTe and related compounds. CuGaTe 2 and their combinations.

窗口层为与吸收层形成异质结的半导体薄膜(如果吸收层为p-型则为n-型,或如果吸收层为n-型则为p-型),电荷由此通过结节处的内置电场分离。适用于窗口层的材料包括用于黄铜矿吸收体的CdS、ZnS、ZnSe、In2S3、(Zn,Cd)S和Zn(O,S),以及用于CdTe吸收体的ITO、CdS和ZnO。在一些具体实施中,前述p-n半导体结节结构包括将i-型半导体居间,从而形成p-i-n构型。The window layer is a thin semiconductor film that forms a heterojunction with the absorber layer (n-type if the absorber layer is p-type, or p-type if the absorber layer is n-type), whereby charges pass through the Built-in electric field separation. Materials suitable for window layers include CdS, ZnS, ZnSe, In 2 S 3 , (Zn,Cd)S, and Zn(O,S) for chalcopyrite absorbers, and ITO, CdS for CdTe absorbers and ZnO. In some implementations, the aforementioned pn semiconductor junction structure includes an intervening i-type semiconductor, thereby forming a pin configuration.

用于后触点的层通常为透明导电氧化物层或金属。The layer used for the back contact is usually a transparent conductive oxide layer or a metal.

缓冲层通常基本上由透明的电绝缘电介质组成。适宜的材料包括ZnO、Ga2O3、SnO2和Zn2SnO4、以及它们的混合物。The buffer layer typically consists essentially of a transparent, electrically insulating dielectric. Suitable materials include ZnO , Ga2O3 , SnO2 and Zn2SnO4 , and mixtures thereof.

在图4A的构型中,光伏电池装置的顶部被构造成接受在箭头所指的方向上入射到透明基板42上的光线,所述顶部因此可由于其顶部位置而被称为顶衬。透明导电氧化物层44提供正的前触点。窗口46位于透明导电氧化物44与吸收体48之间。金属层50提供负的后触点,原子层沉积阻挡层涂覆到其上以保护光伏电池抵抗有害的湿气和气体渗透。In the configuration of FIG. 4A , the top of the photovoltaic cell device is configured to receive light incident on the transparent substrate 42 in the direction indicated by the arrow, which can therefore be referred to as a top liner due to its top location. Transparent conductive oxide layer 44 provides the positive front contact. Window 46 is located between transparent conductive oxide 44 and absorber 48 . Metal layer 50 provides a negative back contact to which an ALD barrier layer is applied to protect the photovoltaic cell against harmful moisture and gas infiltration.

在图4B和4C的构型中,原子层沉积阻挡层被涂覆在金属化的透明导电氧化物层和/或缓冲层上。作为另外一种选择,原子层沉积层可自身用于缓冲层。图4B构型包括具有电极58(通常通过丝网印刷和焙烧金属粉末糊料形成)的透明导电氧化物顶层44。有源半导体窗口46和吸收层48通过缓冲层52与透明导电氧化物44分隔开。透明导电氧化物底层54提供后触点并在基板56的顶上形成。通过利用透明基板60,图4C的构型可接受背照明。In the configurations of Figures 4B and 4C, the ALD barrier layer is coated on the metallized transparent conductive oxide layer and/or the buffer layer. Alternatively, the ALD layer itself can be used for the buffer layer. The FIG. 4B configuration includes a transparent conductive oxide top layer 44 with electrodes 58 (typically formed by screen printing and firing a metal powder paste). Active semiconductor window 46 and absorber layer 48 are separated from transparent conductive oxide 44 by buffer layer 52 . A bottom layer of transparent conductive oxide 54 provides a back contact and is formed on top of substrate 56 . By utilizing a transparent substrate 60, the configuration of FIG. 4C can accommodate backlighting.

