[go: up one dir, main page]

CN102610726B - Lighting components - Google Patents

Lighting components Download PDF

Info

Publication number
CN102610726B
CN102610726B CN201210086043.7A CN201210086043A CN102610726B CN 102610726 B CN102610726 B CN 102610726B CN 201210086043 A CN201210086043 A CN 201210086043A CN 102610726 B CN102610726 B CN 102610726B
Authority
CN
China
Prior art keywords
transparent
light
layer
oxidic
conductive layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210086043.7A
Other languages
Chinese (zh)
Other versions
CN102610726A (en
Inventor
林锦源
杨雅兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN201210086043.7A priority Critical patent/CN102610726B/en
Publication of CN102610726A publication Critical patent/CN102610726A/en
Application granted granted Critical
Publication of CN102610726B publication Critical patent/CN102610726B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a light-emitting component, which at least comprises a light-emitting lamination, a first transparent conductive oxide layer positioned below the light-emitting lamination, a transparent insulating and blocking layer positioned below the first transparent conductive oxide layer, a second transparent conductive oxide layer positioned below the transparent insulating and blocking layer, and a metal reflecting layer positioned below the second transparent conductive oxide layer, wherein the metal reflecting layer and the second transparent conductive oxide layer form an omni-directional reflector (ODR), and the first transparent conductive oxide layer and the light-emitting lamination form ohmic contact, so that the light-emitting efficiency of the light-emitting component is improved.

Description

发光组件Lighting components

本申请文件是2008年12月1日提交的发明名称为“发光组件”的第200810177820.2号发明专利申请的分案申请。This application document is a divisional application of the No. 200810177820.2 patent application for invention filed on December 1, 2008 with the title of "light-emitting component".

技术领域 technical field

本发明涉及一种发光组件,特别是涉及一种具有绝缘阻绝层(dielectricbarrier layer)位于第一透明导电氧化层与第二透明导电氧化层之间的发光组件结构。The present invention relates to a light-emitting component, in particular to a light-emitting component structure with an insulating barrier layer (dielectric barrier layer) located between a first transparent conductive oxide layer and a second transparent conductive oxide layer.

背景技术 Background technique

发光二极管(light-emitting diode,LED)的发光原理是利用电子在n型半导体与p型半导体间移动的能量差,以光的形式将能量释放,这样的发光原理有别于白炽灯发热的发光原理,因此发光二极管被称为冷光源。此外,发光二极管具有耐久性高、寿命长、轻巧、耗电量低等优点,因此现今的照明市场对于发光二极管寄予厚望,将其视为新一代的照明工具。The light-emitting diode (light-emitting diode, LED) uses the energy difference between n-type semiconductors and p-type semiconductors to release energy in the form of light. This light-emitting principle is different from that of incandescent lamps. Principle, so light-emitting diodes are called cold light sources. In addition, light-emitting diodes have the advantages of high durability, long life, light weight, and low power consumption. Therefore, today's lighting market places high hopes on light-emitting diodes and regards them as a new generation of lighting tools.

图1为已知的发光二极管管芯(die)结构示意图,如图1所示,已知的发光组件100,包含有导电基板10;设置于导电基板10上的金属黏结层12;位于金属黏结层上的全方位反射层14(omni-directional reflector,ODR);位于全方位反射层12上的欧姆接触层15,此欧姆接触层15可以是透明导电材料,如透明导电氧化层或薄金属;位于欧姆接触层15上的发光叠层16;以及,设置于发光叠层16上的电极18。Fig. 1 is a schematic diagram of the structure of a known light-emitting diode die (die). As shown in Fig. 1, a known light-emitting component 100 includes a conductive substrate 10; Omni-directional reflector 14 (omni-directional reflector, ODR) on the layer; Ohmic contact layer 15 on the omni-directional reflective layer 12, this ohmic contact layer 15 can be a transparent conductive material, such as transparent conductive oxide layer or thin metal; a light emitting stack 16 on the ohmic contact layer 15 ; and an electrode 18 disposed on the light emitting stack 16 .

