CN102570560B - Charging-discharging system for V2G bilateral power conversion electric automobile and control method thereof - Google Patents
Charging-discharging system for V2G bilateral power conversion electric automobile and control method thereof Download PDFInfo
- Publication number
- CN102570560B CN102570560B CN201210014240.8A CN201210014240A CN102570560B CN 102570560 B CN102570560 B CN 102570560B CN 201210014240 A CN201210014240 A CN 201210014240A CN 102570560 B CN102570560 B CN 102570560B
- Authority
- CN
- China
- Prior art keywords
- signal
- bus
- voltage
- phase
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000007599 discharging Methods 0.000 title abstract description 32
- 230000002146 bilateral effect Effects 0.000 title 1
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 59
- 230000002441 reversible effect Effects 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 16
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 10
- 230000001360 synchronised effect Effects 0.000 claims description 10
- 230000003068 static effect Effects 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims 2
- 230000007704 transition Effects 0.000 claims 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 description 71
- 230000005540 biological transmission Effects 0.000 description 26
- 238000005516 engineering process Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
Abstract
本发明公开了智能电网技术领域的V2G双向功率变换电动汽车充放电系统及其控制方法。本发明采用单相或三相电压型PWM变流器(VSC)为第一级功率变换电路,实现交流电网与第1直流母线之间的能量变换;采用对称半桥LLC谐振式双向直流-直流(DC/DC)变换器作为第二级功率变换电路,实现直流母线与动力电池组之间的能量变换。本发明的有益效果是:一级功率变换电路的变换器电网侧电流接近正弦波,谐波含量小;二级功率变换电路提高了变换效率、动态性能以及功率密度,缩减了电动汽车充放电装置的体积和重量,有效提高系统的安全性、可靠性以及经济性。
The invention discloses a V2G bidirectional power conversion electric vehicle charging and discharging system and a control method thereof in the technical field of smart grids. The present invention adopts a single-phase or three-phase voltage-type PWM converter (VSC) as the first-stage power conversion circuit to realize energy conversion between the AC power grid and the first DC bus bar; adopts a symmetrical half-bridge LLC resonant bidirectional DC-DC The (DC/DC) converter is used as the second-level power conversion circuit to realize the energy conversion between the DC bus and the power battery pack. The beneficial effects of the present invention are: the current of the converter grid side of the primary power conversion circuit is close to a sine wave, and the harmonic content is small; the secondary power conversion circuit improves the conversion efficiency, dynamic performance and power density, and reduces the charging and discharging device of the electric vehicle The size and weight of the system can effectively improve the safety, reliability and economy of the system.
Description
技术领域 technical field
本发明属于智能电网技术领域,特别涉及V2G双向功率变换电动汽车充放电系统及其控制方法。The invention belongs to the technical field of smart grids, and in particular relates to a V2G bidirectional power conversion electric vehicle charging and discharging system and a control method thereof.
背景技术 Background technique
随着电网智能水平以及电动汽车保有量的大幅提高,未来大量的电动汽车车载电池可能成为智能电网中的分布式储能单元,统计表明,一台电动汽车95%的时间处于停驶状态,车主可以在电网非高峰负荷时段由电网为电动汽车车载电池充电,而在电网高峰负荷时段由电动汽车车载电池向电网提供电能,以获得差价。在车主和系统调度员之间,这种通过实时电价和智能电表来实现智能充放电管理的技术就是V2G(Vehicle to Grid)技术。V2G技术的应用能够有效地调节电网的峰谷差,降低传统调峰备用发电容量,提高电网利用效率;我国2011年风电总装机容量达到0.418亿kW,汽车保有量已突破1亿辆;若所有汽车按电动汽车充电机主电路的功率换算,电动汽车充电机总容量是我国风电总装机容量的近10倍,假如其中的1/5,即0.2亿辆汽车为电动汽车,它们的车载电池将足以存储我国所有风电厂发出的电能,巨大的电动汽车储能效能相当于增加了系统的有效备用容量,将有效地平抑可再生能源发电输出功率的波动,促进电网接纳波动的可再生能源发电功率,为增强电网的调节能力提供新的途径;而且成百上千的电动汽车还可以组成微电网运行,在紧急状况下还可以作为应急电源,为微电网的安全运行提供有效的支撑。With the smart level of the power grid and the sharp increase in the number of electric vehicles, a large number of electric vehicle batteries may become distributed energy storage units in the smart grid in the future. Statistics show that an electric vehicle is in the idle state 95% of the time, The electric vehicle battery can be charged by the grid during the non-peak load period of the grid, and the electric vehicle battery can provide electric energy to the grid during the peak load period of the grid to obtain the price difference. Between car owners and system dispatchers, this technology that realizes intelligent charging and discharging management through real-time electricity prices and smart meters is V2G (Vehicle to Grid) technology. The application of V2G technology can effectively adjust the peak-to-valley difference of the power grid, reduce the traditional peak-shaving backup power generation capacity, and improve the utilization efficiency of the power grid. Cars are converted according to the power of the main circuit of the electric vehicle charger. The total capacity of the electric vehicle charger is nearly 10 times that of the total installed capacity of wind power in China. If one-fifth of them, that is, 20 million vehicles are electric vehicles, their on-board batteries will It is enough to store the electric energy generated by all wind power plants in China. The huge energy storage efficiency of electric vehicles is equivalent to increasing the effective reserve capacity of the system, which will effectively stabilize the fluctuation of the output power of renewable energy generation and promote the acceptance of fluctuating renewable energy generation power by the grid. , to provide a new way to enhance the regulation ability of the power grid; and hundreds of electric vehicles can also form a micro-grid to operate, and can also be used as an emergency power supply in an emergency to provide effective support for the safe operation of the micro-grid.
传统充电机采用可控硅桥式整流电路构成充电主回路实现蓄电池充电功能,但不足之处是功率变换采用工频相控方式,导致交流电流波形畸变严重,谐波分量大;功率因数低,且不可控;而且,采用工频变压器变换电压和电气隔离,损耗大,造成整机能量变换效率低,还大量消耗有色金属,成本高。The traditional charger uses silicon controlled rectifier bridge rectifier circuit to form the charging main circuit to realize the battery charging function, but the disadvantage is that the power conversion adopts the power frequency phase control method, which leads to serious distortion of the AC current waveform and large harmonic components; low power factor, And it is uncontrollable; moreover, the power frequency transformer is used to transform the voltage and electrically isolate it, resulting in large losses, resulting in low energy conversion efficiency of the whole machine, and a large amount of non-ferrous metal consumption, resulting in high cost.
与传统的可控硅整流相控技术相比,PWM高频逆变技术是一种全新的电力电子变流技术。理论分析和实践经验表明,电磁器件(变压器、电感和电容等)的体积和质量均与供电频率的平方根成反比,当工作频率从工频50Hz提高到20kHz(即工作频率提高400倍),电磁器件的体积、质量将下降至工频设计值的5-10%。因此,高频化使电源类设备具有效率高、噪音低、体积小、动态性能好、成本低等优势,是必然的发展方向。Compared with the traditional thyristor rectifier phase control technology, PWM high-frequency inverter technology is a new power electronic conversion technology. Theoretical analysis and practical experience show that the volume and quality of electromagnetic devices (transformers, inductors and capacitors, etc.) are inversely proportional to the square root of the power supply frequency. The volume and quality of the device will drop to 5-10% of the power frequency design value. Therefore, high frequency enables power supply equipment to have the advantages of high efficiency, low noise, small size, good dynamic performance, and low cost, which is an inevitable development direction.
根据工作原理的不同,DC/DC功率变换可以划分为正激、反激、推挽和桥式等拓扑结构形式。对称反激式变换器因其结构最简单,低成本,以及良好的瞬态响应等优点,非常适合于小功率应用场合;推挽式变换器结构简单,但开关管需承受两倍的输入电压,另外还要加上由于高频变压器漏感引起的脉冲电压峰值,故只适合于变换器工作电压比较低的场合;桥式DC/DC变换器可以实现所需的大变比,且能满足不同功率等级的应用需求,因而适合中、大功率场合的应用。According to different working principles, DC/DC power conversion can be divided into topological forms such as forward, flyback, push-pull and bridge. The symmetrical flyback converter is very suitable for low power applications because of its simplest structure, low cost, and good transient response; the push-pull converter has a simple structure, but the switch tube needs to withstand twice the input voltage In addition, the peak value of the pulse voltage caused by the leakage inductance of the high-frequency transformer is added, so it is only suitable for the occasions where the working voltage of the converter is relatively low; the bridge DC/DC converter can achieve the required large transformation ratio, and can meet The application requirements of different power levels are suitable for medium and high power applications.
目前,PWM高频全桥逆变技术已经成为电动汽车充电机的主流技术,其主电路主要由四部分组成:1)防雷及输入滤波器电路:其作用主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰;2)一次整流与滤波电路:将交流电压源变换为直流脉动电压源,滤波后变为较平滑的一次直流电压源,供下一级变换;3)逆变电路:将整流滤波后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,逆变变压器的体积、重量与输出功率之比越小;4)二次整流与滤波电路:将高频交流电再次整流和滤波,通过电压(或电流)闭环控制,输出稳定可靠的直流电压(或电流);通过电池管理系统的通信管理,达到对车载电池不同工况下的充电模式要求。At present, PWM high-frequency full-bridge inverter technology has become the mainstream technology of electric vehicle chargers. Its main circuit is mainly composed of four parts: 1) Lightning protection and input filter circuit: its function is mainly to eliminate electromagnetic noise and clutter of the input power supply. The signal is suppressed to prevent interference with the power supply, and at the same time prevent the high-frequency clutter generated by the power supply itself from interfering with the power grid; 2) Primary rectification and filtering circuit: convert the AC voltage source into a DC pulsating voltage source, and become smoother after filtering The primary DC voltage source is used for the transformation of the next stage; 3) Inverter circuit: converts the rectified and filtered direct current into high-frequency alternating current, which is the core part of the high-frequency switching power supply. The higher the frequency, the larger the size and weight of the inverter transformer. The smaller the ratio to the output power; 4) Secondary rectification and filtering circuit: rectify and filter the high-frequency AC power again, and output stable and reliable DC voltage (or current) through voltage (or current) closed-loop control; through the battery management system communication management to meet the charging mode requirements of the vehicle battery under different working conditions.
但是,进一步分析电动汽车充电机的电路拓扑,可以看出,普通的电动汽车充电机尚不具备将电能回馈电网的能力。However, further analysis of the circuit topology of electric vehicle chargers shows that ordinary electric vehicle chargers do not yet have the ability to feed power back to the grid.
发明内容 Contents of the invention
本发明针对上述缺陷公开了V2G双向功率变换电动汽车充放电系统及其控制方法。本发明主电路采用单相或三相电压型PWM变流器(VSC)为第一级功率变换电路,实现交流电网与第1直流母线之间的能量变换,简称为“交流-直流(AC/DC)变换器”;采用对称半桥LLC谐振式双向直流-直流(DC/DC)变换器作为第二级功率变换电路,实现直流母线与动力电池组之间的能量变换,简称为“双向DC/DC变换器”。The present invention discloses a V2G bidirectional power conversion electric vehicle charging and discharging system and a control method thereof aiming at the above defects. The main circuit of the present invention adopts a single-phase or three-phase voltage-type PWM converter (VSC) as the first-stage power conversion circuit to realize the energy conversion between the AC power grid and the first DC bus, referred to as "AC-DC (AC/DC) for short. DC) converter”; a symmetrical half-bridge LLC resonant bidirectional DC-DC (DC/DC) converter is used as the second-stage power conversion circuit to realize the energy conversion between the DC bus and the power battery pack, referred to as “bidirectional DC /DC Converter".
V2G双向功率变换电动汽车充放电系统包括单相V2G双向功率变换电动汽车充放电系统和三相V2G双向功率变换电动汽车充放电系统;V2G bidirectional power conversion electric vehicle charging and discharging system includes single-phase V2G bidirectional power conversion electric vehicle charging and discharging system and three-phase V2G bidirectional power conversion electric vehicle charging and discharging system;
单相V2G双向功率变换电动汽车充放电系统的结构如下:单相交流电源、单相电压型PWM变流器、第1直流母线、对称半桥LLC谐振式双向直流-直流变换器和第2直流母线级联;The structure of single-phase V2G bidirectional power conversion electric vehicle charging and discharging system is as follows: single-phase AC power supply, single-phase voltage-type PWM converter, first DC bus, symmetrical half-bridge LLC resonant bidirectional DC-DC converter and second DC busbar cascading;
单相交流电源火线经线性电感接入一相桥臂的上下臂连接处,零线直接接另一相桥臂的上下臂连接处,C11直流滤波电容并联连接在第1直流母线的正极和第1直流母线的负极之间,C12直流滤波电容和动力电池组均并联连接在第2直流母线的正极母线和第2直流母线的负极母线之间;The live wire of the single-phase AC power supply is connected to the connection of the upper and lower arms of one phase bridge arm through a linear inductor, the neutral line is directly connected to the connection of the upper and lower arms of the other phase bridge arm, and the C11 DC filter capacitor is connected in parallel to the positive pole of the first DC bus and the first 1 Between the negative poles of the DC bus, the C12 DC filter capacitor and the power battery pack are connected in parallel between the positive bus of the second DC bus and the negative bus of the second DC bus;
三相V2G双向功率变换电动汽车充放电系统的结构如下:三相交流电源A相、三相交流电源B相和三相交流电源C相均连接至三相电压型PWM变流器对应相桥臂的中点,三相电压型PWM变流器、第1直流母线、对称半桥LLC谐振式双向直流-直流变换器和第2直流母线级联;The structure of the three-phase V2G bidirectional power conversion electric vehicle charging and discharging system is as follows: three-phase AC power phase A, three-phase AC power phase B and three-phase AC power phase C are all connected to the corresponding phase bridge arm of the three-phase voltage-type PWM converter The midpoint of the three-phase voltage-type PWM converter, the first DC bus, the symmetrical half-bridge LLC resonant bidirectional DC-DC converter and the second DC bus are cascaded;
三相交流电源A相(Ua)火线经La线性电感接入第一桥臂的上下臂连接处,三相交流电源B相(Ub)火线经Lb线性电感接入第二桥臂的上下臂连接处,三相交流电源C相(Uc)火线经Lc线性电感接入第三桥臂的上下臂连接处;C11直流滤波电容并联连接在第1直流母线的正极和第1直流母线的负极之间,C12直流滤波电容和动力电池组均并联连接在第2直流母线的正极母线和第2直流母线的负极母线之间。The live wire of phase A (Ua) of the three-phase AC power supply is connected to the connection of the upper and lower arms of the first bridge arm through the La linear inductor, and the live wire of phase B (Ub) of the three-phase AC power supply is connected to the upper and lower arms of the second bridge arm through the linear inductor of Lb. , the live wire of phase C (Uc) of the three-phase AC power supply is connected to the connection of the upper and lower arms of the third bridge arm through the Lc linear inductor; the C11 DC filter capacitor is connected in parallel between the positive pole of the first DC bus and the negative pole of the first DC bus , the C12 DC filter capacitor and the power battery pack are connected in parallel between the positive bus bar of the second DC bus bar and the negative bus bar of the second DC bus bar.
所述单相电压型PWM变流器的结构如下:采用具有反并联二极管的功率开关管构成上臂和下臂,上、下臂串联构成一个桥臂;两个桥臂并联组成单相全桥,直流侧并联C11直流滤波电容;The structure of the single-phase voltage-type PWM converter is as follows: the upper arm and the lower arm are formed by using power switch tubes with anti-parallel diodes, and the upper and lower arms are connected in series to form a bridge arm; two bridge arms are connected in parallel to form a single-phase full bridge, A C11 DC filter capacitor is connected in parallel on the DC side;
所述三相电压型PWM变流器的结构如下:采用具有反并联二极管的功率开关管构成上臂和下臂,上、下臂串联构成一个桥臂;三个桥臂并联组成三相桥式电路,直流侧并联C12直流滤波电容。The structure of the three-phase voltage-type PWM converter is as follows: the upper arm and the lower arm are formed by using power switch tubes with anti-parallel diodes, and the upper and lower arms are connected in series to form a bridge arm; three bridge arms are connected in parallel to form a three-phase bridge circuit , The DC side is connected in parallel with a C12 DC filter capacitor.
所述对称半桥LLC谐振式双向直流-直流变换器的功率变送分为正向功率变送和逆向功率变送;对称半桥LLC谐振式双向DC/DC变换器由开关网络、谐振网络与整流器-负载网络级联构成,以T高频变压器为中心,其左侧电路与右侧电路结构对称。The power transmission of the symmetrical half-bridge LLC resonant bidirectional DC-DC converter is divided into forward power transmission and reverse power transmission; the symmetrical half-bridge LLC resonant bidirectional DC/DC converter consists of a switch network, a resonant network and The rectifier-load network is cascaded, with the T high-frequency transformer as the center, and the circuit on the left side is symmetrical to the circuit on the right side.
所述对称半桥LLC谐振式双向直流-直流变换器通过T高频变压器实现交流供电系统与动力电池组的电气隔离。The symmetrical half-bridge LLC resonant bidirectional DC-DC converter realizes electrical isolation between the AC power supply system and the power battery pack through a T high-frequency transformer.
所述对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,开关网络的连接关系如下:反并联VD5快恢复二极管的V5开关管与反并联VD6快恢复二极管的V6开关管串联,然后与C11直流滤波电容并联;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the connection relationship of the switch network is as follows: the V5 switch tube of the anti-parallel VD5 fast recovery diode and the V6 switch tube of the anti-parallel VD6 fast recovery diode Connect in series, and then connect in parallel with C11 DC filter capacitor;
所述对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,谐振网络的连接关系如下:VD13二极管串联VD14二极管,VD9二极管串联VD10二极管,C1分体谐振电容串联C2分体谐振电容,上述三者并联连接在第1直流母线的正极(S1+)和第1直流母线的负极(S1-)之间,L1谐振电感的一端接VD9二极管、VD10二极管、C1分体谐振电容和C2分体谐振电容的公共节点,其另一端接VD13二极管、VD14二极管和T高频变压器原边绕组一端的公共节点;T高频变压器原边绕组另一端连接V5开关管和V6开关管的公共节点;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the connection relationship of the resonant network is as follows: VD13 diode is connected in series with VD14 diode, VD9 diode is connected in series with VD10 diode, C1 split resonant capacitor is connected in series with C2 split The resonant capacitor, the above three are connected in parallel between the positive pole (S1+) of the first DC bus and the negative pole (S1-) of the first DC bus, one end of the L1 resonant inductor is connected to VD9 diode, VD10 diode, C1 split resonant capacitor and The common node of the C2 split resonant capacitor, the other end of which is connected to the common node of VD13 diode, VD14 diode and one end of the primary winding of the T high-frequency transformer; the other end of the primary winding of the T high-frequency transformer is connected to the public of the V5 switch tube and the V6 switch tube node;
所述对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,整流器-负载网络的连接关系如下:VD7二极管、VD8二极管,VD15二极管和VD16二极管组成单相全桥整流器回路,然后与C12直流滤波电容并联。When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the connection relationship of the rectifier-load network is as follows: VD7 diode, VD8 diode, VD15 diode and VD16 diode form a single-phase full-bridge rectifier circuit, Then connect it in parallel with C12 DC filter capacitor.
所述对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,VD13二极管和VD14二极管串联为L1谐振电感提供过电压保护;VD15二极管和VD16二极管为单相全桥整流器的一条整流臂,并旁路L2谐振电感;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the VD13 diode and VD14 diode are connected in series to provide overvoltage protection for the L1 resonant inductor; the VD15 diode and VD16 diode are one of the single-phase full-bridge rectifiers. rectifier arm, and bypass L2 resonant inductor;
所述对称半桥LLC谐振式双向直流-直流变换器进行逆向功率变送时,VD15二极管和VD16二极管串联为L2谐振电感提供过电压保护;VD13二极管和VD14二极管为单相全桥整流器的一条整流臂,并旁路L1谐振电感。When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs reverse power transmission, the VD15 diode and VD16 diode are connected in series to provide overvoltage protection for the L2 resonant inductor; the VD13 diode and VD14 diode are a single-phase full-bridge rectifier. arm, and bypass the L1 resonant inductor.
所述对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,VD9二极管和VD10二极管串联为C1分体谐振电容和C2分体谐振电容提供过电压保护;VD11二极管和VD12二极管抑制单相全桥整流器回路出现的LC谐振;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the VD9 diode and the VD10 diode are connected in series to provide overvoltage protection for the C1 split resonant capacitor and the C2 split resonant capacitor; the VD11 diode and the VD12 diode Suppresses the LC resonance in the single-phase full-bridge rectifier circuit;
所述对称半桥LLC谐振式双向直流-直流变换器进行逆向功率变送时,VD11二极管和VD12二极管串联为C3分体谐振电容和C4分体谐振电容提供过电压保护;VD9二极管和VD10二极管抑制单相全桥整流器回路出现的LC谐振。When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs reverse power transmission, the VD11 diode and the VD12 diode are connected in series to provide overvoltage protection for the C3 split resonant capacitor and the C4 split resonant capacitor; the VD9 diode and the VD10 diode suppress LC resonance in a single-phase full-bridge rectifier circuit.
所述C1分体谐振电容与C2分体谐振电容串联构成分体谐振电容拓补结构,C1分体谐振电容与C2分体谐振电容的均方根电流为单个谐振电容的一半,其电容量为单个谐振电容的一半;The C1 split resonant capacitor and the C2 split resonant capacitor are connected in series to form a split resonant capacitor topological structure, the root mean square current of the C1 split resonant capacitor and the C2 split resonant capacitor is half of a single resonant capacitor, and its capacitance is half of a single resonant capacitor;
所述C3分体谐振电容与C4分体谐振电容串联构成分体谐振电容拓补结构,C3分体谐振电容与C4分体谐振电容的均方根电流为单个谐振电容的一半,其电容量为单个谐振电容的一半。The C3 split resonant capacitor and the C4 split resonant capacitor are connected in series to form a split resonant capacitor topological structure, the root mean square current of the C3 split resonant capacitor and the C4 split resonant capacitor is half of a single resonant capacitor, and its capacitance is half of a single resonant capacitor.
V2G双向功率变换电动汽车充放电系统的控制方法包括单相V2G双向功率变换电动汽车充放电系统的控制方法和三相V2G双向功率变换电动汽车充放电系统的控制方法;The control method of the V2G bidirectional power conversion electric vehicle charging and discharging system includes the control method of the single-phase V2G bidirectional power conversion electric vehicle charging and discharging system and the control method of the three-phase V2G bidirectional power conversion electric vehicle charging and discharging system;
单相V2G双向功率变换电动汽车充放电系统的控制方法包括以下步骤:A control method for a single-phase V2G bidirectional power conversion electric vehicle charging and discharging system includes the following steps:
1)从单相交流电源火线取电压信号,电压信号经锁相环同步跟踪,得到实际电压信号的相角信号θ,将相角信号θ送至空间矢量相位计算模块进行计算,得到sinθ的数值和cosθ的数值,将sinθ的数值和cosθ的数值分别送至αβ/dq变换器和dq/αβ变换器;1) Take the voltage signal from the live wire of the single-phase AC power supply, the voltage signal is synchronously tracked by the phase-locked loop, and the phase angle signal θ of the actual voltage signal is obtained, and the phase angle signal θ is sent to the space vector phase calculation module for calculation, and the value of sinθ is obtained and the values of cosθ, send the values of sinθ and cosθ to the αβ/dq converter and the dq/αβ converter respectively;
2)从单相交流电源火线取电流信号经iα-iβ信号生成电路和αβ/dq变换器得到dq同步旋转坐标系下的直轴信号分量id和交轴信号分量iq,q轴电流给定信号和iq经第一加法器运算后形成误差信号,该误差信号经第一PI调节器得到q轴电压给定信号将输入到dq/αβ变换器中;2) Take the current signal from the live wire of the single-phase AC power supply, pass through the iα - iβ signal generating circuit and the αβ/dq converter to obtain the direct-axis signal component i d and the quadrature-axis signal component i q in the dq synchronous rotating coordinate system, and the q-axis Current given signal and i q form an error signal after being operated by the first adder, and the error signal is obtained by the first PI regulator to obtain the q-axis voltage given signal Will Input into the dq/αβ converter;
3)第一直流电压电流采集模块采集第1直流母线电压udc1,第一直流电压电流采集模块起到电气隔离和系数变换的作用,udc1和第1直流母线电压给定值通过第三加法器形成误差信号,将误差信号输入至电压调节器中,经电压调节器比例、积分运算后得到d轴电流给定信号id和通过第二加法器运算后形成误差信号,该误差信号经第二PI调节器比例、积分运算后得到d轴电压给定信号dq/αβ变换器将同步旋转坐标系下的d轴电压给定信号和q轴电压给定信号变换为αβ两相静止坐标系下信号和信号;3) The first DC voltage and current acquisition module acquires the first DC bus voltage u dc1 , the first DC voltage and current acquisition module plays the role of electrical isolation and coefficient transformation, u dc1 and the first DC bus voltage given value The error signal is formed by the third adder, and the error signal is input to the voltage regulator, and the d-axis current given signal is obtained after the proportional and integral operation of the voltage regulator i d and The error signal is formed after the operation of the second adder, and the d-axis voltage given signal is obtained after the error signal is proportional and integrated by the second PI regulator The dq/αβ converter will synchronously rotate the d-axis voltage given signal in the coordinate system and q-axis voltage given signal Transformed into αβ two-phase stationary coordinate system signal and Signal;
4)αβ/abc变换器进一步将αβ两相静止坐标系下信号和信号变换为abc三相静止坐标系下信号、信号和信号,再经PWM信号生成模块得到四路PWM调制信号;4) The αβ/abc converter further transforms the αβ two-phase stationary coordinate system into signal and The signal is transformed into the abc three-phase static coordinate system Signal, signal and signal, and then get four PWM modulation signals through the PWM signal generation module;
5)第一直流电压电流采集模块得到第1直流母线的负极母线上的工作电流信号Idc1,Idc1和第1直流母线的负极母线上的电流给定值通过第四加法器运算后得误差信号,该误差信号经第三PI调节器进行比例、积分调节后,得到第2直流母线的负极母线上的电流给定值第2直流母线的负极母线上电流Idc2和经第五加法器运算得误差信号,该误差信号经第四PI调节器进行比例、积分调节后,得到第2直流母线上的控制信号,将该控制信号输入至功率变换方向控制器的反向变换端;5) The first DC voltage and current acquisition module obtains the working current signal I dc1 on the negative bus of the first DC bus, I dc1 and the current given value on the negative bus of the first DC bus The error signal is obtained after being calculated by the fourth adder. After the error signal is adjusted proportionally and integrally by the third PI regulator, the current given value on the negative bus of the second DC bus is obtained. The current I dc2 on the negative bus of the second DC bus and The error signal is calculated by the fifth adder, the error signal is adjusted proportionally and integrally by the fourth PI regulator, and the control signal on the second DC bus is obtained, and the control signal is input to the reverse direction of the power conversion direction controller transformation end;
6)第2直流母线电压传感器接于第2直流母线的正极母线和负极母线之间,用于检测第2直流母线的正极母线和负极母线之间的电压;第2直流母线电流传感器接于第2直流母线负极母线上,用于检测第2直流母线的电流,上述电流和电压经第二直流电压电流采集模块进行电气隔离和系数变换后,得到第2直流母线的检测电压Udc2和第2直流母线上的检测电流Idc2,Udc2和第2直流母线电压给定信号通过第七加法器求得误差信号,将该误差信号输入至模式变换器的恒压模式端子,第2直流母线上的电流Idc2和第2直流母线上的电流给定值通过第八加法器求得误差信号,将该误差信号输入至模式变换器的恒流模式端子,模式变换器进行模式选择,经第五PI调节器进行比例、积分调节后,得到第1直流母线上的电流给定值 和第1直流母线上的工作电流Idc1通过第六加法器求得误差信号,将该误差信号输入到功率变换方向控制器的正向变换端;6) The second DC bus voltage sensor is connected between the positive bus and the negative bus of the second DC bus to detect the voltage between the positive bus and the negative bus of the second DC bus; the second DC bus current sensor is connected to the
7)功率变换方向控制器确定功率的正反向变换,再经电压频率变换器进行电压到频率的变换,后经驱动信号生成模块形成具有180°占空比的上下桥臂互补信号,最终生成g1驱动信号、g2驱动信号、g3驱动信号和g4驱动信号;7) The power conversion direction controller determines the forward and reverse conversion of power, and then converts the voltage to frequency through the voltage-frequency converter, and then forms the complementary signal of the upper and lower bridge arms with a 180° duty cycle through the driving signal generation module, and finally generates g1 driving signal, g2 driving signal, g3 driving signal and g4 driving signal;
所述三相V2G双向功率变换电动汽车充放电系统的控制方法包括以下步骤:The control method of the three-phase V2G bidirectional power conversion electric vehicle charging and discharging system includes the following steps:
1)从三相交流电源A相(Ua)火线、三相交流电源B相(Ub)火线和三相交流电源C相(Uc)火线取三相电压信号和三相电流信号,经3/2变换器实现三相静止坐标系到两相静止坐标系的变换,得到uα信号、uβ信号、iα信号和iβ信号,uα信号和uβ信号经相角计算模块计算后得到θ的正弦函数值sinθ、余弦函数值cosθ,将sinθ和cosθ送至dq/αβ变换器中;1) Take the three-phase voltage signal and three-phase current signal from the live wire of phase A (Ua) of the three-phase AC power supply, the live wire of phase B (Ub) of the three-phase AC power supply and the live wire of phase C (Uc) of the three-phase AC power supply, and pass through 3/2 The converter realizes the transformation from the three-phase stationary coordinate system to the two-phase stationary coordinate system, and obtains u α signal, u β signal, i α signal and i β signal, and the u α signal and u β signal are calculated by the phase angle calculation module to obtain θ The sine function value sinθ, the cosine function value cosθ, send sinθ and cosθ to the dq/αβ converter;
2)iα信号和iβ信号经αβ/dq变换器得到dq同步旋转坐标系下的直轴信号分量id和交轴信号分量iq,q轴电流给定信号和iq经第一加法器运算后形成误差信号,该误差信号经第一PI调节器得到q轴电压给定信号将输入到dq/αβ变换器中;2) The i α signal and i β signal are passed through the αβ/dq converter to obtain the direct axis signal component i d and the quadrature axis signal component i q in the dq synchronous rotating coordinate system, and the q axis current given signal and i q form an error signal after being operated by the first adder, and the error signal is obtained by the first PI regulator to obtain the q-axis voltage given signal Will Input into the dq/αβ converter;
3)第一直流电压电流采集模块采集第1直流母线电压udc1,第一直流电压电流采集模块起到电气隔离和系数变换的作用,udc1和第1直流母线电压给定值通过第三加法器形成误差信号,将误差信号输入至电压调节器中,经电压调节器比例、积分运算后得到d轴电流给定信号id和通过第二加法器运算后形成误差信号,该误差信号经第二PI调节器比例、积分运算后得到d轴电压给定信号dq/αβ变换器将同步旋转坐标系下的d轴电压给定信号和q轴电压给定信号变换为αβ两相静止坐标系下信号和信号;3) The first DC voltage and current acquisition module acquires the first DC bus voltage u dc1 , the first DC voltage and current acquisition module plays the role of electrical isolation and coefficient transformation, u dc1 and the first DC bus voltage given value The error signal is formed by the third adder, and the error signal is input to the voltage regulator, and the d-axis current given signal is obtained after the proportional and integral operation of the voltage regulator i d and The error signal is formed after the operation of the second adder, and the d-axis voltage given signal is obtained after the error signal is proportional and integrated by the second PI regulator The dq/αβ converter will synchronously rotate the d-axis voltage given signal in the coordinate system and q-axis voltage given signal Transformed into αβ two-phase stationary coordinate system signal and Signal;
4)αβ/abc变换器进一步将αβ两相静止坐标系下信号和信号变换为abc三相静止坐标系下信号、信号和信号,再经PWM信号生成模块得到六路PWM调制信号;4) The αβ/abc converter further transforms the αβ two-phase stationary coordinate system into signal and The signal is transformed into the abc three-phase static coordinate system Signal, signal and signal, and then get six channels of PWM modulation signals through the PWM signal generating module;
5)第一直流电压电流采集模块得到第1直流母线的负极母线上的工作电流信号Idc1,Idc1和第1直流母线的负极母线上的电流给定值通过第四加法器运算后得误差信号,该误差信号经第三PI调节器进行比例、积分调节后,得到第2直流母线的负极母线上的电流给定值第2直流母线的负极母线上电流Idc2和经第五加法器运算得误差信号,该误差信号经第四PI调节器进行比例、积分调节后,得到第2直流母线上的控制信号,将该控制信号输入至功率变换方向控制器的反向变换端;5) The first DC voltage and current acquisition module obtains the working current signal I dc1 on the negative bus of the first DC bus, I dc1 and the current given value on the negative bus of the first DC bus The error signal is obtained after being calculated by the fourth adder. After the error signal is adjusted proportionally and integrally by the third PI regulator, the current given value on the negative bus of the second DC bus is obtained. The current I dc2 on the negative bus of the second DC bus and The error signal is calculated by the fifth adder, the error signal is adjusted proportionally and integrally by the fourth PI regulator, and the control signal on the second DC bus is obtained, and the control signal is input to the reverse direction of the power conversion direction controller transformation end;
6)第2直流母线电压传感器接于第2直流母线的正极母线和负极母线之间,用于检测第2直流母线的正极母线和负极母线之间的电压;第2直流母线电流传感器接于第2直流母线负极母线上,用于检测第2直流母线的电流,上述电流和电压经第二直流电压电流采集模块进行电气隔离和系数变换后,得到第2直流母线的检测电压Udc2和第2直流母线上的检测电流Idc2,Udc2和第2直流母线电压给定信号通过第七加法器求得误差信号,将该误差信号输入至模式变换器的恒压模式端子,第2直流母线上的电流Idc2和第2直流母线上的电流给定值通过第八加法器求得误差信号,将该误差信号输入至模式变换器的恒流模式端子,模式变换器进行模式选择,经第五PI调节器进行比例、积分调节后,得到第1直流母线上的电流给定值 和第1直流母线上的工作电流Idc1通过第六加法器求得误差信号,将该误差信号输入到功率变换方向控制器的正向变换端;6) The second DC bus voltage sensor is connected between the positive bus and the negative bus of the second DC bus to detect the voltage between the positive bus and the negative bus of the second DC bus; the second DC bus current sensor is connected to the second DC bus 2 DC bus negative bus, used to detect the current of the second DC bus, the above current and voltage are electrically isolated and coefficient transformed by the second DC voltage and current acquisition module, and the detection voltage U dc2 of the second DC bus and the second Detection current I dc2 on the DC bus, U dc2 and the second DC bus voltage given signal The error signal is obtained by the seventh adder, and the error signal is input to the constant voltage mode terminal of the mode converter, the current I dc2 on the second DC bus and the current given value on the second DC bus The error signal is obtained by the eighth adder, and the error signal is input to the constant current mode terminal of the mode converter, the mode converter performs mode selection, and after proportional and integral adjustment by the fifth PI regulator, the first DC bus is obtained Current given value on and the operating current I dc1 on the first DC bus to obtain an error signal through the sixth adder, and input the error signal to the forward conversion terminal of the power conversion direction controller;
7)功率变换方向控制器确定功率的正反向变换,再经电压频率变换器进行电压到频率的变换,后经驱动信号生成模块形成具有180°占空比的上下桥臂互补信号,最终生成g1驱动信号、g2驱动信号、g3驱动信号和g4驱动信号。7) The power conversion direction controller determines the forward and reverse conversion of power, and then converts the voltage to frequency through the voltage-frequency converter, and then forms the complementary signal of the upper and lower bridge arms with a 180° duty cycle through the driving signal generation module, and finally generates g1 driving signal, g2 driving signal, g3 driving signal and g4 driving signal.
本发明的有益效果是:一级功率变换电路在维持直流母线电压恒定,自动实现交流电网与直流母线之间能量双向调节的基础上,还实现了单位功率因数(UPF)和正弦波交流电流、低谐波(变换器电网侧电流接近正弦波,谐波含量小);二级功率变换电路采用对称半桥LLC谐振式双向直流变换器提高了变换效率、动态性能以及功率密度,缩减了电动汽车充放电装置的体积和重量,并通过高频逆变变压器将交流系统与动力电池组的电气联系完全隔离开来,有效提高系统的安全性、可靠性以及经济性。The beneficial effect of the present invention is that: on the basis of maintaining the DC bus voltage constant and automatically realizing the bidirectional energy regulation between the AC power grid and the DC bus, the primary power conversion circuit also realizes unit power factor (UPF) and sine wave AC current, Low harmonics (converter grid side current is close to sine wave, and the harmonic content is small); the secondary power conversion circuit adopts a symmetrical half-bridge LLC resonant bidirectional DC converter to improve conversion efficiency, dynamic performance and power density, and reduce the power consumption of electric vehicles. The volume and weight of the charging and discharging device, and the high-frequency inverter transformer completely isolates the electrical connection between the AC system and the power battery pack, effectively improving the safety, reliability and economy of the system.
附图说明 Description of drawings
图1为V2G双向功率变换电动汽车充放电系统框图;Figure 1 is a block diagram of V2G bidirectional power conversion electric vehicle charging and discharging system;
图2为单相充放电主电路拓扑;Figure 2 is the topology of the single-phase charging and discharging main circuit;
图3为三相充放电主电路拓扑;Figure 3 is the topology of the three-phase charging and discharging main circuit;
图4为单相充放电主电路拓扑控制方法框图;4 is a block diagram of a topology control method for a single-phase charging and discharging main circuit;
图5为三相充放电主电路拓扑控制方法框图;5 is a block diagram of a topology control method for a three-phase charging and discharging main circuit;
图6为对称半桥LLC谐振式双向直流变换器正向传送时基本电路。Figure 6 is the basic circuit of the forward transmission of the symmetrical half-bridge LLC resonant bidirectional DC converter.
具体实施方式 Detailed ways
下面结合附图对本发明进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
如图1所示,本发明公开了V2G双向功率变换电动汽车充放电系统及其控制方法。主电路采用单相或三相电压型PWM变流器(VSC)为一级功率变换电路,实现交流电网与第1直流母线(由第1直流母线的正极母线S1+和第1直流母线的负极母线S1-组成)之间的能量变换,简称为“AC/DC变换器”;采用对称半桥LLC谐振式双向直流-直流变换器作为二级功率变换电路,实现直流母线与EV动力电池组之间的能量变换,简称为“DC/DC变换器”;AC/DC变换器和DC/DC变换器通过第1直流母线并联连接。V2G双向功率变换电动汽车充放电系统实现交流侧电压、电流的采集,AC/DC变换器的SVPWM双闭环控制,DC/DC变换器的双向闭环控制和双向变换控制,以及EV动力电池组的电压、电流等蓄电池充放电信息采集。As shown in FIG. 1 , the present invention discloses a V2G bidirectional power conversion electric vehicle charging and discharging system and a control method thereof. The main circuit adopts single-phase or three-phase voltage type PWM converter (VSC) as the first-level power conversion circuit to realize the connection between the AC power grid and the first DC bus (by the positive bus S1+ of the first DC bus and the negative bus of the first DC bus). The energy conversion between S1-composition) is referred to as "AC/DC converter" for short; the symmetrical half-bridge LLC resonant bidirectional DC-DC converter is used as the secondary power conversion circuit to realize the connection between the DC bus and the EV power battery pack. The energy conversion is referred to as "DC/DC converter" for short; the AC/DC converter and DC/DC converter are connected in parallel through the first DC bus. The V2G bidirectional power conversion electric vehicle charging and discharging system realizes the acquisition of AC side voltage and current, the SVPWM double closed-loop control of the AC/DC converter, the bidirectional closed-loop control and bidirectional conversion control of the DC/DC converter, and the voltage of the EV power battery pack , current and other battery charging and discharging information collection.
如图2所示,单相V2G双向功率变换电动汽车充放电系统的结构如下:单相交流电源U、单相电压型PWM变流器、第1直流母线(由第1直流母线的正极母线S1+和第1直流母线的负极母线S1-组成)、对称半桥LLC谐振式双向直流-直流变换器和第2直流母线(由第2直流母线的正极母线S2+和第2直流母线的负极母线S2-组成)级联;As shown in Figure 2, the structure of the single-phase V2G bidirectional power conversion electric vehicle charging and discharging system is as follows: single-phase AC power supply U, single-phase voltage-type PWM converter, the first DC bus (from the positive bus S1+ of the first DC bus and the negative bus S1- of the first DC bus, the symmetrical half-bridge LLC resonant bidirectional DC-DC converter and the second DC bus (composed of the positive bus S2+ of the second DC bus and the negative bus S2- of the second DC bus composition) cascade;
单相交流电源U火线经线性电感L接入一相桥臂的上下臂连接处,零线直接接另一相桥臂的上下臂连接处,C11直流滤波电容并联连接在第1直流母线的正极S1+和第1直流母线的负极S1-之间,C12直流滤波电容和动力电池组均并联连接在第2直流母线的正极母线S2+和第2直流母线的负极母线S2-之间;The live wire U of the single-phase AC power supply is connected to the connection of the upper and lower arms of one phase bridge arm through the linear inductor L, the neutral line is directly connected to the connection of the upper and lower arms of the other phase bridge arm, and the C11 DC filter capacitor is connected in parallel to the positive pole of the first DC bus Between S1+ and the negative pole S1- of the first DC bus, the C12 DC filter capacitor and the power battery pack are connected in parallel between the positive bus S2+ of the second DC bus and the negative bus S2- of the second DC bus;
单相电压型PWM变流器的结构如下:V1功率开关管和VD1反并联二极管构成第一上臂,V2功率开关管和VD2反并联二极管构成第一下臂,V3功率开关管和VD3反并联二极管构成第二上臂,V4功率开关管和VD4反并联二极管构成第二下臂;第一上臂和第一下臂串联构成第一桥臂,第二上臂和第二下臂串联构成第二桥臂,两个桥臂并联组成单相全桥;直流侧并联C11直流滤波电容,单相交流电源U火线经线性电感L接入第一桥臂的上下臂连接处,零线直接接第二桥臂的上下臂连接处。The structure of the single-phase voltage-type PWM converter is as follows: V1 power switch tube and VD1 anti-parallel diode constitute the first upper arm, V2 power switch tube and VD2 anti-parallel diode constitute the first lower arm, V3 power switch tube and VD3 anti-parallel diode The second upper arm is formed, the V4 power switch tube and the VD4 anti-parallel diode form the second lower arm; the first upper arm and the first lower arm are connected in series to form the first bridge arm, and the second upper arm and the second lower arm are connected in series to form the second bridge arm. The two bridge arms are connected in parallel to form a single-phase full bridge; the DC side is connected in parallel with a C11 DC filter capacitor, the live wire of the single-phase AC power supply U is connected to the connection of the upper and lower arms of the first bridge arm through a linear inductor L, and the neutral line is directly connected to the connection of the second bridge arm The junction of the upper and lower arms.
如图3所示,三相V2G双向功率变换电动汽车充放电系统的结构如下:三相交流电源A相Ua、三相交流电源B相Ub和三相交流电源C相Uc均连接至三相电压型PWM变流器对应相桥臂的中点,三相电压型PWM变流器、第1直流母线(由第1直流母线的正极母线S1+和第1直流母线的负极母线S1-组成)、对称半桥LLC谐振式双向直流-直流变换器和第2直流母线(由第2直流母线的正极母线S2+和第2直流母线的负极母线S2-组成)级联;As shown in Figure 3, the structure of the three-phase V2G bidirectional power conversion electric vehicle charging and discharging system is as follows: the three-phase AC power A phase Ua, the three-phase AC power B phase Ub and the three-phase AC power C phase Uc are all connected to the three-phase voltage Type PWM converter corresponds to the midpoint of the phase bridge arm, three-phase voltage type PWM converter, the first DC bus (composed of the positive bus S1+ of the first DC bus and the negative bus S1- of the first DC bus), symmetrical The half-bridge LLC resonant bidirectional DC-DC converter is cascaded with the second DC bus (composed of the positive bus S2+ of the second DC bus and the negative bus S2- of the second DC bus);
三相交流电源A相Ua火线经La线性电感接入第一桥臂的上下臂连接处,三相交流电源B相Ub火线经Lb线性电感接入第二桥臂的上下臂连接处,三相交流电源C相Uc火线经Lc线性电感接入第三桥臂的上下臂连接处;C11直流滤波电容并联连接在第1直流母线的正极S1+和第1直流母线的负极S1-之间,C12直流滤波电容和动力电池组均并联连接在第2直流母线的正极母线S2+和第2直流母线的负极母线S2-之间。Three-phase AC power supply A phase Ua live wire is connected to the connection of the upper and lower arms of the first bridge arm through the La linear inductor, and the B-phase Ub live wire of the three-phase AC power supply is connected to the connection of the upper and lower arms of the second bridge arm through the Lb linear inductor. Three-phase The C-phase Uc live wire of the AC power supply is connected to the connection of the upper and lower arms of the third bridge arm through the Lc linear inductor; the C11 DC filter capacitor is connected in parallel between the positive pole S1+ of the first DC bus and the negative pole S1- of the first DC bus, and the C12 DC Both the filter capacitor and the power battery pack are connected in parallel between the positive bus S2+ of the second DC bus and the negative bus S2- of the second DC bus.
三相电压型PWM变流器的结构如下:V17率开关管和VD17反并联二极管构成第一上臂,V18率开关管和VD18反并联二极管构成第一下臂,V19功率开关管和VD19反并联二极管构成第二上臂,V20功率开关管和VD20反并联二极管构成第二下臂,V21功率开关管和VD21反并联二极管构成第三上臂,V22功率开关管和VD22反并联二极管构成第三下臂,第一上臂和第一下臂串联构成第一桥臂,第二上臂和第二下臂串联构成第二桥臂,第三上臂和第三下臂串联构成第三桥臂,三个桥臂并联组成三相桥式电路;直流侧并联C11直流滤波电容,第一三相交流电源Ua火线经La线性电感接入第一桥臂的上下臂连接处,第二三相交流电源Ub火线经Lb线性电感接入第二桥臂的上下臂连接处,第三三相交流电源Uc火线经Lc线性电感接入第三桥臂的上下臂连接处,中性点为N。The structure of the three-phase voltage-type PWM converter is as follows: V17 power switch tube and VD17 anti-parallel diode form the first upper arm, V18 rate switch tube and VD18 anti-parallel diode form the first lower arm, V19 power switch tube and VD19 anti-parallel diode Constitute the second upper arm, V20 power switch tube and VD20 anti-parallel diode form the second lower arm, V21 power switch tube and VD21 anti-parallel diode form the third upper arm, V22 power switch tube and VD22 anti-parallel diode form the third lower arm, the first One upper arm and the first lower arm are connected in series to form the first bridge arm, the second upper arm and the second lower arm are connected in series to form the second bridge arm, the third upper arm and the third lower arm are connected in series to form the third bridge arm, and the three bridge arms are connected in parallel. Three-phase bridge circuit; C11 DC filter capacitor connected in parallel on the DC side, the live wire of the first three-phase AC power supply Ua is connected to the connection of the upper and lower arms of the first bridge arm through the linear inductor La, and the live wire of the second three-phase AC power supply Ub is connected through the linear inductor Lb It is connected to the joint of the upper and lower arms of the second bridge arm, and the live wire of the third three-phase AC power supply Uc is connected to the joint of the upper and lower arms of the third bridge arm through the Lc linear inductance, and the neutral point is N.
对称半桥LLC谐振式双向直流-直流变换器的功率变送分为正向功率变送和逆向功率变送,设变换器的正向功率变送是功率从端口1-1′向端口2-2′方向的变送,变换器的逆向功率变送是功率从端口2-2′向端口1-1′方向的变送。对称半桥LLC谐振式双向DC/DC变换器由开关网络、谐振网络与整流器-负载网络串联构成,以T高频变压器为中心,其左侧电路与右侧电路结构对称,T高频变压器的变比为1∶1。The power transmission of the symmetrical half-bridge LLC resonant bidirectional DC-DC converter is divided into forward power transmission and reverse power transmission. It is assumed that the forward power transmission of the converter is from port 1-1′ to port 2- The transmission in the direction of 2', the reverse power transmission of the converter is the transmission of power from port 2-2' to port 1-1'. The symmetrical half-bridge LLC resonant bidirectional DC/DC converter is composed of a switch network, a resonant network and a rectifier-load network in series. The T high-frequency transformer is the center, and the left circuit and the right circuit have a symmetrical structure. The T high-frequency transformer The transformation ratio is 1:1.
对称半桥LLC谐振式双向直流-直流变换器通过T高频变压器实现交流供电系统(指单相交流电源或三相交流电源)与动力电池组的电气隔离。The symmetrical half-bridge LLC resonant bidirectional DC-DC converter realizes the electrical isolation of the AC power supply system (referring to single-phase AC power supply or three-phase AC power supply) and the power battery pack through a T high-frequency transformer.
对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,开关网络的连接关系如下:反并联VD5快恢复二极管的V5开关管与反并联VD6快恢复二极管的V6开关管串联,然后与C11直流滤波电容并联;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the connection relationship of the switch network is as follows: the V5 switch tube of the anti-parallel VD5 fast recovery diode is connected in series with the V6 switch tube of the anti-parallel VD6 fast recovery diode, Then connect it in parallel with C11 DC filter capacitor;
对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,谐振网络的连接关系如下:VD13二极管串联VD14二极管,VD9二极管串联VD10二极管,C1分体谐振电容串联C2分体谐振电容,上述三者并联连接在第1直流母线的正极(S1+)和第1直流母线的负极(S1-)之间,L1谐振电感的一端接VD9二极管、VD10二极管、C1分体谐振电容和C2分体谐振电容的公共节点,其另一端接VD13二极管、VD14二极管和T高频变压器原边绕组一端的公共节点;T高频变压器原边绕组另一端连接V5开关管和V6开关管的公共节点;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the connection relationship of the resonant network is as follows: VD13 diode is connected in series with VD14 diode, VD9 diode is connected in series with VD10 diode, C1 split resonant capacitor is connected in series with C2 split resonant capacitor , the above three are connected in parallel between the positive pole (S1+) of the first DC bus and the negative pole (S1-) of the first DC bus, and one end of the L1 resonant inductor is connected to the VD9 diode, VD10 diode, C1 split resonant capacitor and C2 split The common node of the body resonant capacitor, the other end of which is connected to the common node of VD13 diode, VD14 diode and one end of the primary winding of the T high frequency transformer; the other end of the primary winding of the T high frequency transformer is connected to the common node of the V5 switch tube and the V6 switch tube;
对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,整流器-负载网络的连接关系如下:VD7二极管、VD8二极管,VD15二极管和VD16二极管组成单相全桥整流器回路,然后与C12直流滤波电容并联。When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the connection relationship of the rectifier-load network is as follows: VD7 diode, VD8 diode, VD15 diode and VD16 diode form a single-phase full-bridge rectifier circuit, and then connect with C12 DC filter capacitor is connected in parallel.
当高频变压器一侧的开关网络、谐振网络起作用时,另一侧的开关网络、谐振网络自动演化为整流器-负载网络,两侧网络一同构成完整的LLC谐振变换器,实现该方向的功率变换;由于结构完全对称,逆向也成立,当进行逆向变换时,拓扑结构将自动重构,组成逆向LLC谐振变换器,实现逆向的功率变换。When the switching network and resonant network on one side of the high-frequency transformer work, the switching network and resonant network on the other side automatically evolve into a rectifier-load network, and the networks on both sides together form a complete LLC resonant converter to achieve power in this direction. Transformation; due to the complete symmetry of the structure, the reverse is also established. When the reverse transformation is performed, the topology structure will be automatically reconfigured to form a reverse LLC resonant converter to achieve reverse power conversion.
同时对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,VD13二极管和VD14二极管串联为L1谐振电感提供过电压保护;VD15二极管和VD16二极管为单相全桥整流器的一条整流臂,并旁路L2谐振电感;对称半桥LLC谐振式双向直流-直流变换器进行逆向功率变送时,VD15二极管和VD16二极管串联为L2谐振电感提供过电压保护;VD13二极管和VD14二极管为单相全桥整流器的一条整流臂,并旁路L1谐振电感。At the same time, when the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, the VD13 diode and VD14 diode are connected in series to provide overvoltage protection for the L1 resonant inductor; the VD15 diode and VD16 diode are a rectifier of the single-phase full-bridge rectifier arm, and bypass the L2 resonant inductor; when the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs reverse power transmission, the VD15 diode and VD16 diode are connected in series to provide overvoltage protection for the L2 resonant inductor; the VD13 diode and VD14 diode are single One leg of a full-bridge rectifier and bypass the L1 resonant inductor.
总体来说,在T高频变压器的一侧,二极管可以作为谐振网络中谐振电感的简单、廉价的过电压保护;而同时在另一侧,对称位置的二极管自动转换为单相全桥整流器的一条整流臂,并将同侧此时不用的谐振电感从主电路上分离出去,避免在输出侧回路产生大的内阻抗压降,从而,相关的二极管具有钳位保护、整流以及自动分离输出回路内阻抗等复合功能作用。In general, on one side of the T high-frequency transformer, diodes can be used as simple and cheap overvoltage protection of the resonant inductor in the resonant network; while on the other side, symmetrically positioned diodes automatically convert to A rectifier arm, and separate the unused resonant inductance on the same side from the main circuit to avoid a large internal impedance drop in the output side circuit, so that the relevant diodes have clamp protection, rectification and automatic separation of the output circuit Composite functions such as internal impedance.
对称半桥LLC谐振式双向直流-直流变换器进行正向功率变送时,VD9二极管和VD10二极管串联为C1分体谐振电容和C2分体谐振电容提供过电压保护;VD11二极管和VD12二极管抑制单相全桥整流器回路出现的LC谐振;When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs forward power transmission, VD9 diode and VD10 diode are connected in series to provide overvoltage protection for C1 split resonant capacitor and C2 split resonant capacitor; VD11 diode and VD12 diode suppress single LC resonance in phase full bridge rectifier circuit;
对称半桥LLC谐振式双向直流-直流变换器进行逆向功率变送时,VD11二极管和VD12二极管串联为C3分体谐振电容和C4分体谐振电容提供过电压保护;VD9二极管和VD10二极管抑制单相全桥整流器回路出现的LC谐振。When the symmetrical half-bridge LLC resonant bidirectional DC-DC converter performs reverse power transmission, VD11 diode and VD12 diode are connected in series to provide overvoltage protection for C3 split resonant capacitor and C4 split resonant capacitor; VD9 diode and VD10 diode suppress single-phase LC resonance in full bridge rectifier loop.
C1分体谐振电容与C2分体谐振电容串联构成分体谐振电容拓补结构,C1分体谐振电容与C2分体谐振电容的均方根电流为单个谐振电容的一半,其电容量为单个谐振电容的一半;The C1 split resonant capacitor and the C2 split resonant capacitor are connected in series to form a split resonant capacitor topology structure. The root mean square current of the C1 split resonant capacitor and the C2 split resonant capacitor is half of a single resonant capacitor, and its capacitance is a single resonant capacitor. half of the capacitance;
C3分体谐振电容与C4分体谐振电容串联构成分体谐振电容拓补结构,C3分体谐振电容与C4分体谐振电容的均方根电流为单个谐振电容的一半,其电容量为单个谐振电容的一半。The C3 split resonant capacitor and the C4 split resonant capacitor are connected in series to form a split resonant capacitor topology. The root mean square current of the C3 split resonant capacitor and the C4 split resonant capacitor is half of a single resonant capacitor, and its capacitance is a single resonant capacitor. half of the capacitance.
如图6所示为对称半桥LLC谐振式双向DC/DC变换器进行正向功率变送时的基本电路,此时,T高频变压器等效为Lm原边激磁电感与理想高频变压器的并联,它由开关网络、谐振网络以及整流器-负载网络串联组成。Figure 6 shows the basic circuit of the symmetrical half-bridge LLC resonant bidirectional DC/DC converter for forward power transmission. At this time, the T high-frequency transformer is equivalent to the L m primary excitation inductance and the ideal high-frequency transformer It consists of a switch network, a resonant network, and a rectifier-load network in series.
开关网络的连接关系如下:反并联VD5快恢复二极管的V5开关管与反并联VD6快恢复二极管的V6开关管串联,然后与C11直流滤波电容并联。The connection relationship of the switch network is as follows: the V5 switch tube of the anti-parallel VD5 fast recovery diode is connected in series with the V6 switch tube of the anti-parallel VD6 fast recovery diode, and then connected in parallel with the C11 DC filter capacitor.
谐振网络的连接关系如下:C1分体谐振电容串联C2分体谐振电容,L1谐振电感的一端接C1分体谐振电容和C2分体谐振电容的公共节点,其另一端接Lm原边激磁电感;Lm原边激磁电感连接V5开关管和V6开关管的公共节点,Lm原边激磁电感与理想变压器并联。谐振网络主要相当于一个分压器,其阻抗随工作频率的变化而变化。The connection relationship of the resonant network is as follows: the C1 split resonant capacitor is connected in series with the C2 split resonant capacitor, one end of the L1 resonant inductor is connected to the common node of the C1 split resonant capacitor and the C2 split resonant capacitor, and the other end is connected to the Lm primary excitation inductance; The excitation inductance on the primary side of Lm is connected to the common node of the V5 switch tube and the V6 switch tube, and the excitation inductance on the primary side of Lm is connected in parallel with the ideal transformer. The resonant network is mainly equivalent to a voltage divider, and its impedance varies with the operating frequency.
在T高频变压器副边,整流器-负载网络的连接关系如下:VD7二极管与VD8一极管与串联构成一条整流臂,在两者中间连接高频变压器副边绕组的一端;VD15二极管与VD16二极管串联构成另一条整流臂,在两者中间连接高频变压器副边绕组的另一端;两条整流臂共阴极、共阳极连接,再与C12流滤波电容并联。On the secondary side of the T high-frequency transformer, the connection relationship between the rectifier and the load network is as follows: VD7 diode and VD8 one-pole tube are connected in series to form a rectifier arm, and one end of the high-frequency transformer secondary winding is connected between them; VD15 diode and VD16 diode Another rectifier arm is formed in series, and the other end of the secondary winding of the high-frequency transformer is connected between the two; the two rectifier arms are connected with a common cathode and a common anode, and then connected in parallel with a C12 current filter capacitor.
V2G双向功率变换电动汽车充放电系统的控制方法包括单相V2G双向功率变换电动汽车充放电系统的控制方法和三相V2G双向功率变换电动汽车充放电系统的控制方法;如图4所示,单相V2G双向功率变换电动汽车充放电系统的控制方法包括以下步骤:The control method of the V2G bidirectional power conversion electric vehicle charging and discharging system includes the control method of the single-phase V2G bidirectional power conversion electric vehicle charging and discharging system and the control method of the three-phase V2G bidirectional power conversion electric vehicle charging and discharging system; as shown in Figure 4, the single A control method for a phase V2G bidirectional power conversion electric vehicle charging and discharging system includes the following steps:
1)从单相交流电源U火线取电压信号,电压信号经锁相环(PLL)1同步跟踪,得到实际电压信号的相角信号θ,将相角信号θ送至空间矢量相位计算模块2进行计算,得到sinθ的数值和cosθ的数值,将sinθ的数值和cosθ的数值分别送至αβ/dq变换器4和dq/αβ变换器11;1) Take the voltage signal from the live wire of the single-phase AC power supply U, and the voltage signal is synchronously tracked by the phase-locked loop (PLL) 1 to obtain the phase angle signal θ of the actual voltage signal, and send the phase angle signal θ to the space vector
2)从单相交流电源U火线取电流信号经iα-iβ信号生成电路3和αβ/dq变换器4得到dq同步旋转坐标系下的直轴信号分量id和交轴信号分量iq,q轴电流给定信号和iq经第一加法器6运算后形成误差信号,该误差信号经第一PI(比例-积分)调节器8得到q轴电压给定信号将输入到dq/αβ变换器11中;2) Take the current signal from the live wire of the single-phase AC power supply U, pass through the iα - iβ
3)第一直流电压电流采集模块12采集第1直流母线电压udc1(C11直流滤波电容两端电压),第一直流电压电流采集模块12起到电气隔离和系数变换的作用,udc1和第1直流母线电压给定值通过第三加法器14形成误差信号,将误差信号输入至电压调节器13中,经电压调节器13比例、积分运算后得到d轴电流给定信号id和通过第二加法器7运算后形成误差信号,该误差信号经第二PI调节器9比例、积分运算后得到d轴电压给定信号dq/αβ变换器11将同步旋转坐标系下的d轴电压给定信号和q轴电压给定信号变换为αβ两相静止坐标系下信号和信号;3) The first DC voltage and
4)αβ/abc变换器10进一步将αβ两相静止坐标系下信号和信号变换为abc三相静止坐标系下信号、信号和信号,再经PWM信号生成模块5得到四路PWM调制信号;4) The αβ/
5)第1直流母线电流传感器接于第1直流母线的负极母线S1-上,它位于第1直流母线与直流滤波电容C11交点以下,起到传感直流电流信号的作用,第一直流电压电流采集模块12得到第1直流母线的负极母线S1-上的工作电流信号Idc1,Idc1和第1直流母线的负极母线S1-上的电流给定值通过第四加法器15运算后得误差信号,该误差信号经第三PI调节器16进行比例、积分调节后,得到第2直流母线的负极母线S2-上的电流给定值第2直流母线的负极母线S2-上电流Idc2和经第五加法器17运算得误差信号,该误差信号经第四PI调节器18进行比例、积分调节后(实现了反向变换控制),得到第2直流母线上的控制信号,将该控制信号输入至功率变换方向控制器21的反向变换端;5) The first DC bus current sensor is connected to the negative bus S1- of the first DC bus, which is located below the intersection of the first DC bus and the DC filter capacitor C11, and plays the role of sensing the DC current signal. The first DC voltage and current The
6)第2直流母线电压传感器接于第2直流母线的正极母线S2+和负极母线S2-之间,用于检测第2直流母线的正极母线S2+和负极母线S2-之间的电压;第2直流母线电流传感器接于第2直流母线负极母线S2-上,用于检测第2直流母线的电流,上述电流和电压经第二直流电压电流采集模块27进行电气隔离和系数变换后,得到第2直流母线的检测电压Udc2和第2直流母线上的检测电流Idc2,Udc2和第2直流母线电压给定信号通过第七加法器25求得误差信号,将该误差信号输入至模式变换器24的恒压模式端子,第2直流母线上的电流Idc2和第2直流母线上的电流给定值通过第八加法器26求得误差信号,将该误差信号输入至模式变换器24的恒流模式端子,模式变换器24进行模式选择,经第五PI调节器23进行比例、积分调节后,得到第1直流母线上的电流给定值和第1直流母线上的工作电流Idc1通过第六加法器22求得误差信号(实现了正向变换控制),将该误差信号输入到功率变换方向控制器21的正向变换端;6) The second DC bus voltage sensor is connected between the positive bus S2+ and the negative bus S2- of the second DC bus to detect the voltage between the positive bus S2+ and the negative bus S2- of the second DC bus; the second DC The bus current sensor is connected to the negative bus S2- of the second DC bus, and is used to detect the current of the second DC bus. The detection voltage U dc2 of the bus and the detection current I dc2 on the second DC bus, U dc2 and the given signal of the voltage of the second DC bus The error signal is obtained by the
7)功率变换方向控制器21确定功率的正反向变换,再经电压频率变换器20进行电压到频率的变换,后经驱动信号生成模块19形成具有180°占空比的上下桥臂互补信号,最终生成g1驱动信号、g2驱动信号、g3驱动信号和g4驱动信号,g1驱动信号、g2驱动信号、g3驱动信号和g4驱动信号分别用于驱动V5开关管和V6开关管、V8开关管和V7开关管;7) The power
如图5所示,三相V2G双向功率变换电动汽车充放电系统的控制方法包括以下步骤:As shown in Figure 5, the control method of the three-phase V2G bidirectional power conversion electric vehicle charging and discharging system includes the following steps:
1)从三相交流电源A相Ua火线、三相交流电源B相Ub火线和三相交流电源C相Uc火线取三相电压信号和三相电流信号,经3/2变换器31实现三相静止坐标系到两相静止坐标系的变换,得到uα信号、uβ信号、iα信号和iβ信号,uα信号和uβ信号经相角计算模块32计算后得到θ的正弦函数值sinθ、余弦函数值cosθ,将sinθ和cosθ送至dq/αβ变换器11中;1) Take the three-phase voltage signal and the three-phase current signal from the A-phase Ua live wire of the three-phase AC power supply, the B-phase Ub live wire of the three-phase AC power supply, and the C-phase Uc live wire of the three-phase AC power supply, and realize the three-phase through the 3/2
2)iα信号和iβ信号经αβ/dq变换器4得到dq同步旋转坐标系下的直轴信号分量id和交轴信号分量iq,q轴电流给定信号和iq经第一加法器6运算后形成误差信号,该误差信号经第一PI(比例-积分)调节器8得到q轴电压给定信号将输入到dq/αβ变换器11中;2) The i α signal and i β signal pass through the αβ/dq converter 4 to obtain the direct axis signal component i d and the quadrature axis signal component i q in the dq synchronous rotating coordinate system, and the q axis current given signal and i q form an error signal after being operated by the first adder 6, and the error signal is obtained by the first PI (proportional-integral)
3)第一直流电压电流采集模块12采集第1直流母线电压udc1(C11直流滤波电容两端电压),第一直流电压电流采集模块12起到电气隔离和系数变换的作用,udc1和第1直流母线电压给定值通过第三加法器14形成误差信号,将误差信号输入至电压调节器13中,经电压调节器13比例、积分运算后得到d轴电流给定信号id和通过第二加法器7运算后形成误差信号,该误差信号经第二PI调节器9比例、积分运算后得到d轴电压给定信号dq/αβ变换器11将同步旋转坐标系下的d轴电压给定信号和q轴电压给定信号变换为αβ两相静止坐标系下信号和信号;3) The first DC voltage and
4)αβ/abc变换器10进一步将αβ两相静止坐标系下信号和信号变换为abc三相静止坐标系下信号、信号和信号,再经PWM信号生成模块5得到六路PWM调制信号;4) The αβ/
5)第1直流母线电流传感器接于第1直流母线的负极母线S1-上,它位于第1直流母线与直流滤波电容C11交点以下,起到传感直流电流信号的作用,第一直流电压电流采集模块12得到第1直流母线的负极母线S1-上的工作电流信号Idc1,Idc1和第1直流母线的负极母线S1-上的电流给定值通过第四加法器15运算后得误差信号,该误差信号经第三PI调节器16进行比例、积分调节后,得到第2直流母线的负极母线S2-上的电流给定值第2直流母线的负极母线S2-上电流Idc2和经第五加法器17运算得误差信号,该误差信号经第四PI调节器18进行比例、积分调节后(实现了反向变换控制),得到第2直流母线上的控制信号,将该控制信号输入至功率变换方向控制器21的反向变换端;5) The first DC bus current sensor is connected to the negative bus S1- of the first DC bus, which is located below the intersection of the first DC bus and the DC filter capacitor C11, and plays the role of sensing the DC current signal. The first DC voltage and current The
6)第2直流母线电压传感器接于第2直流母线的正极母线S2+和负极母线S2-之间,用于检测第2直流母线的正极母线S2+和负极母线S2-之间的电压;第2直流母线电流传感器接于第2直流母线负极母线S2-上,用于检测第2直流母线的电流,上述电流和电压经第二直流电压电流采集模块27进行电气隔离和系数变换后,得到第2直流母线的检测电压Udc2和第2直流母线上的检测电流Idc2,Udc2和第2直流母线电压给定信号通过第七加法器25求得误差信号,将该误差信号输入至模式变换器24的恒压模式端子,第2直流母线上的电流Idc2和第2直流母线上的电流给定值通过第八加法器26求得误差信号,将该误差信号输入至模式变换器24的恒流模式端子,模式变换器24进行模式选择,经第五PI调节器23进行比例、积分调节后,得到第1直流母线上的电流给定值和第1直流母线上的工作电流Idc1通过第六加法器22求得误差信号(实现了正向变换控制),将该误差信号输入到功率变换方向控制器21的正向变换端;6) The second DC bus voltage sensor is connected between the positive bus S2+ and the negative bus S2- of the second DC bus to detect the voltage between the positive bus S2+ and the negative bus S2- of the second DC bus; the second DC The bus current sensor is connected to the negative bus S2- of the second DC bus, and is used to detect the current of the second DC bus. The detection voltage U dc2 of the bus and the detection current I dc2 on the second DC bus, U dc2 and the given signal of the voltage of the second DC bus The error signal is obtained by the
7)功率变换方向控制器21确定功率的正反向变换,再经电压频率变换器20进行电压到频率的变换,后经驱动信号生成模块19形成具有180°占空比的上下桥臂互补信号,最终生成g1驱动信号、g2驱动信号、g3驱动信号和g4驱动信号,g1驱动信号、g2驱动信号、g3驱动信号和g4驱动信号分别用于驱动V5开关管和V6开关管、V8开关管和V7开关管。7) The power
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210014240.8A CN102570560B (en) | 2012-01-18 | 2012-01-18 | Charging-discharging system for V2G bilateral power conversion electric automobile and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210014240.8A CN102570560B (en) | 2012-01-18 | 2012-01-18 | Charging-discharging system for V2G bilateral power conversion electric automobile and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102570560A CN102570560A (en) | 2012-07-11 |
CN102570560B true CN102570560B (en) | 2014-07-09 |
Family
ID=46415269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210014240.8A Active CN102570560B (en) | 2012-01-18 | 2012-01-18 | Charging-discharging system for V2G bilateral power conversion electric automobile and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102570560B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI583098B (en) * | 2014-10-14 | 2017-05-11 | Hitachi Information & Telecommunication Engineering Ltd | Power supply and the use of its non-power supply system |
WO2017189658A1 (en) * | 2016-04-26 | 2017-11-02 | General Electric Company | Power converter topology for use in an energy storage system |
CN110356268A (en) * | 2019-06-25 | 2019-10-22 | 华为技术有限公司 | A kind of vehicle-mounted charge and discharge device and system |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102790532A (en) * | 2012-07-25 | 2012-11-21 | 上海交通大学 | Universal switch power supply |
CN103825349B (en) * | 2012-11-19 | 2017-03-01 | 伊顿公司 | Integrated power changer |
CN103475232B (en) * | 2013-09-30 | 2017-02-15 | 绿色储能技术研究院有限公司 | High-precision bidirectional converter for electric energy storage and circulation |
CN103595256A (en) * | 2013-11-20 | 2014-02-19 | 深圳市航盛电子股份有限公司 | DC/DC power system for electric vehicle |
CN103738153B (en) * | 2013-12-19 | 2016-09-28 | 广西科技大学 | A kind of power drive system of new-energy automobile |
CN103746422B (en) * | 2014-01-07 | 2016-01-20 | 国网电力科学研究院 | A kind of direct current charge-discharge control method based on interface intelligent identification technology |
CN103825337B (en) * | 2014-03-12 | 2015-09-16 | 上海理工大学 | Based on V2G Constant-current discharge system and control method thereof |
CN105552972B (en) * | 2014-10-28 | 2019-10-11 | 比亚迪股份有限公司 | The on-board charging system of electric car and the control method of on-board charging system |
US10128625B2 (en) | 2014-11-18 | 2018-11-13 | General Electric Company | Bus bar and power electronic device with current shaping terminal connector and method of making a terminal connector |
CN104753369B (en) | 2015-03-18 | 2017-06-06 | 深圳市保益新能电气有限公司 | A kind of high-frequency isolation ac-dc conversion circuit and its control method |
CN104868776B (en) * | 2015-05-12 | 2016-10-12 | 江苏固德威电源科技股份有限公司 | It is applied to the double-direction control drive circuit of energy storage inverter |
CN108701996B (en) * | 2016-01-22 | 2022-07-12 | 香港大学 | Grid-controlled virtual inertial power supply |
CN105743175B (en) * | 2016-04-07 | 2018-02-02 | 东南大学 | A kind of drive system of electric motor vehicle of integrated charge machine function |
CN105811460B (en) * | 2016-05-04 | 2019-10-25 | 中车株洲电力机车研究所有限公司 | A kind of power module high frequency test system for electronic power transformer |
CN106026754B (en) * | 2016-05-24 | 2018-12-11 | 国网福建省电力有限公司 | Multi-purpose bidirectional power power experiment power supply system and its control method |
CN106740221B (en) * | 2017-01-06 | 2020-12-29 | 中国计量大学 | A V2G wireless power bidirectional transmission device based on low frequency PWM rectifier |
CN108407625B (en) * | 2017-02-10 | 2024-01-26 | 石家庄汉卓能源科技有限公司 | A two-way charging and discharging system for new energy vehicles |
CN106740239B (en) * | 2017-02-24 | 2019-08-27 | 北京新能源汽车股份有限公司 | Charging circuit, charging method and electric automobile |
CN106786706B (en) * | 2017-03-10 | 2019-04-26 | 苏州协鑫集成科技工业应用研究院有限公司 | The control method and device of Bidirectional charging-discharging system |
CN107800298B (en) * | 2017-03-10 | 2021-02-02 | 湖南大学 | Modular solid state transformer based on distributed high frequency transform and its control method |
CN107302223A (en) * | 2017-07-10 | 2017-10-27 | 山东鲁能智能技术有限公司 | A kind of electric energy bidirectional transmission system and its control method |
CN107284271A (en) * | 2017-07-10 | 2017-10-24 | 山东鲁能智能技术有限公司 | The charging equipment and its control method of a kind of electric automobile |
CN107592028B (en) * | 2017-09-04 | 2020-03-31 | 佛山市索尔电子实业有限公司 | Inverter circuit system |
CN107627881B (en) * | 2017-09-18 | 2020-11-17 | 电子科技大学 | Charge-discharge and motor drive integrated device of electric automobile |
CN108988451A (en) * | 2018-07-30 | 2018-12-11 | 南京航空航天大学无锡研究院 | Isolation type bidirectional charger control method and control circuit |
CN109104094A (en) * | 2018-10-24 | 2018-12-28 | 珠海泰通电气技术有限公司 | A kind of isolation charge-discharge system of energy in bidirectional flow |
CN109495007A (en) * | 2018-12-29 | 2019-03-19 | 深圳市新能安华技术有限公司 | A kind of two-way AC/DC converter |
CN109672344B (en) * | 2019-01-21 | 2020-06-26 | 中国科学院电工研究所 | Bidirectional DC converter and control method thereof |
CN110176861B (en) * | 2019-06-24 | 2021-03-30 | 湘潭大学 | VIC Control Device Based on Reconstructed Integral Synovial Variable Structure |
CN110460260B (en) | 2019-08-07 | 2020-12-15 | 华为技术有限公司 | A converter and power supply system |
CN112583096B (en) * | 2019-09-29 | 2023-03-14 | 比亚迪股份有限公司 | Vehicle-mounted charging system and vehicle with same |
CN110768550A (en) * | 2019-11-01 | 2020-02-07 | 国网山东省电力公司济宁供电公司 | V2G bidirectional power converter, control system and control method |
CN111525828B (en) * | 2020-05-20 | 2023-03-10 | 太原理工大学 | Control Method of Bidirectional Isolated Resonant Power Converter Based on Virtual Synchronous Motor |
CN113726136B (en) * | 2020-05-26 | 2023-11-03 | 台达电子企业管理(上海)有限公司 | conversion device |
CN111404393A (en) * | 2020-06-08 | 2020-07-10 | 北京理工大学深圳汽车研究院 | Vehicle-mounted charging circuit and bidirectional direct current conversion circuit |
CN112398349B (en) * | 2020-10-19 | 2021-10-15 | 浙江大学 | AC-DC interconnected isolated bidirectional DC-AC converter and its bidirectional sharing control method |
CN112769153A (en) * | 2020-12-28 | 2021-05-07 | 山东鲁能软件技术有限公司智能电气分公司 | High-power-density bidirectional charging and discharging circuit, control method and power supply |
CN114793065A (en) * | 2021-01-26 | 2022-07-26 | 许继电气股份有限公司 | RTDS simulation method and device for direct-current booster for new energy grid connection |
CN113131768B (en) * | 2021-04-20 | 2023-07-04 | 西华大学 | Control method of electric automobile seven-in-one high-voltage integrated system |
CN115347630A (en) * | 2021-05-14 | 2022-11-15 | 快充公司 | Charging device |
CN113410859B (en) * | 2021-06-29 | 2024-07-19 | 西安领充无限新能源科技有限公司 | Control method of vehicle-mounted bidirectional charger and vehicle-mounted bidirectional charger |
CN113904557B (en) * | 2021-09-18 | 2022-09-23 | 苏州万可顶钇电源有限公司 | Automatic compensation device with high reliability and mutual hot backup of double buses and control method |
CN114726035A (en) * | 2022-03-31 | 2022-07-08 | 岚图汽车科技有限公司 | Charging and discharging system, interface and equipment |
CN114825407B (en) * | 2022-06-22 | 2022-10-18 | 锦浪科技股份有限公司 | Charging and discharging switching method, device, system and medium of bidirectional converter |
CN115065080B (en) * | 2022-06-23 | 2025-07-01 | 南京信息工程大学 | An electric vehicle V2G energy storage charger and discharger circuit and direct power control method |
CN115021296B (en) * | 2022-06-23 | 2025-07-01 | 南京信息工程大学 | A bidirectional direct power control method for electric vehicles V2G without bus voltage control |
DE102022120021B3 (en) | 2022-08-09 | 2023-08-03 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method and circuit for an integrated DC/DC converter in an AC battery |
CN117656896B (en) * | 2022-08-30 | 2025-01-14 | 比亚迪股份有限公司 | Charger control method and device, charger and vehicle |
IL320809A (en) * | 2022-11-13 | 2025-07-01 | Charging Robotics Ltd | Wireless charging in automated parking garages |
CN116505635B (en) * | 2023-06-25 | 2023-11-17 | 广汽埃安新能源汽车股份有限公司 | Power battery charging device and vehicle |
CN117728536B (en) * | 2023-12-18 | 2024-08-20 | 深圳威蜂数字能源有限公司 | Charging and discharging system with flexible power distribution and power distribution method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814766A (en) * | 2010-04-06 | 2010-08-25 | 中国电力科学研究院 | Power supply topology structure of electric automobile bidirectional charger |
CN102163856A (en) * | 2011-03-01 | 2011-08-24 | 东南大学 | Vehicle-to-grid (V2G)-technology-based vehicle-mounted charging and discharging device and control method thereof |
CN102201739A (en) * | 2011-05-27 | 2011-09-28 | 华北电力大学(保定) | Symmetrical half-bridge LLC resonant bidirectional DC-DC converter |
-
2012
- 2012-01-18 CN CN201210014240.8A patent/CN102570560B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814766A (en) * | 2010-04-06 | 2010-08-25 | 中国电力科学研究院 | Power supply topology structure of electric automobile bidirectional charger |
CN102163856A (en) * | 2011-03-01 | 2011-08-24 | 东南大学 | Vehicle-to-grid (V2G)-technology-based vehicle-mounted charging and discharging device and control method thereof |
CN102201739A (en) * | 2011-05-27 | 2011-09-28 | 华北电力大学(保定) | Symmetrical half-bridge LLC resonant bidirectional DC-DC converter |
Non-Patent Citations (2)
Title |
---|
电动汽车传导式充电机关键技术;颜湘武等;《电力电子技术》;20111231;第45卷(第12期);20-26 * |
颜湘武等.电动汽车传导式充电机关键技术.《电力电子技术》.2011,第45卷(第12期),20-26. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI583098B (en) * | 2014-10-14 | 2017-05-11 | Hitachi Information & Telecommunication Engineering Ltd | Power supply and the use of its non-power supply system |
WO2017189658A1 (en) * | 2016-04-26 | 2017-11-02 | General Electric Company | Power converter topology for use in an energy storage system |
CN110356268A (en) * | 2019-06-25 | 2019-10-22 | 华为技术有限公司 | A kind of vehicle-mounted charge and discharge device and system |
Also Published As
Publication number | Publication date |
---|---|
CN102570560A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102570560B (en) | Charging-discharging system for V2G bilateral power conversion electric automobile and control method thereof | |
CN104953686B (en) | Control method for charge-discharge virtual synchronization motor for electromobile energy storage | |
CN102118030B (en) | Method for inhibiting harmonic wave of energy-storage grid-connected three-phase voltage source transformer of storage battery | |
CN107618388B (en) | Wireless charging system of electric automobile | |
CN102437628A (en) | Storage battery reduction charge-discharge converter circuit | |
Liu et al. | Cascade dual-boost/buck active-front-end converter for intelligent universal transformer | |
CN101465606A (en) | Parallel-in converter for directly-driving wind power generation system | |
CN103607032B (en) | Renewable energy power generation, power transmission and transformation and electrical network access integral system | |
CN106451532B (en) | A kind of multiphase directly-drive permanent magnet wind generating unsteady flow integral system and its control method | |
CN103269178B (en) | Single-stage type isolated type three-phase two-way AC/DC converter and control method thereof | |
CN107147145B (en) | A wind-storage bipolar DC microgrid based on a three-level DC-DC converter and its control method | |
CN106451531B (en) | A kind of multiphase electricity generation-unsteady flow integral system and its control method | |
CN205693374U (en) | The Bidirectional charging-discharging device that a kind of electrical network is mutual with electric automobile energy | |
CN107370392B (en) | Electric power electric transformer towards mesohigh intelligent distribution network | |
CN102291014A (en) | Alternating-current chopping-full-bridge rectification AC-DC (alternating current-to-direct current) converter | |
CN105162350A (en) | High-efficiency wide-load-range three-phase micro-inverter and control method thereof | |
CN112003463B (en) | Single-phase PWM rectification DC side voltage secondary ripple suppression method | |
CN103490524A (en) | Large-scale hybrid energy storage system and control strategy thereof | |
Fang et al. | Study on bidirectional-charger for electric vehicle applied to power dispatching in smart grid | |
CN107272445A (en) | A kind of electric automobile charge/discharge control method based on automatic disturbance rejection controller | |
CN103532409B (en) | Three-phase flyback voltage-multiplying single-switch rectifying circuit for small-scale wind power generation | |
CN101272088A (en) | Back-to-back flying capacitor converter for wind power generation system | |
CN203589824U (en) | Renewable energy power generation, power transmission and transformation and power grid access integration system | |
CN109038677A (en) | A kind of efficient six switch singles grid-connected converter | |
CN108365626A (en) | A kind of intelligent residential district power supply system based on solid-state transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231228 Address after: Room 1-2706, 7th Floor, Building 4, Courtyard 9, Yuxi Road, Shunyi District, Beijing, 101318 Patentee after: Beijing Zhiyucheng Technology Co.,Ltd. Address before: 071003 Baoding City, Hebei Province No. 619, Yonghua North Street, Baoding City, Hebei Province Patentee before: NORTH CHINA ELECTRIC POWER University (BAODING) |
|
TR01 | Transfer of patent right |