原子层沉积阻挡层在串联构型中也为有益的,其利用堆叠构型中的多个吸收体,一般用以改善装置在整个入射光谱上的转换效率。原子层沉积阻挡层可再次涂覆在金属化的透明导电氧化物和/或缓冲-窗口层上。图4D串联构型构造在基板56上并包括与相应的缓冲-窗口层62和70结合的第一吸收体64和第二吸收体72。两个吸收体/缓冲-窗口层在不同的光谱范围内提供敏感性。光线通过第一透明导电氧化物层44(用作前触点)入射并首先照射到第一吸收体64上。未被吸收的光线继续传播并到达第二吸收体72。串联电连接由互连层66提供,所述互连层将吸收体64连接至第二透明导电氧化物层68。第二吸收器72的背面被连接至金属层50,其提供后触点。ALD barriers are also beneficial in tandem configurations, which utilize multiple absorbers in a stacked configuration, generally to improve the conversion efficiency of the device across the entire incident spectrum. The ALD barrier layer can again be coated on the metallized transparent conductive oxide and/or buffer-window layer. The tandem configuration of FIG. 4D is constructed on a substrate 56 and includes a first absorber 64 and a second absorber 72 in combination with respective buffer-window layers 62 and 70 . Two absorber/buffer-window layers provide sensitivity in different spectral ranges. Light is incident through the first transparent conductive oxide layer 44 (serving as a front contact) and first strikes the first absorber 64 . The unabsorbed light continues to propagate and reaches the second absorber 72 . The series electrical connection is provided by an interconnect layer 66 connecting the absorber 64 to the second transparent conductive oxide layer 68 . The back side of the second absorber 72 is connected to the metal layer 50, which provides the back contact.

原子层沉积层也可用于保护非晶态或纳米晶薄膜硅(a-Si、nc-Si)太阳能电池。图5示出了单结太阳能电池的一种形式,但双结和三结电池也是已知的。一个或多个原子层沉积层有益地用于每种电池中。ALD layers can also be used to protect amorphous or nanocrystalline thin-film silicon (a-Si, nc-Si) solar cells. Figure 5 shows one form of a single junction solar cell, but double and triple junction cells are also known. One or more atomic layer deposition layers are beneficially used in each battery.

用于光伏应用中的非晶态或纳米晶硅通常为与氢的合金,表示为a-Si:H或nc-Si:H。掺杂以制备n-型或p-型的可利用通常用于结晶硅的相同掺杂剂实现。适宜的p-型掺杂剂包括第III族元素(例如硼)。适宜的n-型掺杂剂包括第V族元素(例如磷)。与锗或铯合金化也可用于改变光学吸收特征及其它电参数。Amorphous or nanocrystalline silicon used in photovoltaic applications is usually alloyed with hydrogen, denoted a-Si:H or nc-Si:H. Doping to make n-type or p-type can be accomplished with the same dopants normally used for crystalline silicon. Suitable p-type dopants include Group III elements such as boron. Suitable n-type dopants include Group V elements such as phosphorus. Alloying with germanium or cesium can also be used to modify optical absorption characteristics and other electrical parameters.

薄膜非晶硅和纳米晶硅太阳能电池通常包括层序列,其包括透明导电氧化物层44、具有p-型硅合金层82的p-i-n半导体结构80、i-Si合金层84和n-型硅合金层86、缓冲层88、以及用于后触点的金属层90,所有层均在基板92上形成。用于图4构型中的相同的基板和透明导电氧化物材料是适宜的。通过重复碱性电池的半导体结构层80一次或多次并优化堆叠的吸收来制备具有更高效率的串联电池。Thin-film amorphous silicon and nanocrystalline silicon solar cells typically comprise a layer sequence comprising a transparent conductive oxide layer 44, a p-i-n semiconductor structure 80 with a p-type silicon alloy layer 82, an i-Si alloy layer 84 and an n-type silicon alloy Layer 86 , buffer layer 88 , and metal layer 90 for the back contact, all formed on substrate 92 . The same substrate and transparent conductive oxide materials used in the configuration of Figure 4 are suitable. Tandem cells with higher efficiencies are prepared by repeating the semiconducting structural layer 80 for alkaline cells one or more times and optimizing the absorption of the stack.

在单个p-i-n电池中,金属化的透明导电氧化物层上的原子层沉积阻挡层可阻止湿气侵入光伏电池。在串联电池中,原子层沉积阻挡层可涂覆在金属化的透明导电氧化物层和/或缓冲层上。作为另外一种选择,原子层沉积层可用于缓冲层中的一个或所有。In a single p-i-n cell, an ALD barrier layer on a metallized transparent conductive oxide layer prevents moisture from intruding into the photovoltaic cell. In tandem cells, the ALD barrier layer can be coated on the metallized transparent conductive oxide layer and/or the buffer layer. Alternatively, atomic layer deposition layers may be used for one or all of the buffer layers.

在一些实施方案中,例如,如图3所示,原子层沉积涂层也可保护光伏电池的层的边缘。In some embodiments, for example, as shown in FIG. 3, the ALD coating can also protect the edges of the layers of the photovoltaic cell.

