[go: up one dir, main page]

CN102638248A - Voltage type four-value Schmidt trigger circuit based on neuron MOS (Metal Oxide Semiconductor) tube - Google Patents

Voltage type four-value Schmidt trigger circuit based on neuron MOS (Metal Oxide Semiconductor) tube Download PDF

Info

Publication number
CN102638248A
CN102638248A CN2012101425419A CN201210142541A CN102638248A CN 102638248 A CN102638248 A CN 102638248A CN 2012101425419 A CN2012101425419 A CN 2012101425419A CN 201210142541 A CN201210142541 A CN 201210142541A CN 102638248 A CN102638248 A CN 102638248A
Authority
CN
China
Prior art keywords
neuron
threshold
pmos transistor
circuit
nmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101425419A
Other languages
Chinese (zh)
Other versions
CN102638248B (en
Inventor
杭国强
周选昌
吴剑钟
胡晓慧
杨旸
章丹艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou City University
Original Assignee
Zhejiang University City College ZUCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University City College ZUCC filed Critical Zhejiang University City College ZUCC
Priority to CN201210142541.9A priority Critical patent/CN102638248B/en
Publication of CN102638248A publication Critical patent/CN102638248A/en
Application granted granted Critical
Publication of CN102638248B publication Critical patent/CN102638248B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

本发明公开了一种基于神经元MOS管的电压型四值施密特触发器电路,包括具有回差特性的阈0.5反相运算和阈0.5运算电路部分11,具有回差特性的阈1.5反相运算和阈1.5运算电路部分12,具有回差特性的阈2.5反相运算和阈2.5运算电路部分13,四值信号传输控制电路部分14。本发明完全基于标准的双层多晶硅CMOS工艺,并且四值施密特电路中的三个回差电压值可以通过改变电容耦合系数比来调整。采用具有独立浮栅结构的互补神经元MOS管方案,保证了电路具有低功耗和高噪声容限的特点。此外,由于采用神经元MOS管设计的阈运算及其反相电路容易实现对阈值的控制,这使得所提出的四值施密特电路具有简单的结构。

The invention discloses a voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube, which includes a threshold 0.5 inversion operation and a threshold 0.5 operation circuit part 11 with a hysteresis characteristic, and a threshold 1.5 inversion circuit part 11 with a hysteresis characteristic. Phase operation and threshold 1.5 operation circuit part 12, threshold 2.5 inverse operation and threshold 2.5 operation circuit part 13 with hysteresis characteristic, four-valued signal transmission control circuit part 14. The present invention is completely based on the standard double-layer polysilicon CMOS process, and the three hysteresis voltage values in the four-valued Schmidt circuit can be adjusted by changing the capacitive coupling coefficient ratio. The scheme of complementary neuron MOS tube with independent floating gate structure is adopted to ensure that the circuit has the characteristics of low power consumption and high noise tolerance. In addition, because the threshold operation and its inverting circuit designed by the neuron MOS transistor are easy to realize the control of the threshold, this makes the proposed four-valued Schmidt circuit have a simple structure.

Description

一种基于神经元MOS管的电压型四值施密特触发器电路A voltage-type four-value Schmitt trigger circuit based on neuron MOS tube

技术领域 technical field

本发明涉及一种施密特触发器电路,尤其涉及一种基于神经元MOS管的电压型四值施密特触发器电路。The invention relates to a Schmitt trigger circuit, in particular to a voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube.

背景技术 Background technique

施密特触发器能有效抑制叠加在信号上的干扰,消除信号颤动而得到广泛应用,它是模拟和数字系统中对信号进行整形处理,改善开/关控制的一种常用电路。施密特电路的两个重要特征是:能有效地接收缓慢变化的输入信号并将其转变为快速变化的输出信号;对于正向和负向输入信号的直流传输特性有着不同的检测阈值,两者之差称之为回差。在多值逻辑电路中,多值施密特电路也应有其相应的使用地位。电路对信号值的检测是通过输入信号与阈值的比较来作出的,检测阈居于相邻的两种信号值之间。因此,为检测一个m值逻辑信号, 其取值为0,1,…,m-1,电路中需要设置0.5,1.5,…,m-1.5,共m-1个检测阈。在多值施密特电路的设计中需要对这m-1个检测阈值进行控制以实现对应阈值的回差特性,因此多值施密特电路的设计较之二值电路要复杂得多。The Schmitt trigger can effectively suppress the interference superimposed on the signal and eliminate the signal chatter, so it is widely used. It is a common circuit for shaping the signal and improving the on/off control in analog and digital systems. Two important features of the Schmidt circuit are: it can effectively receive slowly changing input signals and convert them into rapidly changing output signals; it has different detection thresholds for the DC transfer characteristics of positive and negative input signals, and the two The difference between them is called hysteresis. In multi-valued logic circuits, multi-valued Schmidt circuits should also have their corresponding status. The detection of the signal value by the circuit is made by comparing the input signal with a threshold, and the detection threshold is between two adjacent signal values. Therefore, in order to detect an m-valued logic signal, whose values are 0, 1, ..., m-1, 0.5, 1.5, ..., m-1.5 need to be set in the circuit, a total of m-1 detection thresholds. In the design of the multi-valued Schmidt circuit, it is necessary to control the m-1 detection thresholds to realize the hysteresis characteristics of the corresponding thresholds, so the design of the multi-valued Schmidt circuit is much more complicated than that of the binary circuit.

目前,基于CMOS工艺设计的多值施密特电路主要有电流型和电压型之分。多值电流型CMOS施密特电路因存在直流通路通常需要消耗较大的功耗,多值电压型CMOS施密特电路虽具有低功耗的特点,但多值电压型CMOS电路为实现具有多个阈值的MOS管需要增加额外的离子注入工序或需同时采用增强型和耗尽型两种MOS管,这增加了工艺复杂度, 使实用性受到限止。由于四值逻辑电路容易实现与二值逻辑电路的接口,因此对四值CMOS施密特电路的设计就显得尤为有意义。At present, the multi-valued Schmidt circuits designed based on CMOS technology mainly include current type and voltage type. The multi-valued current CMOS Schmidt circuit usually consumes a large power consumption due to the existence of a DC path. Although the multi-valued voltage CMOS Schmidt circuit has the characteristics of low power consumption, the multi-valued voltage CMOS circuit has multiple A threshold MOS tube needs to add an additional ion implantation process or use both enhancement type and depletion type MOS tubes, which increases the complexity of the process and limits the practicability. Because the four-value logic circuit is easy to realize the interface with the two-value logic circuit, the design of the four-value CMOS Schmidt circuit is particularly meaningful.

发明内容 Contents of the invention

本发明的目的在于提出一种基于神经元MOS管的电压型四值施密特触发器电路,它们除了具有低功耗和结构简单的特点之外,还可以通过改变输入端电容耦合系数来调节回差电压。The purpose of the present invention is to propose a voltage-type four-valued Schmitt trigger circuit based on neuron MOS transistors. In addition to the characteristics of low power consumption and simple structure, they can also be adjusted by changing the capacitive coupling coefficient of the input terminal. hysteresis voltage.

本发明的设计方案是为了实现上述目的。本发明提供一种基于神经元MOS管的电压型四值施密特触发器电路,包括阈0.5电路、阈1.5电路、阈2.5电路和四值信号传输控制电路;所述阈0.5电路分别连接有电源VDD、电源V2以及输入信号端Vin;所述阈1.5电路分别连接有电源VDD、电源V2、电源V1以及输入信号端Vin;所述阈2.5电路分别连接有电源VDD、电源V1以及输入信号端Vin;所述四值信号传输控制电路分别连接有电源VDD、电源V1、电源V2以及输出信号端Vout;所述阈0.5电路、阈1.5电路以及阈2.5电路分别与四值信号传输控制电路相连接。The design solution of the present invention is in order to realize above-mentioned object. The present invention provides a voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube, comprising a threshold 0.5 circuit, a threshold 1.5 circuit, a threshold 2.5 circuit and a four-value signal transmission control circuit; the threshold 0.5 circuit is connected with Power supply V DD , power supply V 2 and input signal terminal V in ; the threshold 1.5 circuits are respectively connected to power supply V DD , power supply V 2 , power supply V 1 and input signal terminal V in ; the threshold 2.5 circuits are respectively connected to power supply V DD , power supply V 1 and input signal terminal V in ; the four-valued signal transmission control circuit is respectively connected with power supply V DD , power supply V 1 , power supply V 2 and output signal terminal V out ; the threshold 0.5 circuit, threshold 1.5 circuit And the threshold 2.5 circuit is respectively connected with the four-valued signal transmission control circuit.

作为对一种基于神经元MOS管的电压型四值施密特触发器电路的进一步描述:所述阈0.5电路包括具有回差特性的阈0.5反相运算电路和阈0.5运算电路;所述阈0.5反相运算电路和阈0.5运算电路由互补型的阈0.5反相器、普通二值 CMOS反相器和反馈电路构成;所述互补型阈0.5反相器包括神经元pMOS管mp1和神经元nMOS管mn1;所述普通二值CMOS反相器包括pMOS管mp2和nMOS管mn2;所述神经元pMOS管mp1的源极接电源VDD,神经元pMOS管mp1的漏极接所述神经元nMOS管mn1的漏极, 神经元pMOS管mp1有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp1、电容Cp2和电容Cp3;所述神经元nMOS管mn1的源极接地,神经元nMOS管mn1有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn1、电容Cn2和电容Cn3;所述CMOS反相器中pMOS管mp2的源极接电源VDD,pMOS管mp2的漏极接CMOS反相器中nMOS管mn2的漏极,nMOS管mn2的源极接地; 所述CMOS反相器中pMOS管mp2的栅极与nMOS管mn2的栅极相接作为CMOS反相器的输入端;所述CMOS反相器的输入端与所述神经元pMOS管mp1的漏极和所述神经元nMOS管mn1的漏极相连接;所述神经元nMOS管mn1的一个栅输入端和所述神经元pMOS管mp1的一个栅输入端与输入信号端Vin相接;所述神经元pMOS管mp1的另一个栅输入端与电源VDD相连接,神经元pMOS管mp1的剩余一个输入栅与所述CMOS反相器中pMOS管mp2的漏极和nMOS管mn2的漏极相接形成正反馈电路;所述神经元nMOS管mn1的另一个栅输入端接电源V2,神经元nMOS管mn1的剩余一个输入栅与所述CMOS反相器中pMOS管mp2的漏极和nMOS管mn2的漏极相接形成正反馈电路;所述阈1.5电路包括具有回差特性的阈1.5反相运算电路和阈1.5运算电路;所述阈1.5反相运算电路和阈1.5运算电路由互补型的阈1.5反相器、普通二值CMOS反相器以及反馈电路组成;所述互补型阈1.5反相器包括神经元pMOS管mp3和神经元nMOS管mn3;所述普通二值CMOS反相器包括pMOS管mp4和nMOS管mn4;所述神经元pMOS管mp3的源极接电源VDD,神经元pMOS管mp3的漏极接神经元nMOS管mn3的漏极,神经元pMOS管mp3有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp4、电容Cp5和电容Cp6;所述神经元nMOS管mn3的源极接地,神经元nMOS管mn3有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn4、电容Cn5和电容Cn6;所述CMOS反相器中pMOS管mp4的源极接电源VDD,pMOS管mp4的漏极接CMOS反相器中nMOS管mn4的漏极,nMOS管mn4的源极接地;所述CMOS反相器中pMOS管mp4的栅极与nMOS管mn4的栅极相接作为CMOS反相器的输入端;所述CMOS反相器的输入端与所述神经元pMOS管mp3的漏极和所述神经元nMOS管mn3的漏极相连接;所述神经元nMOS管mn3的一个栅输入端和所述神经元pMOS管mp3的一个栅输入端与输入信号端Vin相接;所述神经元pMOS管mp3的另一个栅输入端接电源V2,神经元pMOS管mp3的剩余一个输入栅与所述CMOS反相器中pMOS管mp4的漏极和nMOS管mn4的漏极相接形成正反馈电路;所述神经元nMOS管mn3的另一个栅输入端接电源V1,神经元nMOS管mn3的剩余一个输入栅与所述CMOS反相器中pMOS管mp4的漏极和nMOS管mn4的漏极相接形成正反馈电路;所述阈2.5电路包括具有回差特性的阈2.5反相运算电路和阈2.5运算电路;所述阈2.5反相运算电路和阈2.5运算电路由互补型的阈2.5反相器、普通二值CMOS反相器以及反馈电路组成;所述阈2.5反相器包括神经元pMOS管mp5和神经元nMOS管mn5;所述普通二值 CMOS反相器包括pMOS管mp6和nMOS管mn6;所述神经元pMOS管mp5的源极接电源VDD,神经元pMOS管mp5的漏极接所述神经元nMOS管mn5的漏极,神经元pMOS管mp5有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp7、电容Cp8和电容Cp9;所述神经元nMOS管mn5的源极接地,神经元nMOS管mn5有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn7、电容Cn8和电容Cn9;所述CMOS反相器中pMOS管mp6的源极接电源VDD, pMOS管mp6的漏极接CMOS反相器中nMOS管mn6的漏极,nMOS管mn6的源极接地;所述CMOS反相器中pMOS管mp6的栅极与nMOS管mn6的栅极相接作为CMOS反相器的输入端;所述CMOS反相器的输入端与所述神经元pMOS管mp5的漏极和所述神经元nMOS管mn5的漏极相连接;所述神经元nMOS管mn5的一个栅输入端和所述神经元pMOS管mp5的一个栅输入端与输入信号端Vin相接,所述神经元pMOS管mp5的另一个栅输入端接电源V1,神经元pMOS管mp5的剩余一个输入栅与所述CMOS反相器中pMOS管mp6的漏极和nMOS管mn6的漏极相接形成正反馈电路;所述神经元nMOS管mn5的另一个栅输入端接地,神经元nMOS管mn5的剩余一个输入栅与所述CMOS反相器中pMOS管mp6的漏极和nMOS管mn6的漏极相接形成正反馈电路;所述四值信号传输控制电路由pMOS管mp7、pMOS管mp8、pMOS管mp9和nMOS管mn7、nMOS管mn8、nMOS管mn9组成;所述pMOS管mp7的源极接电源VDD,pMOS管mp7的漏极接所述nMOS管mn7的漏极,pMOS管mp7的栅极连接至所述阈0.5电路中普通二值CMOS反相器中pMOS管mp2和nMOS管mn2的漏极;所述nMOS管mn7的源极接地,nMOS管mn7的栅极连接至所述阈2.5电路中普通二值CMOS反相器中pMOS管mp6和nMOS管mn6的漏极;所述pMOS管mp8的漏极和所述pMOS管mp9的源极串接于电源V2与输出信号端Vout之间,pMOS管mp8的栅极连接至所述阈0.5电路中神经元pMOS管mp1和神经元nMOS管mn1的漏极;所述nMOS管mn8的源极和nMOS管mn9的漏极串接于输出信号端Vout与电源V1之间;所述nMOS管mn9的栅极接至所述阈2.5电路中神经元pMOS管mp5和神经元nMOS管mn5的漏极;所述pMOS管mp9的栅极和所述nMOS管mn8的栅极相连接至所述阈1.5电路中普通二值CMOS反相器中pMOS管mp4和nMOS管mn4的漏极。As a further description of a voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube: the threshold 0.5 circuit includes a threshold 0.5 inverting operation circuit and a threshold 0.5 operation circuit with hysteresis characteristics; the threshold The 0.5 inversion operation circuit and the threshold 0.5 operation circuit are composed of a complementary threshold 0.5 inverter, a common binary CMOS inverter and a feedback circuit; the complementary threshold 0.5 inverter includes a neuron pMOS transistor m p1 and a neuron nMOS transistor m n1 ; the common binary CMOS inverter includes pMOS transistor m p2 and nMOS transistor m n2 ; the source of the neuron pMOS transistor m p1 is connected to the power supply V DD , and the drain of the neuron pMOS transistor m p1 connected to the drain of the neuron nMOS transistor m n1 , and the neuron pMOS transistor m p1 has three gate input terminals, and the coupling capacitances between the three input gates and the floating gate are capacitance C p1 , capacitance C p2 and Capacitor C p3 ; the source of the neuron nMOS transistor m n1 is grounded, and the neuron nMOS transistor m n1 has three gate input terminals, and the coupling capacitances between the three input gates and the floating gate are capacitance C n1 , capacitance C n2 and capacitor C n3 ; the source of the pMOS transistor m p2 in the CMOS inverter is connected to the power supply V DD , the drain of the pMOS transistor m p2 is connected to the drain of the nMOS transistor m n2 in the CMOS inverter, and the nMOS transistor m The source of n2 is grounded; the gate of the pMOS transistor m p2 in the CMOS inverter is connected to the gate of the nMOS transistor m n2 as the input end of the CMOS inverter; the input end of the CMOS inverter is connected to the The drain of the neuron pMOS transistor m p1 is connected to the drain of the neuron nMOS transistor m n1 ; a gate input terminal of the neuron nMOS transistor m n1 is connected to a gate of the neuron pMOS transistor m p1 The input terminal is connected to the input signal terminal V in ; the other gate input terminal of the neuron pMOS transistor m p1 is connected to the power supply V DD , and the remaining input gate of the neuron pMOS transistor m p1 is connected to the CMOS inverter The drain of the middle pMOS transistor m p2 is connected to the drain of the nMOS transistor m n2 to form a positive feedback circuit; the other gate input terminal of the neuron nMOS transistor m n1 is connected to the power supply V 2 , and the rest of the neuron nMOS transistor m n1 An input grid is connected with the drain of the pMOS transistor m p2 and the drain of the nMOS transistor m n2 in the CMOS inverter to form a positive feedback circuit; the threshold 1.5 circuit includes a threshold 1.5 inverting operation circuit with hysteresis characteristics and threshold 1.5 operation circuit; the threshold 1.5 inverting operation circuit and the threshold 1.5 operation circuit are made up of complementary threshold 1.5 inverter, common binary CMOS inverter and feedback circuit; the complementary threshold 1.5 inverter Including neuron pMOS tube m p3 and neuron nMOS tube m n3 ; the common binary CMOS inverter includes pMOS tube m p4 and nMOS tube m n4 ; the source of the neuron pMOS tube m p3 is connected to the power supply V DD , the drain of the neuron pMOS tube m p3 is connected to the drain of the neuron nMOS tube m n3 , and the neuron pMOS tube m p3 has three gate input terminals, the coupling capacitances between the three input gates and the floating gate are capacitance C p4 , capacitance C p5 and capacitance C p6 respectively; the source of the neuron nMOS transistor m n3 is grounded, and the neuron nMOS transistor m n3 has three gate input terminals, and the coupling capacitances between these three input gates and the floating gate are capacitor C n4 , capacitor C n5 and capacitor C n6 respectively; the source of pMOS transistor m p4 in the CMOS inverter connected to the power supply V DD , the drain of the pMOS transistor m p4 is connected to the drain of the nMOS transistor m n4 in the CMOS inverter, and the source of the nMOS transistor m n4 is grounded; the gate of the pMOS transistor m p4 in the CMOS inverter is connected to the The gate of the nMOS transistor m n4 is connected as the input end of the CMOS inverter; the input end of the CMOS inverter is connected to the drain of the neuron pMOS transistor m p3 and the drain of the neuron nMOS transistor m n3 The gate input terminal of the neuron nMOS transistor m n3 and a gate input terminal of the neuron pMOS transistor m p3 are connected with the input signal terminal V in ; the other gate input terminal of the neuron pMOS transistor m p3 One gate input terminal is connected to the power supply V2 , and the remaining input gate of the neuron pMOS transistor mp3 is connected to the drain of the pMOS transistor mp4 in the CMOS inverter and the drain of the nMOS transistor mn4 to form a positive feedback circuit; The other gate input terminal of the neuron nMOS transistor m n3 is connected to the power supply V 1 , and the remaining input gate of the neuron nMOS transistor m n3 is connected to the drain of the pMOS transistor m p4 and the nMOS transistor m n4 in the CMOS inverter The drains of the drains are connected to form a positive feedback circuit; the threshold 2.5 circuit includes a threshold 2.5 inversion operation circuit and a threshold 2.5 operation circuit with hysteresis characteristics; the threshold 2.5 inversion operation circuit and the threshold 2.5 operation circuit are composed of complementary Threshold 2.5 inverter, common binary CMOS inverter and feedback circuit; said threshold 2.5 inverter includes neuron pMOS transistor m p5 and neuron nMOS transistor m n5 ; said common binary CMOS inverter includes pMOS tube m p6 and nMOS tube m n6 ; the source of the neuron pMOS tube m p5 is connected to the power supply V DD , the drain of the neuron pMOS tube m p5 is connected to the drain of the neuron nMOS tube m n5 , and the neuron The pMOS transistor m p5 has three gate input terminals, and the coupling capacitances between the three input gates and the floating gate are capacitor C p7 , capacitor C p8 and capacitor C p9 respectively; the source of the neuron nMOS transistor m n5 is grounded , the neuron nMOS transistor m n5 has three gate input terminals, and the coupling capacitances between the three input gates and the floating gate are electric capacitor C n7 , capacitor C n8 and capacitor C n9 ; the source of the pMOS transistor m p6 in the CMOS inverter is connected to the power supply V DD , and the drain of the pMOS transistor m p6 is connected to the drain of the nMOS transistor m n6 in the CMOS inverter pole, the source of the nMOS transistor m n6 is grounded; the gate of the pMOS transistor m p6 in the CMOS inverter is connected to the gate of the nMOS transistor m n6 as the input end of the CMOS inverter; the CMOS inverter The input end of the neuron pMOS transistor m p5 is connected to the drain electrode of the neuron nMOS transistor m n5 ; a gate input end of the neuron nMOS transistor m n5 is connected to the neuron pMOS transistor m n5 One gate input terminal of m p5 is connected to the input signal terminal V in , the other gate input terminal of the neuron pMOS transistor m p5 is connected to the power supply V 1 , and the remaining input gate of the neuron pMOS transistor m p5 is connected to the CMOS The drain of the pMOS transistor m p6 in the inverter is connected to the drain of the nMOS transistor m n6 to form a positive feedback circuit; the other gate input terminal of the neuron nMOS transistor m n5 is grounded, and the remaining gate of the neuron nMOS transistor m n5 An input gate is connected with the drain of pMOS transistor m p6 and the drain of nMOS transistor m n6 in the CMOS inverter to form a positive feedback circuit; the four-valued signal transmission control circuit is composed of pMOS transistor m p7 and pMOS transistor m p8 , pMOS transistor m p9 and nMOS transistor m n7 , nMOS transistor m n8 , and nMOS transistor m n9 ; the source of the pMOS transistor m p7 is connected to the power supply V DD , and the drain of the pMOS transistor m p7 is connected to the nMOS transistor m The drain of n7 , the gate of pMOS transistor m p7 are connected to the drains of pMOS transistor m p2 and nMOS transistor m n2 in the ordinary binary CMOS inverter in the threshold 0.5 circuit; the source of the nMOS transistor m n7 Grounded, the gate of the nMOS transistor m n7 is connected to the drains of the pMOS transistor m p6 and the nMOS transistor m n6 in the common binary CMOS inverter in the threshold 2.5 circuit; the drain of the pMOS transistor m p8 and the The source of the pMOS transistor m p9 is connected in series between the power supply V2 and the output signal terminal V out , and the gate of the pMOS transistor m p8 is connected to the neuron pMOS transistor m p1 and the neuron nMOS transistor m n1 in the threshold 0.5 circuit The drain of the nMOS transistor m n8 and the drain of the nMOS transistor m n9 are connected in series between the output signal terminal V out and the power supply V 1 ; the gate of the nMOS transistor m n9 is connected to the threshold 2.5 The drains of the neuron pMOS transistor m p5 and the neuron nMOS transistor m n5 in the circuit; the gate of the pMOS transistor m p9 and the gate of the nMOS transistor m n8 are connected to the common two in the threshold 1.5 circuit The value is the drain of pMOS transistor m p4 and nMOS transistor m n4 in the CMOS inverter.

与现有设计方案相比,本发明具有的有益效果是:相对于输入端而言,神经元MOS器件或电路的阈值电压可受外部控制栅信号的控制,这有效地克服了传统电压型多值逻辑电路为实现具有多个阈值电压的MOS管需要额外的离子注入工序或需同时采用增强型和耗尽型两种MOS管而增加工艺复杂度等缺陷。电路利用了神经元MOS管所具有的阈值易于控制这一自然属性,无需增加特别的电路,仅需通过分别在p型和n型浮栅MOS管中增加一栅输入端就可以方便地实现施密特电路中的再生反馈,这使得所设计的电路具有非常简单的结构。采用具有独立浮栅结构的互补浮栅MOS管方案,保证了电路具有低功耗和高噪声容限的特点。并且,可以通过改变电容耦合系数来方便地调整回差电压。通过增加浮栅MOS管的输入端数,可以非常容易地接入外部控制信号,从而改变施密特电路中的高、低两个阈值电压。因此本发明具有的最大特点是调整回差电压方便并且可以通过外部控制信号直接控制阈值电压。本发明完全基于标准的双层多晶硅CMOS工艺,除了保持电压型电路低功耗的特点之外,新设计具有电路结构简单、回差电压调节容易,以及对阈值电压控制方便和灵活等特点。Compared with the existing design scheme, the present invention has the beneficial effect that: relative to the input terminal, the threshold voltage of the neuron MOS device or circuit can be controlled by an external control gate signal, which effectively overcomes the traditional voltage-type multiple Value logic circuits require additional ion implantation processes to realize MOS transistors with multiple threshold voltages or need to use both enhancement type and depletion type MOS transistors to increase process complexity and other defects. The circuit takes advantage of the natural property that the threshold of the neuron MOS transistor is easy to control, without adding a special circuit, it can be easily implemented by adding a gate input terminal to the p-type and n-type floating gate MOS transistors respectively. Regenerative feedback in the Mitte circuit, which makes the designed circuit have a very simple structure. The scheme of complementary floating gate MOS tube with independent floating gate structure is adopted to ensure that the circuit has the characteristics of low power consumption and high noise tolerance. Moreover, the hysteresis voltage can be adjusted conveniently by changing the capacitive coupling coefficient. By increasing the number of input terminals of the floating gate MOS transistor, it is very easy to access an external control signal, thereby changing the high and low threshold voltages in the Schmidt circuit. Therefore, the biggest feature of the present invention is that it is convenient to adjust the hysteresis voltage and the threshold voltage can be directly controlled by an external control signal. The invention is completely based on the standard double-layer polysilicon CMOS technology. In addition to maintaining the low power consumption of the voltage type circuit, the new design has the characteristics of simple circuit structure, easy adjustment of hysteresis voltage, and convenient and flexible control of threshold voltage.

附图说明 Description of drawings

下面结合附图对本发明的具体实施方式作进一步详细说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.

图1是基于神经元MOS管的电压型四值施密特触发器电路;Figure 1 is a voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube;

图2是图1中所涉及的n型神经元MOS管和p型神经元MOS管的符号以及它们的电容模型;Fig. 2 is the symbol of n-type neuron MOS tube and p-type neuron MOS tube involved in Fig. 1 and their capacitance models;

图3是图1所示四值施密特触发器电路的电压传输特性曲线{Cn(p)i:Cn(p)(i+1):Cn(p)(i+2)=15:15:1,i∈(1,4,7)};Fig. 3 is the voltage transmission characteristic curve {C n(p)i :C n(p)(i+1) :C n(p)(i+2) = 15:15:1,i∈(1,4,7)};

图4是图1所示四值施密特触发器电路的电压传输特性曲线{Cn(p)i:Cn(p)(i+1):Cn(p)(i+2)=6:6:1,i∈(1,4,7)}。Fig. 4 is the voltage transfer characteristic curve {C n(p)i :C n(p)(i+1) :C n(p)(i+2) = 6:6:1, i ∈ (1,4,7)}.

具体实施方式 Detailed ways

实施例1、图1给出了一种基于神经元MOS管的电压型四值施密特触发器电路, 包括阈0.5电路11、阈1.5电路12、阈2.5电路13和四值信号传输控制电路14;阈0.5电路11分别连接有电源VDD、电源V2以及输入信号端Vin;阈1.5电路12分别连接有电源VDD、电源V2、电源V1以及输入信号端Vin;阈2.5电路13分别连接有电源VDD、电源V1以及输入信号端Vin;四值信号传输控制电路14分别连接有电源VDD、电源V1、电源V2以及输出信号端Vout;阈0.5电路11、阈1.5电路12以及阈2.5电路13分别与四值信号传输控制电路14相连接。具体的连接方式如下:Embodiment 1, Figure 1 shows a voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube, including a threshold 0.5 circuit 11, a threshold 1.5 circuit 12, a threshold 2.5 circuit 13 and a four-value signal transmission control circuit 14. Threshold 0.5 circuit 11 is respectively connected to power supply V DD , power supply V 2 and input signal terminal V in ; threshold 1.5 circuit 12 is respectively connected to power supply V DD , power supply V 2 , power supply V 1 and input signal terminal V in ; threshold 2.5 Circuit 13 is respectively connected with power supply V DD , power supply V 1 and input signal terminal V in ; four-value signal transmission control circuit 14 is respectively connected with power supply V DD , power supply V 1 , power supply V 2 and output signal terminal V out ; threshold 0.5 circuit 11. The threshold 1.5 circuit 12 and the threshold 2.5 circuit 13 are respectively connected to the four-valued signal transmission control circuit 14 . The specific connection method is as follows:

阈0.5电路11包括具有回差特性的阈0.5反相运算电路和阈0.5运算电路;阈0.5反相运算电路和阈0.5运算电路由互补型的阈0.5反相器、普通二值 CMOS反相器和反馈电路构成;互补型阈0.5反相器包括神经元pMOS管mp1和神经元nMOS管mn1;普通二值CMOS反相器包括pMOS管mp2和nMOS管mn2The threshold 0.5 circuit 11 includes a threshold 0.5 inversion operation circuit and a threshold 0.5 operation circuit with hysteresis characteristics; the threshold 0.5 inversion operation circuit and the threshold 0.5 operation circuit are composed of complementary threshold 0.5 inverters and common binary CMOS inverters and a feedback circuit; the complementary threshold 0.5 inverter includes neuron pMOS transistor m p1 and neuron nMOS transistor m n1 ; the ordinary binary CMOS inverter includes pMOS transistor m p2 and nMOS transistor m n2 .

神经元pMOS管mp1的源极接电源VDD,神经元pMOS管mp1的漏极接神经元nMOS管mn1的漏极, 神经元pMOS管mp1有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp1、电容Cp2和电容Cp3;神经元nMOS管mn1的源极接地,神经元nMOS管mn1有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn1、电容Cn2和电容Cn3;CMOS反相器中pMOS管mp2的源极接电源VDD,pMOS管mp2的漏极接CMOS反相器中nMOS管mn2的漏极,nMOS管mn2的源极接地; CMOS反相器中pMOS管mp2的栅极与nMOS管mn2的栅极相接作为CMOS反相器的输入端;CMOS反相器的输入端与神经元pMOS管mp1的漏极和神经元nMOS管mn1的漏极相连接;神经元nMOS管mn1的一个栅输入端和神经元pMOS管mp1的一个栅输入端与输入信号端Vin相接;神经元pMOS管mp1的另一个栅输入端与电源VDD相连接,神经元pMOS管mp1的剩余一个输入栅与CMOS反相器中pMOS管mp2的漏极和nMOS管mn2的漏极相接形成正反馈电路;神经元nMOS管mn1的另一个栅输入端接电源V2,神经元nMOS管mn1的剩余一个输入栅与CMOS反相器中pMOS管mp2的漏极和nMOS管mn2的漏极相接形成正反馈电路。The source of the neuron pMOS transistor m p1 is connected to the power supply V DD , the drain of the neuron pMOS transistor m p1 is connected to the drain of the neuron nMOS transistor m n1 , and the neuron pMOS transistor m p1 has three gate input terminals. These three inputs The coupling capacitances between the gate and the floating gate are capacitance C p1 , capacitance C p2 and capacitance C p3 respectively; the source of the neuron nMOS transistor m n1 is grounded, and the neuron nMOS transistor m n1 has three gate input terminals. The coupling capacitances between the input gate and the floating gate are capacitance C n1 , capacitance C n2 and capacitance C n3 respectively; in the CMOS inverter, the source of pMOS transistor m p2 is connected to power supply V DD , and the drain of pMOS transistor m p2 is connected to The drain of the nMOS transistor m n2 in the CMOS inverter, and the source of the nMOS transistor m n2 are grounded; the gate of the pMOS transistor m p2 in the CMOS inverter is connected to the gate of the nMOS transistor m n2 as the gate of the CMOS inverter Input terminal; the input terminal of the CMOS inverter is connected to the drain of the neuron pMOS transistor m p1 and the drain of the neuron nMOS transistor m n1 ; a gate input terminal of the neuron nMOS transistor m n1 is connected to the neuron pMOS transistor m One gate input terminal of p1 is connected to the input signal terminal V in ; the other gate input terminal of the neuron pMOS transistor m p1 is connected to the power supply V DD , and the remaining input gate of the neuron pMOS transistor m p1 is connected to the CMOS inverter The drain of the middle pMOS transistor m p2 is connected to the drain of the nMOS transistor m n2 to form a positive feedback circuit; the other gate input terminal of the neuron nMOS transistor m n1 is connected to the power supply V 2 , and the remaining input of the neuron nMOS transistor m n1 The gate is connected with the drain of the pMOS transistor m p2 and the drain of the nMOS transistor m n2 in the CMOS inverter to form a positive feedback circuit.

阈1.5电路12包括具有回差特性的阈1.5反相运算电路和阈1.5运算电路;阈1.5反相运算电路和阈1.5运算电路由互补型的阈1.5反相器、普通二值CMOS反相器以及反馈电路组成;互补型阈1.5反相器包括神经元pMOS管mp3和神经元nMOS管mn3;普通二值CMOS反相器包括pMOS管mp4和nMOS管mn4The threshold 1.5 circuit 12 includes a threshold 1.5 inversion operation circuit and a threshold 1.5 operation circuit with hysteresis characteristics; the threshold 1.5 inversion operation circuit and the threshold 1.5 operation circuit are composed of complementary threshold 1.5 inverters and common binary CMOS inverters and a feedback circuit; the complementary threshold 1.5 inverter includes neuron pMOS transistor m p3 and neuron nMOS transistor m n3 ; the common binary CMOS inverter includes pMOS transistor m p4 and nMOS transistor m n4 .

神经元pMOS管mp3的源极接电源VDD,神经元pMOS管mp3的漏极接神经元nMOS管mn3的漏极,神经元pMOS管mp3有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp4、电容Cp5和电容Cp6;神经元nMOS管mn3的源极接地,神经元nMOS管mn3有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn4、电容Cn5和电容Cn6;CMOS反相器中pMOS管mp4的源极接电源VDD,pMOS管mp4的漏极接CMOS反相器中nMOS管mn4的漏极,nMOS管mn4的源极接地;CMOS反相器中pMOS管mp4的栅极与nMOS管mn4的栅极相接作为CMOS反相器的输入端;CMOS反相器的输入端与神经元pMOS管mp3的漏极和神经元nMOS管mn3的漏极相连接;神经元nMOS管mn3的一个栅输入端和神经元pMOS管mp3的一个栅输入端与输入信号端Vin相接;神经元pMOS管mp3的另一个栅输入端接电源V2,神经元pMOS管mp3的剩余一个输入栅与CMOS反相器中pMOS管mp4的漏极和nMOS管mn4的漏极相接形成正反馈电路;神经元nMOS管mn3的另一个栅输入端接电源V1,神经元nMOS管mn3的剩余一个输入栅与CMOS反相器中pMOS管mp4的漏极和nMOS管mn4的漏极相接形成正反馈电路。The source of the neuron pMOS transistor m p3 is connected to the power supply V DD , the drain of the neuron pMOS transistor m p3 is connected to the drain of the neuron nMOS transistor m n3 , and the neuron pMOS transistor m p3 has three gate input terminals. The coupling capacitances between the gate and the floating gate are capacitance C p4 , capacitance C p5 and capacitance C p6 respectively; the source of the neuron nMOS transistor m n3 is grounded, and the neuron nMOS transistor m n3 has three gate input terminals. The coupling capacitors between the input gate and the floating gate are capacitor C n4 , capacitor C n5 and capacitor C n6 respectively; in the CMOS inverter, the source of pMOS transistor m p4 is connected to the power supply V DD , and the drain of pMOS transistor m p4 is connected to The drain of the nMOS transistor m n4 in the CMOS inverter, and the source of the nMOS transistor m n4 are grounded; the gate of the pMOS transistor m p4 in the CMOS inverter is connected to the gate of the nMOS transistor m n4 as the gate of the CMOS inverter Input terminal; the input terminal of the CMOS inverter is connected to the drain of the neuron pMOS transistor m p3 and the drain of the neuron nMOS transistor m n3 ; a gate input terminal of the neuron nMOS transistor m n3 is connected to the neuron pMOS transistor m One gate input terminal of p3 is connected to the input signal terminal V in ; the other gate input terminal of the neuron pMOS transistor m p3 is connected to the power supply V 2 , and the remaining input gate of the neuron pMOS transistor m p3 is connected to the pMOS in the CMOS inverter The drain of the tube m p4 is connected to the drain of the nMOS tube m n4 to form a positive feedback circuit; the other gate input terminal of the neuron nMOS tube m n3 is connected to the power supply V 1 , and the remaining input gate of the neuron nMOS tube m n3 is connected to In the CMOS inverter, the drain of the pMOS transistor m p4 is connected to the drain of the nMOS transistor m n4 to form a positive feedback circuit.

阈2.5电路13包括具有回差特性的阈2.5反相运算电路和阈2.5运算电路;阈2.5反相运算电路和阈2.5运算电路由互补型的阈2.5反相器、普通二值CMOS反相器以及反馈电路组成;阈2.5反相器包括神经元pMOS管mp5和神经元nMOS管mn5;普通二值 CMOS反相器包括pMOS管mp6和nMOS管mn6The threshold 2.5 circuit 13 includes a threshold 2.5 inverting operation circuit and a threshold 2.5 operation circuit with hysteresis characteristics; the threshold 2.5 inversion operation circuit and the threshold 2.5 operation circuit are composed of complementary threshold 2.5 inverters and common binary CMOS inverters and a feedback circuit; the threshold 2.5 inverter includes neuron pMOS transistor m p5 and neuron nMOS transistor m n5 ; the ordinary binary CMOS inverter includes pMOS transistor m p6 and nMOS transistor m n6 .

神经元pMOS管mp5的源极接电源VDD,神经元pMOS管mp5的漏极接神经元nMOS管mn5的漏极,神经元pMOS管mp5有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp7、电容Cp8和电容Cp9;神经元nMOS管mn5的源极接地,神经元nMOS管mn5有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn7、电容Cn8和电容Cn9;CMOS反相器中pMOS管mp6的源极接电源VDD,pMOS管mp6的漏极接CMOS反相器中nMOS管mn6的漏极,nMOS管mn6的源极接地;CMOS反相器中pMOS管mp6的栅极与nMOS管mn6的栅极相接作为CMOS反相器的输入端;CMOS反相器的输入端与神经元pMOS管mp5的漏极和神经元nMOS管mn5的漏极相连接;神经元nMOS管mn5的一个栅输入端和神经元pMOS管mp5的一个栅输入端与输入信号端Vin相接,神经元pMOS管mp5的另一个栅输入端接电源V1,神经元pMOS管mp5的剩余一个输入栅与CMOS反相器中pMOS管mp6的漏极和nMOS管mn6的漏极相接形成正反馈电路;神经元nMOS管mn5的另一个栅输入端接地,神经元nMOS管mn5的剩余一个输入栅与CMOS反相器中pMOS管mp6的漏极和nMOS管mn6的漏极相接形成正反馈电路。The source of the neuron pMOS transistor m p5 is connected to the power supply V DD , the drain of the neuron pMOS transistor m p5 is connected to the drain of the neuron nMOS transistor m n5 , and the neuron pMOS transistor m p5 has three gate input terminals. The coupling capacitances between the gate and the floating gate are capacitance C p7 , capacitance C p8 and capacitance C p9 respectively; the source of the neuron nMOS transistor m n5 is grounded, and the neuron nMOS transistor m n5 has three gate input terminals, the three The coupling capacitors between the input gate and the floating gate are capacitor C n7 , capacitor C n8 and capacitor C n9 respectively; the source of pMOS transistor m p6 in the CMOS inverter is connected to the power supply V DD , and the drain of pMOS transistor m p6 is connected to The drain of the nMOS transistor m n6 in the CMOS inverter, the source of the nMOS transistor m n6 is grounded; the gate of the pMOS transistor m p6 in the CMOS inverter is connected to the gate of the nMOS transistor m n6 as the gate of the CMOS inverter Input terminal; the input terminal of the CMOS inverter is connected to the drain of the neuron pMOS transistor m p5 and the drain of the neuron nMOS transistor m n5 ; a gate input terminal of the neuron nMOS transistor m n5 is connected to the neuron pMOS transistor m One gate input terminal of p5 is connected to the input signal terminal V in , the other gate input terminal of the neuron pMOS transistor m p5 is connected to the power supply V 1 , and the remaining input gate of the neuron pMOS transistor m p5 is connected to the pMOS in the CMOS inverter The drain of the tube m p6 is connected to the drain of the nMOS tube m n6 to form a positive feedback circuit; the other gate input terminal of the neuron nMOS tube m n5 is grounded, and the remaining input gate of the neuron nMOS tube m n5 is reversed to the CMOS The drain of the pMOS transistor m p6 in the device is connected to the drain of the nMOS transistor m n6 to form a positive feedback circuit.

四值信号传输控制电路(14)由pMOS管mp7、pMOS管mp8、pMOS管mp9和nMOS管mn7、nMOS管mn8、nMOS管mn9组成;pMOS管mp7的源极接电源VDD,pMOS管mp7的漏极接nMOS管mn7的漏极,pMOS管mp7的栅极连接至阈0.5电路11中普通二值CMOS反相器中pMOS管mp2和nMOS管mn2的漏极;nMOS管mn7的源极接地,nMOS管mn7的栅极连接至阈2.5电路13中普通二值CMOS反相器中pMOS管mp6和nMOS管mn6的漏极;pMOS管mp8的漏极和pMOS管mp9的源极串接于电源V2与输出信号端Vout之间,pMOS管mp8的栅极连接至阈0.5电路11中神经元pMOS管mp1和神经元nMOS管mn1的漏极;nMOS管mn8的源极和nMOS管mn9的漏极串接于输出信号端Vout与电源V1之间;nMOS管mn9的栅极接至阈2.5电路13中神经元pMOS管mp5和神经元nMOS管mn5的漏极;pMOS管mp9的栅极和nMOS管mn8的栅极相连接至阈1.5电路13中普通二值CMOS反相器中pMOS管mp4和nMOS管mn4的漏极。The four-value signal transmission control circuit (14) is composed of pMOS transistor mp7 , pMOS transistor mp8 , pMOS transistor mp9 , nMOS transistor mn7 , nMOS transistor mn8 , and nMOS transistor mn9 ; the source of pMOS transistor mp7 is connected to the power supply V DD , the drain of the pMOS transistor m p7 is connected to the drain of the nMOS transistor m n7 , and the gate of the pMOS transistor m p7 is connected to the pMOS transistor m p2 and the nMOS transistor m n2 of the ordinary binary CMOS inverter in the circuit 11 with a threshold of 0.5 The drain of the nMOS transistor m n7 is grounded, and the gate of the nMOS transistor m n7 is connected to the drains of the pMOS transistor m p6 and the nMOS transistor m n6 in the ordinary binary CMOS inverter in the threshold 2.5 circuit 13; the pMOS transistor The drain of m p8 and the source of pMOS transistor m p9 are connected in series between the power supply V 2 and the output signal terminal V out , and the gate of pMOS transistor m p8 is connected to the neuron pMOS transistor m p1 and neuron in the threshold 0.5 circuit 11 The drain of the nMOS transistor m n1 ; the source of the nMOS transistor m n8 and the drain of the nMOS transistor m n9 are connected in series between the output signal terminal V out and the power supply V 1 ; the gate of the nMOS transistor m n9 is connected to the threshold 2.5 The drains of the neuron pMOS transistor m p5 and the neuron nMOS transistor m n5 in the circuit 13; the gate of the pMOS transistor m p9 and the gate of the nMOS transistor m n8 are connected to the common binary CMOS inverter in the threshold 1.5 circuit 13 The drains of the middle pMOS transistor m p4 and the nMOS transistor m n4 .

以上所述四值信号传输控制电路部分14中,pMOS管mp7用于传输电源VDD的电压VDD,pMOS管mp8和pMOS管mp9用于传输电源V2的电压V2, nMOS管mn8和nMOS管mn9用于传输电源V1的电压V1,nMOS管mn7用于传输地电压0。0、V1、V2和VDD分别对应于四值逻辑信号(0、1、2、3)。In the above-mentioned four-valued signal transmission control circuit part 14, the pMOS transistor m p7 is used to transmit the voltage V DD of the power supply V DD , the pMOS transistor m p8 and pMOS transistor m p9 are used to transmit the voltage V 2 of the power supply V 2 , and the nMOS transistor m p7 is used to transmit the voltage V 2 of the power supply V 2 . m n8 and nMOS transistor m n9 are used to transmit the voltage V 1 of the power supply V 1 , and nMOS transistor m n7 is used to transmit the ground voltage 0. 0, V 1 , V 2 and V DD correspond to four-valued logic signals (0, 1 , 2, 3).

神经元MOS管是近年来提出的一种具有高功能度、低功耗和阈值控制灵活等特点的新型器件,人们已在模拟、数字和神经网络等多个领域对它的应用开展了深入研究。这种器件的加工工艺与标准的双层多晶硅CMOS工艺完全兼容,n型神经元MOS管和p型神经元MOS管的符号以及它们的电容模型如图2所示。它具有多个输入栅极和一个浮栅极,其中浮栅由第一层多晶硅形成,多个输入控制栅则由第二层多晶硅形成。输入端与浮栅之间通过电容实现耦合。图中VF表示浮栅上的电压, V0为衬底电压, V1、 V2、……、Vn为输入信号电压。C0是浮栅与衬底之间的耦合电容,它主要由栅氧化层电容Cox构成, C1、C2、……、Cn为各个输入栅与浮栅之间的耦合电容。图中D和S分别表示漏极和源极。浮栅上的净电荷QF由下式给出:Neuron MOS tube is a new type of device proposed in recent years with the characteristics of high functionality, low power consumption and flexible threshold control. People have carried out in-depth research on its application in many fields such as analog, digital and neural networks. . The processing technology of this device is fully compatible with the standard double-layer polysilicon CMOS process. The symbols of the n-type neuron MOS transistor and the p-type neuron MOS transistor and their capacitance models are shown in Figure 2. It has a plurality of input gates and a floating gate, wherein the floating gate is formed from a first layer of polysilicon, and the plurality of input control gates are formed from a second layer of polysilicon. The coupling between the input terminal and the floating gate is realized through capacitance. In the figure, V F represents the voltage on the floating gate, V 0 is the substrate voltage, and V 1 , V 2 , ..., V n are the input signal voltages. C 0 is the coupling capacitance between the floating gate and the substrate, which is mainly composed of the gate oxide layer capacitance C ox , and C 1 , C 2 , ..., C n are the coupling capacitances between each input gate and the floating gate. D and S in the figure represent the drain and source, respectively. The net charge QF on the floating gate is given by:

QQ Ff == ΣΣ ii == 00 nno CC ii (( VV Ff -- VV ii )) == VV Ff ΣΣ ii == 00 nno CC ii -- ΣΣ ii == 00 nno CC ii VV ii ;; -- -- -- (( 11 ))

对于n沟道浮栅MOS管,衬底接地,因此V0=0。假设浮栅上的初始电荷为零,根据电荷守恒定律,由上式可得:For n-channel floating gate MOS transistors, the substrate is grounded, so V 0 =0. Assuming that the initial charge on the floating gate is zero, according to the law of conservation of charge, it can be obtained from the above formula:

VV Ff == ΣΣ ii == 11 nno ww ii VV ii ;; -- -- -- (( 22 ))

ww ii == CC ii CC 00 ++ ΣΣ jj == 11 nno CC jj .. -- -- -- (( 33 ))

式中wi为输入端Vi的电容权值。设VTVT为由浮栅端看进去的管子的阈值电压,则当VF> VT时管子导通。由式(2)和(3)可以看出,神经元MOS管能够对各栅极输入信号加权求和,用计算得到的求和结果去控制MOS管的“开”和“关”。注意到它在浮栅上进行的所有输入信号的加权求和运算是利用电容耦合效应以电压模式来进行的,这显示了它具有比电流模式求和技术更优秀的低功耗特性。如果以V1作为输入端,其他输入端作为控制端,则有:In the formula, w i is the capacitance weight of the input terminal V i . Let V T V T be the threshold voltage of the tube seen from the floating gate terminal, then the tube is turned on when V F > V T. It can be seen from formulas (2) and (3) that the neuron MOS transistor can weight and sum the input signals of each gate, and use the calculated summation result to control the "on" and "off" of the MOS transistor. Note that the weighted summation of all input signals it performs on the floating gate is done in voltage mode using capacitive coupling effects, which shows that it has better low power characteristics than current mode summing techniques. If V 1 is used as the input terminal and the other input terminals are used as the control terminal, there are:

VV 11 >> ΣΣ ii == 00 nno CC ii CC 11 VV TT -- CC 22 CC 11 VV 22 -- ·· ·· ·· -- CC nno CC 11 VV nno ;; -- -- -- (( 44 ))

这样,由V1端看进去的管子的阈值电压V* t1可以表示为:In this way, the threshold voltage V * t1 of the tube seen from the V 1 terminal can be expressed as:

VV ** tt 11 == ΣΣ ii == 00 nno CC ii CC 11 VV TT -- CC 22 CC 11 VV 22 -- ·· ·· ·· -- CC nno CC 11 VV nno .. -- -- -- (( 55 ))

上式表明,无需调整VT,只要通过改变耦合电容之间的比例关系或改变控制端电压Vi就可以改变浮栅MOS管相对于输入信号V1的阈值电压,从而控制MOS管的导通和截止。这一特性有效地克服了传统电压型多值逻辑电路为实现具有多个阈值电压的MOS管需要额外的离子注入工序或需同时采用增强型和耗尽型两种MOS管而增加工艺复杂度和设计成本等缺陷。对于p沟道浮栅MOS管,衬底通常接电路中的最高电压源(如VDD),因此式(1)中V0=VDD,式(2)-(5)需作相应修正。The above formula shows that there is no need to adjust V T , as long as the proportional relationship between the coupling capacitors or the control terminal voltage V i is changed, the threshold voltage of the floating gate MOS transistor relative to the input signal V 1 can be changed, thereby controlling the conduction of the MOS transistor and deadline. This feature effectively overcomes the traditional voltage-type multi-valued logic circuit that requires additional ion implantation processes to realize MOS tubes with multiple threshold voltages or the need to use both enhancement-type and depletion-type MOS tubes to increase process complexity and Defects such as design cost. For p-channel floating gate MOS transistors, the substrate is usually connected to the highest voltage source in the circuit (such as V DD ), so V 0 =V DD in formula (1), and formulas (2)-(5) need to be corrected accordingly.

本发明正是利用了神经元MOS管的阈值易于控制这一自然属性,提出了一种新的电压型四值施密特电路设计方案。无需增加特别的电路,仅需通过分别在p型和n型浮栅MOS管中增加一栅输入端就可以方便地实现施密特电路中的再生反馈,这使得所设计的电路具有非常简单的结构。采用具有独立浮栅结构的互补浮栅MOS管方案,保证了电路具有低功耗和高噪声容限的特点。并且,可以通过改变电容耦合系数来方便地调整回差电压。通过增加浮栅MOS管的输入端数,可以非常容易地接入外部控制信号,从而改变施密特电路中的阈值电压。本发明完全基于标准的双层多晶硅CMOS工艺,除了保持电压型电路低功耗的特点之外,新设计具有电路结构简单、回差电压调节容易,以及对阈值电压控制方便和灵活等特点。下面结合附图和实施例对本发明进一步说明,本发明的目的和效果将变得更加明显。The present invention utilizes the natural property that the threshold value of the neuron MOS transistor is easy to control, and proposes a new voltage-type four-value Schmidt circuit design scheme. There is no need to add a special circuit, and the regenerative feedback in the Schmidt circuit can be easily realized only by adding a gate input terminal to the p-type and n-type floating gate MOS transistors, which makes the designed circuit very simple. structure. The scheme of complementary floating gate MOS tube with independent floating gate structure is adopted to ensure that the circuit has the characteristics of low power consumption and high noise tolerance. Moreover, the hysteresis voltage can be adjusted conveniently by changing the capacitive coupling coefficient. By increasing the number of input terminals of the floating gate MOS transistor, it is very easy to access an external control signal, thereby changing the threshold voltage in the Schmidt circuit. The invention is completely based on the standard double-layer polysilicon CMOS technology. In addition to maintaining the characteristics of low power consumption of the voltage type circuit, the new design has the characteristics of simple circuit structure, easy adjustment of hysteresis voltage, and convenient and flexible control of threshold voltage. The present invention will be further described below in conjunction with the accompanying drawings and embodiments, and the purpose and effect of the present invention will become more obvious.

对于图1所示的电路中,具有回差特性的阈0.5电路11、阈1.5电路12和阈2.5电路13(即阈0.5反相运算电路和阈0.5运算电路、阈1.5反相运算电路和阈1.5运算电路以及阈2.5反相运算电路和阈2.5运算电路)的阈值电压由下式给出:For the circuit shown in Figure 1, the threshold 0.5 circuit 11, the threshold 1.5 circuit 12 and the threshold 2.5 circuit 13 (that is, the threshold 0.5 inversion operation circuit and the threshold 0.5 operation circuit, the threshold 1.5 inversion operation circuit and the threshold The threshold voltage of the 1.5 operation circuit and the threshold 2.5 inverting operation circuit and the threshold 2.5 operation circuit) is given by the following formula:

VV THTH == VV DDDD ++ VV ** tptp ++ VV ** tntn KK ** RR 11 ++ KK ** RR ;; -- -- -- (( 66 ))

其中, K * R = K n K p w 2 ni w 2 pi 。Kn和Kp分别为n型和p型浮栅MOS管(n型浮栅MOS管即神经元nMOS管mn1、神经元nMOS管mn3和神经元nMOS管mn5;p型浮栅MOS管即神经元pMOS管mp1、神经元pMOS管mp3和神经元pMOS管mp5)的增益因子,wn(p)i为n型或p型浮栅MOS管输入端的电容权值,由式(3)给出。V* tn和V* tp分别为相对输入端信号Vin的n型和p型浮栅MOS管的等效阈值电压。取K* R=1,式(6)可简化为:in, K * R = K no K p w 2 ni w 2 p . K n and K p are n-type and p-type floating gate MOS tubes respectively (n-type floating gate MOS tubes are neuron nMOS tube m n1 , neuron nMOS tube m n3 and neuron nMOS tube m n5 ; p-type floating gate MOS tube The tube is the gain factor of the neuron pMOS tube m p1 , the neuron pMOS tube m p3 and the neuron pMOS tube m p5 ), w n(p)i is the capacitance weight of the input terminal of the n-type or p-type floating gate MOS tube, which is determined by Formula (3) is given. V * tn and V * tp are equivalent threshold voltages of the n-type and p-type floating gate MOS transistors relative to the input signal V in , respectively. Taking K * R = 1, formula (6) can be simplified as:

VV THTH == VV DDDD ++ VV ** tptp ++ VV ** tntn 22 .. -- -- -- (( 77 ))

对于图1所示的阈0.5反相运算电路和阈0.5运算电路, 假设开始时Vin=0(Vin即为输入信号端的输入信号),那么n型浮栅MOS管mn1(即神经元nMOS管mn1)截止,p型浮栅MOS管mp1(即神经元pMOS管mp1)导通,输出

Figure BDA0000162020199
,V0.5=0,其中
Figure BDA00001620201910
和V0.5分别为阈0.5反相运算电路和阈0.5运算电路的输出电压。随着输入信号端信号Vin的上升,mn1(即神经元nMOS管mn1)渐渐导通,mp1(即神经元pMOS管mp1)渐渐截止,最终导致输出发生状态翻转。由式(7)可求得在输入信号上升时,电路发生状态翻转时的阈值电压为:For the threshold 0.5 inverting operation circuit and threshold 0.5 operation circuit shown in Figure 1, assuming V in = 0 at the beginning (V in is the input signal at the input signal terminal), then the n-type floating gate MOS transistor m n1 (that is, the neuron The nMOS transistor m n1 ) is cut off, the p-type floating gate MOS transistor m p1 (that is, the neuron pMOS transistor m p1 ) is turned on, and the output
Figure BDA0000162020199
, V 0.5 =0, where
Figure BDA00001620201910
and V 0.5 are the output voltages of the threshold 0.5 inverting operation circuit and the threshold 0.5 operation circuit respectively. As the signal V in of the input signal terminal rises, m n1 (that is, the neuron nMOS transistor m n1 ) is gradually turned on, and m p1 (that is, the neuron pMOS transistor m p1 ) is gradually turned off, and finally the output state is reversed. From formula (7), it can be obtained that when the input signal rises, the threshold voltage when the circuit flips state is:

VV THTH (( 0.50.5 ++ )) == 11 22 [[ VV DDDD ++ 11 ww nno 11 VV tntn -- ww nno 22 ww nno 11 VV 22 ++ 11 ww pp 11 VV tptp ++ 11 -- ww pp 11 ww pp 11 VV DDDD -- ww pp 22 ww pp 11 VV DDDD ]] ;; -- -- -- (( 88 ))

其中,Vtn和Vtp分别为n型和p型浮栅MOS管(n型浮栅MOS管即神经元nMOS管mn1、神经元nMOS管mn3和神经元nMOS管mn5;p型浮栅MOS管即神经元pMOS管mp1、神经元pMOS管mp3和神经元pMOS管mp5)的阈值电压,wn(p)i为n型或p型浮栅MOS管输入端的电容权值,由式(3)给出。VTH(0.5+)即为四值施密特电路中对于阈0.5的高阈值电压。一旦由神经元pMOS管mp1和神经元nMOS管mn1构成的互补型阈0.5反相器电路的输出翻转为低电平,就会使由mp2和mn2构成的二值CMOS反相器电路的输出变为高电平。二值CMOS反相器的这一高电平输出信号反馈至前级电路的栅输入端,又进一步加速神经元nMOS管mn1导通和神经元pMOS管mp1截止,从而建立了再生反馈,这一正反馈的结果使得阈0.5反相运算电路的输出电压迅速变为、阈0.5运算电路的输出电压迅速变为V0.5=VDD。当输入信号端信号Vin由高电平下降时,电路将发生相反的状态转变。同理可求得输入信号端信号Vin下降过程中,电路发生翻转时的阈值电压为:Among them, V tn and V tp are n-type and p-type floating gate MOS tubes respectively (n-type floating gate MOS tubes are neuron nMOS tube m n1 , neuron nMOS tube m n3 and neuron nMOS tube m n5 ; p-type floating gate MOS tube The gate MOS transistor is the threshold voltage of the neuron pMOS transistor m p1 , the neuron pMOS transistor m p3 and the neuron pMOS transistor m p5 ), w n(p)i is the capacitance weight of the input terminal of the n-type or p-type floating gate MOS transistor , given by formula (3). V TH(0.5+) is the high threshold voltage for threshold 0.5 in the four-valued Schmitt circuit. Once the output of the complementary threshold 0.5 inverter circuit composed of neuron pMOS transistor m p1 and neuron nMOS transistor m n1 is flipped to low level, the binary CMOS inverter composed of m p2 and m n2 will be made The output of the circuit goes high. The high-level output signal of the binary CMOS inverter is fed back to the gate input terminal of the previous stage circuit, which further accelerates the turn-on of the neuron nMOS transistor m n1 and the cut-off of the neuron pMOS transistor m p1 , thereby establishing regenerative feedback, As a result of this positive feedback, the output voltage of the threshold 0.5 inverting operation circuit quickly becomes , The output voltage of the threshold 0.5 operation circuit quickly changes to V 0.5 =V DD . When the input signal terminal signal V in falls from the high level, the circuit will undergo the opposite state transition. In the same way, the threshold voltage when the circuit flips during the falling process of the input signal terminal signal V in can be obtained as:

VV THTH (( 0.50.5 -- )) == 11 22 [[ VV DDDD ++ 11 ww nno 11 VV tntn -- ww nno 22 ww nno 11 VV 22 -- ww nno 33 ww nno 11 VV DDDD ++ 11 ww pp 11 VV tptp ++ 11 -- ww pp 11 ww pp 11 VV DDDD -- ww pp 22 ww pp 11 VV DDDD -- ww pp 33 ww pp 11 VV DDDD ]] .. -- -- -- (( 99 ))

VTH(0.5-)即为四值施密特电路中相对于阈0.5的低阈值电压。取wp1=w1n,wp2=wn2,wp3=wn3,由式(8)和(9)可求得回差电压为 V H ( 0.5 ) = 2 w n 3 w n 1 V DD = 2 C n 3 C n 1 V DD V TH(0.5-) is the low threshold voltage relative to the threshold 0.5 in the four-valued Schmitt circuit. Take w p1 =w 1n , w p2 =w n2 , w p3 =w n3 , and the hysteresis voltage can be obtained from equations (8) and (9) as V h ( 0.5 ) = 2 w no 3 w no 1 V DD = 2 C no 3 C no 1 V DD .

同理,对于图1所示的阈1.5电路12, 在输入信号上升和下降过程中,电路发生状态转换时的阈值电压分别为:Similarly, for the threshold 1.5 circuit 12 shown in Figure 1, during the rising and falling process of the input signal, the threshold voltages when the circuit undergoes a state transition are respectively:

VV THTH (( 1.51.5 ++ )) == 11 22 [[ VV DDDD ++ 11 ww nno 44 VV tntn -- ww nno 55 ww nno 44 VV 11 ++ 11 ww pp 44 VV tptp ++ 11 -- ww pp 44 ww pp 44 VV DDDD -- ww pp 55 ww pp 44 VV 22 ]] ;; -- -- -- (( 1010 ))

VV THTH (( 1.51.5 -- )) == 11 22 [[ VV DDDD ++ 11 ww nno 44 VV tntn -- ww nno 55 ww nno 44 VV 11 -- ww nno 66 ww nno 44 VV DDDD ++ 11 ww pp 44 VV tptp ++ 11 -- ww pp 44 ww pp 44 VV DDDD -- ww pp 55 ww pp 44 VV 22 -- ww pp 66 ww pp 44 VV DDDD ]] .. -- -- -- (( 1111 ))

其中VTH(1.5+)为四值施密特电路中对于阈1.5的高阈值电压,VTH(1.5-)即为四值施密特电路中相对于阈1.5的低阈值电压。对于图1所示的阈2.5电路13,在输入信号上升和下降过程中,电路发生状态转换时的阈值电压分别为:Among them, V TH(1.5+) is the high threshold voltage for threshold 1.5 in the four-value Schmitt circuit, and V TH(1.5-) is the low threshold voltage for the threshold 1.5 in the four-value Schmitt circuit. For the threshold 2.5 circuit 13 shown in Figure 1, during the rising and falling process of the input signal, the threshold voltages when the circuit undergoes a state transition are respectively:

VV THTH (( 2.52.5 ++ )) == 11 22 [[ VV DDDD ++ 11 ww nno 77 VV tntn ++ 11 ww pp 77 VV tptp ++ 11 -- ww pp 77 ww pp 77 VV DDDD -- ww pp 88 ww pp 77 VV 11 ]] ;; -- -- -- (( 1212 ))

VV THTH (( 2.52.5 -- )) == 11 22 [[ VV DDDD ++ 11 ww nno 77 VV tntn -- ww nno 99 ww nno 77 VV DDDD ++ 11 ww pp 77 VV tptp ++ 11 -- ww pp 77 ww pp 77 VV DDDD -- ww pp 88 ww pp 77 VV 11 -- ww pp 99 ww pp 77 VV DDDD ]] .. -- -- -- (( 1313 ))

其中VTH(2.5+)为四值施密特电路中对于阈2.5的高阈值电压,VTH(2.5-)即为四值施密特电路中相对于阈2.5的低阈值电压。上述式(8)-(13)表明,通过改变耦合电容之间的比例关系或改变控制端电压就可以改变该四值施密特电路的三个回差电压。采用TSMC 0.35μm双层多晶硅CMOS工艺参数,并取电源VDD的电压VDD=3.3V,Cn(p)i:Cn(p)(i+1):Cn(p)(i+2)=15:15:1,i∈(1,4,7),图3给出了经HSPICE模拟得到的电压传输特性曲线。模拟得到的回差电压值与理论值之间的误差小于5%。若取Cn(p)i:Cn(p)(i+1):Cn(p)(i+2)=6:6:1,i∈(1,4,7),采用相同工艺参数,经HSPICE模拟得到的电压传输特性曲线如图4所示。模拟结果表明,通过改变栅输入端的耦合电容比例系数,可以方便地调整施密特触发器的回差电压。Among them, V TH(2.5+) is the high threshold voltage for the threshold 2.5 in the four-value Schmitt circuit, and V TH(2.5-) is the low threshold voltage for the threshold 2.5 in the four-value Schmitt circuit. The above formulas (8)-(13) show that the three hysteresis voltages of the four-valued Schmidt circuit can be changed by changing the proportional relationship between the coupling capacitors or changing the control terminal voltage. Adopt TSMC 0.35μm double-layer polysilicon CMOS process parameters, and take the voltage V DD =3.3V of the power supply V DD , C n(p)i :C n(p)(i+1) :C n(p)(i+ 2) =15:15:1, i∈(1,4,7), Figure 3 shows the voltage transmission characteristic curve obtained by HSPICE simulation. The error between the hysteresis voltage value obtained by simulation and the theoretical value is less than 5%. If take C n(p)i :C n(p)(i+1) :C n(p)(i+2) =6:6:1,i∈(1,4,7), use the same process Parameters, the voltage transfer characteristic curve obtained by HSPICE simulation is shown in Figure 4. The simulation results show that the hysteresis voltage of the Schmitt trigger can be easily adjusted by changing the proportional coefficient of the coupling capacitance at the gate input terminal.

本发明公开了一种基于神经元MOS管的电压型四值施密特触发器电路,电路仅需6个3输入端神经元MOS管(即神经元nMOS管mn1、神经元nMOS管mn3、神经元nMOS管mn5、神经元pMOS管mp1、神经元pMOS管mp3、神经元pMOS管mp5)和12个普通MOS管(即nMOS管mn2、nMOS管mn4、nMOS管mn6、nMOS管mn7、nMOS管mn8、nMOS管mn9、pMOS管mp2、pMOS管mp4、pMOS管mp6、pMOS管mp7、pMOS管mp8、pMOS管mp9)。因此,电路结构十分简单。与以往电压型多值施密特电路设计中需采用多级离子注入技术来实现多个阈值电压的复杂工艺不同, 新设计方案完全基于标准的双层多晶硅CMOS工艺,并且四值施密特触发器电路中的三个回差电压值可以通过改变电容耦合系数比来调整。采用具有独立浮栅结构的互补神经元MOS管方案,保证了电路具有低功耗和高噪声容限的特点。The invention discloses a voltage-type four-value Schmitt trigger circuit based on neuron MOS tubes. The circuit only needs six 3-input neuron MOS tubes (that is, neuron nMOS tube m n1 , neuron nMOS tube m n3 , neuron nMOS tube m n5 , neuron pMOS tube m p1 , neuron pMOS tube m p3 , neuron pMOS tube m p5 ) and 12 common MOS tubes (namely nMOS tube m n2 , nMOS tube m n4 , nMOS tube m n6 , nMOS tube m n7 , nMOS tube m n8 , nMOS tube m n9 , pMOS tube m p2 , pMOS tube m p4 , pMOS tube m p6 , pMOS tube m p7 , pMOS tube m p8 , pMOS tube m p9 ). Therefore, the circuit structure is very simple. Different from the complex process of using multi-level ion implantation technology to achieve multiple threshold voltages in the previous voltage-type multi-value Schmitt circuit design, the new design scheme is completely based on the standard double-layer polysilicon CMOS process, and the four-value Schmitt trigger The three hysteresis voltage values in the converter circuit can be adjusted by changing the capacitive coupling coefficient ratio. The scheme of complementary neuron MOS tube with independent floating gate structure is adopted to ensure that the circuit has the characteristics of low power consumption and high noise tolerance.

最后,还需要注意的是,以上列举的仅是本发明的一个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should also be noted that what is listed above is only a specific embodiment of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.

Claims (2)

1.一种基于神经元MOS管的电压型四值施密特触发器电路;其特征是:所述基于神经元MOS管的电压型四值施密特触发器电路包括阈0.5电路(11)、阈1.5电路(12)、阈2.5电路(13)和四值信号传输控制电路(14);1. A voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube; it is characterized in that: the voltage-type four-value Schmitt trigger circuit based on a neuron MOS tube includes a threshold 0.5 circuit (11) , a threshold 1.5 circuit (12), a threshold 2.5 circuit (13) and a four-valued signal transmission control circuit (14); 所述阈0.5电路(11)分别连接有电源VDD、电源V2以及输入信号端VinThe threshold 0.5 circuit (11) is respectively connected to a power supply V DD , a power supply V 2 and an input signal terminal V in ; 所述阈1.5电路(12)分别连接有电源VDD、电源V2、电源V1以及输入信号端VinThe threshold 1.5 circuit (12) is respectively connected with power supply V DD , power supply V 2 , power supply V 1 and input signal terminal V in ; 所述阈2.5电路(13)分别连接有电源VDD、电源V1以及输入信号端VinThe threshold 2.5 circuit (13) is respectively connected to a power supply V DD , a power supply V 1 and an input signal terminal V in ; 所述四值信号传输控制电路(14)分别连接有电源VDD、电源V1、电源V2以及输出信号端VoutThe four-valued signal transmission control circuit (14) is respectively connected to a power supply V DD , a power supply V 1 , a power supply V 2 and an output signal terminal V out ; 所述阈0.5电路(11)、阈1.5电路(12)以及阈2.5电路(13)分别与四值信号传输控制电路(14)相连接。The threshold 0.5 circuit (11), threshold 1.5 circuit (12) and threshold 2.5 circuit (13) are respectively connected to the four-value signal transmission control circuit (14). 2.如权利要求1所述的一种基于神经元MOS管的电压型四值施密特触发器电路,其特征是:所述阈0.5电路(11)包括具有回差特性的阈0.5反相运算电路和阈0.5运算电路;2. A voltage-type four-value Schmitt trigger circuit based on a neuron MOS transistor according to claim 1, characterized in that: the threshold 0.5 circuit (11) includes a threshold 0.5 inversion with hysteresis characteristics Operation circuit and threshold 0.5 operation circuit; 所述阈0.5反相运算电路和阈0.5运算电路由互补型的阈0.5反相器、普通二值 CMOS反相器和反馈电路构成;所述互补型阈0.5反相器包括神经元pMOS管mp1和神经元nMOS管mn1;所述普通二值CMOS反相器包括pMOS管mp2和nMOS管mn2The threshold 0.5 inversion operation circuit and the threshold 0.5 operation circuit are composed of a complementary threshold 0.5 inverter, a common binary CMOS inverter and a feedback circuit; the complementary threshold 0.5 inverter includes a neuron pMOS tube m p1 and neuron nMOS tube m n1 ; the common binary CMOS inverter includes pMOS tube m p2 and nMOS tube m n2 ; 所述神经元pMOS管mp1的源极接电源VDD,神经元pMOS管mp1的漏极接所述神经元nMOS管mn1的漏极, 神经元pMOS管mp1有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp1、电容Cp2和电容Cp3;所述神经元nMOS管mn1的源极接地,神经元nMOS管mn1有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn1、电容Cn2和电容Cn3;所述CMOS反相器中pMOS管mp2的源极接电源VDD,pMOS管mp2的漏极接CMOS反相器中nMOS管mn2的漏极,nMOS管mn2的源极接地; 所述CMOS反相器中pMOS管mp2的栅极与nMOS管mn2的栅极相接作为CMOS反相器的输入端;所述CMOS反相器的输入端与所述神经元pMOS管mp1的漏极和所述神经元nMOS管mn1的漏极相连接;所述神经元nMOS管mn1的一个栅输入端和所述神经元pMOS管mp1的一个栅输入端与输入信号端Vin相接;所述神经元pMOS管mp1的另一个栅输入端与电源VDD相连接,神经元pMOS管mp1的剩余一个输入栅与所述CMOS反相器中pMOS管mp2的漏极和nMOS管mn2的漏极相接形成正反馈电路;所述神经元nMOS管mn1的另一个栅输入端接电源V2,神经元nMOS管mn1的剩余一个输入栅与所述CMOS反相器中pMOS管mp2的漏极和nMOS管mn2的漏极相接形成正反馈电路;The source of the neuron pMOS transistor m p1 is connected to the power supply V DD , the drain of the neuron pMOS transistor m p1 is connected to the drain of the neuron nMOS transistor m n1 , and the neuron pMOS transistor m p1 has three gate input terminals, The coupling capacitances between the three input gates and the floating gate are capacitance C p1 , capacitance C p2 and capacitance C p3 respectively; the source of the neuron nMOS transistor m n1 is grounded, and the neuron nMOS transistor m n1 has three gates At the input end, the coupling capacitances between the three input gates and the floating gate are capacitance C n1 , capacitance C n2 and capacitance C n3 respectively; the source of the pMOS transistor m p2 in the CMOS inverter is connected to the power supply V DD , The drain of the pMOS transistor m p2 is connected to the drain of the nMOS transistor m n2 in the CMOS inverter, and the source of the nMOS transistor m n2 is grounded; the gate of the pMOS transistor m p2 in the CMOS inverter is connected to the gate of the nMOS transistor m n2 The grid is connected as the input end of the CMOS inverter; the input end of the CMOS inverter is connected to the drain of the neuron pMOS transistor m p1 and the drain of the neuron nMOS transistor m n1 ; A grid input terminal of the neuron nMOS transistor m n1 and a grid input terminal of the neuron pMOS transistor m p1 are connected to the input signal terminal V in ; the other grid input terminal of the neuron pMOS transistor m p1 is connected to The power supply V DD is connected, and the remaining input gate of the neuron pMOS transistor m p1 is connected with the drain of the pMOS transistor m p2 in the CMOS inverter and the drain of the nMOS transistor m n2 to form a positive feedback circuit; the neuron The other gate input terminal of the nMOS transistor m n1 is connected to the power supply V 2 , and the remaining input gate of the neuron nMOS transistor m n1 is connected to the drain of the pMOS transistor m p2 and the drain of the nMOS transistor m n2 in the CMOS inverter connected to form a positive feedback circuit; 所述阈1.5电路(12)包括具有回差特性的阈1.5反相运算电路和阈1.5运算电路;所述阈1.5反相运算电路和阈1.5运算电路由互补型的阈1.5反相器、普通二值CMOS反相器以及反馈电路组成;所述互补型阈1.5反相器包括神经元pMOS管mp3和神经元nMOS管mn3;所述普通二值CMOS反相器包括pMOS管mp4和nMOS管mn4The threshold 1.5 circuit (12) includes a threshold 1.5 inversion operation circuit and a threshold 1.5 operation circuit with hysteresis characteristics; the threshold 1.5 inversion operation circuit and the threshold 1.5 operation circuit are composed of complementary threshold 1.5 inverters, common Composed of a binary CMOS inverter and a feedback circuit; the complementary threshold 1.5 inverter includes a neuron pMOS transistor m p3 and a neuron nMOS transistor m n3 ; the ordinary binary CMOS inverter includes pMOS transistors m p4 and nMOS tube m n4 ; 所述神经元pMOS管mp3的源极接电源VDD,神经元pMOS管mp3的漏极接神经元nMOS管mn3的漏极,神经元pMOS管mp3有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp4、电容Cp5和电容Cp6;所述神经元nMOS管mn3的源极接地,神经元nMOS管mn3有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn4、电容Cn5和电容Cn6;所述CMOS反相器中pMOS管mp4的源极接电源VDD,pMOS管mp4的漏极接CMOS反相器中nMOS管mn4的漏极,nMOS管mn4的源极接地;所述CMOS反相器中pMOS管mp4的栅极与nMOS管mn4的栅极相接作为CMOS反相器的输入端;所述CMOS反相器的输入端与所述神经元pMOS管mp3的漏极和所述神经元nMOS管mn3的漏极相连接;所述神经元nMOS管mn3的一个栅输入端和所述神经元pMOS管mp3的一个栅输入端与输入信号端Vin相接;所述神经元pMOS管mp3的另一个栅输入端接电源V2,神经元pMOS管mp3的剩余一个输入栅与所述CMOS反相器中pMOS管mp4的漏极和nMOS管mn4的漏极相接形成正反馈电路;所述神经元nMOS管mn3的另一个栅输入端接电源V1,神经元nMOS管mn3的剩余一个输入栅与所述CMOS反相器中pMOS管mp4的漏极和nMOS管mn4的漏极相接形成正反馈电路;The source of the neuron pMOS transistor m p3 is connected to the power supply V DD , the drain of the neuron pMOS transistor m p3 is connected to the drain of the neuron nMOS transistor m n3 , and the neuron pMOS transistor m p3 has three gate input terminals. The coupling capacitances between each input gate and the floating gate are capacitance C p4 , capacitance C p5 and capacitance C p6 respectively; the source of the neuron nMOS transistor m n3 is grounded, and the neuron nMOS transistor m n3 has three gate input terminals , the coupling capacitances between the three input gates and the floating gate are capacitance C n4 , capacitance C n5 and capacitance C n6 respectively; the source of pMOS transistor m p4 in the CMOS inverter is connected to the power supply V DD , and the pMOS transistor The drain of m p4 is connected to the drain of nMOS transistor m n4 in the CMOS inverter, and the source of nMOS transistor m n4 is grounded; the gate of pMOS transistor m p4 in the CMOS inverter is connected to the gate of nMOS transistor m n4 connected as the input end of the CMOS inverter; the input end of the CMOS inverter is connected with the drain of the neuron pMOS transistor m p3 and the drain of the neuron nMOS transistor m n3 ; the neuron A grid input terminal of the nMOS transistor m n3 and a grid input terminal of the neuron pMOS transistor m p3 are connected to the input signal terminal V in ; the other grid input terminal of the neuron pMOS transistor m p3 is connected to the power supply V 2. The remaining input gate of the neuron pMOS transistor m p3 is connected to the drain of the pMOS transistor m p4 in the CMOS inverter and the drain of the nMOS transistor m n4 to form a positive feedback circuit; the neuron nMOS transistor m The other gate input terminal of n3 is connected to the power supply V 1 , and the remaining input gate of the neuron nMOS transistor m n3 is connected to the drain of the pMOS transistor m p4 in the CMOS inverter and the drain of the nMOS transistor m n4 to form a positive feedback circuit; 所述阈2.5电路(13)包括具有回差特性的阈2.5反相运算电路和阈2.5运算电路;所述阈2.5反相运算电路和阈2.5运算电路由互补型的阈2.5反相器、普通二值CMOS反相器以及反馈电路组成;所述阈2.5反相器包括神经元pMOS管mp5和神经元nMOS管mn5;所述普通二值 CMOS反相器包括pMOS管mp6和nMOS管mn6The threshold 2.5 circuit (13) includes a threshold 2.5 inversion operation circuit and a threshold 2.5 operation circuit with hysteresis characteristics; the threshold 2.5 inversion operation circuit and the threshold 2.5 operation circuit are composed of complementary threshold 2.5 inverters, common Composed of a binary CMOS inverter and a feedback circuit; the threshold 2.5 inverter includes a neuron pMOS transistor m p5 and a neuron nMOS transistor m n5 ; the common binary CMOS inverter includes a pMOS transistor m p6 and an nMOS transistor m n6 ; 所述神经元pMOS管mp5的源极接电源VDD,神经元pMOS管mp5的漏极接所述神经元nMOS管mn5的漏极,神经元pMOS管mp5有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cp7、电容Cp8和电容Cp9;所述神经元nMOS管mn5的源极接地,神经元nMOS管mn5有三个栅输入端,这三个输入栅极与浮栅之间的耦合电容分别为电容Cn7、电容Cn8和电容Cn9;所述CMOS反相器中pMOS管mp6的源极接电源VDD,pMOS管mp6的漏极接CMOS反相器中nMOS管mn6的漏极,nMOS管mn6的源极接地;所述CMOS反相器中pMOS管mp6的栅极与nMOS管mn6的栅极相接作为CMOS反相器的输入端;所述CMOS反相器的输入端与所述神经元pMOS管mp5的漏极和所述神经元nMOS管mn5的漏极相连接;所述神经元nMOS管mn5的一个栅输入端和所述神经元pMOS管mp5的一个栅输入端与输入信号端Vin相接,所述神经元pMOS管mp5的另一个栅输入端接电源V1,神经元pMOS管mp5的剩余一个输入栅与所述CMOS反相器中pMOS管mp6的漏极和nMOS管mn6的漏极相接形成正反馈电路;所述神经元nMOS管mn5的另一个栅输入端接地,神经元nMOS管mn5的剩余一个输入栅与所述CMOS反相器中pMOS管mp6的漏极和nMOS管mn6的漏极相接形成正反馈电路;The source of the neuron pMOS transistor m p5 is connected to the power supply V DD , the drain of the neuron pMOS transistor m p5 is connected to the drain of the neuron nMOS transistor m n5 , and the neuron pMOS transistor m p5 has three gate input terminals, The coupling capacitances between the three input gates and the floating gate are capacitance C p7 , capacitance C p8 and capacitance C p9 respectively; the source of the neuron nMOS transistor m n5 is grounded, and the neuron nMOS transistor m n5 has three gates At the input end, the coupling capacitors between the three input gates and the floating gate are capacitor C n7 , capacitor C n8 and capacitor C n9 respectively; the source of pMOS transistor m p6 in the CMOS inverter is connected to the power supply V DD , The drain of the pMOS transistor m p6 is connected to the drain of the nMOS transistor m n6 in the CMOS inverter, and the source of the nMOS transistor m n6 is grounded; the gate of the pMOS transistor m p6 in the CMOS inverter is connected to the gate of the nMOS transistor m n6 The grid is connected as the input end of the CMOS inverter; the input end of the CMOS inverter is connected with the drain of the neuron pMOS transistor m p5 and the drain of the neuron nMOS transistor m n5 ; One gate input terminal of the neuron nMOS transistor m n5 and one gate input terminal of the neuron pMOS transistor m p5 are connected to the input signal terminal V in , and the other gate input terminal of the neuron pMOS transistor m p5 is connected to Power supply V 1 , the remaining input gate of the neuron pMOS transistor m p5 is connected with the drain of the pMOS transistor m p6 in the CMOS inverter and the drain of the nMOS transistor m n6 to form a positive feedback circuit; the neuron nMOS The other gate input terminal of the transistor m n5 is grounded, and the remaining input gate of the neuron nMOS transistor m n5 is connected to the drain of the pMOS transistor m p6 and the drain of the nMOS transistor m n6 in the CMOS inverter to form a positive feedback circuit; 所述四值信号传输控制电路(14)由pMOS管mp7、pMOS管mp8、pMOS管mp9和nMOS管mn7、nMOS管mn8、nMOS管mn9组成;The four-value signal transmission control circuit (14) is composed of pMOS transistor m p7 , pMOS transistor m p8 , pMOS transistor m p9 , nMOS transistor m n7 , nMOS transistor m n8 , and nMOS transistor m n9 ; 所述pMOS管mp7的源极接电源VDD,pMOS管mp7的漏极接所述nMOS管mn7的漏极,pMOS管mp7的栅极连接至所述阈0.5电路(11)中普通二值CMOS反相器中pMOS管mp2和nMOS管mn2的漏极;所述nMOS管mn7的源极接地,nMOS管mn7的栅极连接至所述阈2.5电路(13)中普通二值CMOS反相器中pMOS管mp6和nMOS管mn6的漏极;所述pMOS管mp8的漏极和所述pMOS管mp9的源极串接于电源V2与输出信号端Vout之间,pMOS管mp8的栅极连接至所述阈0.5电路(11)中神经元pMOS管mp1和神经元nMOS管mn1的漏极;所述nMOS管mn8的源极和nMOS管mn9的漏极串接于输出信号端Vout与电源V1之间;所述nMOS管mn9的栅极接至所述阈2.5电路(13)中神经元pMOS管mp5和神经元nMOS管mn5的漏极;所述pMOS管mp9的栅极和所述nMOS管mn8的栅极相连接至所述阈1.5电路(13)中普通二值CMOS反相器中pMOS管mp4和nMOS管mn4的漏极。The source of the pMOS transistor m p7 is connected to the power supply V DD , the drain of the pMOS transistor m p7 is connected to the drain of the nMOS transistor m n7 , and the gate of the pMOS transistor m p7 is connected to the threshold 0.5 circuit (11) The drains of the pMOS transistor m p2 and the nMOS transistor m n2 in the ordinary binary CMOS inverter; the source of the nMOS transistor m n7 is grounded, and the gate of the nMOS transistor m n7 is connected to the threshold 2.5 circuit (13) The drains of the pMOS transistor m p6 and the nMOS transistor m n6 in the ordinary binary CMOS inverter; the drain of the pMOS transistor m p8 and the source of the pMOS transistor m p9 are connected in series to the power supply V 2 and the output signal terminal Between V out , the gate of the pMOS transistor m p8 is connected to the drain of the neuron pMOS transistor m p1 and the neuron nMOS transistor m n1 in the threshold 0.5 circuit (11); the source of the nMOS transistor m n8 and The drain of the nMOS transistor m n9 is connected in series between the output signal terminal V out and the power supply V 1 ; the gate of the nMOS transistor m n9 is connected to the neuron pMOS transistor m p5 and neuron in the threshold 2.5 circuit (13) The drain of the nMOS transistor m n5 ; the gate of the pMOS transistor m p9 and the gate of the nMOS transistor m n8 are connected to the pMOS transistor in the common binary CMOS inverter in the threshold 1.5 circuit (13) m p4 and the drain of nMOS tube m n4 .
CN201210142541.9A 2012-05-09 2012-05-09 A voltage-type four-value Schmitt trigger circuit based on neuron MOS tube Expired - Fee Related CN102638248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210142541.9A CN102638248B (en) 2012-05-09 2012-05-09 A voltage-type four-value Schmitt trigger circuit based on neuron MOS tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210142541.9A CN102638248B (en) 2012-05-09 2012-05-09 A voltage-type four-value Schmitt trigger circuit based on neuron MOS tube

Publications (2)

Publication Number Publication Date
CN102638248A true CN102638248A (en) 2012-08-15
CN102638248B CN102638248B (en) 2014-11-19

Family

ID=46622519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210142541.9A Expired - Fee Related CN102638248B (en) 2012-05-09 2012-05-09 A voltage-type four-value Schmitt trigger circuit based on neuron MOS tube

Country Status (1)

Country Link
CN (1) CN102638248B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333356A (en) * 2014-11-14 2015-02-04 浙江工商大学 QB02 circuit unit for quaternary clock and binary clock conversion
CN104485939A (en) * 2014-11-14 2015-04-01 浙江工商大学 QB10 circuit for quaternary clock-to-binary clock conversion
CN106936411A (en) * 2015-12-30 2017-07-07 格科微电子(上海)有限公司 The digital trigger of anti-noise jamming
CN107210066A (en) * 2015-02-09 2017-09-26 高通股份有限公司 three-dimensional logic circuit
CN110968975A (en) * 2019-11-29 2020-04-07 电子科技大学 A Simulation Method of Single Event Irradiation Effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456992B1 (en) * 1995-03-24 2002-09-24 Tadashi Shibata Semiconductor arithmetic circuit
CN101969301A (en) * 2010-10-09 2011-02-09 宁波大学 Four-value heat-insulating dynamic D trigger
CN102412809A (en) * 2011-11-18 2012-04-11 浙江大学城市学院 Adjustable-threshold-value schmitt trigger circuit based on multi-input floating gate metal oxide semiconductor (MOS) tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456992B1 (en) * 1995-03-24 2002-09-24 Tadashi Shibata Semiconductor arithmetic circuit
CN101969301A (en) * 2010-10-09 2011-02-09 宁波大学 Four-value heat-insulating dynamic D trigger
CN102412809A (en) * 2011-11-18 2012-04-11 浙江大学城市学院 Adjustable-threshold-value schmitt trigger circuit based on multi-input floating gate metal oxide semiconductor (MOS) tube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杭国强等: "新型电流型CMOS四值边沿触发器设计", 《浙江大学学报》 *
汪鹏君等: "钟控神经MOS管的改进及其在多值电路中的应用", 《电路与系统学报》 *
雷晶: "基于神经元MOS器件的施密特触发器设计", 《电子器件》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333356A (en) * 2014-11-14 2015-02-04 浙江工商大学 QB02 circuit unit for quaternary clock and binary clock conversion
CN104485939A (en) * 2014-11-14 2015-04-01 浙江工商大学 QB10 circuit for quaternary clock-to-binary clock conversion
CN104333356B (en) * 2014-11-14 2017-11-24 浙江工商大学 The QB02 circuit units of four two-value clocks conversion
CN107210066A (en) * 2015-02-09 2017-09-26 高通股份有限公司 three-dimensional logic circuit
CN107210066B (en) * 2015-02-09 2021-06-15 高通股份有限公司 Three-dimensional logic circuit
CN106936411A (en) * 2015-12-30 2017-07-07 格科微电子(上海)有限公司 The digital trigger of anti-noise jamming
CN106936411B (en) * 2015-12-30 2021-07-27 格科微电子(上海)有限公司 Digital trigger with noise interference resistance
CN110968975A (en) * 2019-11-29 2020-04-07 电子科技大学 A Simulation Method of Single Event Irradiation Effect
CN110968975B (en) * 2019-11-29 2022-03-04 电子科技大学 Single-particle irradiation effect simulation method

Also Published As

Publication number Publication date
CN102638248B (en) 2014-11-19

Similar Documents

Publication Publication Date Title
CN203675093U (en) Dynamic exclusive-OR gate design based on floating gate technology
CN111628763B (en) Three-valued encoder circuit based on memristor
CN102638248B (en) A voltage-type four-value Schmitt trigger circuit based on neuron MOS tube
CN105958994A (en) Subthreshold level shifter having wide input voltage range
CN111555751A (en) Three-value exclusive-or and exclusive-or logic gate circuit based on memristor
CN111667863A (en) 1-3-wire ternary decoder circuit based on memristor
Manikkule et al. Encapsulation of full adder using 180nm CNTFET
CN102412809A (en) Adjustable-threshold-value schmitt trigger circuit based on multi-input floating gate metal oxide semiconductor (MOS) tube
CN104506183B (en) Univoltage sub-threshold level converter
CN103825599B (en) Level shifting circuit
CN106160744A (en) A kind of high speed dynamic latch comparator applied in low voltage environment
CN102624378B (en) A low-power domino ternary word operation circuit
CN103716039B (en) The dynamic full adder of a kind of enhancement mode based on floating-gate MOS tube
CN107659302A (en) Level shifting circuit with pre-amplification
Berg et al. Novel ultra low-voltage and high-speed CMOS pass transistor logic
CN103716014B (en) A kind of difference type dual-edge trigger based on neuron mos pipe designs
Hang et al. Novel CMOS ternary flip-flops using double pass-transistor logic
CN206237376U (en) Difference type based on floating-gate MOS tube is unilateral along T triggers
Rastogi et al. Implementing low-power dynamic adders in MTCMOS technology
CN210899131U (en) A radiation-resistant enhanced inverting unit and a self-recovery latch resistant to single-event flipping
CN202453865U (en) Threshold logic-based SET/MOS hybrid structure 2 bit multiplier
CN203645649U (en) A Three-valued Dynamic BiCMOS OR Gate Design Based on Neuron MOS Transistor
Berg et al. Ultra low-voltage and high speed dynamic and static cmos precharge logic
CN203661036U (en) A Binary Dynamic BiCMOS AND Gate Circuit Based on Floating Gate Technology
Verma et al. Design and Analysis of Logic Gates Using Static and Domino Logic Technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141119

Termination date: 20180509

CF01 Termination of patent right due to non-payment of annual fee