CN102646580B - Planarization method and gate structure applied in semiconductor element process - Google Patents
Planarization method and gate structure applied in semiconductor element process Download PDFInfo
- Publication number
- CN102646580B CN102646580B CN201110040219.0A CN201110040219A CN102646580B CN 102646580 B CN102646580 B CN 102646580B CN 201110040219 A CN201110040219 A CN 201110040219A CN 102646580 B CN102646580 B CN 102646580B
- Authority
- CN
- China
- Prior art keywords
- gate
- layer
- reactant
- barrier layer
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种平坦化方法,尤指可应用于半导体元件工艺中的平坦化方法。The invention relates to a planarization method, in particular to a planarization method applicable to semiconductor element technology.
背景技术 Background technique
随着半导体元件近年来的迅速发展,至今元件尺寸已进入纳米等级,因此金属氧化物半导体晶体管元件中的栅极绝缘层(Gate Dielectric Layer)厚度势必随着沟道尺寸的缩小而相对变薄,但是过薄的绝缘层厚度势必诱发严重的栅极漏电流,而此漏电流将会影响到元件的特性,导致产品的耗能增加。因此,导入高介电常数(以下简称High-k)材料来完成栅极绝缘层,用以减少栅极漏电流的产生是必要的手段。此外,High-k工艺常常会与金属栅极(metalgate)工艺搭配,用以降低栅极电极的阻值。而为能提高热稳定性,防止金属栅极和高介电常数栅极绝缘层发生反应,通常在金属栅极和高介电常数栅极绝缘层之间皆增设阻障层,此阻障层通常可用氮化钛(TiN)来完成。但在上述栅极构造的制造过程中,常因元件表面的平坦化不佳而产生问题,如何改善此等不足,为发展本发明的主要目的。With the rapid development of semiconductor components in recent years, the size of the components has entered the nanometer level, so the thickness of the gate insulating layer (Gate Dielectric Layer) in the metal oxide semiconductor transistor component is bound to be relatively thinner with the reduction of the channel size. However, an excessively thin insulating layer thickness will inevitably induce serious gate leakage current, and this leakage current will affect the characteristics of the device, resulting in increased energy consumption of the product. Therefore, it is a necessary means to introduce a high dielectric constant (hereinafter referred to as High-k) material to complete the gate insulating layer to reduce the generation of gate leakage current. In addition, the High-k process is often combined with a metal gate process to reduce the resistance of the gate electrode. In order to improve thermal stability and prevent the metal gate from reacting with the high dielectric constant gate insulating layer, a barrier layer is usually added between the metal gate and the high dielectric constant gate insulating layer. This is usually done with titanium nitride (TiN). However, in the manufacturing process of the above-mentioned gate structure, problems often arise due to poor planarization of the device surface. How to improve these problems is the main purpose of the development of the present invention.
发明内容 Contents of the invention
本发明的目的就是在提供一种平坦化方法,可应用于集成电路工艺上,用以改善已知手段平坦化不佳的不足。The purpose of the present invention is to provide a planarization method, which can be applied to the integrated circuit process, so as to improve the disadvantages of poor planarization by known means.
本发明提出一种平坦化方法,应用于半导体元件工艺中,该方法包括下列步骤:提供基板;于该基板上形成介电层,其中介电层中具有沟槽;于该沟槽中依序形成阻障层与金属层;利用第一反应剂来对金属层进行第一平坦化工艺,用以除去部分的金属层而露出阻障层,其中第一反应剂对金属层的蚀刻速率大于对阻障层的蚀刻速率;以及利用第二反应剂来对阻障层与金属层进行第二平坦化工艺,用以除去部分的阻障层与金属层而露出介电层,其中第二反应剂对阻障层的蚀刻速率大于对金属层的蚀刻速率。The present invention proposes a planarization method, which is applied in the process of semiconductor elements. The method includes the following steps: providing a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer has a groove; forming a barrier layer and a metal layer; using a first reactant to perform a first planarization process on the metal layer to remove part of the metal layer to expose the barrier layer, wherein the etching rate of the first reactant to the metal layer is greater than that of the metal layer The etch rate of the barrier layer; and using a second reactant to perform a second planarization process on the barrier layer and the metal layer to remove part of the barrier layer and the metal layer to expose the dielectric layer, wherein the second reactant The etch rate for the barrier layer is greater than the etch rate for the metal layer.
