CN102636184A - Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement - Google Patents
Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement Download PDFInfo
- Publication number
- CN102636184A CN102636184A CN201210093438XA CN201210093438A CN102636184A CN 102636184 A CN102636184 A CN 102636184A CN 201210093438X A CN201210093438X A CN 201210093438XA CN 201210093438 A CN201210093438 A CN 201210093438A CN 102636184 A CN102636184 A CN 102636184A
- Authority
- CN
- China
- Prior art keywords
- axis
- flexible
- centrifuge
- sensitive
- overload
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本发明公开了一种无角运动环境下的挠性陀螺比力敏感项标定方法,属于惯性技术领域。本发明将随动反转台安装在离心机的台面上,采集初始静态下和过载条件下挠性陀螺敏感轴的输出脉冲数据;依据事先选取的过载加速度,设定离心机转速,获得不同环境过载加速度下的挠性陀螺输出数据;计算过载项系数。本发明可以标定挠性陀螺静态漂移模型中包含的比力敏感误差项与环境过载加速度之间的关系,通过查表法精确补偿挠性陀螺的比力敏感漂移误差,从而减小挠性陀螺比力敏感误差对挠性捷联惯性系统导航精度的影响。
The invention discloses a method for calibrating the specific force sensitive item of a flexible gyroscope in an environment without angular motion, and belongs to the technical field of inertia. In the present invention, the follow-up inversion table is installed on the table of the centrifuge, and the output pulse data of the sensitive shaft of the flexible gyro under the initial static state and overload condition are collected; according to the overload acceleration selected in advance, the centrifuge speed is set to obtain different environmental conditions Flexible gyro output data under overload acceleration; calculation of overload term coefficients. The invention can calibrate the relationship between the specific force sensitive error item contained in the static drift model of the flexible gyroscope and the environmental overload acceleration, and accurately compensate the specific force sensitive drift error of the flexible gyroscope through the look-up table method, thereby reducing the ratio of the flexible gyroscope Effect of force-sensitive error on navigation accuracy of a flexible strapdown inertial system.
Description
技术领域 technical field
本发明属于惯性技术领域,涉及一种挠性陀螺比力敏感项的标定方法,具体地说,是指无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法。 The invention belongs to the technical field of inertia, and relates to a method for calibrating the specific force sensitive item of a flexible gyroscope, in particular, it refers to a method for calibrating the specific force sensitive item of a flexible gyroscope based on a centrifuge in a non-angular motion environment. the
背景技术 Background technique
挠性陀螺是一种机械式双自由度陀螺仪,它的驱动电机的电机转轴通过挠性接头带动转子作高速转动,挠性接头包含2对相互正交的挠性连接轴和1个平衡环,如图1所示。自问世以来,挠性陀螺已广泛应用在各种导航、制导与控制系统中。 The flexible gyroscope is a mechanical two-degree-of-freedom gyroscope. The motor shaft of its drive motor drives the rotor to rotate at high speed through a flexible joint. The flexible joint includes 2 pairs of mutually orthogonal flexible connection shafts and a balance ring. ,As shown in Figure 1. Since its inception, flexible gyroscopes have been widely used in various navigation, guidance and control systems. the
在实际应用中,挠性陀螺仪的角速度测量值中存在着由于各种内部及外部因素产生的漂移误差,一般由静态漂移误差、动态漂移误差和随机漂移误差等组成,其中由线运动引起的静态漂移误差是挠性陀螺漂移误差的主要部分,也是挠性捷联惯导系统误差的主要因素。挠性陀螺静态漂移误差数学模型中包含了对比力不敏感的漂移误差项和对比力敏感的漂移误差项。 In practical applications, there are drift errors in the angular velocity measurement value of the flexible gyroscope due to various internal and external factors, generally composed of static drift error, dynamic drift error and random drift error, among which the linear motion caused The static drift error is the main part of the drift error of the flexible gyro, and it is also the main factor of the error of the flexible strapdown inertial navigation system. The static drift error mathematical model of the flexible gyroscope includes the drift error term which is not sensitive to contrast force and the drift error term which is sensitive to contrast force. the
在实际应用中,挠性陀螺仪的误差模型可表示为: In practical applications, the error model of the flexible gyroscope can be expressed as:
ω(X)d=K(X)d ω(X) d =K(X) d
+K(X)xax+K(X)yay +K(X) x a x +K(X) y a y
ω(Y)d=K(Y)d ω(Y) d =K(Y) d
+K(Y)xax+K(Y)yay +K(Y) x a x +K(Y) y a y
其中,ω(X)d,ω(Y)d——陀螺仪的漂移速率误差,单位:°/h; Among them, ω(X) d , ω(Y) d ——the drift rate error of the gyroscope, unit: °/h;
K(X)d,K(Y)d——常值漂移系数,与比力无关,单位:°/h; K(X) d , K(Y) d ——constant drift coefficient, independent of specific force, unit: °/h;
K(X)x,,K(X)y,K(Y)x,,K(Y)y——比力敏感项系数,单位:(°/h)/g; K(X) x , K(X) y , K(Y) x , K(Y) y —— specific force sensitivity coefficient, unit: (°/h)/g;
ax,ay——沿陀螺仪相应轴的比力大小,单位:g; a x , a y —— specific force along the corresponding axis of the gyroscope, unit: g;
现有的挠性陀螺或挠性惯组标定采用的是静态多位置标定方法,利用位置台使挠性陀螺朝向一定的方向,将地球转动角速度ωe和当地的标准重力加速度g0作为参考,通过多个方程联合求解的方法计算出挠性陀螺的误差项系数。静态多位置标定方法能够得到0~1g环境下挠性陀螺的常值漂移系数和比力敏感项系数,并认为在高过载环境下该系数仍保持线性不变。实际应用时,当挠性陀螺或挠性惯组应用于大过载环境时,使用地面多位置静态标定结果进行补偿,其实际使用精度常常与理论计算值差异甚远。这很可能是由于挠性陀螺比力敏感项系数在大过载环境下发生了变化所致。 The existing flexible gyroscope or flexible inertial group calibration adopts a static multi-position calibration method, using a position table to make the flexible gyroscope face a certain direction, taking the earth’s rotational angular velocity ω e and the local standard gravitational acceleration g 0 as references, The error term coefficient of the flexible gyroscope is calculated by joint solution of multiple equations. The static multi-position calibration method can obtain the constant value drift coefficient and the specific force sensitivity coefficient of the flexible gyroscope under the environment of 0-1g, and it is considered that the coefficient remains linear under the high overload environment. In practical application, when the flexible gyroscope or flexible inertial group is used in a large overload environment, the ground multi-position static calibration results are used for compensation, and the actual use accuracy is often far from the theoretical calculation value. This is probably due to the change of the coefficient of the specific force sensitive term of the flexible gyroscope under a large overload environment.
如果能够通过地面的大过载测试准确得到挠性陀螺的比力敏感项系数与环境过载的关 系,就能在实际使用时准确补偿挠性陀螺的比力敏感误差,从而提高挠性捷联惯导系统的实际导航性能,具有非常重要的实用价值。 If the relationship between the specific force sensitivity coefficient of the flexible gyroscope and the environmental overload can be accurately obtained through the large overload test on the ground, the specific force sensitivity error of the flexible gyroscope can be accurately compensated in actual use, thereby improving the flexibility of the strapdown inertia. The actual navigation performance of the guidance system has very important practical value. the
申请号为200810101156.3的中国发明专利,公开了一种挠性陀螺仪最优八位置标定方法,是将挠性陀螺仪安装在二轴位置速率转台上,在特定的方位采集数据并计算得到挠性陀螺静态误差补偿模型。通过陀螺测量值剩余平方和的比较,利用挠性陀螺仪最优八位置试验设计方法求解的漂移系数进行补偿后的结果较传统八位置方法提高了4~8倍。缺点:实质上与传统静态多位置测试方法相同,只能利用重力场作为环境过载激励,得到的结果只能对应1g环境下的性能参数,得不到大过载环境下标定系数的准确值。 The Chinese invention patent with the application number 200810101156.3 discloses an optimal eight-position calibration method for a flexible gyroscope, which is to install the flexible gyroscope on a two-axis position-rate turntable, collect data at a specific orientation and calculate the flexibility Gyro Static Error Compensation Model. Through the comparison of the residual sum of squares of the gyroscope's measured values, the compensation result of the drift coefficient solved by the optimal eight-position test design method of the flexible gyroscope is 4 to 8 times higher than that of the traditional eight-position method. Disadvantages: It is essentially the same as the traditional static multi-position test method. It can only use the gravity field as the environmental overload excitation. The results obtained can only correspond to the performance parameters in the 1g environment, and the accurate value of the calibration coefficient in the large overload environment cannot be obtained. the
授权公告号CN 101377422B的中国发明专利,公开了一种挠性陀螺仪静态漂移误差模型最优二十四位置标定方法,是将挠性陀螺仪安装在三轴位置速率转台上,采用离散D-最优设计构造方法进行设计,从整个试验空间中选取二十四个空间位置取向作为陀螺坐标系取向并进行试验。相对于最优八位置法,最优二十四位置试验测试除了能够标定加速度无关项、加速度一次方有关项外,还可以得到加速度二次有关项漂移系数。缺点:实质上与传统静态多位置测试方法相同,只能利用重力场作为环境过载激励,虽然效果好于八位置,但是得到的结果只能对应1g环境下的性能参数,得不到大过载环境下标定系数的准确值。不超过1g的环境下,加速度二次有关项为小量,与环境干扰难以有效区分,因而结果的可信度不高。 The Chinese invention patent with the authorized notification number CN 101377422B discloses a flexible gyroscope static drift error model optimal twenty-four position calibration method, which is to install the flexible gyroscope on a three-axis position rate turntable and adopt discrete D- The optimal design and construction method is used for design, and twenty-four spatial position orientations are selected from the entire test space as the orientation of the gyroscope coordinate system and tested. Compared with the optimal eight-position method, the optimal twenty-four-position test can not only calibrate the acceleration irrelevant item and the first-order related item of acceleration, but also obtain the drift coefficient of the second-order related item of acceleration. Disadvantages: It is essentially the same as the traditional static multi-position test method. It can only use the gravity field as the environmental overload excitation. Although the effect is better than that of eight positions, the results obtained can only correspond to the performance parameters in the 1g environment, and cannot obtain the large overload environment. The exact value of the subscaling factor. Under the environment of no more than 1g, the quadratic related item of acceleration is small, and it is difficult to effectively distinguish it from the environmental disturbance, so the reliability of the result is not high. the
申请公布号CN 101738203A中国发明专利,公开了一种挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法,是采用D-最优试验设计方法获得最优的测试位置。在最优空间正交十二位置下对获得的最优空间正交十二位置漂移系数与挠性陀螺静态误差补偿模型Go进行的测量值补偿有效地提高了挠性陀螺仪的输出。利用挠性陀螺仪最优空间正交十二位置试验设计方法求解的漂移系数进行补偿后的结果较传统八位置方法提高了4~5倍,较全空间正交二十四位置试验方法精度有所提高并且测试时间缩短了一半。缺点:虽然效果好于优化的八位置和优化的二十四位置,但实质上与传统静态多位置测试方法相同,只能利用重力场作为环境过载激励,得到的结果只能表示在1g环境下,得不到超过1g的大过载环境下标定系数的准确值。 Application publication number CN 101738203A Chinese invention patent discloses a flexible gyroscope static drift zero-order and first-order acceleration related item error model optimal position calibration method, which uses the D-optimal test design method to obtain the optimal test position. Under the optimal spatial orthogonal twelve positions, the measured value compensation of the obtained optimal spatial orthogonal twelve position drift coefficients and the static error compensation model Go of the flexible gyroscope can effectively improve the output of the flexible gyroscope. Using the optimal space orthogonal 12-position test design method of the flexible gyroscope to solve the drift coefficient after compensation is 4 to 5 times higher than the traditional 8-position method, and the accuracy is better than the full-space orthogonal 24-position test method. improved and cut test time in half. Disadvantages: Although the effect is better than the optimized eight positions and optimized twenty-four positions, it is essentially the same as the traditional static multi-position test method. It can only use the gravity field as the environmental overload excitation, and the obtained results can only be expressed in the 1g environment. , the accurate value of the calibration coefficient under the large overload environment exceeding 1g cannot be obtained. the
发明内容 Contents of the invention
本发明的目的在于通过地面高过载环境下的标定测试,真实地获得挠性陀螺比力敏感误差项系数与环境过载加速度的关系,实现挠性陀螺比力敏感误差的精确补偿,减小挠性陀螺比力敏感误差对挠性捷联惯性系统精度的影响。 The purpose of the present invention is to obtain the relationship between the coefficient of the flexible gyroscope's specific force sensitive error term and the environmental overload acceleration through the calibration test under the ground high overload environment, realize the accurate compensation of the flexible gyroscope's specific force sensitive error, and reduce the flexibility. Influence of Gyro Specific Force Sensitivity Error on Accuracy of Flexible Strapdown Inertial System. the
本发明提供的无角运动环境下挠性陀螺比力敏感项标定方法,具体包括如下步骤: The method for calibrating the specific force sensitive item of the flexible gyroscope under the environment without angular motion provided by the present invention specifically includes the following steps:
第一步:随动反转台(简称反转台)安装在离心机的台面上,在台面上还设有配重,所述的配重与反转台对称分布在离心机台面的同一直径上。反转台的台面上安装挠性陀螺,反 转台的转动轴与离心机的转动轴平行,当离心机以一定的转速旋转时,反转台可相对离心机作相反方向旋转。挠性陀螺的供电及输出数据信号通过反转台和离心机的滑环连接到供电电源和数据采集计算机。 The first step: the follow-up inversion table (referred to as the inversion table) is installed on the table of the centrifuge, and a counterweight is also arranged on the table, and the counterweight and the inversion table are symmetrically distributed on the same diameter of the centrifuge table superior. A flexible gyro is installed on the countertop of the reversing table. The rotating shaft of the reversing table is parallel to the rotating shaft of the centrifuge. When the centrifuge rotates at a certain speed, the reversing table can rotate in the opposite direction relative to the centrifuge. The power supply and output data signal of the flexible gyroscope are connected to the power supply and the data acquisition computer through the slip ring of the inverting table and the centrifuge. the
第二步:通过离心机的控制界面将离心机和反转台分别控制在其零位位置并保持静止,此时挠性陀螺敏感轴X指向当地的地理北向。然后,挠性陀螺加电,预热稳定10min。 Step 2: through the control interface of the centrifuge, control the centrifuge and the inversion table at their zero positions respectively and keep them still. At this time, the sensitive axis X of the flexible gyro points to the local geographical north. Then, the flexible gyro is powered on, and it is warmed up and stabilized for 10 minutes. the
第三步:打开数据采集计算机中的采集软件开始采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出,采集时间不小于3min,得到初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据; Step 3: Open the acquisition software in the data acquisition computer and start collecting the output of the flexible gyro sensitive axis X axis and sensitive axis Y axis. The acquisition time is not less than 3 minutes, and the initial static state of the flexible gyro sensitive axis X axis and the sensitive axis Y axis are obtained. The output pulse data of the axis;
第四步:使离心机以角速度ωt=ω0(单位:°/s)旋转,反转台以角速度-ωt(单位:°/s)旋转,二者的角加速度均为ωa,单位:°/s2。挠性陀螺敏感轴感受到的环境过载加速度幅值为: Step 4: Make the centrifuge rotate at an angular velocity ω t = ω 0 (unit: °/s), and the reversing table rotate at an angular velocity -ω t (unit: °/s), the angular acceleration of both is ω a , Unit: °/s 2 . The environmental overload acceleration amplitude felt by the sensitive axis of the flexible gyro is:
其中,R是反转台转动轴到离心机转动轴的距离,单位m;g0是当地标准重力加速度,单位m/s2; Among them, R is the distance from the rotation axis of the reversing table to the rotation axis of the centrifuge, in m; g 0 is the local standard gravitational acceleration, in m/s 2 ;
第五步:离心机和反转台转速稳定后,采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据15min,得到过载条件下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据; Step 5: After the speed of the centrifuge and the inversion table is stable, collect the output pulse data of the flexible gyro sensitive axis X axis and sensitive axis Y axis for 15 minutes, and obtain the output pulse data of the flexible gyro sensitive axis X axis and sensitive axis Y axis under overload conditions. output pulse data;
第六步:依据事先选取的过载加速度ai,i=1,2,3,…n,设定离心机转速 重复第四步和第五步,获得不同环境过载加速度下的挠性陀螺输出数据; Step 6: Set the rotational speed of the centrifuge according to the pre-selected overload acceleration a i , i=1, 2, 3, ... n Repeat the fourth and fifth steps to obtain the output data of the flexible gyroscope under different environmental overload accelerations;
第七步:测试完成后,离心机与反转台关机,停止数据采集,挠性陀螺断电; Step 7: After the test is completed, shut down the centrifuge and the inversion table, stop data collection, and power off the flexible gyroscope;
第八步:计算过载项系数: Step 8: Calculate the coefficient of the overload term:
本发明可以标定挠性陀螺静态漂移模型中包含的比力敏感误差项与环境过载加速度之间的关系,通过查表法精确补偿挠性陀螺的比力敏感漂移误差,从而减小挠性陀螺比力敏感误差对挠性捷联惯性系统导航精度的影响。 The invention can calibrate the relationship between the specific force sensitive error item contained in the static drift model of the flexible gyroscope and the environmental overload acceleration, and accurately compensate the specific force sensitive drift error of the flexible gyroscope through the look-up table method, thereby reducing the ratio of the flexible gyroscope Effect of force-sensitive error on navigation accuracy of a flexible strapdown inertial system. the
附图说明 Description of drawings
图1为现有技术中的挠性陀螺机械转子与挠性接头结构示意图; Fig. 1 is the structure schematic diagram of flexible gyro mechanical rotor and flexible joint in the prior art;
图2为本发明中采用的带随动反转台的离心机的结构示意图。 Fig. 2 is a structural schematic diagram of a centrifuge with a moving inversion table used in the present invention. the
图中: In the picture:
1.离心机;2.离心机台面;3.反转台;4.配重;5.反转台的台面;6.挠性陀螺。 1. Centrifuge; 2. Centrifuge table; 3. Reversing table; 4. Counterweight; 5. Table of reversing table; 6. Flexible top. the
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进行详细说明。 The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments. the
本发明提供了一种无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法,利用带随动反转台的离心机为挠性陀螺提供高过载输入,高过载输入在被测试的挠性陀螺轴向上的 投影呈现正弦或余弦变化;采用傅里叶级数分解的方法得到挠性陀螺的一次比力敏感误差系数。该标定方法的具体步骤如下: The invention provides a centrifuge-based method for calibrating the specific force sensitive items of the flexible gyroscope in an environment without angular movement, using a centrifuge with a follow-up reversing table to provide a high overload input for the flexible gyroscope, and the high overload input is tested The upward projection of the flexible gyroscope presents a sine or cosine change; the first-order specific force sensitive error coefficient of the flexible gyroscope is obtained by Fourier series decomposition. The specific steps of this calibration method are as follows:
第一步:本发明采用的主要设备是带随动反转台3(简称反转台)的离心机1,如图2所示,所述的反转台3安装在离心机1的台面2上,并且在离心机1的台面2上,还设置有配重4,所述的配重4与反转台3对称分布在离心机台面2上的同一直径上。反转台3的台面5上安装挠性陀螺6,反转台3的转动轴与离心机1的转动轴平行,当离心机1以一定的转速旋转时,反转台3可相对离心机1作相反方向旋转。测试试验前,采用水平校准仪器调整反转台3的台面5和离心机1的台面2与水平面平行,然后将挠性陀螺6通过工装安装在反转台3的台面5上,使挠性陀螺6的敏感轴X与敏感轴Y均与水平面平行,挠性陀螺6的自转轴与反转台3的转动轴重合。挠性陀螺6的供电及输出数据信号通过反转台3和离心机1的滑环连接到供电电源和数据采集计算机。
The first step: the main equipment that the present invention adopts is the centrifuge 1 with follow-up inversion table 3 (abbreviation inversion table), as shown in Figure 2, described inversion table 3 is installed on the
第二步:通过离心机1的控制界面将离心机1和反转台3分别控制在其零位位置并保持静止,此时挠性陀螺敏感轴X指向当地的地理北向。然后,挠性陀螺加电,预热稳定10min。 The second step: through the control interface of the centrifuge 1, the centrifuge 1 and the inversion table 3 are respectively controlled at their zero positions and kept stationary. At this time, the sensitive axis X of the flexible gyro points to the local geographical north. Then, the flexible gyro is powered on, and it is warmed up and stabilized for 10 minutes. the
第三步:打开数据采集计算机中的采集软件开始采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出,采集时间不小于3min,得到初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据; Step 3: Open the acquisition software in the data acquisition computer and start collecting the output of the flexible gyro sensitive axis X axis and sensitive axis Y axis. The acquisition time is not less than 3 minutes, and the initial static state of the flexible gyro sensitive axis X axis and the sensitive axis Y axis are obtained. The output pulse data of the axis;
第四步:使离心机1以角速度ωt=ω0(单位:°/s)旋转,反转台3以角速度-ωt(单位:°/s)旋转,二者的角加速度均为ωa,单位:°/s2。挠性陀螺敏感轴感受到的环境过载加速度幅值为: Step 4: Make the centrifuge 1 rotate at an angular velocity ω t = ω 0 (unit: °/s), and the reversing table 3 rotate at an angular velocity -ω t (unit: °/s), and the angular acceleration of both is ω a , unit: °/s 2 . The environmental overload acceleration amplitude felt by the sensitive axis of the flexible gyro is:
其中,R是反转台转动轴到离心机转动轴的距离,单位m;g0是当地标准重力加速度,单位m/s2; Among them, R is the distance from the rotation axis of the reversing table to the rotation axis of the centrifuge, in m; g 0 is the local standard gravitational acceleration, in m/s 2 ;
第五步:离心机1和反转台3转速稳定后,采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据15min,得到过载条件下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据; Step 5: After the rotation speed of centrifuge 1 and inversion table 3 is stable, collect the output pulse data of the flexible gyro sensitive axis X axis and sensitive axis Y axis for 15 minutes, and obtain the flexible gyro sensitive axis X axis and sensitive axis Y axis under overload conditions The output pulse data of the axis;
第六步:依据事先选取的过载加速度ai,设定离心机转速 i=1,2,3,…n,重复第四步和第五步,获得不同过载加速度下的挠性陀螺输出脉冲数据。 Step 6: Set the centrifuge speed according to the pre-selected overload acceleration a i i=1, 2, 3,...n, repeat the fourth and fifth steps to obtain the output pulse data of the flexible gyroscope under different overload accelerations.
第七步:测试完成后,离心机与反转台关机,停止数据采集,挠性陀螺断电。 Step 7: After the test is completed, the centrifuge and the inversion table are shut down, the data collection is stopped, and the flexible gyroscope is powered off. the
第八步:计算过载项系数: Step 8: Calculate the coefficient of the overload term:
用事先标定得到的挠性陀螺标度因数将第三步至第六步采集到的挠性陀螺脉冲量输出数据转换成角速度数据; Convert the flexible gyroscope pulse output data collected in the third step to the sixth step into angular velocity data by using the flexible gyroscope scale factor obtained in advance calibration;
对第三步初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴转换后的输出数据求取平均值。 Calculate the average value of the converted output data of the flexible gyroscope's sensitive axis X axis and sensitive axis Y axis under the initial static state in the third step. the
对第五步、第六步过载环境下挠性陀螺敏感轴X轴和敏感轴Y轴转换后的输出数据分别减去相对应的该轴初始静态转换后的输出数据平均值。 Subtract the corresponding average value of the output data after the initial static conversion of the output data of the flexible gyroscope sensitive axis X axis and sensitive axis Y axis in the overload environment of the fifth step and the sixth step respectively. the
对减去初始静态平均值的不同过载加速度ai的挠性陀螺X轴数据Dij(X)和Y轴数据Dij(Y),分别截取整周期数据,周期 截取的数据个数Ni满足 其中t为采样周期,m为大于500的正整数, 为过载加速度ai处的数据采集时间;ωi为反转台的转速,即角速度值,i=1,2,3,…n;j=1,2,3,…Ni。 For the flexible gyroscope X-axis data D ij (X) and Y-axis data D ij (Y) of different overload accelerations a i minus the initial static average value, intercept the whole cycle data respectively, and the period The number of intercepted data N i satisfies Where t is the sampling period, m is a positive integer greater than 500, is the data collection time at the overload acceleration a i ; ω i is the rotational speed of the inversion table, that is, the angular velocity value, i=1, 2, 3,...n; j=1, 2, 3,...N i .
对截取的各过载加速度下的挠性陀螺X轴和Y轴数据进行傅里叶级数分解计算: Perform Fourier series decomposition calculation on the intercepted flexible gyro X-axis and Y-axis data under each overload acceleration:
分别得到傅里叶级数零次项A0xi和A0yi、一次余弦谐波项系数A1xi和A1yi以及一次正弦谐波项系数B1xi和B1yi;其中,,i=1,2,3,…n;j=1,2,3,…Ni。 Obtain Fourier series zero-order items A 0xi and A 0yi , first-order cosine harmonic item coefficients A 1xi and A 1yi , and first-order sine harmonic item coefficients B 1xi and B 1yi ; where, i=1, 2, 3 , . . . n; j=1, 2, 3, . . . N i .
求取不同过载加速度ai下挠性陀螺的常值漂移K(X)di,K(Y)di和比力敏感项K(X)xi,K(X)yi,K(Y)yi,K(Y)xi: Find the constant value drift K(X) di , K(Y) di and specific force sensitive items K(X) xi , K(X) yi , K(Y) yi , K of the flexible gyroscope under different overload acceleration a i (Y) xi :
K(X)di=A0xi-ωiecosφ K(Y)di=A0yi K(X) di =A 0xi -ω ie cosφ K(Y) di =A 0yi
对于X轴:K(X)xi=A1xi/ai 对于Y轴:K(Y)yi=A1yi/ai For the X axis: K(X) xi = A 1xi /a i For the Y axis: K(Y) yi = A 1yi /a i
K(X)yi=-B1xi/ai K(Y)xi=-B1yi/ai K(X) yi =-B 1xi /a i K(Y) xi =-B 1yi /a i
其中,ωie为地球转速,φ为当地的地理纬度,对K(X)di,K(Y)di,K(X)xi,K(X)yi,K(Y)yi,K(Y)xi与相应的过载加速度ai进行列表,在应用时,通过查表即可得到挠性陀螺比力敏感系数在不同环境过载加速度下的补偿数值。 Among them, ω ie is the rotation speed of the earth, φ is the local geographic latitude, for K(X) di , K(Y) di , K(X) xi , K(X) yi , K(Y) yi , K(Y) xi and the corresponding overload acceleration a i are tabulated. In application, the compensation value of the specific force sensitivity coefficient of the flexible gyroscope under different environmental overload accelerations can be obtained by looking up the table.
通过上述的方法可知,本发明提供的无角运动环境下的挠性陀螺比力敏感项标定方法,反转台相对于离心机同速反向旋转使挠性陀螺相对地球保持无角运动状态,通过离心机和反转台转速的改变,对挠性陀螺施加过载加速度,并对挠性陀螺的输出数据进行傅里叶级数分解计算和处理,最后得到不同过载下挠性陀螺的常值漂移系数和比力敏感项系数。本发明可以达到任意过载加速度下挠性陀螺的常值漂移系数和比力敏感项系数标定的目的,在实际应用时根据标定结果对挠性陀螺的输出进行补偿,提高挠性陀螺在高过载环境下的实际使用精度。 Through the above method, it can be seen that the method for calibrating the specific force sensitive item of the flexible gyroscope under the environment of no angular motion provided by the present invention, the inverting table rotates in the opposite direction with respect to the centrifuge at the same speed so that the flexible gyroscope maintains a state of no angular motion relative to the earth, By changing the rotation speed of the centrifuge and the reversing table, the overload acceleration is applied to the flexible gyroscope, and the output data of the flexible gyroscope is decomposed and processed by Fourier series, and finally the constant value drift of the flexible gyroscope under different overloads is obtained Coefficients and specific force sensitivity coefficients. The invention can achieve the purpose of calibrating the constant value drift coefficient and the coefficient of the specific force sensitive item of the flexible gyroscope under any overload acceleration, and compensates the output of the flexible gyroscope according to the calibration result in practical application, so as to improve the performance of the flexible gyroscope in a high overload environment. Under the actual use accuracy. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210093438.XA CN102636184B (en) | 2012-03-31 | 2012-03-31 | Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210093438.XA CN102636184B (en) | 2012-03-31 | 2012-03-31 | Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102636184A true CN102636184A (en) | 2012-08-15 |
CN102636184B CN102636184B (en) | 2014-07-02 |
Family
ID=46620671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210093438.XA Expired - Fee Related CN102636184B (en) | 2012-03-31 | 2012-03-31 | Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102636184B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104655876A (en) * | 2015-01-29 | 2015-05-27 | 北京航空航天大学 | Method for calibrating linear accelerometer under situations of constant acceleration and vibration composite input |
CN106197414A (en) * | 2015-04-30 | 2016-12-07 | Tcl集团股份有限公司 | Angular error detection method, device and equipment |
CN106443072A (en) * | 2016-09-21 | 2017-02-22 | 中国航空工业集团公司北京长城计量测试技术研究所 | Centrifugal acceleration field tumbling calibration method for line accelerometer |
CN111337053A (en) * | 2020-03-27 | 2020-06-26 | 中国科学院西安光学精密机械研究所 | A kind of fiber optic gyroscope dynamic error characteristic measurement and calibration method and calibration system |
CN111879335A (en) * | 2019-09-20 | 2020-11-03 | 天津科技大学 | A centrifuge-based multi-position gyroscope drift coefficient calibration method |
CN113865621A (en) * | 2021-10-28 | 2021-12-31 | 北京天兵科技有限公司 | MEMS gyroscope at any six positions and g value sensitivity coefficient calibration method thereof |
CN114689082A (en) * | 2020-12-29 | 2022-07-01 | 北京原子机器人科技有限公司 | Real-time self-calibration system and method for gyroscope |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102221372A (en) * | 2011-03-25 | 2011-10-19 | 北京航空航天大学 | Method for calibrating error of inertia measurement unit by using centrifugal machine and turntable |
-
2012
- 2012-03-31 CN CN201210093438.XA patent/CN102636184B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102221372A (en) * | 2011-03-25 | 2011-10-19 | 北京航空航天大学 | Method for calibrating error of inertia measurement unit by using centrifugal machine and turntable |
Non-Patent Citations (1)
Title |
---|
芦佳振等: "挠性捷联惯组的多位置对准技术", 《系统工程与电子技术》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104655876A (en) * | 2015-01-29 | 2015-05-27 | 北京航空航天大学 | Method for calibrating linear accelerometer under situations of constant acceleration and vibration composite input |
CN106197414A (en) * | 2015-04-30 | 2016-12-07 | Tcl集团股份有限公司 | Angular error detection method, device and equipment |
CN106197414B (en) * | 2015-04-30 | 2019-04-26 | Tcl集团股份有限公司 | Angular error detection method, device and equipment |
CN106443072A (en) * | 2016-09-21 | 2017-02-22 | 中国航空工业集团公司北京长城计量测试技术研究所 | Centrifugal acceleration field tumbling calibration method for line accelerometer |
CN106443072B (en) * | 2016-09-21 | 2018-11-20 | 中国航空工业集团公司北京长城计量测试技术研究所 | A kind of centrifugal acceleration field rolling calibration method of linear accelerometer |
CN111879335A (en) * | 2019-09-20 | 2020-11-03 | 天津科技大学 | A centrifuge-based multi-position gyroscope drift coefficient calibration method |
CN111337053A (en) * | 2020-03-27 | 2020-06-26 | 中国科学院西安光学精密机械研究所 | A kind of fiber optic gyroscope dynamic error characteristic measurement and calibration method and calibration system |
CN111337053B (en) * | 2020-03-27 | 2021-09-14 | 中国科学院西安光学精密机械研究所 | Method and system for measuring and calibrating dynamic error characteristics of fiber-optic gyroscope |
CN114689082A (en) * | 2020-12-29 | 2022-07-01 | 北京原子机器人科技有限公司 | Real-time self-calibration system and method for gyroscope |
CN113865621A (en) * | 2021-10-28 | 2021-12-31 | 北京天兵科技有限公司 | MEMS gyroscope at any six positions and g value sensitivity coefficient calibration method thereof |
CN113865621B (en) * | 2021-10-28 | 2023-08-22 | 北京天兵科技有限公司 | Random six-position MEMS gyroscope and g-value sensitivity coefficient calibration method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102636184B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102636183B (en) | Quadratic overload term test method for flexible gyroscope based on optical fiber monitoring and centrifuge with two-axis turntable | |
CN102221372B (en) | Method for calibrating error of inertia measurement unit by using centrifugal machine and turntable | |
CN102636184B (en) | Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement | |
CN1314946C (en) | Mixed calibration method for inertial measurement unit capable of eliminating gyro constant drift | |
CN102721417B (en) | Method for restraining coarse alignment error of solidification inertial system of strapdown inertial navigation system | |
CN101629969B (en) | Calibration compensation and test method and device for output error of low-precision optical fiber inertial group | |
CN102841218A (en) | Double-shaft centrifuge based gyro accelerometer testing method | |
CN101706287B (en) | Rotating strapdown system on-site proving method based on digital high-passing filtering | |
CN103808331A (en) | MEMS (micro-electromechanical system) three-axis gyroscope error calibration method | |
CN102003968B (en) | Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system | |
CN101067628B (en) | Vector correcting method for non-gyro accelerometer array mounting error | |
CN103900608B (en) | A kind of low precision inertial alignment method based on quaternary number CKF | |
CN103234560B (en) | A zero calibration method for strapdown inertial navigation system | |
CN103323625B (en) | Error calibration compensation method of accelerometers in MEMS-IMU under dynamic environment | |
CN100559188C (en) | A Field Calibration Method for Fiber Optic Gyro Inertial Measurement Unit | |
CN103424225B (en) | A kind of method of testing rotatable parts sound amount of unbalance | |
CN103852085B (en) | A kind of fiber strapdown inertial navigation system system for field scaling method based on least square fitting | |
CN106017507A (en) | Method for fast calibration of medium-and-low-precision optical fiber inertia units | |
CN101713666B (en) | Single-shaft rotation-stop scheme-based mooring and drift estimating method | |
CN102927994A (en) | Method of quickly calibrating oblique redundant strapdown inertial navigation system | |
CN103411623B (en) | Rate gyro calibration steps | |
CN110108300A (en) | A kind of IMU regular hexahedron scaling method based on horizontal triaxial turntable | |
CN102636185B (en) | Non-linear specific force sensitive item measuring method for flexible gyroscope based on centrifugal machine with uniaxial reverse truntable | |
CN111879335A (en) | A centrifuge-based multi-position gyroscope drift coefficient calibration method | |
CN103591960B (en) | A kind of quiet base inertial navigation system coarse alignment method based on rotation modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140702 |