实施例 Example

直接沉积在铜铟镓二硒光伏电池上的原子层沉积阻挡。Atomic layer deposition barriers deposited directly on copper indium gallium diselenide photovoltaic cells.

利用铜铟镓二硒电池制造领域熟知的方法在2英寸x2英寸的玻璃基板上来加工光伏(PV)电池装置。电池装置100在原子层沉积之前的顶部示意图示于图6中。层的顺序包括在玻璃基板102上的钼金属层;Cu(In,Ga)Se2(CIGS)吸收层、CdS薄窗口层、ZnO薄绝缘缓冲层、氧化铟锡(ITO)透明导电氧化物层(TCO)104、以及镍/铝合金的金属网格电极106。电池尺寸(1cm2)由通过1cm×1cm的阴影掩模沉积的氧化铟锡层104限定。Photovoltaic (PV) cell devices were fabricated on 2 inch by 2 inch glass substrates using methods well known in the art of CIGS cell fabrication. A top schematic view of the battery device 100 prior to atomic layer deposition is shown in FIG. 6 . The sequence of layers includes molybdenum metal layer on glass substrate 102; Cu(In,Ga) Se2 (CIGS) absorber layer, CdS thin window layer, ZnO thin insulating buffer layer, indium tin oxide (ITO) transparent conductive oxide layer (TCO) 104, and a metal grid electrode 106 of nickel/aluminum alloy. The cell size (1 cm 2 ) is defined by an indium tin oxide layer 104 deposited through a 1 cm x 1 cm shadow mask.

镍/铝上电极106的1-2mm宽的部分108靠近玻璃边缘被掩模以用于随后的电接触,并且掩模的铜铟镓二硒光伏电池被置于反应器(CambridgeNanotech Savannah 200)中以用于实施原子层沉积过程。反应器连续地用氮气以20sccm吹扫并用小型机械泵泵送至约0.3托的背压(无反应物或前体)。氮气既用作反应物的载体也用作吹扫气体。将反应物三甲基铝蒸气和前体水蒸汽相继引入到反应器中。更具体地讲,就按顺序中的每个沉积步骤而言,首先用氮气载运的水蒸汽浸渍铜铟镓二硒光伏电池15毫秒,接着用流动的氮气吹扫反应器30秒。然后用通过氮气载运的三甲基铝蒸气浸渍光伏电池15毫秒,接着用流动的氮气吹扫15秒。该反应顺序在光伏电池上产生Al2O3层。相继重复该沉积步骤500次(循环),其中电池被保持在120℃。所形成的Al2O3的厚度在硅目视片上视觉测定为约55nm,对应于约0.11nm/循环的原子层沉积速率。A 1-2 mm wide portion 108 of the nickel/aluminum top electrode 106 was masked near the edge of the glass for subsequent electrical contact, and the masked CIGDS photovoltaic cell was placed in a reactor (CambridgeNanotech Savannah 200) for the implementation of the atomic layer deposition process. The reactor was continuously purged with nitrogen at 20 seem and pumped with a small mechanical pump to a back pressure of about 0.3 Torr (no reactants or precursors). Nitrogen was used both as a carrier for the reactants and as a purge gas. The reactant trimethylaluminum vapor and the precursor water vapor are successively introduced into the reactor. More specifically, for each deposition step in the sequence, the CIGDS photovoltaic cell was first impregnated with nitrogen-carried water vapor for 15 milliseconds, followed by purging the reactor with flowing nitrogen gas for 30 seconds. The photovoltaic cell was then impregnated with trimethylaluminum vapor carried by nitrogen for 15 milliseconds, followed by a 15 second flush with flowing nitrogen. This reaction sequence produces an Al2O3 layer on the photovoltaic cell. This deposition step was successively repeated 500 times (cycles), wherein the cell was kept at 120°C. The thickness of the formed Al2O3 was measured visually on a silicon sight glass to be about 55 nm, corresponding to an atomic layer deposition rate of about 0.11 nm/cycle.

在原子层沉积Al2O3阻挡层之后,用可紫外线固化的环氧化物包封材料将Teflon

Figure BPA00001531347400091
FEP 200C薄膜(0.002英寸厚)连结到光伏电池,在电池边缘处留下空间以用于连结电触头。Teflon FEP
Figure BPA00001531347400092
用作风化层,其阻止在原子层沉积Al2O3阻挡层和电池上的水蒸汽冷凝,另外还保护光伏电池在最终使用期间不劣化。After atomic layer deposition of the Al2O3 barrier layer, Teflon was encapsulated with a UV-curable epoxy
Figure BPA00001531347400091
A film of FEP 200C (0.002 inches thick) was bonded to the photovoltaic cell, leaving space at the edge of the cell for bonding electrical contacts. Teflon FEP
Figure BPA00001531347400092
Acts as a weathering layer which stops water vapor condensation on the ALD Al2O3 barrier and on the cell, and additionally protects the photovoltaic cell from degradation during end use.

通过焊接金属丝来制备镍/铝上电极的掩模区域的电触头。远离电池区域的背部钼电极的触点通过机械地划穿Al2O3、ZnO、CdS和Cu(In,Ga)Se2的薄顶层,并随后焊接来制备。Electrical contacts were made to the masked area of the nickel/aluminum top electrode by welding wires. Contacts to the rear molybdenum electrode away from the cell area were made by mechanically scribing through a thin top layer of Al2O3 , ZnO , CdS and Cu(In,Ga) Se2 , followed by soldering.

为了测试阻挡层(即源自原子层沉积的Al2O3和Teflon

Figure BPA00001531347400093
FEP 200C薄膜)的阻隔性能,将包封的光伏电池置于环境室中并在85℃和85%的相对湿度(RH)下老化,同时暴露于来自于太阳能模拟器的1000W/m2的恒定照明。在该测试期间,监测开路电压作为时间的函数,得到图7图线中描绘的结果。已看出,即使在这些条件下暴露1000小时之后,仍不会检测到可测量的开路电压的改变,这表明源自原子层沉积的Al2O3与TeflonFEP200C涂层一起保护光伏电池免受由于湿气及其它大气而导致的预期劣化。尤其显著的是铜铟镓二硒光伏电池令人满意地运行,尽管电池在原子层沉积阻挡层沉积期间暴露于作为前体的水蒸汽。In order to test the barrier layers (i.e. Al 2 O 3 and Teflon from ALD
Figure BPA00001531347400093
FEP 200C film), the encapsulated photovoltaic cells were placed in an environmental chamber and aged at 85°C and 85% relative humidity (RH) while exposed to a constant 1000W/ m2 from a solar simulator. illumination. During this test, the open circuit voltage was monitored as a function of time, resulting in the results depicted in the graph of FIG. 7 . It has been seen that even after 1000 hours of exposure under these conditions, no measurable change in open circuit voltage is detectable, suggesting that Al2O3 from atomic layer deposition with Teflon Together, the FEP200C coating protects the photovoltaic cell from expected degradation due to moisture and other atmospheres. It is particularly notable that the copper indium gallium diselenide photovoltaic cell operates satisfactorily despite the cell being exposed to water vapor as a precursor during deposition of the ALD barrier layer.

尽管如此相当详细地描述了本发明,但应当理解,此类细节不必严格遵守,本领域的技术人员可对其进行附加的改变和变型。应当了解,本发明的光伏电池及其制造可按多种方式执行,利用不同的设备并以不同的顺序来实施本文所述的步骤。所有这些改变和变型应当理解为属于如附加权利要求所定义的本发明的范围。Although the present invention has been described in some detail, it is to be understood that such details need not be strictly observed and that additional changes and modifications will occur to those skilled in the art. It should be understood that the inventive photovoltaic cell and its manufacture can be performed in a variety of ways, using different equipment and performing the steps described herein in a different order. All such changes and modifications are to be understood as falling within the scope of the present invention as defined by the appended claims.

Claims (21)

1.薄膜光伏电池装置,所述薄膜光伏电池装置包括:1. Thin film photovoltaic cell device, described thin film photovoltaic cell device comprises: (a)基板;(a) substrate; (b)光伏电池,所述光伏电池连结到所述基板并包括Cu(In,Ga)Se2吸收层和CdS窗口层以及前电触头和后电触头;和(b) a photovoltaic cell bonded to the substrate and comprising a Cu(In,Ga) Se2 absorber layer and a CdS window layer and front and rear electrical contacts; and (c)至少一个气体渗透阻挡层,所述气体渗透阻挡层采用水蒸汽前体和三甲基铝反应物通过原子层沉积方法在所述光伏电池上形成。(c) at least one gas permeation barrier formed on the photovoltaic cell by atomic layer deposition using a water vapor precursor and a trimethylaluminum reactant. 2.如权利要求1所述的薄膜光伏电池装置,其中所述光伏电池还包括透明导电氧化物层,所述电池产生的电流通过所述透明导电氧化物层来传导,所述透明导电氧化物层被设置成提供所述前电触头和后电触头中的至少一个。2. The thin film photovoltaic cell device according to claim 1, wherein said photovoltaic cell further comprises a transparent conductive oxide layer through which electric current generated by said cell is conducted, said transparent conductive oxide A layer is arranged to provide at least one of said front and rear electrical contacts. 3.如权利要求1所述的薄膜光伏电池装置,其中所述气体渗透阻挡层具有约2至100nm范围内的厚度。3. The thin film photovoltaic cell device of claim 1, wherein the gas permeation barrier layer has a thickness in the range of about 2 to 100 nm. 4.如权利要求2所述的薄膜光伏电池装置,其中所述透明导电氧化物层提供所述前电触头,并且所述装置还包括绝缘缓冲层,所述绝缘缓冲层设置在所述前触头透明导电氧化物层与所述窗口层之间。4. The thin film photovoltaic cell device of claim 2, wherein said transparent conductive oxide layer provides said front electrical contact, and said device further comprises an insulating buffer layer disposed on said front contacts between the transparent conductive oxide layer and the window layer. 5.如权利要求4所述的薄膜光伏电池装置,其中所述绝缘缓冲层基本上由ZnO组成。5. The thin film photovoltaic cell device of claim 4, wherein the insulating buffer layer consists essentially of ZnO. 6.如权利要求1所述的薄膜光伏电池装置,所述薄膜光伏电池装置还包括含氟聚合物顶层。6. The thin film photovoltaic cell device of claim 1 further comprising a fluoropolymer top layer. 7.如权利要求1所述的薄膜光伏电池装置,其中所述基板基本上由玻璃组成。7. The thin film photovoltaic cell device of claim 1, wherein the substrate consists essentially of glass. 8.如权利要求1所述的薄膜光伏电池装置,其中所述基板基本上由聚合物组成。8. The thin film photovoltaic cell device of claim 1, wherein the substrate consists essentially of a polymer. 9.如权利要求1所述的薄膜光伏电池装置,其中所述基板基本上由金属组成。9. The thin film photovoltaic cell device of claim 1, wherein the substrate consists essentially of metal. 10.如权利要求1所述的薄膜光伏电池装置,所述薄膜光伏电池装置还包括夹置在所述气体渗透阻挡层与所述光伏电池之间的粘附层。10. The thin film photovoltaic cell device of claim 1, further comprising an adhesion layer interposed between the gas permeation barrier layer and the photovoltaic cell. 11.如权利要求10所述的薄膜光伏电池装置,其中所述粘附层通过原子层沉积方法施加。11. The thin film photovoltaic cell device of claim 10, wherein the adhesion layer is applied by atomic layer deposition. 12.如权利要求1所述的薄膜光伏电池装置,所述薄膜光伏电池装置还包括通过原子层沉积方法在所述基板上形成的至少一个气体渗透阻挡层。12. The thin film photovoltaic cell device of claim 1, further comprising at least one gas permeation barrier layer formed on the substrate by atomic layer deposition. 13.用于构造光伏电池装置的方法,所述方法包括:13. A method for constructing a photovoltaic cell device, the method comprising: (a)提供基板;(a) provide the substrate; (b)在所述基板上形成包括Cu(In,Ga)Se2吸收层和CdS窗口层的光伏电池;以及(b) forming a photovoltaic cell comprising a Cu(In,Ga) Se2 absorber layer and a CdS window layer on said substrate; and (c)用气体渗透阻挡层涂覆所述光伏电池,所述气体渗透阻挡层采用水蒸汽前体和三甲基铝反应物通过原子层沉积方法形成。(c) coating the photovoltaic cell with a gas permeation barrier formed by atomic layer deposition using a water vapor precursor and a trimethylaluminum reactant. 14.如权利要求13所述的方法,其中所述原子层沉积方法在反应器中实施并且按顺序包括以下步骤:14. The method of claim 13, wherein the atomic layer deposition method is implemented in a reactor and comprises the following steps in sequence: (a)使水蒸汽进入到所述室以在所述电池上形成吸附层;(a) allowing water vapor to enter the chamber to form an adsorption layer on the cell; (b)吹扫所述室;(b) purging the chamber; (c)在热条件下将三甲基铝反应物引入到所述室中,所述热条件促进所述三甲基铝与所述吸附水的反应;(c) introducing a trimethylaluminum reactant into said chamber under thermal conditions that promote the reaction of said trimethylaluminum with said adsorbed water; (d)吹扫所述室中的挥发性反应物和由所述反应生成的反应产物;以及(d) purging the chamber of volatile reactants and reaction products resulting from the reaction; and (e)重复所述步骤(a)、(b)、(c)和(d)足够的次数以形成具有预选厚度的所述气体渗透阻挡层。(e) repeating said steps (a), (b), (c) and (d) a sufficient number of times to form said gas permeation barrier layer having a preselected thickness. 15.如权利要求13所述的方法,其中所述热条件包括将所述光伏电池保持在约50℃至约250℃范围内的温度。15. The method of claim 13, wherein the thermal conditions include maintaining the photovoltaic cell at a temperature in the range of about 50°C to about 250°C. 16.如权利要求14所述的方法,其中所述吹扫包括抽空所述室。16. The method of claim 14, wherein the purging includes evacuating the chamber. 17.如权利要求14所述的方法,其中所述吹扫包括使惰性气体流过所述室。17. The method of claim 14, wherein the purging includes flowing an inert gas through the chamber. 18.如权利要求14所述的方法,其中所述预选厚度在约2nm至约100nm范围内。18. The method of claim 14, wherein the preselected thickness is in the range of about 2 nm to about 100 nm. 19.如权利要求13所述的方法,所述方法还包括形成夹置在所述光伏电池和所述气体渗透阻挡层之间的粘附层。19. The method of claim 13, further comprising forming an adhesion layer interposed between the photovoltaic cell and the gas permeation barrier layer. 20.如权利要求19所述的方法,其中所述粘附层通过原子层沉积方法形成。20. The method of claim 19, wherein the adhesion layer is formed by an atomic layer deposition method. 21.如权利要求13所述的方法,所述方法还包括通过原子层沉积方法在所述基板上形成至少一个气体渗透阻挡层。21. The method of claim 13, further comprising forming at least one gas permeation barrier layer on the substrate by atomic layer deposition.
CN2010800450728A 2009-08-05 2010-08-05 Barrier-coated thin-film photovoltaic cells Pending CN102696116A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23149309P 2009-08-05 2009-08-05
US61/231493 2009-08-05
PCT/US2010/044483 WO2011017479A2 (en) 2009-08-05 2010-08-05 Barrier-coated thin-film photovoltaic cells

Publications (1)

Publication Number Publication Date
CN102696116A true CN102696116A (en) 2012-09-26

Family

ID=43544933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800450728A Pending CN102696116A (en) 2009-08-05 2010-08-05 Barrier-coated thin-film photovoltaic cells

Country Status (5)

Country Link
EP (1) EP2462626A4 (en)
JP (1) JP2013501382A (en)
KR (1) KR20120055588A (en)
CN (1) CN102696116A (en)
WO (1) WO2011017479A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995716A (en) * 2012-12-31 2015-10-21 美国圣戈班性能塑料公司 Thin film silicon nitride barrier layer on flexible substrate
CN105161623A (en) * 2015-08-07 2015-12-16 常州大学 Perovskite solar cell and preparation method thereof
CN110892090A (en) * 2017-07-27 2020-03-17 瑞士艾发科技 permeation barrier
CN112526663A (en) * 2020-11-04 2021-03-19 浙江大学 Atomic layer deposition-based absorption film and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20095947A0 (en) * 2009-09-14 2009-09-14 Beneq Oy Multilayer Coating, Process for Manufacturing a Multilayer Coating, and Uses for the Same
WO2013020864A2 (en) * 2011-08-10 2013-02-14 Saint-Gobain Glass France Solar module with reduced power loss and process for the production thereof
CN105229801B (en) 2013-02-07 2017-03-15 第一太阳能有限公司 There is in Window layer photovoltaic device and its manufacture method of protective layer
KR101886832B1 (en) * 2017-11-20 2018-08-08 충남대학교산학협력단 Silicon Solar Cell having Carrier Selective Contact

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140414A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Solar cell substrate and solar cell using the same
WO2007012026A1 (en) * 2005-07-19 2007-01-25 Solyndra, Inc. Self-cleaning coatings
US20070295386A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Individually encapsulated solar cells and solar cell strings having a hybrid organic/inorganic protective layer
US20090159119A1 (en) * 2007-03-28 2009-06-25 Basol Bulent M Technique and apparatus for manufacturing flexible and moisture resistive photovoltaic modules

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115304B2 (en) * 2004-02-19 2006-10-03 Nanosolar, Inc. High throughput surface treatment on coiled flexible substrates
WO2005081789A2 (en) * 2004-02-19 2005-09-09 Nanosolar, Inc. Formation of CIGS Absorber Layer by Atomic Layer Deposition
JP2008130647A (en) * 2006-11-17 2008-06-05 Toppan Printing Co Ltd Back sheet for solar cell module and solar cell module using the back sheet
US7959742B2 (en) 2007-07-11 2011-06-14 Whirlpool Corporation Outer support body for a drawer-type dishwasher
JP2009043967A (en) * 2007-08-09 2009-02-26 Toppan Printing Co Ltd Solar cell back surface protection sheet and solar cell module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140414A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Solar cell substrate and solar cell using the same
WO2007012026A1 (en) * 2005-07-19 2007-01-25 Solyndra, Inc. Self-cleaning coatings
US20070295386A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Individually encapsulated solar cells and solar cell strings having a hybrid organic/inorganic protective layer
US20090159119A1 (en) * 2007-03-28 2009-06-25 Basol Bulent M Technique and apparatus for manufacturing flexible and moisture resistive photovoltaic modules

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995716A (en) * 2012-12-31 2015-10-21 美国圣戈班性能塑料公司 Thin film silicon nitride barrier layer on flexible substrate
CN105161623A (en) * 2015-08-07 2015-12-16 常州大学 Perovskite solar cell and preparation method thereof
CN110892090A (en) * 2017-07-27 2020-03-17 瑞士艾发科技 permeation barrier
CN110914469A (en) * 2017-07-27 2020-03-24 瑞士艾发科技 permeation barrier
TWI770226B (en) * 2017-07-27 2022-07-11 瑞士商艾維太克股份有限公司 Layer deposition apparatus and method of providing a permeation-barrier layer system on a starting substrate, or of manufacturing a substrate provided with a surface permeation-barrier layer system
CN112526663A (en) * 2020-11-04 2021-03-19 浙江大学 Atomic layer deposition-based absorption film and manufacturing method thereof

Also Published As

Publication number Publication date
EP2462626A4 (en) 2013-10-16
KR20120055588A (en) 2012-05-31
WO2011017479A2 (en) 2011-02-10
JP2013501382A (en) 2013-01-10
WO2011017479A3 (en) 2011-06-16
EP2462626A2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US20120145240A1 (en) Barrier films for thin-film photovoltaic cells
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
CN102656701B (en) Photovoltaic window layer
US20080053519A1 (en) Laminated photovoltaic cell
CN102696116A (en) Barrier-coated thin-film photovoltaic cells
US20110212565A1 (en) Humidity Control and Method for Thin Film Photovoltaic Materials
EP1836733A1 (en) Optical absorber layers for solar cell and method of manufacturing the same
Carcia et al. Encapsulation of Cu (InGa) Se2 solar cell with Al2O3 thin-film moisture barrier grown by atomic layer deposition
JP2013502745A5 (en)
EP2680320B1 (en) Thin film solar cell module and method of manufacturing the same
US8766088B2 (en) Dopant-containing contact material
KR100999810B1 (en) Solar cell and manufacturing method thereof
EP2693487A2 (en) Thin film solar cell module and method of manufacturing the same
US8785232B2 (en) Photovoltaic device
KR101971398B1 (en) Bifacial CdS/CdTe thin film solar cell and method for the same
KR101827805B1 (en) A light emitting module assembly comprising a solar cell module
KR101210110B1 (en) Solar cell and method of fabricating the same
KR101039993B1 (en) Solar cell and manufacturing method thereof
JP2011119478A (en) Compound semiconductor solar cell
KR101436539B1 (en) Thin film solar cell and Method of fabricating the same
JP7710666B1 (en) Method for manufacturing solar cell and solar cell
KR20130088499A (en) Thin film type solar cell and method for manufacturing same
KR101628365B1 (en) Solar cell and method of fabricating the same
KR101349596B1 (en) Solar cell and method of fabricating the same
CN117812922A (en) Perovskite laminated solar cell structure and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120926