在本发明的优选实施例中,上述的平坦化方法还包括形成栅极介电层于该介电层下方。In a preferred embodiment of the present invention, the above planarization method further includes forming a gate dielectric layer under the dielectric layer.
本发明的优选实施例中,上述的平坦化方法于形成阻障层之前还包括形成栅极介电层于沟槽中。In a preferred embodiment of the present invention, the above planarization method further includes forming a gate dielectric layer in the trench before forming the barrier layer.
在本发明的优选实施例中,上述的栅极介电层为高介电常数介电层,阻障层为栅极阻障层,金属层为栅极金属层。In a preferred embodiment of the present invention, the above-mentioned gate dielectric layer is a high dielectric constant dielectric layer, the barrier layer is a gate barrier layer, and the metal layer is a gate metal layer.
在本发明的优选实施例中,上述的高介电常数介电层可由氧化铪(HfO2)、氮氧化硅铪(HfSiON)或氧化硅铪(HfSiO)等材料来完成的单层或多层结构。In a preferred embodiment of the present invention, the above-mentioned high dielectric constant dielectric layer can be made of hafnium oxide (HfO 2 ), hafnium silicon oxynitride (HfSiON) or hafnium silicon oxide (HfSiO) as a single layer or multilayer structure.
在本发明的优选实施例中,上述的阻障层可由氮化钛(TiN)、碳化钽(TaC)、碳化钨(WC)、碳化钛(TiC)、氮化钽(TaN)、氮化钛铝(TiAlN)等材料完成的单层或多层结构。In a preferred embodiment of the present invention, the above barrier layer can be made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride (TaN), titanium nitride Single-layer or multi-layer structures completed by materials such as aluminum (TiAlN).
在本发明的优选实施例中,上述的金属层可由氮化钛(TiN)、钨(W)、铝(A1)、钛(Ti)、钽(Ta)、氮化钽(TaN)、钴(Co)、铜(Cu)或是镍(Ni)等材料完成的单层或多层结构。In a preferred embodiment of the present invention, the above metal layer can be made of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), tantalum nitride (TaN), cobalt ( Co), copper (Cu) or nickel (Ni) and other materials to complete the single-layer or multi-layer structure.
在本发明的优选实施例中,上述的第一平坦化工艺与该第二平坦化工艺可分别为第一化学机械抛光工艺与第二化学机械抛光工艺,而该第一反应剂与该第二反应剂可分别为第一化学机械抛光剂与第二化学机械抛光剂。第一平坦化工艺与第二平坦化工艺可在单一机台上完成,或是分开在提供不同化学机械抛光剂的多个机台上完成,而第一化学机械抛光剂与第二化学机械抛光剂还可包括有二氧化硅、二氧化铈或是氧化铝粉末的粘着材料。In a preferred embodiment of the present invention, the above-mentioned first planarization process and the second planarization process may be a first chemical mechanical polishing process and a second chemical mechanical polishing process, and the first reactant and the second The reactants can be the first chemical mechanical polishing agent and the second chemical mechanical polishing agent respectively. The first planarization process and the second planarization process can be completed on a single machine, or separately on a plurality of machines that provide different chemical mechanical polishing agents, and the first chemical mechanical polishing agent and the second chemical mechanical polishing The agent may also include an adhesive material comprising silica, ceria or alumina powder.
在本发明的优选实施例中,上述的第一化学机械抛光剂与该第二化学机械抛光剂中皆可包括有氧化剂(oxidizer),第一化学机械抛光剂的氧化剂浓度可低于第二化学机械抛光剂中的氧化剂浓度。In a preferred embodiment of the present invention, both the above-mentioned first chemical mechanical polishing agent and the second chemical mechanical polishing agent may include an oxidizer (oxidizer), and the oxidizer concentration of the first chemical mechanical polishing agent may be lower than that of the second chemical mechanical polishing agent. Oxidizing agent concentration in mechanical polish.
在本发明的优选实施例中,上述的氧化剂可为过氧化氢。In a preferred embodiment of the present invention, the above-mentioned oxidizing agent may be hydrogen peroxide.
在本发明的优选实施例中,上述的第一化学机械抛光剂中的过氧化氢浓度范围可为0%~1%,该第二化学机械抛光剂中的过氧化氢浓度范围可大于1%。In a preferred embodiment of the present invention, the hydrogen peroxide concentration range in the first chemical mechanical polishing agent may be 0% to 1%, and the hydrogen peroxide concentration range in the second chemical mechanical polishing agent may be greater than 1%. .
本发明还提出另一种平坦化方法,应用于半导体元件工艺中,该方法包括下列步骤:提供基板,基板上方具有包括多晶硅假栅极与介电层的栅极构造;去除多晶硅假栅极而于介电层中形成至少沟槽;形成栅极阻障层于该沟槽侧壁与底部以及该介电层的表面上;形成栅极金属层于该栅极阻障层的表面上并填满该沟槽;利用第一反应剂来对该栅极金属层进行第一平坦化工艺,用以除去部分的该栅极金属层而露出该栅极阻障层,其中该第一反应剂对该栅极金属层的蚀刻速率大于对该栅极阻障层的蚀刻速率;以及利用第二反应剂来对该栅极阻障层与该栅极金属层进行第二平坦化工艺,用以除去部分的该栅极阻障层与该栅极金属层而露出该介电层,其中该第二反应剂对该栅极阻障层的蚀刻速率大于对该栅极金属层的蚀刻速率。The present invention also proposes another planarization method, which is applied in the process of semiconductor elements. The method includes the following steps: providing a substrate with a gate structure including a polysilicon dummy gate and a dielectric layer above the substrate; removing the polysilicon dummy gate and Forming at least a trench in the dielectric layer; forming a gate barrier layer on the sidewall and bottom of the trench and on the surface of the dielectric layer; forming a gate metal layer on the surface of the gate barrier layer and filling Filling the trench; using a first reactant to perform a first planarization process on the gate metal layer to remove part of the gate metal layer to expose the gate barrier layer, wherein the first reactant is The etch rate of the gate metal layer is greater than the etch rate of the gate barrier layer; and a second reactant is used to perform a second planarization process on the gate barrier layer and the gate metal layer to remove A portion of the gate barrier layer and the gate metal layer exposes the dielectric layer, wherein the etching rate of the gate barrier layer by the second reactant is greater than the etching rate of the gate metal layer.
在本发明的优选实施例中,上述的平坦化方法还包括形成栅极介电层于该介电层下方。In a preferred embodiment of the present invention, the above planarization method further includes forming a gate dielectric layer under the dielectric layer.
本发明的优选实施例中,上述的平坦化方法于形成阻障层之前还包括形成栅极介电层于沟槽中。In a preferred embodiment of the present invention, the above planarization method further includes forming a gate dielectric layer in the trench before forming the barrier layer.
在本发明的优选实施例中,上述于除去部分的该栅极金属层而露出栅极阻障层的步骤前还可包括下列步骤:利用第三反应剂来对栅极金属层进行第三平坦化工艺,用以减少栅极金属层的厚度至预设厚度,第三反应剂对该栅极金属层的蚀刻速率大于该第一反应剂对栅极金属层的蚀刻速率。In a preferred embodiment of the present invention, the step of removing part of the gate metal layer to expose the gate barrier layer may further include the following steps: using a third reactant to perform a third planarization on the gate metal layer The etching process is used to reduce the thickness of the gate metal layer to a predetermined thickness, and the etching rate of the gate metal layer by the third reactant is greater than the etching rate of the gate metal layer by the first reactant.
在本发明的优选实施例中,上述的预设厚度可大于100埃。In a preferred embodiment of the present invention, the aforementioned preset thickness may be greater than 100 angstroms.
在本发明的优选实施例中,上述的栅极介电层为高介电常数介电层,此高介电常数介电层是由氧化铪(HfO2)、氮氧化硅铪(HfSiON)或氧化硅铪(HfSiO)等材料来完成的单层或多层结构。In a preferred embodiment of the present invention, the above-mentioned gate dielectric layer is a high dielectric constant dielectric layer, which is made of hafnium oxide (HfO 2 ), hafnium silicon oxynitride (HfSiON) or Single-layer or multi-layer structures completed by materials such as hafnium silicon oxide (HfSiO).
在本发明的优选实施例中,上述的阻障层可由氮化钛(TiN)、碳化钽(TaC)、碳化钨(WC)、碳化钛(TiC)、氮化钽(TaN)、氮化钛铝(TiAlN)等材料完成的单层或多层结构。In a preferred embodiment of the present invention, the above barrier layer can be made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride (TaN), titanium nitride Single-layer or multi-layer structures completed by materials such as aluminum (TiAlN).
在本发明的优选实施例中,上述的金属层可由氮化钛(TiN)、钨(W)、铝(A1)、钛(Ti)、钽(Ta)、氮化钽(TaN)、钴(Co)、铜(Cu)或镍(Ni)等材料完成的单层或多层结构。In a preferred embodiment of the present invention, the above metal layer can be made of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), tantalum nitride (TaN), cobalt ( Co), copper (Cu) or nickel (Ni) and other materials to complete the single-layer or multi-layer structure.
在本发明的优选实施例中,上述的第一平坦化工艺与该第二平坦化工艺分别可为第一化学机械抛光工艺与第二化学机械抛光工艺,而该第一反应剂与该第二反应剂分别可为第一化学机械抛光剂与第二化学机械抛光剂。第一平坦化工艺与第二平坦化工艺可在单一机台上完成,或是分开在提供不同化学机械抛光剂的多个机台上完成,而第一化学机械抛光剂与第二化学机械抛光剂还可包括有二氧化硅、二氧化铈或是氧化铝粉末的粘着材料。In a preferred embodiment of the present invention, the above-mentioned first planarization process and the second planarization process can be a first chemical mechanical polishing process and a second chemical mechanical polishing process, and the first reactant and the second The reactants can be respectively a first chemical mechanical polishing agent and a second chemical mechanical polishing agent. The first planarization process and the second planarization process can be completed on a single machine, or separately on a plurality of machines that provide different chemical mechanical polishing agents, and the first chemical mechanical polishing agent and the second chemical mechanical polishing The agent may also include an adhesive material comprising silica, ceria or alumina powder.
在本发明的优选实施例中,上述的第一化学机械抛光剂对于该栅极金属层与该栅极阻障层的蚀刻选择比大于20,该第二化学机械抛光剂对于该栅极金属层与该栅极阻障层的蚀刻选择比大于20。In a preferred embodiment of the present invention, the etching selectivity ratio of the first chemical mechanical polishing agent for the gate metal layer to the gate barrier layer is greater than 20, and the second chemical mechanical polishing agent for the gate metal layer The etch selectivity ratio to the gate barrier layer is greater than 20.
在本发明的优选实施例中,上述的该第一化学机械抛光剂与该第二化学机械抛光剂中皆可包括有氧化剂(oxidizer),该第一化学机械抛光剂的氧化剂浓度低于该第二化学机械抛光剂中的氧化剂浓度。In a preferred embodiment of the present invention, both the first chemical mechanical polishing agent and the second chemical mechanical polishing agent may include an oxidizer, and the oxidizer concentration of the first chemical mechanical polishing agent is lower than that of the second chemical mechanical polishing agent. 2. Oxidant concentration in chemical mechanical polishing agent.
在本发明的优选实施例中,上述的氧化剂可为过氧化氢。In a preferred embodiment of the present invention, the above-mentioned oxidizing agent may be hydrogen peroxide.
在本发明的优选实施例中,上述的第一化学机械抛光剂中的过氧化氢浓度范围可为0%~1%,该第二化学机械抛光剂中的过氧化氢浓度范围可大于1%。In a preferred embodiment of the present invention, the hydrogen peroxide concentration range in the first chemical mechanical polishing agent may be 0% to 1%, and the hydrogen peroxide concentration range in the second chemical mechanical polishing agent may be greater than 1%. .
本发明还提出另一种栅极构造,此构造包括基板、介电层、栅极阻障层以及栅极金属层。介电层位于基板上方并具有至少一沟槽。栅极阻障层位于沟槽中。栅极金属层位于栅极阻障层的表面上并填满沟槽。栅极金属层顶面低于沟槽侧壁,且两者的高度差小于50埃。The invention also proposes another gate structure, which includes a substrate, a dielectric layer, a gate barrier layer, and a gate metal layer. The dielectric layer is located above the substrate and has at least one groove. The gate barrier layer is located in the trench. The gate metal layer is located on the surface of the gate barrier layer and fills up the trench. The top surface of the gate metal layer is lower than the sidewall of the trench, and the height difference between them is less than 50 angstroms.
附图说明 Description of drawings
图1(a)、1(b)、1(c),其为本发明为改善已知手段不足所发展出来关于平坦化方法的工艺步骤示意图。1(a), 1(b), and 1(c), which are schematic diagrams of the process steps of the planarization method developed by the present invention to improve the deficiencies of known means.
图2(a)、2(b),其为本发明技术所完成的两种栅极构造示意图。2(a) and 2(b), which are schematic diagrams of two gate structures completed by the technology of the present invention.
附图标记说明Explanation of reference signs
基板10 介电层101Substrate 10 Dielectric layer 101
栅极介电层1010Gate dielectric layer 1010
阻障层102 金属层103Barrier layer 102 Metal layer 103
沟槽104 碟形凹陷1030groove 104 dish 1030
具体实施方式 detailed description
请参见图1(a)、1(b)、1(c),其为本发明为改善已知手段不足所发展出来关于平坦化方法的工艺步骤示意图,可广泛应用于半导体元件工艺中。首先,先提供基板10,例如常见的硅基板,然后于该基板10上进行高介电常数/金属栅极(HKMG)工艺来完成金属氧化物半导体晶体管元件,如图1(a)所示,在该基板10上方形成介电层101,该介电层101中形成有沟槽104,而该沟槽104中形成有栅极介电层(gate dielectirc layer)1010、阻障层(barrierlayer)102与金属层103来完成栅极结构(gate structure)。该沟槽104可为将多晶硅假栅极(dummy poly,图中未示出)去除后所形成。至于栅极结构中的栅极介电层1010可以在沟槽104形成后再形成,进而完成如图1(a)所示的构造,但是也可在沟槽104形成前便已形成栅极介电层1010,如图2(a)的所示。而该栅极介电层1010可由高介电常数介电材料来完成。至于该阻障层可以是栅极构造中的栅极阻障层,而该金属层则可以是栅极构造中的栅极金属层。Please refer to Figures 1(a), 1(b), and 1(c), which are schematic diagrams of the process steps of the planarization method developed by the present invention to improve the deficiencies of known means, and can be widely used in the semiconductor element process. First, a substrate 10 is provided, such as a common silicon substrate, and then a high dielectric constant/metal gate (HKMG) process is performed on the substrate 10 to complete a metal oxide semiconductor transistor device, as shown in FIG. 1(a), A dielectric layer 101 is formed above the substrate 10, a trench 104 is formed in the dielectric layer 101, and a gate dielectric layer (gate dielectric layer) 1010, a barrier layer (barrier layer) 102 are formed in the trench 104. and metal layer 103 to complete the gate structure. The trench 104 may be formed by removing a polysilicon dummy gate (dummy poly (not shown in the figure)). As for the gate dielectric layer 1010 in the gate structure, it can be formed after the trench 104 is formed to complete the structure shown in FIG. 1(a), but the gate dielectric layer can also be formed before the trench 104 is formed. The electrical layer 1010 is as shown in FIG. 2( a ). The gate dielectric layer 1010 can be made of a high-k dielectric material. The barrier layer may be a gate barrier layer in the gate structure, and the metal layer may be a gate metal layer in the gate structure.
接着利用第一反应剂来对该金属层103进行第一平坦化工艺,用以除去部分的该金属层103而露出该阻障层102,其中透过控制第一反应剂的成份,将对该金属层103的蚀刻速率调整大于对该阻障层102的蚀刻速率。如此一来,便可将蚀刻动作停在阻障层102之上,但也因金属层103的蚀刻较快,便产生如图1(b)所示的结构,阻障层102外露而金属层103产生些许的碟形凹陷(dishing)1030。Next, a first planarization process is performed on the metal layer 103 by using a first reactant to remove part of the metal layer 103 to expose the barrier layer 102, wherein by controlling the composition of the first reactant, the metal layer 103 will be planarized. The etch rate of the metal layer 103 is adjusted to be greater than the etch rate of the barrier layer 102 . In this way, the etching action can be stopped on the barrier layer 102, but also because the metal layer 103 is etched faster, a structure as shown in Figure 1(b) is produced, the barrier layer 102 is exposed and the metal layer 103 produces a slight dishing 1030 .
为能消除上述碟形凹陷1030,本发明便再利用第二反应剂来对外露的阻障层102与金属层103进行第二平坦化工艺,用以除去部分的阻障层102与部分的该金属层103而露出沟槽104开口外的介电层101,其中该第二反应剂对该阻障层102的蚀刻速率大于对金属层103的蚀刻速率。如此一来,蚀刻动作可停在介电层101之上,但因阻障层102的蚀刻较快而金属层103的蚀刻较慢,便产生如图1(c)所示的结构,金属层103原本具有的碟形凹陷1030将被消除,进而达成平坦的表面。金属层103的顶面低于沟槽104侧壁,也即低于两侧介电层101的顶面的高度差小于50埃。最后经过清洗后,便可送入下一道工艺,例如内层介电层的制作。In order to eliminate the above-mentioned dish-shaped depressions 1030, the present invention uses a second reactant to perform a second planarization process on the exposed barrier layer 102 and the metal layer 103 to remove part of the barrier layer 102 and part of the metal layer 103. The metal layer 103 exposes the dielectric layer 101 outside the opening of the trench 104 , wherein the etching rate of the barrier layer 102 by the second reactant is greater than the etching rate of the metal layer 103 . In this way, the etching action can stop on the dielectric layer 101, but because the etching of the barrier layer 102 is faster and the etching of the metal layer 103 is slower, a structure as shown in FIG. 1(c) is produced, the metal layer The original dishing 1030 of 103 is eliminated, resulting in a flat surface. The top surface of the metal layer 103 is lower than the sidewall of the trench 104 , that is, the height difference between the top surfaces of the dielectric layers 101 on both sides is less than 50 angstroms. Finally, after cleaning, it can be sent to the next process, such as the production of the inner dielectric layer.
而根据上述步骤的说明可知,本发明透过两次蚀刻选择比不同的平坦化工艺,将可有效提升工艺完成后产品的平坦程度,进而改善已知手段的不足,达成发展本发明的主要目的。而上述第一平坦化工艺与第二平坦化工艺可分别为第一化学机械抛光工艺与第二化学机械抛光工艺,而第一反应剂与第二反应剂可分别为第一化学机械抛光剂与第二化学机械抛光剂。而这些平坦化工艺可在单一机台(Single pad CMP)上完成,或是分开在提供不同化学机械抛光剂的多个机台上完成(multi-pad CMP),而这些化学机械抛光剂中还可包括有粘着材料(abrasive material),例如二氧化硅(SiO2)、二氧化铈(CeO2)或是氧化铝(Al2O3)粉末(powder)等。另外,该第一化学机械抛光剂与该第二化学机械抛光剂中皆包括有氧化剂(oxidizer),为调整出适当的蚀刻选择比,该第一化学机械抛光剂的氧化剂浓度将低于该第二化学机械抛光剂中的氧化剂浓度,而该氧化剂可为过氧化氢等,举例来说,第一化学机械抛光剂中的过氧化氢浓度范围可为0%~1%,该第二化学机械抛光剂中的过氧化氢浓度范围则可大于1%,例如3%或5%,如此一来,第一化学机械抛光剂对于该栅极金属层与该栅极阻障层的蚀刻选择比可控制在大于20,第二化学机械抛光剂对于该栅极金属层与该栅极阻障层的蚀刻选择比则可控制在大于20。According to the description of the above steps, it can be seen that the present invention can effectively improve the flatness of the product after the process is completed through two planarization processes with different etching selectivity ratios, thereby improving the shortcomings of known methods and achieving the main purpose of developing the present invention. . The first planarization process and the second planarization process may be the first chemical mechanical polishing process and the second chemical mechanical polishing process, and the first reactant and the second reactant may be the first chemical mechanical polishing agent and the second chemical mechanical polishing process respectively. A second chemical mechanical polish. These planarization processes can be completed on a single machine (Single pad CMP), or separately on multiple machines that provide different chemical mechanical polishing agents (multi-pad CMP), and these chemical mechanical polishing agents also have Abrasive materials may be included, such as silicon dioxide (SiO 2 ), cerium oxide (CeO 2 ) or aluminum oxide (Al 2 O 3 ) powder. In addition, both the first chemical mechanical polishing agent and the second chemical mechanical polishing agent include an oxidizer. In order to adjust an appropriate etching selectivity ratio, the oxidizer concentration of the first chemical mechanical polishing agent will be lower than that of the second chemical mechanical polishing agent. The oxidizing agent concentration in the second chemical mechanical polishing agent, and this oxidizing agent can be hydrogen peroxide etc., for example, the hydrogen peroxide concentration range in the first chemical mechanical polishing agent can be 0%~1%, this second chemical mechanical polishing agent The concentration range of hydrogen peroxide in the polishing agent can be greater than 1%, such as 3% or 5%, so that the etching selectivity of the first chemical mechanical polishing agent for the gate metal layer and the gate barrier layer can be Controlled to be greater than 20, the etching selectivity ratio of the second chemical mechanical polishing agent for the gate metal layer and the gate barrier layer can be controlled to be greater than 20.
至于该栅极介电层(gate dielectirc layer)1010,主要可由高介电常数介电层来完成,例如可以是氧化铪(HfO2)、氮氧化硅铪(HfSiON)或氧化硅铪(HfSiO)等材料来完成的单层或多层结构,主要是形成于阻障层102的下方,栅极介电层1010若是形成于沟槽104完成前(即所谓“HK First”),栅极介电层1010就只会形成于沟槽104底部,而形成如图2(a)中所示的本发明技术所完成的栅极构造示意图,但若是除去多晶硅假栅极后再形成栅极介电层1010(即所谓“HK Last”),栅极介电层1010则会形成于沟槽104底部与侧壁而呈U型剖面,形成如图2(b)中所示的栅极构造。至于该阻障层102可由氮化钛(TiN)、碳化钽(TaC)、碳化钨(WC)、碳化钛(TiC)、氮化钽(TaN)、氮化钛铝(TiAlN)等材料完成的单层或多层结构,该阻障层102可用以在栅极构造中扮演功函数金属层(Work Function metal layer)、应力层(strained layer)、功函数微调金属层(Work Function tuning metal layer)、内衬层(liner layer)或是封合层(sealantlayer)等角色。至于金属层103可以是由氮化钛(TiN)、钨(W)、铝(Al)、钛(Ti)、钽(Ta)、氮化钽(TaN)、钴(Co)、铜(Cu)或是镍(Ni)等金属或金属性材料完成的单层或多层结构。As for the gate dielectric layer (gate dielectric layer) 1010, it can be mainly completed by a high dielectric constant dielectric layer, such as hafnium oxide (HfO 2 ), hafnium silicon oxynitride (HfSiON) or hafnium silicon oxide (HfSiO) The single-layer or multi-layer structure completed by other materials is mainly formed under the barrier layer 102. If the gate dielectric layer 1010 is formed before the trench 104 is completed (so-called "HK First"), the gate dielectric layer 1010 The layer 1010 will only be formed at the bottom of the trench 104 to form a schematic diagram of the gate structure completed by the technology of the present invention as shown in FIG. 1010 (so-called “HK Last”), the gate dielectric layer 1010 is formed on the bottom and sidewalls of the trench 104 to form a U-shaped cross-section, forming a gate structure as shown in FIG. 2( b ). As for the barrier layer 102, it can be made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride (TaN), titanium aluminum nitride (TiAlN) and other materials. Single-layer or multi-layer structure, the barrier layer 102 can be used to act as a work function metal layer (Work Function metal layer), a stress layer (strained layer), a work function fine-tuning metal layer (Work Function tuning metal layer) in the gate structure , lining layer (liner layer) or sealing layer (sealantlayer) and other roles. As for the metal layer 103, it can be made of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), tantalum nitride (TaN), cobalt (Co), copper (Cu) Or a single-layer or multi-layer structure completed by metal or metallic materials such as nickel (Ni).
另外,为能增加产能,在利用第一反应剂来除去部分的该栅极金属层而露出该栅极阻障层的步骤前,还可先利用第三反应剂来对该金属层103进行第三平坦化工艺,用以减少该栅极金属层的厚度至预设厚度后停下再转换至该第一平坦化工艺。预设厚度可设为接近100埃但大于100埃,而由于第三反应剂可调整成对该金属层103具有的较快蚀刻速率,意即该第三反应剂对该金属层103的蚀刻速率大于该第一反应剂对该金属层103的蚀刻速率,因此金属层103的厚度将可以很快被缩减而减少工艺时间。In addition, in order to increase production capacity, before using the first reactant to remove part of the gate metal layer to expose the gate barrier layer, the metal layer 103 may be firstly subjected to a third reactant. The three-planarization process is used to reduce the thickness of the gate metal layer to a predetermined thickness, then stop and switch to the first planarization process. The preset thickness can be set close to 100 angstroms but greater than 100 angstroms, and since the third reactant can be adjusted to have a faster etching rate to the metal layer 103, that is, the etching rate of the third reactant to the metal layer 103 The etching rate of the metal layer 103 is greater than that of the first reactant, so the thickness of the metal layer 103 can be reduced quickly to reduce the process time.
综上所述,在本发明对技术进行改良后,已可有效消除已知手段中平坦化不佳的问题。虽然本发明已以优选实施例披露如上,然其并非用以限定本发明,任何本领域一般技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求所界定为准。To sum up, after the improvement of the technology in the present invention, the problem of poor planarization in the known methods can be effectively eliminated. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection of the invention should be defined by the claims.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110040219.0A CN102646580B (en) | 2011-02-18 | 2011-02-18 | Planarization method and gate structure applied in semiconductor element process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110040219.0A CN102646580B (en) | 2011-02-18 | 2011-02-18 | Planarization method and gate structure applied in semiconductor element process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102646580A CN102646580A (en) | 2012-08-22 |
CN102646580B true CN102646580B (en) | 2016-10-05 |
Family
ID=46659345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110040219.0A Active CN102646580B (en) | 2011-02-18 | 2011-02-18 | Planarization method and gate structure applied in semiconductor element process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102646580B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105914143A (en) * | 2016-05-06 | 2016-08-31 | 中国科学院微电子研究所 | Planarization method for chemical mechanical polishing |
US10692732B2 (en) * | 2018-09-21 | 2020-06-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | CMP slurry and CMP method |
CN110739206B (en) * | 2019-10-25 | 2022-03-11 | 中国科学院微电子研究所 | Substrate and preparation method thereof |
CN114361027B (en) * | 2021-12-14 | 2024-12-24 | 北京北方华创微电子装备有限公司 | Etching method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1596460A (en) * | 2001-11-30 | 2005-03-16 | 自由度半导体公司 | Transistor metal gate structure and method of fabrication to minimize non-planarity effects |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000332242A (en) * | 1999-05-21 | 2000-11-30 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
US7029373B2 (en) * | 2001-08-14 | 2006-04-18 | Advanced Technology Materials, Inc. | Chemical mechanical polishing compositions for metal and associated materials and method of using same |
US20050070109A1 (en) * | 2003-09-30 | 2005-03-31 | Feller A. Daniel | Novel slurry for chemical mechanical polishing of metals |
-
2011
- 2011-02-18 CN CN201110040219.0A patent/CN102646580B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1596460A (en) * | 2001-11-30 | 2005-03-16 | 自由度半导体公司 | Transistor metal gate structure and method of fabrication to minimize non-planarity effects |
Also Published As
Publication number | Publication date |
---|---|
CN102646580A (en) | 2012-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8536040B1 (en) | Techniques for using material substitution processes to form replacement metal gate electrodes of semiconductor devices with self-aligned contacts | |
US9130029B2 (en) | Recessing and capping of gate structures with varying metal compositions | |
US7994603B2 (en) | Semiconductor device and a method of manufacturing the same | |
US8759208B2 (en) | Method for manufacturing contact holes in CMOS device using gate-last process | |
US20070210354A1 (en) | Semiconductor device and semiconductor device manufacturing method | |
US20150076624A1 (en) | Integrated circuits having smooth metal gates and methods for fabricating same | |
TW201732899A (en) | Semiconductor element, fin field effect transistor element and method of forming same | |
US9159798B2 (en) | Replacement gate process and device manufactured using the same | |
CN113764344A (en) | Method for manufacturing semiconductor device | |
US7618855B2 (en) | Manufacturing method of semiconductor device | |
JP5557632B2 (en) | Semiconductor device and manufacturing method thereof | |
CN108807159A (en) | Method for forming semiconductor device | |
TW202139277A (en) | Semiconductor structure and method forming the same | |
CN102646580B (en) | Planarization method and gate structure applied in semiconductor element process | |
US20240327677A1 (en) | Chemical mechanical polishing slurry composition and method of polishing metal layer | |
CN106952816A (en) | Method for forming fin transistors | |
TW202137318A (en) | Semiconductor structure and method of manufacturing the same | |
US8759219B2 (en) | Planarization method applied in process of manufacturing semiconductor component | |
CN107785318A (en) | The manufacture method of semiconductor structure | |
CN106876273B (en) | Fabrication method of semiconductor structure | |
CN106952815A (en) | Method for forming fin transistors | |
TWI512797B (en) | Planarization method applied in process of manufacturing semiconductor component | |
CN108269847A (en) | Semiconductor structure and forming method thereof | |
JP5287800B2 (en) | Semiconductor device | |
CN110265360A (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |