CN102539019A - Temperature measurement and calibration platform in space vacuum environment - Google Patents
Temperature measurement and calibration platform in space vacuum environment Download PDFInfo
- Publication number
- CN102539019A CN102539019A CN2012100017696A CN201210001769A CN102539019A CN 102539019 A CN102539019 A CN 102539019A CN 2012100017696 A CN2012100017696 A CN 2012100017696A CN 201210001769 A CN201210001769 A CN 201210001769A CN 102539019 A CN102539019 A CN 102539019A
- Authority
- CN
- China
- Prior art keywords
- vacuum
- vacuum chamber
- temperature
- temperature measurement
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Radiation Pyrometers (AREA)
Abstract
空间真空环境下的温度测量与校准平台,有利于实现接触式测温与非接触式测温的同时校准,从而服务于卫星、飞船等航天器的热真空、热平衡试验包括恒温槽,所述恒温槽内设置有双子真空腔,所述双子真空腔包括第1真空腔体和第2真空腔体,所述第1真空腔体和第2真空腔体通过三通连接真空抽取装置,所述第1真空腔体的外壁上和所述第2真空腔体的外壁上均设置有标准温度计传感器,所述标准温度计传感器连接温度二次仪表;所述第1真空腔体的真空腔中设置有激光光路反射装置,用于校准基于可调谐二极管激光吸收光谱技术的非接触式测温系统;所述第2真空腔体的真空腔用于容纳温度传感器,以校准采用所述温度传感器的接触式测温系统。
The temperature measurement and calibration platform in the space vacuum environment is conducive to the simultaneous calibration of contact temperature measurement and non-contact temperature measurement, so as to serve the thermal vacuum and thermal balance tests of spacecraft such as satellites and spacecraft, including constant temperature tanks. A twin vacuum chamber is arranged in the groove, and the twin vacuum chamber includes a first vacuum chamber and a second vacuum chamber, and the first vacuum chamber and the second vacuum chamber are connected to the vacuum extraction device through a tee, and the first vacuum chamber is connected to the vacuum extraction device. 1. A standard thermometer sensor is arranged on the outer wall of the vacuum chamber and the outer wall of the second vacuum chamber, and the standard thermometer sensor is connected to a temperature secondary instrument; a laser is arranged in the vacuum chamber of the first vacuum chamber. The optical path reflection device is used to calibrate the non-contact temperature measurement system based on tunable diode laser absorption spectroscopy technology; the vacuum chamber of the second vacuum chamber is used to accommodate the temperature sensor to calibrate the contact measurement system using the temperature sensor. temperature system.
Description
技术领域 technical field
本发明涉及真空环境下的温度测量与校准技术,特别是一种空间真空环境下的温度测量与校准平台。采用所述平台有利于解决真空下温度测量的溯源问题,实现接触式测温与非接触式测温的同时校准,从而服务于卫星、飞船等航天器的热真空、热平衡试验。The invention relates to a temperature measurement and calibration technology in a vacuum environment, in particular to a temperature measurement and calibration platform in a space vacuum environment. The use of the platform is conducive to solving the traceability problem of temperature measurement in vacuum, and realizes the simultaneous calibration of contact temperature measurement and non-contact temperature measurement, thereby serving the thermal vacuum and thermal balance tests of spacecraft such as satellites and spaceships.
背景技术 Background technique
为验证卫星热设计的正确性,保证卫星在空间轨道的可靠运行,在卫星研制过程中必须进行空间热环境模拟实验。地面模拟空间热环境是实现热试验的基本条件,在热真空试验中,相关部位的温度是需要准确测量的核心参数之一。按温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要为T型铜-康铜热电偶系统,以铂电阻和热敏电阻进行比对。为确保温度测量的准确性和溯源性,需要定期对温度测量设备进行检定校准。目前,温度校准主要是在常压下进行。随着航天技术、飞行器技术的发展,真空环境实验、特别是航天器真空热试验成为一项非常重要的试验验证工作,其中真空环境下某些基本参数的测量尤其是温度的测量成为上述研究的关键测试技术。但是到目前为止,航天器真空热试验中温度的测量基本上还是采用传统的接触式测温技术,其中热电偶温度测量系统应用十分普遍,但随着航天科学技术的发展,传统的热电偶测温技术越来越不满足航天器真空热试验的需要,如热电势信号很小,当信号采集处理单元安装在真空室外,连接测量点和信号处理单元间的热偶电缆又比较长,噪声就会对高精度的测量产生不利影响.同时由于真空热试验的温度场比较复杂,测量线路的材料和工艺如得不到正确的处理,就会有附加热电势的干扰;其次,航天器真空热试验中需要的热电偶的数量非常庞大,不仅给实验带来困难,而且热电偶线的热损失也会降低温度测量的精度;再次,从物理的角度分析,在高真空环境下采用热电偶测量温度存在着诸多问题,如在压力较大情况下,传热方式主要有对流、热传导和辐射三种。但是在压力接近真空状态下,对流和热传导的作用基本不存在,此时对工件、热电偶起升温作用的主要是辐射,辐射反映的是分子转动(对应转动温度)和振动(对应振动温度)的热运动情况,而热电偶的校准工作一般是在常压下进行,因此标定的温度是分子做热运动的平动温度,即经典热力学温度,尽管分子的转动温度和平动温度时刻保持平衡,但上述现象表明:当采用常压下标定的热电偶测量真空环境的温度存在着不可预知问题。因此发展先进的、准确的、有效的温度测量技术有着明确的、长远的、重大的民用和军事应用背景,可以为解决航天器真空热试验提供有效的技术途径和工程数据。在地面模拟空间热环境试验中,相关部位的温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要采用温度传感器进行测量,主要应用T型铜-康铜热电偶系统,以铂电阻和热敏电阻进行比对。在空间热环境模拟实验中,主要采用热电偶、铂电阻和热敏电阻作为传感器进行温度测量,其校准、溯源均在常压下实现。但在真空环境下,温度传感器材料特性及传热过程都发生变化,热真空试验的温度场分布十分复杂,因此为保证温度测量的准确性,空间温度测量及校准技术有待进一步研究。TDLAS技术(Tunable Diode Laser Absorption Spectroscopy,可调谐二极管激光吸收光谱技术)是光谱学遥感技术的一种,主要用来测量气体的温度和浓度,是当前痕量气体、污染性气体在线检测技术的发展方向和技术主流。TDLAS技术具有很强的选择性、高灵敏度、高光谱分辨率、系统通用性等优点,可以实现气体温度和浓度的高精度在线测量。尽管TDLAS技术在气体温度和浓度测量中取得了重大的进展,实现了多种环境下气体温度和浓度的高精度在线测量,但令人遗憾的是,目前TDLAS技术研究主要针对具体的工程应用,其研究的压力范围一般集中在0.1kPa~1000kPa范围内,很少有科研工作者尝试测量高真空环境下气体的温度和浓度,造成这方面的原因主要有以下两点:一是目前TDLAS技术主要针对具体的工程应用,而工程应用一般很少涉及到极低压力条件;二是TDLAS技术是通过分析气体对激光的吸收情况得到气体的温度和浓度,但在真空环境下,单位体积内气体的分子数很少,以致吸收信号很弱而不利于实验测量。但近几年来,随着实验水平的进步,尤其是光学谐振腔技术的应用,使得测量极低压力条件下气体的温度和浓度成为可能。In order to verify the correctness of satellite thermal design and ensure the reliable operation of satellites in space orbit, space thermal environment simulation experiments must be carried out in the process of satellite development. The simulated space thermal environment on the ground is the basic condition for realizing the thermal test. In the thermal vacuum test, the temperature of relevant parts is one of the core parameters that need to be accurately measured. According to the location of the temperature measuring point, it can be divided into two parts: spacecraft temperature and experimental equipment temperature. At present, the temperature measurement of these parts is mainly the T-type copper-constantan thermocouple system, which is compared with platinum resistance and thermistor. In order to ensure the accuracy and traceability of temperature measurement, it is necessary to regularly calibrate the temperature measurement equipment. At present, temperature calibration is mainly carried out under normal pressure. With the development of aerospace technology and aircraft technology, the vacuum environment experiment, especially the spacecraft vacuum heat test, has become a very important experimental verification work, and the measurement of some basic parameters in the vacuum environment, especially the temperature measurement, has become the focus of the above research. key testing techniques. But so far, the temperature measurement in the spacecraft vacuum thermal test basically adopts the traditional contact temperature measurement technology, in which the thermocouple temperature measurement system is widely used, but with the development of aerospace science and technology, the traditional thermocouple measurement Temperature technology is increasingly unable to meet the needs of spacecraft vacuum thermal tests. For example, the thermoelectric potential signal is very small. When the signal acquisition and processing unit is installed outside the vacuum chamber, and the thermocouple cable connecting the measurement point and the signal processing unit is relatively long, the noise will be reduced. It will have an adverse effect on high-precision measurement. At the same time, because the temperature field of the vacuum thermal test is relatively complex, if the materials and processes of the measurement circuit are not properly processed, there will be interference from additional thermoelectric potentials; secondly, the vacuum thermal test of the spacecraft The number of thermocouples required in the test is very large, which not only brings difficulties to the experiment, but also reduces the accuracy of temperature measurement due to the heat loss of the thermocouple wires; again, from a physical point of view, thermocouples are used to measure temperature in a high vacuum environment. There are many problems with temperature. For example, in the case of high pressure, there are three main heat transfer methods: convection, heat conduction and radiation. However, when the pressure is close to the vacuum state, the effects of convection and heat conduction basically do not exist. At this time, the main effect of heating the workpiece and thermocouple is radiation, which reflects molecular rotation (corresponding to the rotation temperature) and vibration (corresponding to the vibration temperature). The thermal motion of the thermocouple, and the calibration of the thermocouple is generally carried out under normal pressure, so the calibrated temperature is the translational temperature of the molecule’s thermal motion, that is, the classical thermodynamic temperature. However, the above phenomenon shows that there is an unpredictable problem when using a thermocouple calibrated under normal pressure to measure the temperature of the vacuum environment. Therefore, the development of advanced, accurate, and effective temperature measurement technology has a clear, long-term, and significant civilian and military application background, which can provide effective technical approaches and engineering data for solving spacecraft vacuum thermal tests. In the ground-simulated space thermal environment test, the location of the temperature measuring points of the relevant parts can be divided into two parts: the temperature of the spacecraft and the temperature of the experimental equipment. At present, the temperature measurement of these parts is mainly carried out by temperature sensors, and the T-type copper-constantan thermocouple system is mainly used, and platinum resistance and thermistor are used for comparison. In the space thermal environment simulation experiment, thermocouples, platinum resistors and thermistors are mainly used as sensors for temperature measurement, and their calibration and traceability are all realized under normal pressure. However, in a vacuum environment, the material properties of the temperature sensor and the heat transfer process change, and the temperature field distribution of the thermal vacuum test is very complicated. Therefore, in order to ensure the accuracy of temperature measurement, the space temperature measurement and calibration technology needs further research. TDLAS technology (Tunable Diode Laser Absorption Spectroscopy, tunable diode laser absorption spectroscopy technology) is a kind of spectroscopy remote sensing technology, mainly used to measure the temperature and concentration of gases, and is the development of the current online detection technology of trace gases and polluting gases Direction and technical mainstream. TDLAS technology has the advantages of strong selectivity, high sensitivity, high spectral resolution, and system versatility, and can realize high-precision online measurement of gas temperature and concentration. Although TDLAS technology has made significant progress in the measurement of gas temperature and concentration, and realized high-precision online measurement of gas temperature and concentration in various environments, it is regrettable that the current research on TDLAS technology is mainly aimed at specific engineering applications. The pressure range of its research is generally concentrated in the range of 0.1kPa to 1000kPa. Few researchers try to measure the temperature and concentration of gas in a high vacuum environment. The main reasons for this are the following two points: First, the current TDLAS technology is mainly For specific engineering applications, and engineering applications generally rarely involve extremely low pressure conditions; second, TDLAS technology obtains the temperature and concentration of the gas by analyzing the absorption of the gas to the laser, but in a vacuum environment, the gas per unit volume The number of molecules is so small that the absorption signal is very weak and unfavorable for experimental measurement. However, in recent years, with the advancement of the experimental level, especially the application of optical resonant cavity technology, it has become possible to measure the temperature and concentration of gases under extremely low pressure conditions.
发明内容 Contents of the invention
本发明针对现有技术中存在的缺陷或不足,提供一种空间真空环境下的温度测量与校准平台。采用所述平台有利于解决真空下温度测量的溯源问题,实现接触式测温与非接触式测温的同时校准,从而服务于卫星、飞船等航天器的热真空、热平衡试验。Aiming at the defects or deficiencies in the prior art, the invention provides a temperature measurement and calibration platform in a space vacuum environment. The use of the platform is conducive to solving the traceability problem of temperature measurement in vacuum, and realizes the simultaneous calibration of contact temperature measurement and non-contact temperature measurement, thereby serving the thermal vacuum and thermal balance tests of spacecraft such as satellites and spaceships.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
空间真空环境下的温度测量与校准平台,其特征在于,包括恒温槽,所述恒温槽内设置有双子真空腔,所述双子真空腔包括第1真空腔体和第2真空腔体,所述第1真空腔体和第2真空腔体通过三通连接真空抽取装置,所述第1真空腔体的外壁上和所述第2真空腔体的外壁上均设置有标准温度计传感器,所述标准温度计传感器连接温度二次仪表;所述第1真空腔体的真空腔中设置有激光光路反射装置,用于校准基于可调谐二极管激光吸收光谱技术的非接触式测温系统;所述第2真空腔体的真空腔用于容纳温度传感器,以校准采用所述温度传感器的接触式测温系统。The temperature measurement and calibration platform under the space vacuum environment is characterized in that it includes a constant temperature tank, and the twin vacuum chambers are arranged in the constant temperature tank, and the twin vacuum chambers include a first vacuum chamber and a second vacuum chamber. The first vacuum chamber and the second vacuum chamber are connected to the vacuum extraction device through a tee, and a standard thermometer sensor is arranged on the outer wall of the first vacuum chamber and the outer wall of the second vacuum chamber. The thermometer sensor is connected to the temperature secondary instrument; the vacuum chamber of the first vacuum chamber is provided with a laser light path reflection device for calibrating a non-contact temperature measurement system based on tunable diode laser absorption spectroscopy technology; the second vacuum The vacuum cavity of the cavity is used to accommodate the temperature sensor to calibrate the contact temperature measurement system using the temperature sensor.
所述激光光路反射装置包括位于第1真空腔体空腔上端的反射镜面和位于第1真空腔体空腔下端的反射镜面,所述第1真空腔体空腔上端设置有激光输入的光纤入口和经过一定次数反射后的激光输出的光纤出口。The laser light path reflection device includes a mirror surface located at the upper end of the cavity of the first vacuum chamber and a mirror surface located at the lower end of the cavity of the first vacuum cavity, and the upper end of the cavity of the first vacuum cavity is provided with an optical fiber entrance for laser input And the fiber exit of the laser output after a certain number of reflections.
所述温度传感器安装在第2真空腔体的内壁上,所述温度传感器连接温度二次仪表。The temperature sensor is installed on the inner wall of the second vacuum cavity, and the temperature sensor is connected with a temperature secondary instrument.
所述恒温槽采用液氮槽、酒精槽、水槽或油槽。The constant temperature tank adopts liquid nitrogen tank, alcohol tank, water tank or oil tank.
所述真空抽取装置包括机械泵、分子泵、插板阀和电磁阀,所述机械泵、分子泵和插板阀依次连接,所述插板阀通过三通连接所述双子真空腔,所述电磁阀并联于所述分子泵和插板阀。The vacuum extraction device includes a mechanical pump, a molecular pump, a gate valve and a solenoid valve, the mechanical pump, the molecular pump and the gate valve are connected in sequence, the gate valve is connected to the twin vacuum chambers through a tee, and the The solenoid valve is connected in parallel with the molecular pump and the gate valve.
所述第1真空腔体和第2真空腔体均采用紫铜材料。Both the first vacuum chamber and the second vacuum chamber are made of red copper.
所述第1真空腔体的外壁上和所述第2真空腔体的外壁上均设置有环形空间,所述环形空间的底部与所述外壁连接,所述环形空间的上部连通大气,所述标准温度计传感器位于所述环形空间内。An annular space is provided on the outer wall of the first vacuum chamber and the outer wall of the second vacuum chamber, the bottom of the annular space is connected to the outer wall, the upper part of the annular space communicates with the atmosphere, the A standard thermometer sensor is located within the annular space.
所述光纤出口连接光电探测器,所述光电探测器连接数据采集处理装置;所述光纤入口连接激光器,所述激光器连接激光控制单元,所述激光控制单元接收信号发生器和锁相放大器的混合信号。The outlet of the optical fiber is connected to a photodetector, and the photodetector is connected to a data acquisition and processing device; the inlet of the optical fiber is connected to a laser, and the laser is connected to a laser control unit, and the laser control unit receives a combination of a signal generator and a lock-in amplifier. Signal.
本发明技术效果如下:Technical effect of the present invention is as follows:
本发明涉及真空环境下的温度测量与校准技术,能够解决真空下温度测量的溯源问题,实现接触式测温与非接触式测温的同时校准。发明人通过开展温度传感器技术在真空下的温度测量和校准技术研究,研究真空环境下的传热机理,建立一套真空环境下的温度校准平台,为空间温度测量装置的研制、试验、校准提供保障。同时基于可调谐二极管激光吸收光谱技术(TDLAS),通过TDLAS技术对真空环境下痕量气体(空气或特定气体,如CO2)的温度进行测量,以验证传统的温度传感器测量技术的可靠性和精度,并在此基础上发展一种全新的、高精度的、基于TDLAS技术的真空环境温度测量技术,使两种方法形成比较和互补。本项目的完成拟解决温度传感器在常压和真空下测量结果差异大的问题,直接服务于卫星、飞船等航天器的热真空、热平衡试验。The invention relates to temperature measurement and calibration technology in a vacuum environment, can solve the problem of traceability of temperature measurement in vacuum, and realize simultaneous calibration of contact temperature measurement and non-contact temperature measurement. The inventor has carried out the research on temperature measurement and calibration technology of temperature sensor technology in vacuum, studied the heat transfer mechanism in vacuum environment, and established a set of temperature calibration platform in vacuum environment, which provides for the development, test and calibration of space temperature measurement devices. Assure. At the same time, based on Tunable Diode Laser Absorption Spectroscopy (TDLAS), the temperature of trace gases (air or specific gases, such as CO 2 ) in a vacuum environment is measured by TDLAS technology to verify the reliability and reliability of traditional temperature sensor measurement technology. Accuracy, and on this basis, develop a new, high-precision, vacuum environment temperature measurement technology based on TDLAS technology, so that the two methods can be compared and complemented. The completion of this project intends to solve the problem of the large difference between the measurement results of the temperature sensor under normal pressure and vacuum, and directly serve the thermal vacuum and thermal balance tests of satellites, spacecraft and other spacecraft.
在地面模拟空间热环境试验中,相关部位的温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要采用温度传感器进行测量,主要应用T型铜-康铜热电偶系统,以铂电阻和热敏电阻进行比对。TDLAS技术(Tunable Diode LaserAbsorption Spectroscopy)具有很强的选择性、高灵敏度、高光谱分辨率、系统通用性等优点,可以实现气体温度和浓度的高精度在线测量,属于非接触式温度测量。这两种方法都以其独特的优势得到广泛应用,但同样存在在真空下应用的溯源性问题。为了解决这两种方式在真空下的溯源问题,同时保证在校准过程中各种环境因素都保持一致,相互不发生干扰。设计了双子真空室结构来使这个问题得到解决。双子真空腔体既能连在一起工作,又能拆开分别工作,通过这种真空结构既能够提供相同的校准环境,同时相互不干扰。TDLAS技术(Tunable Diode Laser Absorption Spectroscopy)是光谱学遥感技术的一种,主要用来测量气体的温度和浓度,TDLAS技术具有很强的选择性、高灵敏度、高光谱分辨率、系统通用性等优点,可以实现气体温度和浓度的高精度在线测量。温度传感器由于在真空环境下材料特性容易发生改变从而影响其测量,而TDLAS温度测量方法采用光学手段,不存在这方面的问题,同时对测量环境的温场影响非常小,可以快速的进行环境温场分布测量。In the ground-simulated space thermal environment test, the location of the temperature measuring points of the relevant parts can be divided into two parts: the temperature of the spacecraft and the temperature of the experimental equipment. At present, the temperature measurement of these parts is mainly carried out by temperature sensors, and the T-type copper-constantan thermocouple system is mainly used, and the platinum resistance and thermistor are used for comparison. TDLAS technology (Tunable Diode Laser Absorption Spectroscopy) has the advantages of strong selectivity, high sensitivity, high spectral resolution, and system versatility. It can realize high-precision online measurement of gas temperature and concentration, and belongs to non-contact temperature measurement. These two methods are widely used due to their unique advantages, but there are also traceability problems in vacuum applications. In order to solve the problem of traceability of these two methods in vacuum, and at the same time ensure that various environmental factors are consistent during the calibration process and do not interfere with each other. A twin vacuum chamber structure is designed to solve this problem. The twin vacuum chambers can not only work together, but also can be disassembled to work separately. Through this vacuum structure, the same calibration environment can be provided without interfering with each other. TDLAS technology (Tunable Diode Laser Absorption Spectroscopy) is a kind of spectroscopic remote sensing technology, which is mainly used to measure the temperature and concentration of gas. TDLAS technology has the advantages of strong selectivity, high sensitivity, high spectral resolution, and system versatility. , can realize high-precision online measurement of gas temperature and concentration. The temperature sensor is easy to change its material properties in a vacuum environment, which affects its measurement. The TDLAS temperature measurement method uses optical means, which does not have this problem. Field distribution measurement.
附图说明 Description of drawings
图1是实施本发明空间真空环境下的温度测量与校准平台的结构示意图。Fig. 1 is a structural schematic diagram of a temperature measurement and calibration platform for implementing the present invention in a space vacuum environment.
图中标记列示如下:The markers in the figure are listed as follows:
10-信号发生器;11-锁相放大器;12-激光控制单元;13-数据采集处理装置;14-温度二次仪表;15-光电探测器;16-激光器;17-恒温槽;18-环形空间;19-第2真空腔体的真空腔;20-第1真空腔体的真空腔;21-激光光路;22-第1真空腔体空腔下端的反射镜面;23-第1真空腔体空腔上端的反射镜面;24-光纤入口;25-光纤出口;26-三通;27-插板阀;28-分子泵;29-机械泵;30-电磁阀;31-标准温度计传感器;32-第1真空腔体;33-第2真空腔体;34-温度传感器。10-signal generator; 11-lock-in amplifier; 12-laser control unit; 13-data acquisition and processing device; 14-temperature secondary instrument; 15-photoelectric detector; 16-laser; 17-constant temperature bath; 18-ring Space; 19-the vacuum chamber of the second vacuum chamber; 20-the vacuum chamber of the first vacuum chamber; 21-the laser light path; 22-the reflection mirror at the lower end of the first vacuum chamber; 23-the first vacuum chamber Reflecting mirror at the upper end of the cavity; 24-fiber optic inlet; 25-fiber optic outlet; 26-tee; 27-gate valve; 28-molecular pump; 29-mechanical pump; 30-solenoid valve; - the first vacuum chamber; 33 - the second vacuum chamber; 34 - the temperature sensor.
具体实施方式 Detailed ways
下面结合附图(图1)对本发明进行说明。Below in conjunction with accompanying drawing (Fig. 1) the present invention is described.
图1是实施本发明空间真空环境下的温度测量与校准平台的结构示意图。如图1所示,空间真空环境下的温度测量与校准平台,包括恒温槽17,所述恒温槽内设置有双子真空腔(即通过三通26连接成双的第1真空腔体的真空腔20和第2真空腔体的真空腔19),所述双子真空腔包括第1真空腔体32和第2真空腔体33,所述第1真空腔体32和第2真空腔体33通过三通26连接真空抽取装置,所述第1真空腔体32的外壁上和所述第2真空腔体33的外壁上均设置有标准温度计传感器31,所述标准温度计传感器31连接温度二次仪表14;所述第1真空腔体的真空腔20中设置有激光光路反射装置,用于校准基于可调谐二极管激光吸收光谱技术的非接触式测温系统;所述第2真空腔体的真空腔19用于容纳温度传感器34,以校准采用所述温度传感器34的接触式测温系统。所述温度传感器34又称待检温度传感器或待检温度计。所述激光光路反射装置包括位于第1真空腔体空腔上端的反射镜面23和位于第1真空腔体空腔下端的反射镜面22,所述第1真空腔体空腔上端设置有激光输入的光纤入口24和经过一定次数反射后的激光输出的光纤出口25。所述温度传感器34安装在第2真空腔体33的内壁上,所述温度传感器34连接温度二次仪表14。所述恒温槽17采用液氮槽、酒精槽、水槽或油槽。所述真空抽取装置包括机械泵29、分子泵28、插板阀27和电磁阀30,所述机械泵29、分子泵28和插板阀27依次连接,所述插板阀27通过三通26连接所述双子真空腔,所述电磁阀30并联于所述分子泵28和插板阀27。所述第1真空腔体32和第2真空腔体33均采用紫铜材料。所述第1真空腔体的外壁上和所述第2真空腔体的外壁上均设置有环形空间18,所述环形空间18的底部与所述外壁连接,所述环形空间18的上部连通大气,所述标准温度计传感器31位于所述环形空间18内。所述光纤出口25连接光电探测器15,所述光电探测器15连接数据采集处理装置13;所述光纤入口24连接激光器16,所述激光器16连接激光控制单元12,所述激光控制单元12接收信号发生器10和锁相放大器11的混合信号。Fig. 1 is a structural schematic diagram of a temperature measurement and calibration platform for implementing the present invention in a space vacuum environment. As shown in Figure 1, the temperature measurement and calibration platform under the space vacuum environment includes a
随着科学技术的发展,各类精密产品的生产制造以及特种科学实验都要求具有特定的工作环境,热传感器的检定前提条件就是恒温场必须满足要求,因此恒温控制精度的高低就成为了实际检定中不可缺少的条件之一。恒温槽是温度测试及温度控制中特别是在温度仪器仪表的检定中必用的环境温度试验设备,用于提供不同温度状态下的恒定温场。恒温槽已经在温度计量校准工作中得到了广泛的应用,恒温槽的技术性能的优劣决定着计量、校准工作的质量。依据恒温槽技术性能测试规范的要求,一般主要恒温槽主要技术指标是温度波动性、温度均匀性和示值偏差。目前用于检定的恒温槽主要有:酒精低温槽、水恒温槽、油恒温槽。它们依恒温介质不同而得名。其中酒精低温槽用于提供-100℃~5℃以下的温度温场;水恒温槽用于提供5℃~95℃的温度温场;油恒温槽用于提供95℃~300℃的温度温场。油恒温槽的介质通常采用食用油和汽缸油、硅油等。而对于-100℃以下温度的获得通常采用液氮或液氦作为介质。在我们的研究中,恒温槽系统的设计包括恒温槽选择合适范围的恒温槽、设计恒温槽盖和真空系统固定机构。根据《JJG 229-1998工业铂、铜热电阻检定规程》工业铂电阻只需要检定0℃和100℃点、根据《JJG 368-2000工作用铜一铜镍热电偶检定规程》热电偶需要检定液氮温度点、-79℃、100℃、200℃、300℃,热敏电阻的校准则根据其量程每10℃作为间隔进行校准,一般范围-50℃~200℃。With the development of science and technology, the production and manufacture of various precision products and special scientific experiments require a specific working environment. The prerequisite for thermal sensor verification is that the constant temperature field must meet the requirements, so the level of constant temperature control accuracy has become the actual verification. one of the indispensable conditions. The constant temperature bath is the ambient temperature test equipment that must be used in temperature testing and temperature control, especially in the verification of temperature instruments and meters. It is used to provide a constant temperature field under different temperature conditions. The constant temperature bath has been widely used in the temperature measurement and calibration work, and the technical performance of the constant temperature bath determines the quality of the measurement and calibration work. According to the requirements of the technical performance test specifications of the constant temperature bath, the main technical indicators of the general constant temperature bath are temperature fluctuation, temperature uniformity and indication deviation. At present, the constant temperature tanks used for verification mainly include: alcohol low temperature tank, water constant temperature tank, and oil constant temperature tank. They are named after different constant temperature media. Among them, the alcohol low-temperature tank is used to provide a temperature field of -100°C to 5°C; the water constant temperature tank is used to provide a temperature field of 5°C to 95°C; the oil constant temperature tank is used to provide a temperature field of 95°C to 300°C . The medium of the oil constant temperature bath is usually edible oil, cylinder oil, silicone oil, etc. For the temperature below -100°C, liquid nitrogen or liquid helium is usually used as the medium. In our study, the design of the thermostatic bath system includes the selection of a suitable range of thermostatic baths, the design of the thermostatic bath cover and the fixing mechanism of the vacuum system. According to "JJG 229-1998 Industrial Platinum and Copper Thermal Resistance Verification Regulations", industrial platinum resistors only need to verify the 0°C and 100°C points, according to "JJG 368-2000 Working Copper-Cu-Nickel Thermocouple Verification Regulations", thermocouples need verification liquid Nitrogen temperature point, -79°C, 100°C, 200°C, 300°C, the calibration of the thermistor is calibrated according to its range every 10°C as an interval, the general range is -50°C to 200°C.
TDLAS技术测量的原理,当一束单色激光穿越气体介质时,由于气体吸收作用使得激光强度发生变化。所述激光强度变化遵循Beer-Lambert定律。真空环境下TDLAS温度测量技术由于压力极低,为了提高温度测量的精度和灵敏度,实验中采用波长调制技术进行温度测量。低频锯齿波扫描信号与高频正弦调制信号混合后,加载在可调谐激光器输入端,驱动激光器的波长在吸收谱线附件发生扫描和调制,输出激光经透镜准直后通过光纤进入气体介质中(真空室),透射后的激光信号由光纤传出真空室经光电探测器接收转换为电信号,一路输入锁相放大器进行谐波检测,一路输入数据采集卡中以监测测量过程中激光强度的变化。The principle of TDLAS technology measurement is that when a monochromatic laser beam passes through a gas medium, the laser intensity changes due to gas absorption. The laser intensity variation follows the Beer-Lambert law. Due to the extremely low pressure of the TDLAS temperature measurement technology in a vacuum environment, in order to improve the accuracy and sensitivity of temperature measurement, the wavelength modulation technology is used for temperature measurement in the experiment. After the low-frequency sawtooth wave scanning signal is mixed with the high-frequency sinusoidal modulation signal, it is loaded on the input end of the tunable laser, and the wavelength of the driving laser is scanned and modulated near the absorption line. The output laser is collimated by the lens and enters the gas medium through the optical fiber ( Vacuum chamber), the transmitted laser signal is sent out of the vacuum chamber by the optical fiber and converted into an electrical signal by the photodetector, one way is input into the lock-in amplifier for harmonic detection, and one way is input into the data acquisition card to monitor the change of laser intensity during the measurement process .
在地面模拟空间热环境试验中,相关部位的温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要采用温度传感器进行测量,主要应用T型铜-康铜热电偶系统,以铂电阻和热敏电阻进行比对。在空间热环境模拟实验中,主要采用热电偶、铂电阻和热敏电阻作为传感器进行温度测量,均属于接触式温度测量。DLAS技术(TunableDiode Laser Absorption Spectroscopy)具有很强的选择性、高灵敏度、高光谱分辨率、系统通用性等优点,可以实现气体温度和浓度的高精度在线测量,属于非接触式温度测量。这两种方法都以其独特的优势得到广泛应用,但同样存在在真空下应用的溯源性问题。为了解决这两种方式在真空下的溯源问题,同时保证在校准过程中各种环境因素都保持一致,相互不发生干扰。设计了双子真空室结构来使这个问题得到解决。双子真空腔体既能连在一起工作,又能拆开分别工作,通过这种真空结构既能够提供相同的校准环境,同时相互不干扰。In the ground-simulated space thermal environment test, the location of the temperature measuring points of the relevant parts can be divided into two parts: the temperature of the spacecraft and the temperature of the experimental equipment. At present, the temperature measurement of these parts is mainly carried out by temperature sensors, and the T-type copper-constantan thermocouple system is mainly used, and the platinum resistance and thermistor are used for comparison. In the space thermal environment simulation experiment, thermocouples, platinum resistors and thermistors are mainly used as sensors for temperature measurement, all of which belong to contact temperature measurement. DLAS technology (TunableDiode Laser Absorption Spectroscopy) has the advantages of strong selectivity, high sensitivity, high spectral resolution, and system versatility. It can realize high-precision online measurement of gas temperature and concentration, and belongs to non-contact temperature measurement. These two methods are widely used due to their unique advantages, but there are also traceability problems in vacuum applications. In order to solve the problem of traceability of these two methods in vacuum, and at the same time ensure that various environmental factors are consistent during the calibration process and do not interfere with each other. A twin vacuum chamber structure is designed to solve this problem. The twin vacuum chambers can not only work together, but also can be disassembled to work separately. Through this vacuum structure, the same calibration environment can be provided without interfering with each other.
在此指明,以上叙述有助于本领域技术人员理解本发明创造,但并非限制本发明创造的保护范围。任何没有脱离本发明创造实质内容的对以上叙述的等同替换、修饰改进和/或删繁从简而进行的实施,均落入本发明创造的保护范围。It is pointed out here that the above description is helpful for those skilled in the art to understand the present invention, but does not limit the protection scope of the present invention. Any equivalent replacement, modification and improvement and/or simplified implementation of the above descriptions without departing from the essence of the present invention shall fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100017696A CN102539019B (en) | 2012-01-05 | 2012-01-05 | Temperature measurement and calibration platform in space vacuum environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100017696A CN102539019B (en) | 2012-01-05 | 2012-01-05 | Temperature measurement and calibration platform in space vacuum environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102539019A true CN102539019A (en) | 2012-07-04 |
CN102539019B CN102539019B (en) | 2013-09-25 |
Family
ID=46346476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100017696A Expired - Fee Related CN102539019B (en) | 2012-01-05 | 2012-01-05 | Temperature measurement and calibration platform in space vacuum environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102539019B (en) |
Cited By (245)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103090995A (en) * | 2013-02-06 | 2013-05-08 | 北京东方计量测试研究所 | Temperature comparison testing system under vacuum environment |
CN103115699A (en) * | 2013-02-06 | 2013-05-22 | 北京东方计量测试研究所 | Temperature equalizing system for calibration of temperature sensors in vacuum |
CN103134773A (en) * | 2013-02-06 | 2013-06-05 | 北京东方计量测试研究所 | Vacuum cavity for tunable diode laser absorption spectroscopy (TDLAS) temperature measurement and calibration |
CN103175634A (en) * | 2013-02-06 | 2013-06-26 | 北京东方计量测试研究所 | TDLAS (tunable diode laser absorption spectroscopy) temperature calibration system |
CN103698105A (en) * | 2013-12-25 | 2014-04-02 | 浙江大学 | Vacuum water-cooling testing device |
CN105043572A (en) * | 2015-08-10 | 2015-11-11 | 北京工业大学 | High temperature testing device for scanning electron microscope vacuum environment |
CN105371992A (en) * | 2015-12-15 | 2016-03-02 | 北京振兴计量测试研究所 | Temperature sensor response consistency calibration test system and method |
CN107192478A (en) * | 2017-07-05 | 2017-09-22 | 明光旭升科技有限公司 | Temperature sensor calibration method under a kind of vacuum environment |
CN107271076A (en) * | 2017-06-27 | 2017-10-20 | 北京卫星环境工程研究所 | Distributed fiber optic temperature automatic calibration system and method are used under high vacuum thermal environment |
CN107907247A (en) * | 2017-11-27 | 2018-04-13 | 中国电子科技集团公司第四十八研究所 | A kind of big hot-fluid laser calibrating equipment |
CN108562378A (en) * | 2018-03-30 | 2018-09-21 | 中国计量科学研究院 | A kind of device of temperature correction |
CN108680284A (en) * | 2018-07-03 | 2018-10-19 | 富通集团(天津)超导技术应用有限公司 | Fiber-optical grating temperature sensor temperature calibration device and scaling method in low temperature environment |
CN111157134A (en) * | 2019-11-28 | 2020-05-15 | 航天东方红卫星有限公司 | Method for estimating on-orbit temperature of satellite non-temperature-measuring-point equipment |
CN111351517A (en) * | 2020-03-16 | 2020-06-30 | 中国科学院国家空间科学中心 | Device and method for simulating space atmospheric environment |
CN111780944A (en) * | 2020-08-10 | 2020-10-16 | 中国空气动力研究与发展中心超高速空气动力研究所 | Low-density wind tunnel flow field vibration temperature calibration device based on electron beam fluorescence technology |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
CN114061793A (en) * | 2021-12-17 | 2022-02-18 | 中国电信股份有限公司 | Calibration device and calibration method for temperature sensor |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
TWI757355B (en) * | 2016-10-26 | 2022-03-11 | 荷蘭商Asm智慧財產控股公司 | Methods for thermally calibrating reaction chambers |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11411088B2 (en) | 2018-11-16 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
CN115876971A (en) * | 2022-12-30 | 2023-03-31 | 中国科学院地质与地球物理研究所 | A method for online calibration of water ice sample analyzer in vacuum low temperature environment |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US11682572B2 (en) | 2017-11-27 | 2023-06-20 | Asm Ip Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11694892B2 (en) | 2016-07-28 | 2023-07-04 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US11735445B2 (en) | 2018-10-31 | 2023-08-22 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11735414B2 (en) | 2018-02-06 | 2023-08-22 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11749562B2 (en) | 2016-07-08 | 2023-09-05 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769670B2 (en) | 2018-12-13 | 2023-09-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11956977B2 (en) | 2015-12-29 | 2024-04-09 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US12033861B2 (en) | 2017-10-05 | 2024-07-09 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US12068154B2 (en) | 2020-04-13 | 2024-08-20 | Asm Ip Holding B.V. | Method of forming a nitrogen-containing carbon film and system for performing the method |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12125700B2 (en) | 2020-01-16 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
US12131885B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Plasma treatment device having matching box |
US12129545B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Precursor capsule, a vessel and a method |
US12148609B2 (en) | 2020-09-16 | 2024-11-19 | Asm Ip Holding B.V. | Silicon oxide deposition method |
US12154824B2 (en) | 2020-08-14 | 2024-11-26 | Asm Ip Holding B.V. | Substrate processing method |
US12159788B2 (en) | 2020-12-14 | 2024-12-03 | Asm Ip Holding B.V. | Method of forming structures for threshold voltage control |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
US12173402B2 (en) | 2018-02-15 | 2024-12-24 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US12195852B2 (en) | 2020-11-23 | 2025-01-14 | Asm Ip Holding B.V. | Substrate processing apparatus with an injector |
US12203166B2 (en) | 2020-05-07 | 2025-01-21 | Asm Ip Holding B.V. | Apparatus and methods for performing an in-situ etch of reaction chambers with fluorine-based radicals |
US12211742B2 (en) | 2020-09-10 | 2025-01-28 | Asm Ip Holding B.V. | Methods for depositing gap filling fluid |
US12209308B2 (en) | 2020-11-12 | 2025-01-28 | Asm Ip Holding B.V. | Reactor and related methods |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
US12218000B2 (en) | 2020-09-25 | 2025-02-04 | Asm Ip Holding B.V. | Semiconductor processing method |
US12218269B2 (en) | 2020-02-13 | 2025-02-04 | Asm Ip Holding B.V. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US12217946B2 (en) | 2020-10-15 | 2025-02-04 | Asm Ip Holding B.V. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT |
US12217954B2 (en) | 2020-08-25 | 2025-02-04 | Asm Ip Holding B.V. | Method of cleaning a surface |
US12221357B2 (en) | 2020-04-24 | 2025-02-11 | Asm Ip Holding B.V. | Methods and apparatus for stabilizing vanadium compounds |
US12230531B2 (en) | 2018-04-09 | 2025-02-18 | Asm Ip Holding B.V. | Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method |
US12240760B2 (en) | 2016-03-18 | 2025-03-04 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US12243742B2 (en) | 2020-04-21 | 2025-03-04 | Asm Ip Holding B.V. | Method for processing a substrate |
US12241158B2 (en) | 2020-07-20 | 2025-03-04 | Asm Ip Holding B.V. | Method for forming structures including transition metal layers |
US12243757B2 (en) | 2020-05-21 | 2025-03-04 | Asm Ip Holding B.V. | Flange and apparatus for processing substrates |
US12243747B2 (en) | 2020-04-24 | 2025-03-04 | Asm Ip Holding B.V. | Methods of forming structures including vanadium boride and vanadium phosphide layers |
US12247286B2 (en) | 2019-08-09 | 2025-03-11 | Asm Ip Holding B.V. | Heater assembly including cooling apparatus and method of using same |
US12252785B2 (en) | 2019-06-10 | 2025-03-18 | Asm Ip Holding B.V. | Method for cleaning quartz epitaxial chambers |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
US12266695B2 (en) | 2019-11-05 | 2025-04-01 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US12266524B2 (en) | 2020-06-16 | 2025-04-01 | Asm Ip Holding B.V. | Method for depositing boron containing silicon germanium layers |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070206653A1 (en) * | 2006-03-02 | 2007-09-06 | National Institute Of Advanced Industrial Science And Technology | Low-temperature comparison calibrator for thermometers |
DE102008026002A1 (en) * | 2008-05-29 | 2009-12-17 | Von Ardenne Anlagentechnik Gmbh | Substrate's temperature measuring method for vacuum deposition system, involves continuously calibrating pyrometers for determining temperature of substrate at different points on vacuum chamber |
CN101788347A (en) * | 2010-01-25 | 2010-07-28 | 中国计量科学研究院 | Quasi-adiabatic sealing type argon three-phase-point recurrence device |
CN201859028U (en) * | 2010-07-15 | 2011-06-08 | 重庆市大正温度仪表有限公司 | Tungsten-rhenium thermocouple calibrating device |
-
2012
- 2012-01-05 CN CN2012100017696A patent/CN102539019B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070206653A1 (en) * | 2006-03-02 | 2007-09-06 | National Institute Of Advanced Industrial Science And Technology | Low-temperature comparison calibrator for thermometers |
DE102008026002A1 (en) * | 2008-05-29 | 2009-12-17 | Von Ardenne Anlagentechnik Gmbh | Substrate's temperature measuring method for vacuum deposition system, involves continuously calibrating pyrometers for determining temperature of substrate at different points on vacuum chamber |
CN101788347A (en) * | 2010-01-25 | 2010-07-28 | 中国计量科学研究院 | Quasi-adiabatic sealing type argon three-phase-point recurrence device |
CN201859028U (en) * | 2010-07-15 | 2011-06-08 | 重庆市大正温度仪表有限公司 | Tungsten-rhenium thermocouple calibrating device |
Cited By (291)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
CN103115699A (en) * | 2013-02-06 | 2013-05-22 | 北京东方计量测试研究所 | Temperature equalizing system for calibration of temperature sensors in vacuum |
CN103134773A (en) * | 2013-02-06 | 2013-06-05 | 北京东方计量测试研究所 | Vacuum cavity for tunable diode laser absorption spectroscopy (TDLAS) temperature measurement and calibration |
CN103175634A (en) * | 2013-02-06 | 2013-06-26 | 北京东方计量测试研究所 | TDLAS (tunable diode laser absorption spectroscopy) temperature calibration system |
CN103090995A (en) * | 2013-02-06 | 2013-05-08 | 北京东方计量测试研究所 | Temperature comparison testing system under vacuum environment |
CN103115699B (en) * | 2013-02-06 | 2014-09-10 | 北京东方计量测试研究所 | Temperature equalizing system for calibration of temperature sensors in vacuum |
CN103090995B (en) * | 2013-02-06 | 2015-08-05 | 北京东方计量测试研究所 | Temperature Comparability test system under vacuum environment |
CN103134773B (en) * | 2013-02-06 | 2015-08-05 | 北京东方计量测试研究所 | TDLAS temperature survey and calibration vacuum chamber |
CN103698105B (en) * | 2013-12-25 | 2015-09-30 | 浙江大学 | A kind of vacuum water cold test device |
CN103698105A (en) * | 2013-12-25 | 2014-04-02 | 浙江大学 | Vacuum water-cooling testing device |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
CN105043572B (en) * | 2015-08-10 | 2018-03-16 | 北京工业大学 | A kind of high-temperature test device for ESEM vacuum environment |
CN105043572A (en) * | 2015-08-10 | 2015-11-11 | 北京工业大学 | High temperature testing device for scanning electron microscope vacuum environment |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
CN105371992A (en) * | 2015-12-15 | 2016-03-02 | 北京振兴计量测试研究所 | Temperature sensor response consistency calibration test system and method |
US11956977B2 (en) | 2015-12-29 | 2024-04-09 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US12240760B2 (en) | 2016-03-18 | 2025-03-04 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US11749562B2 (en) | 2016-07-08 | 2023-09-05 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11694892B2 (en) | 2016-07-28 | 2023-07-04 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
TWI757355B (en) * | 2016-10-26 | 2022-03-11 | 荷蘭商Asm智慧財產控股公司 | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US12000042B2 (en) | 2016-12-15 | 2024-06-04 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11970766B2 (en) | 2016-12-15 | 2024-04-30 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US12043899B2 (en) | 2017-01-10 | 2024-07-23 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US12106965B2 (en) | 2017-02-15 | 2024-10-01 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
CN107271076A (en) * | 2017-06-27 | 2017-10-20 | 北京卫星环境工程研究所 | Distributed fiber optic temperature automatic calibration system and method are used under high vacuum thermal environment |
CN107271076B (en) * | 2017-06-27 | 2018-05-08 | 北京卫星环境工程研究所 | Distributed fiber optic temperature automatic calibration system and method are used under high vacuum thermal environment |
US11976361B2 (en) | 2017-06-28 | 2024-05-07 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
CN107192478A (en) * | 2017-07-05 | 2017-09-22 | 明光旭升科技有限公司 | Temperature sensor calibration method under a kind of vacuum environment |
US11695054B2 (en) | 2017-07-18 | 2023-07-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11581220B2 (en) | 2017-08-30 | 2023-02-14 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US12033861B2 (en) | 2017-10-05 | 2024-07-09 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US11682572B2 (en) | 2017-11-27 | 2023-06-20 | Asm Ip Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
CN107907247B (en) * | 2017-11-27 | 2019-10-25 | 中国电子科技集团公司第四十八研究所 | A kind of big hot-fluid laser calibrating equipment |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
CN107907247A (en) * | 2017-11-27 | 2018-04-13 | 中国电子科技集团公司第四十八研究所 | A kind of big hot-fluid laser calibrating equipment |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US12119228B2 (en) | 2018-01-19 | 2024-10-15 | Asm Ip Holding B.V. | Deposition method |
US11972944B2 (en) | 2018-01-19 | 2024-04-30 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11735414B2 (en) | 2018-02-06 | 2023-08-22 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US12173402B2 (en) | 2018-02-15 | 2024-12-24 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US12020938B2 (en) | 2018-03-27 | 2024-06-25 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
CN108562378A (en) * | 2018-03-30 | 2018-09-21 | 中国计量科学研究院 | A kind of device of temperature correction |
US12230531B2 (en) | 2018-04-09 | 2025-02-18 | Asm Ip Holding B.V. | Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US11908733B2 (en) | 2018-05-28 | 2024-02-20 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11837483B2 (en) | 2018-06-04 | 2023-12-05 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11814715B2 (en) | 2018-06-27 | 2023-11-14 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11952658B2 (en) | 2018-06-27 | 2024-04-09 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
CN108680284A (en) * | 2018-07-03 | 2018-10-19 | 富通集团(天津)超导技术应用有限公司 | Fiber-optical grating temperature sensor temperature calibration device and scaling method in low temperature environment |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11735445B2 (en) | 2018-10-31 | 2023-08-22 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11866823B2 (en) | 2018-11-02 | 2024-01-09 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11798999B2 (en) | 2018-11-16 | 2023-10-24 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11411088B2 (en) | 2018-11-16 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11769670B2 (en) | 2018-12-13 | 2023-09-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11959171B2 (en) | 2019-01-17 | 2024-04-16 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11615980B2 (en) | 2019-02-20 | 2023-03-28 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US12176243B2 (en) | 2019-02-20 | 2024-12-24 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11798834B2 (en) | 2019-02-20 | 2023-10-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11901175B2 (en) | 2019-03-08 | 2024-02-13 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US12195855B2 (en) | 2019-06-06 | 2025-01-14 | Asm Ip Holding B.V. | Gas-phase reactor system including a gas detector |
US12252785B2 (en) | 2019-06-10 | 2025-03-18 | Asm Ip Holding B.V. | Method for cleaning quartz epitaxial chambers |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11908684B2 (en) | 2019-06-11 | 2024-02-20 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11746414B2 (en) | 2019-07-03 | 2023-09-05 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US12107000B2 (en) | 2019-07-10 | 2024-10-01 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11996304B2 (en) | 2019-07-16 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing device |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
US12129548B2 (en) | 2019-07-18 | 2024-10-29 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11876008B2 (en) | 2019-07-31 | 2024-01-16 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
US12247286B2 (en) | 2019-08-09 | 2025-03-11 | Asm Ip Holding B.V. | Heater assembly including cooling apparatus and method of using same |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US12033849B2 (en) | 2019-08-23 | 2024-07-09 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane |
US11898242B2 (en) | 2019-08-23 | 2024-02-13 | Asm Ip Holding B.V. | Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11827978B2 (en) | 2019-08-23 | 2023-11-28 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US12230497B2 (en) | 2019-10-02 | 2025-02-18 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US12266695B2 (en) | 2019-11-05 | 2025-04-01 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN111157134A (en) * | 2019-11-28 | 2020-05-15 | 航天东方红卫星有限公司 | Method for estimating on-orbit temperature of satellite non-temperature-measuring-point equipment |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US12119220B2 (en) | 2019-12-19 | 2024-10-15 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US12125700B2 (en) | 2020-01-16 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US12218269B2 (en) | 2020-02-13 | 2025-02-04 | Asm Ip Holding B.V. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11837494B2 (en) | 2020-03-11 | 2023-12-05 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
CN111351517A (en) * | 2020-03-16 | 2020-06-30 | 中国科学院国家空间科学中心 | Device and method for simulating space atmospheric environment |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US12068154B2 (en) | 2020-04-13 | 2024-08-20 | Asm Ip Holding B.V. | Method of forming a nitrogen-containing carbon film and system for performing the method |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US12243742B2 (en) | 2020-04-21 | 2025-03-04 | Asm Ip Holding B.V. | Method for processing a substrate |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US12243747B2 (en) | 2020-04-24 | 2025-03-04 | Asm Ip Holding B.V. | Methods of forming structures including vanadium boride and vanadium phosphide layers |
US12130084B2 (en) | 2020-04-24 | 2024-10-29 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US12221357B2 (en) | 2020-04-24 | 2025-02-11 | Asm Ip Holding B.V. | Methods and apparatus for stabilizing vanadium compounds |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11798830B2 (en) | 2020-05-01 | 2023-10-24 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US12203166B2 (en) | 2020-05-07 | 2025-01-21 | Asm Ip Holding B.V. | Apparatus and methods for performing an in-situ etch of reaction chambers with fluorine-based radicals |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US12243757B2 (en) | 2020-05-21 | 2025-03-04 | Asm Ip Holding B.V. | Flange and apparatus for processing substrates |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12266524B2 (en) | 2020-06-16 | 2025-04-01 | Asm Ip Holding B.V. | Method for depositing boron containing silicon germanium layers |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12055863B2 (en) | 2020-07-17 | 2024-08-06 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US12241158B2 (en) | 2020-07-20 | 2025-03-04 | Asm Ip Holding B.V. | Method for forming structures including transition metal layers |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
CN111780944A (en) * | 2020-08-10 | 2020-10-16 | 中国空气动力研究与发展中心超高速空气动力研究所 | Low-density wind tunnel flow field vibration temperature calibration device based on electron beam fluorescence technology |
CN111780944B (en) * | 2020-08-10 | 2024-05-10 | 中国空气动力研究与发展中心超高速空气动力研究所 | Low-density wind tunnel flow field vibration temperature calibration device based on electron beam fluorescence technology |
US12154824B2 (en) | 2020-08-14 | 2024-11-26 | Asm Ip Holding B.V. | Substrate processing method |
US12217954B2 (en) | 2020-08-25 | 2025-02-04 | Asm Ip Holding B.V. | Method of cleaning a surface |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12211742B2 (en) | 2020-09-10 | 2025-01-28 | Asm Ip Holding B.V. | Methods for depositing gap filling fluid |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US12148609B2 (en) | 2020-09-16 | 2024-11-19 | Asm Ip Holding B.V. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12218000B2 (en) | 2020-09-25 | 2025-02-04 | Asm Ip Holding B.V. | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US12217946B2 (en) | 2020-10-15 | 2025-02-04 | Asm Ip Holding B.V. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US12209308B2 (en) | 2020-11-12 | 2025-01-28 | Asm Ip Holding B.V. | Reactor and related methods |
US12195852B2 (en) | 2020-11-23 | 2025-01-14 | Asm Ip Holding B.V. | Substrate processing apparatus with an injector |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
US12159788B2 (en) | 2020-12-14 | 2024-12-03 | Asm Ip Holding B.V. | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US12129545B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Precursor capsule, a vessel and a method |
US12131885B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Plasma treatment device having matching box |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
CN114061793A (en) * | 2021-12-17 | 2022-02-18 | 中国电信股份有限公司 | Calibration device and calibration method for temperature sensor |
CN115876971A (en) * | 2022-12-30 | 2023-03-31 | 中国科学院地质与地球物理研究所 | A method for online calibration of water ice sample analyzer in vacuum low temperature environment |
Also Published As
Publication number | Publication date |
---|---|
CN102539019B (en) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102539019B (en) | Temperature measurement and calibration platform in space vacuum environment | |
Goldenstein et al. | Scanned-wavelength-modulation spectroscopy near 2.5 μm for H 2 O and temperature in a hydrocarbon-fueled scramjet combustor | |
CN205374298U (en) | Trace gas concentration detection apparatus based on TDLAS | |
WO2017201918A1 (en) | Measurement apparatus applicable to two-dimensional reconstruction of gas in combustion flow field | |
US6549276B1 (en) | Method and apparatus for optical measurement of concentration and temperature of liquids | |
US8481944B2 (en) | IR spectrometer with non-contact temperature measurement | |
Avdeev et al. | The fibre optic reflectometer: A new and simple probe for refractive index and phase separation measurements in gases, liquids and supercritical fluids | |
Gupta et al. | Absorption spectroscopy in microfluidic flow cells using a metal clad leaky waveguide device with a porous gel waveguide layer | |
Melin et al. | Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar | |
Buchholz et al. | HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data | |
CN103175634A (en) | TDLAS (tunable diode laser absorption spectroscopy) temperature calibration system | |
Hashiguchi et al. | Wavelength-meter controlled cavity ring-down spectroscopy: high-sensitivity detection of trace moisture in N2 at sub-ppb levels | |
CN102749141A (en) | Radiation temperature measuring method and apparatus for measuring true target temperature | |
CN106500911A (en) | Pressure gauge calibration method based on gas absorption spectral line pressure broadening effect | |
CN108801496B (en) | Path temperature histogram measurement system and method based on overlapping absorption spectrum | |
Xin et al. | Research on atmospheric CO2 remote sensing with open-path tunable diode laser absorption spectroscopy and comparison methods | |
Merlone et al. | Design and capabilities of the temperature control system for the Italian experiment based on precision laser spectroscopy for a new determination of the Boltzmann constant | |
CN107561008A (en) | A kind of device for VUV diffusing reflection plate BRDF feature measurements | |
Estruch-Samper et al. | Toluene-based planar laser-induced fluorescence imaging of temperature in hypersonic flows | |
Garinei et al. | A laser calibration system for in situ dynamic characterization of temperature sensors | |
RU2610115C1 (en) | Device for determining gas temperature in hollow high-temperature elements of gas turbine engines | |
Delort et al. | Measuring the uncertainty assessment of an experimental device used to determine the thermo-optico-physical properties of translucent construction materials | |
CA2348541A1 (en) | Method and apparatus for optical measurement of concentration and temperature of liquids | |
Chen et al. | An in situ online methodology for emissivity measurement between 100° C and 500° C utilizing infrared sensor | |
CN112484906A (en) | Gas pressure optical measurement temperature compensation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130925 |
|
CF01 | Termination of patent right due to non-payment of annual fee |