在已知的发光组件100中,发光叠层16由上而下至少包含第一导电型半导体层160、发光层162,以及第二导电型半导体层164。而全方位反射层14还包含金属反射层140,其材料可以是金、银等金属材料;低折射率层142,其材料可以是二氧化硅或氧化铟锡(Indium Tin Oxide,ITO),此外此全方位反射层14还包含多个金属欧姆接触点144(ohmic contact dot),其贯穿上述的低折射率层142,并且分别与欧姆接触层15与金属反射层140形成电连接,由此导通电流,使发光组件100具有较良好的电性特征。In the known light emitting device 100 , the light emitting stack 16 includes at least a first conductive type semiconductor layer 160 , a light emitting layer 162 , and a second conductive type semiconductor layer 164 from top to bottom. And omnidirectional reflective layer 14 also comprises metal reflective layer 140, and its material can be metal materials such as gold, silver; Low refractive index layer 142, its material can be silicon dioxide or indium tin oxide (Indium Tin Oxide, ITO), in addition This all-round reflective layer 14 also includes a plurality of metal ohmic contact dots 144 (ohmic contact dot), which run through the above-mentioned low refractive index layer 142, and form electrical connections with the ohmic contact layer 15 and the metal reflective layer 140 respectively, thus conducting Through current, the light-emitting component 100 has better electrical characteristics.

然而,在上述已知的发光组件100的制造过程中,高温工艺容易使欧姆接触层15与全方位反射层14中的低折射率层142进行反应,导致发光组件100的亮度下降:此外,为了使发光组件100具有良好导电特性而设置的金属欧姆接触点144容易吸收发光层162所发出的光线,亦导致发光组件100的发光效率降低。However, in the manufacturing process of the above-mentioned known light-emitting component 100, the high-temperature process easily causes the ohmic contact layer 15 to react with the low-refractive index layer 142 in the omni-directional reflective layer 14, resulting in a decrease in the brightness of the light-emitting component 100: In addition, for The metal ohmic contact point 144 provided to make the light-emitting component 100 have good electrical conductivity easily absorbs the light emitted by the light-emitting layer 162 , which also reduces the luminous efficiency of the light-emitting component 100 .

此外,上述的发光组件100还可以进一步地与其它组件组合连接以形成发光装置(light-emitting apparatus)。图4为已知的发光装置结构示意图,如图4所示,发光装置600包含具有至少一电路602的次载体(sub-mount)60;至少一焊料62(solder)位于上述次载体60上,通过此焊料62将上述发光组件100黏结固定于次载体60上并使发光组件100的基板10与次载体60上的电路602形成电连接;以及,电性连接结构64,以电性连接发光组件100的电极18与次载体60上的电路602;其中,上述的次载体60可以是导线架(leadframe)或大尺寸镶嵌基底(mounting substrate),以方便发光装置600的电路规划并提高其散热效果。In addition, the above-mentioned light-emitting component 100 can be further combined and connected with other components to form a light-emitting apparatus (light-emitting apparatus). FIG. 4 is a schematic structural view of a known light-emitting device. As shown in FIG. 4, the light-emitting device 600 includes a sub-mount 60 having at least one circuit 602; at least one solder 62 (solder) is located on the sub-mount 60, The light-emitting component 100 is bonded and fixed on the sub-carrier 60 through the solder 62, and the substrate 10 of the light-emitting component 100 is electrically connected to the circuit 602 on the sub-carrier 60; and the electrical connection structure 64 is used to electrically connect the light-emitting component. The electrode 18 of 100 and the circuit 602 on the sub-carrier 60; wherein, the above-mentioned sub-carrier 60 can be a lead frame (leadframe) or a large-size mosaic substrate (mounting substrate), so as to facilitate the circuit planning of the light emitting device 600 and improve its heat dissipation effect .

发明内容 Contents of the invention

本发明揭示一种发光组件,至少包含发光叠层、位于发光叠层下方的第一透明导电氧化层、位于第一透明导电氧化层下方的透明绝缘阻绝层、位于透明绝缘阻绝层下方的第二透明导电氧化层,以及金属反射层,其中金属反射层与第二透明导电氧化层形成全方位反射层(omni-directional reflector,ODR),利用第一透明导电氧化层与发光叠层形成欧姆接触,由此提高发光组件的发光效率。The present invention discloses a light-emitting component, comprising at least a light-emitting stack, a first transparent conductive oxide layer located under the light-emitting stack, a transparent insulating barrier layer located under the first transparent conductive oxide layer, a second transparent insulating barrier layer located below a transparent conductive oxide layer, and a metal reflective layer, wherein the metal reflective layer and the second transparent conductive oxide layer form an omni-directional reflector (omni-directional reflector, ODR), using the first transparent conductive oxide layer to form an ohmic contact with the light emitting stack, As a result, the luminous efficiency of the luminous component is increased.

本发明的另一目的在于利用透明绝缘阻绝层以避免第一透明导电氧化层、第二金属透明导电氧化层与金属反射层于高温制造过程中交互发生作用进而发生的吸光或遮光问题。Another object of the present invention is to use the transparent insulating barrier layer to avoid the problem of light absorption or shading caused by interaction between the first transparent conductive oxide layer, the second metal transparent conductive oxide layer and the metal reflective layer during the high-temperature manufacturing process.

以下通过具体实施例配合所附的附图详加说明,当更容易了解本发明的目的、技术内容、特点及其所达成的功效。In the following, specific embodiments will be described in detail in conjunction with the attached drawings, and it will be easier to understand the purpose, technical content, features and effects of the present invention.

附图说明 Description of drawings

图1为已知的发光二极管管芯结构示意图。FIG. 1 is a schematic diagram of a known LED die structure.

图2为本发明实施例的结构示意图。Fig. 2 is a schematic structural diagram of an embodiment of the present invention.

图3为本发明另一实施例的结构示意图。Fig. 3 is a schematic structural diagram of another embodiment of the present invention.

图4为已知的发光装置结构示意图。Fig. 4 is a schematic structural diagram of a known light emitting device.

附图标记说明Explanation of reference signs

100:发光组件               10:导电基板100: Light emitting components 10: Conductive substrate

12:金属黏结层              14:全方位反射层12: Metal bonding layer 14: Omni-directional reflective layer

15:欧姆接触层              16:发光叠层15: Ohmic contact layer 16: Luminous stack

18:电极                    160:第一导电型半导体层18: Electrode 160: First conductivity type semiconductor layer

162:发光层                 164:第二导电型半导体层162: Light-emitting layer 164: Second conductivity type semiconductor layer

140:金属反射层             142:低折射率层140: metal reflective layer 142: low refractive index layer

144:金属欧姆接触点         200:发光组件144: metal ohmic contact point 200: light-emitting component

20:导电基板                22:黏结层20: Conductive substrate 22: Adhesive layer

24:全方位反射层            26:第一透明导电氧化层24: Omni-directional reflective layer 26: The first transparent conductive oxide layer

28:发光叠层                30:电极28: Light-emitting stack 30: Electrode

240:第二透明导电氧化层     242:金属反射层240: Second transparent conductive oxide layer 242: Metal reflective layer

280:第一导电型半导体层     282:发光层280: first conductivity type semiconductor layer 282: light emitting layer

284:第二导电型半导体层     32:透明绝缘阻绝层284: second conductivity type semiconductor layer 32: transparent insulating barrier layer

320:通孔                   300:发光组件320: Through hole 300: Light emitting component

40:基板                    42:黏结层40: Substrate 42: Adhesive layer

44:全方位反射层            46:第一透明导电氧化层44: Omni-directional reflective layer 46: The first transparent conductive oxide layer

48:发光叠层                50:透明绝缘阻绝层48: Luminous laminated layer 50: Transparent insulating barrier layer

440:第二透明导电氧化层     442:金属反射层440: Second transparent conductive oxide layer 442: Metal reflective layer

480:第一导电型半导体层     482:发光层480: first conductivity type semiconductor layer 482: light emitting layer

484:第二导电型半导体层     52:第一电极484: second conductivity type semiconductor layer 52: first electrode

54:第二电极                600:发光装置54: Second electrode 600: Light emitting device

60:次载体                  602:电路60: Secondary carrier 602: Circuit

62:焊料                    64:电性连接结构62: Solder 64: Electrical connection structure

具体实施方式 Detailed ways

以下配合附图说明本发明的实施例。Embodiments of the present invention are described below with reference to the accompanying drawings.

图2为本发明的实施例结构示意图,如图2所示,发光组件200包含导电基板20、设置于导电基板20上的黏结层22、位于黏结层22上的全方位反射层24(omni-directional reflector,ODR)、位于上述全方位反射层24上的第一透明导电氧化层26、设置于第一透明导电氧化物层26的发光叠层28;以及,位于发光叠层28上的电极30;其中,上述全方位反射层24与第一透明导电氧化层26间还包含透明绝缘阻绝层32,而全方位反射层24由上而下还包含第二透明导电氧化层240以及金属反射层242。此外,发光叠层28由上而下至少包含第一导电型半导体层280、发光层282,以及第二导电型半导体层284,其中上述发光叠层28的可以选自材料包含铝(Al)、镓(Ga)、铟(In)、磷(P)、砷(As)或氮(N)等III-V族的半导体材料,诸如氮化镓(GaN)系列材料、磷化铝镓铟(AlGaInP)系列材料或砷化镓(GaAs)材料等;而发光层282的结构可以是选自单异质结构(single heterostructure,SH)、双异质结构(double heterostructure,DH)、双侧双异质结构(double-side doubleheterostructure,DDH)或多重量子阱(multi-quantum well,MQW)。FIG. 2 is a schematic structural diagram of an embodiment of the present invention. As shown in FIG. 2 , the light-emitting component 200 includes a conductive substrate 20, an adhesive layer 22 disposed on the conductive substrate 20, and an omnidirectional reflective layer 24 (omni- directional reflector, ODR), the first transparent conductive oxide layer 26 located on the above-mentioned omnidirectional reflective layer 24, the light-emitting laminated layer 28 arranged on the first transparent conductive oxide layer 26; and the electrode 30 located on the light-emitting laminated layer 28 Wherein, the above-mentioned omnidirectional reflective layer 24 and the first transparent conductive oxide layer 26 also include a transparent insulating barrier layer 32, and the omnidirectional reflective layer 24 also includes a second transparent conductive oxide layer 240 and a metal reflective layer 242 from top to bottom . In addition, the light emitting stack 28 includes at least a first conductivity type semiconductor layer 280, a light emitting layer 282, and a second conductivity type semiconductor layer 284 from top to bottom, wherein the material of the above light emitting stack 28 can be selected from aluminum (Al), Gallium (Ga), indium (In), phosphorus (P), arsenic (As) or nitrogen (N) and other III-V semiconductor materials, such as gallium nitride (GaN) series materials, aluminum gallium indium phosphide (AlGaInP ) series materials or gallium arsenide (GaAs) materials, etc.; and the structure of the light emitting layer 282 can be selected from single heterostructure (single heterostructure, SH), double heterostructure (double heterostructure, DH), double-sided double heterostructure structure (double-side doubleheterostructure, DDH) or multiple quantum wells (multi-quantum well, MQW).

在本实施例中,导电基板20的材料可以是例如硅(silicon)的半导体材料、例如氧化锌(ZnO)等陶瓷材料或例如铜、铝、钼等金属材料或上述材料的组合;黏结层22的材料选自铟、锡、金、铝、银及上述金属的合金;第一透明导电氧化层26与第二透明导电氧化层240的材料选自氧化铟锡(IndiumTin Oxide,ITO)、氧化铝锌(Aluminum Zinc Oxide,AZO)、氧化镉锡、氧化锑锡、氧化锌(ZnO)、及氧化锌锡所构成的材料群组,其中第一透明导电氧化层26的晶粒尺寸(grain size)、折射率(reflective index)等特性与第二透明导电氧化层240不同;在本实施例中,第一透明氧化层26的平均晶粒尺寸相较于第二透明导电氧化层240较大,而第一透明氧化层26的折射率相较于第二透明导电氧化层240则较小;再者,金属反射层242的材料可以是铟(In)、锡(Sn)、铝(Al)、金(Au)、铂(Pt)、锌(Zn)、银(Ag)、钛(Ti)、铅(Pb)、锗(Ge)、铜(Cu)、镍(Ni)、铍化金(AuBe)、锗化金(AuGe)、锌化金(AuZn)、锡化铅(PbSn)等高反射金属;而上述的透明绝缘阻绝层32的材料可以是二氧化硅(SiO2)、氮化硅(SiNx)或氧化铝(Al2O3)等,其厚度约为5至300nm。In this embodiment, the material of the conductive substrate 20 can be semiconductor materials such as silicon (silicon), ceramic materials such as zinc oxide (ZnO), or metal materials such as copper, aluminum, molybdenum, or a combination of the above materials; the bonding layer 22 The material of the first transparent conductive oxide layer 26 and the second transparent conductive oxide layer 240 is selected from indium tin oxide (IndiumTin Oxide, ITO), aluminum oxide Zinc (Aluminum Zinc Oxide, AZO), cadmium tin oxide, antimony tin oxide, zinc oxide (ZnO), and zinc tin oxide material group, wherein the grain size of the first transparent conductive oxide layer 26 (grain size) , refractive index (reflective index) and other characteristics are different from the second transparent conductive oxide layer 240; in this embodiment, the average grain size of the first transparent conductive oxide layer 26 is larger than that of the second transparent conductive oxide layer 240, and The refractive index of the first transparent oxide layer 26 is smaller than that of the second transparent conductive oxide layer 240; moreover, the material of the metal reflective layer 242 can be indium (In), tin (Sn), aluminum (Al), gold (Au), platinum (Pt), zinc (Zn), silver (Ag), titanium (Ti), lead (Pb), germanium (Ge), copper (Cu), nickel (Ni), gold beryllium (AuBe) , gold germanium (AuGe), gold zinc (AuZn), lead tin (PbSn) and other highly reflective metals; and the material of the above-mentioned transparent insulating barrier layer 32 can be silicon dioxide (SiO 2 ), silicon nitride ( SiN x ) or aluminum oxide (Al 2 O 3 ), etc., the thickness thereof is about 5 to 300 nm.

除此之外,为了达到良好的电性导通,在本实施例中的透明绝缘阻绝层32上还包含一个或一个以上的通孔320,其中第一透明导电氧化层26填入上述的通孔320之中,并且与第二透明导电氧化层240相接触并且形成电性连接,在本实施例中,通孔320的面积小于透明绝缘阻绝层32面积的百分之四十,优选者为小于透明绝缘阻绝层32面积的百分之五。In addition, in order to achieve good electrical conduction, the transparent insulating barrier layer 32 in this embodiment also includes one or more through holes 320, wherein the first transparent conductive oxide layer 26 fills the above-mentioned through holes. In the hole 320, and in contact with the second transparent conductive oxide layer 240 and form an electrical connection, in this embodiment, the area of the through hole 320 is less than 40% of the area of the transparent insulating barrier layer 32, preferably less than five percent of the area of the transparent insulating barrier layer 32 .

在本实施例中,由于利用第一透明导电氧化层26作为欧姆接触层与发光叠层28形成欧姆接触,此外,上述的第一透明导电氧化层26亦与位于上述全方位反射层24上的第二透明导电氧化层240形成电连接,因此无须使用吸光材料加强发光组件200电性,亦降低发光层282所发出的光线被吸收的机会;再者,由于第一透明导电氧化层26与全方位反射层24上的第二透明导电氧化层240间具有透明绝缘阻绝层32,用以防止第一透明导电氧化层26与第二透明导电氧化层240于制造发光组件过程中的高温环境发生反应,由此提高发光组件200的亮度。In this embodiment, since the first transparent conductive oxide layer 26 is used as the ohmic contact layer to form an ohmic contact with the light-emitting stack 28, in addition, the above-mentioned first transparent conductive oxide layer 26 is also in contact with the omnidirectional reflective layer 24 on the above-mentioned The second transparent conductive oxide layer 240 forms an electrical connection, so there is no need to use light-absorbing materials to enhance the electrical properties of the light-emitting component 200, and also reduce the chance of the light emitted by the light-emitting layer 282 being absorbed; moreover, because the first transparent conductive oxide layer 26 and the entire There is a transparent insulating barrier layer 32 between the second transparent conductive oxide layer 240 on the azimuth reflection layer 24 to prevent the first transparent conductive oxide layer 26 and the second transparent conductive oxide layer 240 from reacting in the high temperature environment during the process of manufacturing the light-emitting component , thereby increasing the brightness of the light emitting component 200 .

图3为本发明的另一实施例结构示意图,如图3所示,发光组件300包含基板40、设置于基板40上的黏结层42、位于黏结层42上的全方位反射层44(omni-directional reflector,ODR)、位于上述全方位反射层44上的第一透明导电氧化层46,以及,设置于第一透明导电氧化物层46的发光叠层48;其中,上述全方位反射层44与第一透明导电氧化层46间还包含透明绝缘阻绝层50,而全方位反射层44由上而下还包含第二透明导电氧化层440以及金属反射层442。FIG. 3 is a schematic structural diagram of another embodiment of the present invention. As shown in FIG. 3 , the light-emitting component 300 includes a substrate 40, an adhesive layer 42 disposed on the substrate 40, and an omnidirectional reflective layer 44 (omni- directional reflector, ODR), the first transparent conductive oxide layer 46 located on the above-mentioned omnidirectional reflective layer 44, and the light emitting stack 48 disposed on the first transparent conductive oxide layer 46; wherein, the above-mentioned omnidirectional reflective layer 44 and The first transparent conductive oxide layer 46 further includes a transparent insulating barrier layer 50 , and the omnidirectional reflective layer 44 further includes a second transparent conductive oxide layer 440 and a metal reflective layer 442 from top to bottom.

此外,发光叠层48由上而下至少包含第一导电型半导体层480、发光层482,以及第二导电型半导体层484,在上述的发光叠层48中,具有暴露第二导电型半导体层484的表面;而第一电极52与第二电极54分别位于第一导电型半导体层480与暴露第二导电型半导体层484的表面上,其中上述发光叠层28的可以选自材料包含铝(Al)、镓(Ga)、铟(In)、磷(P)、砷(As)或氮(N)等III-V族的半导体材料,诸如氮化镓(GaN)系列材料、磷化铝镓铟(AlGaInP)系列材料或砷化镓(GaAs)材料等;而发光层282的结构可以选自单异质结构(single heterostructure,SH)、双异质结构(double heterostructure,DH)、双侧双异质结构(double-side double heterostructure,DDH)或多重量子井(multi-quantum well,MQW)。In addition, the light emitting stack 48 includes at least a first conductivity type semiconductor layer 480, a light emitting layer 482, and a second conductivity type semiconductor layer 484 from top to bottom. In the above light emitting stack 48, there are exposed second conductivity type semiconductor layers 484; and the first electrode 52 and the second electrode 54 are respectively located on the surface of the first conductive type semiconductor layer 480 and the exposed second conductive type semiconductor layer 484, wherein the above-mentioned light-emitting stack 28 can be selected from materials including aluminum ( Al), gallium (Ga), indium (In), phosphorus (P), arsenic (As) or nitrogen (N) and other III-V semiconductor materials, such as gallium nitride (GaN) series materials, aluminum gallium phosphide Indium (AlGaInP) series materials or gallium arsenide (GaAs) materials, etc.; and the structure of the light emitting layer 282 can be selected from single heterostructure (single heterostructure, SH), double heterostructure (double heterostructure, DH), double-sided double Heterostructure (double-side double heterostructure, DDH) or multiple quantum wells (multi-quantum well, MQW).

在本实施例中,基板40可以是例如硅(silicon)、砷化镓(GaAs)等半导体材料、氮化铝(AlN)、氧化铝(Al2O3)等陶瓷材料或铜、铝、钼等金属材料或上述材料组合的材料;黏结层42则可以是铟、锡、金、铝、银、上述金属的合金或聚酰亚胺(PI)、苯并环丁烯(BCB)与过氟环丁烷(PFCB)等物质;第一透明导电氧化层46与第二透明导电氧化层440的材料选自氧化铟锡(Indium Tin Oxide,ITO)、氧化铝锌(Aluminum Zinc Oxide,AZO)、氧化镉锡、氧化锑锡、氧化锌(ZnO)、及氧化锌锡所构成的材料群组,其中第一透明导电氧化层46的晶粒尺寸(grain size)、折射率(reflective index)等特性与第二透明导电氧化层440不同,在本实施例中,第一透明氧化层46的平均晶粒尺寸相较于第二透明导电氧化层440较大,而第一透明氧化层46的折射率相较于第二透明导电氧化层440则较小;再者,金属反射层442的材料可以是铟(In)、锡(Sn)、铝(Al)、金(Au)、铂(Pt)、锌(Zn)、银(Ag)、钛(Ti)、铅(Pb)、锗(Ge)、铜(Cu)、镍(Ni)、铍化金(AuBe)、锗化金(AuGe)、锌化金(AuZn)、锡化铅(PbSn)等高反射金属;而上述的透明绝缘阻绝层50的材料可以是二氧化硅(SiO2)、氮化硅(SiNx)或氧化铝(Al2O3)等,其厚度约为5至300nm。In this embodiment, the substrate 40 can be semiconductor materials such as silicon (silicon), gallium arsenide (GaAs), ceramic materials such as aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), or copper, aluminum, molybdenum Metal materials such as metal materials or materials combined with the above materials; the bonding layer 42 can be indium, tin, gold, aluminum, silver, alloys of the above metals or polyimide (PI), benzocyclobutene (BCB) and perfluorinated Substances such as cyclobutane (PFCB); the materials of the first transparent conductive oxide layer 46 and the second transparent conductive oxide layer 440 are selected from indium tin oxide (Indium Tin Oxide, ITO), aluminum zinc oxide (Aluminum Zinc Oxide, AZO), A material group composed of cadmium tin oxide, antimony tin oxide, zinc oxide (ZnO), and zinc tin oxide, wherein the first transparent conductive oxide layer 46 has characteristics such as grain size and refractive index Different from the second transparent conductive oxide layer 440, in this embodiment, the average grain size of the first transparent oxide layer 46 is larger than that of the second transparent conductive oxide layer 440, and the refractive index of the first transparent oxide layer 46 Compared with the second transparent conductive oxide layer 440, it is smaller; moreover, the material of the metal reflective layer 442 can be indium (In), tin (Sn), aluminum (Al), gold (Au), platinum (Pt), Zinc (Zn), Silver (Ag), Titanium (Ti), Lead (Pb), Germanium (Ge), Copper (Cu), Nickel (Ni), Gold Beryllium (AuBe), Gold Germanium (AuGe), Zinc gold (AuZn), lead tin (PbSn) and other highly reflective metals; and the material of the above-mentioned transparent insulating barrier layer 50 can be silicon dioxide (SiO 2 ), silicon nitride (SiN x ) or aluminum oxide (Al 2 O 3 ), etc., the thickness thereof is about 5 to 300 nm.

在本实施例中,由于第一透明导电氧化层46与全方位反射层44中的第二透明导电氧化层440间具有透明绝缘阻绝层50,用以防止第一透明导电氧化层46与第二透明导电氧化层440于制造发光组件过程中的高温环境发生反应,由此提高发光组件300的亮度。In this embodiment, since the first transparent conductive oxide layer 46 and the second transparent conductive oxide layer 440 in the omnidirectional reflection layer 44 have a transparent insulating barrier layer 50, it is used to prevent the first transparent conductive oxide layer 46 from contacting the second transparent conductive oxide layer 440. The transparent conductive oxide layer 440 reacts in the high temperature environment in the process of manufacturing the light emitting element, thereby improving the brightness of the light emitting element 300 .

以上所述的实施例仅为说明本发明的技术思想及特点,其目的在使本领域技术人员能够了解本发明的内容并据以实施,当不能以之限定本发明的保护范围,即大凡依本发明所揭示的精神所作的等同变化或修饰,仍应涵盖在本发明的保护范围内。The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly. When it cannot limit the protection scope of the present invention, that is, generally Equivalent changes or modifications made to the spirit disclosed in the present invention shall still fall within the protection scope of the present invention.

Claims (8)

1. a light-emitting component, at least comprises:
Luminous lamination;
First oxidic, transparent, conductive layers of simple layer, directly contacts with this luminous lamination and has first refractive rate;
Second oxidic, transparent, conductive layers of simple layer, directly contacts with this first oxidic, transparent, conductive layers, and this second oxidic, transparent, conductive layers has the second refractive index being different from this first refractive rate; And
Metallic reflector, directly contacts with this second oxidic, transparent, conductive layers,
Wherein this luminous lamination is electrically connected to this second oxidic, transparent, conductive layers by this first oxidic, transparent, conductive layers;
And do not exist to strengthen electrical light absorbent between this metallic reflector and the first oxidic, transparent, conductive layers.
2. light-emitting component as claimed in claim 1, wherein this first refractive rate is less than this second refractive index.
3. light-emitting component as claimed in claim 1, also comprises:
Substrate; And
Gluing layer, between this substrate and this metallic reflector.
4. a light-emitting component, at least comprises:
Metallic reflector;
First oxidic, transparent, conductive layers, has the first average grain size;
Second oxidic, transparent, conductive layers is between this metallic reflector and this first oxidic, transparent, conductive layers, this second oxidic, transparent, conductive layers has the second average grain size being different from this first average grain size, and this first average grain size is greater than this second average grain size; And
Luminous lamination, is electrically connected to this second oxidic, transparent, conductive layers by this first oxidic, transparent, conductive layers;
Wherein do not exist to strengthen electrical light absorbent between this metallic reflector and the first oxidic, transparent, conductive layers.
5. light-emitting component as claimed in claim 4, wherein this first oxidic, transparent, conductive layers directly contacts with this second oxidic, transparent, conductive layers.
6. light-emitting component as claimed in claim 4, also comprises:
Substrate; And
Gluing layer, between this substrate and this metallic reflector.
7. a light-emitting component, at least comprises:
Luminous lamination;
First oxidic, transparent, conductive layers, has first refractive rate;
Second oxidic, transparent, conductive layers, is electrically connected to this luminous lamination by this first oxidic, transparent, conductive layers, and this second oxidic, transparent, conductive layers has the second refractive index being different from this first refractive rate;
Metallic reflector, is electrically connected with this second oxidic, transparent, conductive layers; And
Transparent insulation barrier layer, does not contact with this metallic reflector and between this luminous lamination and this second oxidic, transparent, conductive layers.
8. light-emitting component as claimed in claim 7, also comprises:
Substrate; And
Gluing layer, between this substrate and this luminous lamination.
CN201210086043.7A 2008-12-01 2008-12-01 Lighting components Active CN102610726B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210086043.7A CN102610726B (en) 2008-12-01 2008-12-01 Lighting components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210086043.7A CN102610726B (en) 2008-12-01 2008-12-01 Lighting components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008101778202A Division CN101752466B (en) 2008-11-18 2008-12-01 Light emitting assembly

Publications (2)

Publication Number Publication Date
CN102610726A CN102610726A (en) 2012-07-25
CN102610726B true CN102610726B (en) 2015-04-29

Family

ID=46527976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210086043.7A Active CN102610726B (en) 2008-12-01 2008-12-01 Lighting components

Country Status (1)

Country Link
CN (1) CN102610726B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300055B (en) * 2013-07-17 2019-05-10 晶元光电股份有限公司 Light emitting element
CN108808444A (en) * 2018-06-19 2018-11-13 扬州乾照光电有限公司 A kind of upside-down mounting VCSEL chips and production method
CN110289554B (en) * 2019-06-18 2020-12-25 威科赛乐微电子股份有限公司 Simplified epitaxial flip VCSEL chip and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601773A (en) * 2004-10-18 2005-03-30 国联光电科技股份有限公司 Semiconductor light emitting element
TW200840088A (en) * 2007-03-30 2008-10-01 Delta Electronics Inc Light emitting diode apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834969A (en) * 2007-02-13 2008-08-16 Epistar Corp Light-emitting diode and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601773A (en) * 2004-10-18 2005-03-30 国联光电科技股份有限公司 Semiconductor light emitting element
TW200840088A (en) * 2007-03-30 2008-10-01 Delta Electronics Inc Light emitting diode apparatus

Also Published As

Publication number Publication date
CN102610726A (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US8143636B2 (en) Light-emitting device
KR100694784B1 (en) Flip chip electrode light emitting device formed by multilayer coating
US7615789B2 (en) Vertical light emitting diode device structure
US9601667B2 (en) Light-emitting device
US20070170596A1 (en) Flip-chip light emitting diode with high light-emitting efficiency
US20070010035A1 (en) Light emitting diode and manufacturing method thereof
US20070102692A1 (en) Semiconductor light emitting device
KR20120134336A (en) A light emitting device and a light emitting devcie package
US11349047B2 (en) Light-emitting device
JP4459871B2 (en) Light emitting diode having an adhesive layer with a heat path
CN109494286A (en) semiconductor element
CN100365834C (en) Light emitting diode with thermal channel bonding layer and light emitting diode array
CN102610726B (en) Lighting components
CN101752466B (en) Light emitting assembly
CN102916102B (en) Optoelectronic component
TWI699909B (en) Light-emitting element
CN107017321B (en) Light emitting element
TWI478371B (en) Light-emitting device
CN108807633B (en) light-emitting element
CN2896529Y (en) Flip Chip Light Emitting Diode with High Luminous Efficiency
TW200411950A (en) High-luminance light-emitting device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant