CN102522181A - Planar spiral inductor with wide-narrow-alternatingly line width and space - Google Patents
Planar spiral inductor with wide-narrow-alternatingly line width and space Download PDFInfo
- Publication number
- CN102522181A CN102522181A CN201210001680XA CN201210001680A CN102522181A CN 102522181 A CN102522181 A CN 102522181A CN 201210001680X A CN201210001680X A CN 201210001680XA CN 201210001680 A CN201210001680 A CN 201210001680A CN 102522181 A CN102522181 A CN 102522181A
- Authority
- CN
- China
- Prior art keywords
- metal
- spiral inductor
- layer
- width
- planar spiral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 138
- 239000002184 metal Substances 0.000 claims abstract description 138
- 239000000758 substrate Substances 0.000 claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 13
- 239000010408 film Substances 0.000 claims 1
- 239000011104 metalized film Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 230000001965 increasing effect Effects 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- ZNKMCMOJCDFGFT-UHFFFAOYSA-N gold titanium Chemical compound [Ti].[Au] ZNKMCMOJCDFGFT-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910001258 titanium gold Inorganic materials 0.000 description 2
- 241001528553 Malus asiatica Species 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Coils Or Transformers For Communication (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开一种可应用于射频集成电路的线宽间距交变结构型平面螺旋电感,硅衬底上生长有螺旋电感的绝缘层,绝缘层上镀金属薄膜刻蚀电感底层金属层,底层金属层上沉积绝缘层,绝缘层刻蚀通孔,连接底层金属层和螺旋电感层,绝缘层上镀金属薄膜刻蚀螺旋电感金属层,螺旋电感金属层线圈为多匝,线圈图案由导电金属构成。本发明的金属线宽自外圈向内圈宽窄交替变化,金属线间距自外圈向内圈宽窄交替变化,降低了串联等效电阻导致的欧姆损耗,降低了金属导线间的临近效应,提高了螺旋电感品质因数Q值,增加了金属线圈之间的互感,提高了螺旋电感的电感值。
The invention discloses a planar spiral inductor with alternating line width and spacing structure that can be applied to radio frequency integrated circuits. An insulating layer of the spiral inductor is grown on a silicon substrate, and a metal film is coated on the insulating layer to etch the bottom metal layer of the inductor. The bottom metal An insulating layer is deposited on the layer, and the insulating layer etches a through hole to connect the underlying metal layer and the spiral inductor layer. The metal layer is coated with a metal film on the insulating layer and the spiral inductor metal layer is etched. The coil of the spiral inductor metal layer is multi-turn, and the coil pattern is made of conductive metal. . The width of the metal wires of the present invention changes alternately from the outer ring to the inner ring, and the distance between the metal wires changes alternately from the outer ring to the inner ring, which reduces the ohmic loss caused by the series equivalent resistance, reduces the proximity effect between the metal wires, and improves The Q value of the quality factor of the spiral inductor is increased, the mutual inductance between the metal coils is increased, and the inductance value of the spiral inductor is improved.
Description
技术领域 technical field
本发明属于电子技术领域,更进一步涉及微电子技术领域中的线宽间距交变结构型平面螺旋电感。本发明的金属线宽和间距采用宽窄交替变化结构,可用于微波集成电路、滤波网、射频收发电路和LC振荡器、射频IC等领域。The invention belongs to the field of electronic technology, and further relates to a planar spiral inductor with alternating line width and spacing structure in the field of microelectronic technology. The metal line width and spacing of the invention adopts a width-narrow alternating structure, which can be used in the fields of microwave integrated circuits, filter nets, radio frequency transceiver circuits, LC oscillators, radio frequency ICs and the like.
背景技术 Background technique
随着射频集成电路领域的发展,对高性能的平面螺旋电感的需求日益迫切。螺旋电感能否得到高品质因数Q值,高电感值已经成为当今微电子技术领域的研究热点。With the development of the field of radio frequency integrated circuits, the demand for high-performance planar spiral inductors is increasingly urgent. Whether spiral inductors can obtain high quality factor Q value and high inductance value has become a research hotspot in the field of microelectronics technology.
当前提高平面螺旋电感性能的方法主要有两种:一种是从结构参数进行优化,通过合理优化平面螺旋电感的版图结构,最大程度降低螺旋电感的欧姆损耗和涡流损耗,提高电感Q值。例如采用锥形结构,或者采用多层结构电感,可有效提高电感Q值。第二种方法是从工艺角度出发,尽可能的降低衬底与电感之间的耦合,减小磁致损耗,提高电感的Q值。例如在硅衬底与电感金属层之间插入图形式接地屏蔽层,或者用特殊工艺将硅衬底掏空等技术均是从工艺角度降低衬底与电感的耦合,提高电感Q值。At present, there are two main methods to improve the performance of planar spiral inductors: one is to optimize the structural parameters. By rationally optimizing the layout structure of planar spiral inductors, the ohmic loss and eddy current loss of the spiral inductor can be minimized, and the Q value of the inductor can be improved. For example, adopting a tapered structure or adopting a multi-layer structure inductor can effectively improve the Q value of the inductor. The second method is to reduce the coupling between the substrate and the inductor as much as possible from the perspective of technology, reduce the magnetic loss, and improve the Q value of the inductor. For example, inserting a graphic ground shielding layer between the silicon substrate and the metal layer of the inductor, or hollowing out the silicon substrate with a special process, etc., all reduce the coupling between the substrate and the inductor from the perspective of technology, and improve the Q value of the inductor.
上海集成电路研发中心有限公司申请的专利“非等平面螺旋电感”(申请号200620042881,公开号200983296)提出一种非等平面螺旋电感。该螺旋电感中的至少一圈金属线圈与其余任意一条金属线圈处于不同平面,从而高频时涡流效应和临近效应影响降低,提高了电感的品质因数。但是该专利申请存在的不足是:金属线圈之间互感降低,导致电感值不高,而且加工工艺难度增大。The patent "non-equal planar spiral inductor" (application number 200620042881, publication number 200983296) applied by Shanghai Integrated Circuit R&D Center Co., Ltd. proposes a non-equal planar spiral inductor. At least one turn of the metal coil in the spiral inductor is in a different plane from any other metal coil, so that the influence of the eddy current effect and the proximity effect at high frequencies is reduced, and the quality factor of the inductance is improved. However, the disadvantages of this patent application are: the mutual inductance between the metal coils is reduced, resulting in a low inductance value, and the processing technology is more difficult.
阿尔卑斯电气株式会社申请的专利“螺旋电感器”(申请号01136623,公开号1350310)提出一种螺旋电感器。该螺旋电感器金属线间距固定不变,金属线宽度按照从外圈向内圈逐渐减小,因此电感内径增大,磁力线的影响减少,电感值增大,Q值有所改善。但是该专利申请存在的不足是:螺旋电感器尺寸过大,不满足当今射频集成电路小尺寸,高集成度的设计要求,螺旋电感金属线间距与线宽变化单一,Q值、电感值改善有限。The patent "Spiral Inductor" (Application No. 01136623, Publication No. 1350310) applied by Alps Electric Co., Ltd. proposes a spiral inductor. The pitch of the metal wires of the spiral inductor is fixed, and the width of the metal wires gradually decreases from the outer ring to the inner ring, so the inner diameter of the inductor increases, the influence of the magnetic force line decreases, the inductance value increases, and the Q value improves. However, the shortcomings of this patent application are: the size of the spiral inductor is too large, which does not meet the small size and high integration design requirements of today's radio frequency integrated circuits, the metal line spacing and line width of the spiral inductor have a single change, and the Q value and inductance value are limited .
上海华虹(集团)有限公司申请的专利“金属线宽及金属间距渐变的平面螺旋电感”(申请号200420114664,公开号20060329)提出一种金属线宽及金属间距渐变的平面螺旋电感。该电感的金属导线线宽从内到外依次增大,金属线间距从内到外随着线宽的增大而增大,从而降低了金属线的欧姆损耗,品质因素Q值高。但是该专利申请存在的不足是:降低了螺旋电感线圈之间的互感,电感值较低。Shanghai Huahong (Group) Co., Ltd. applied for the patent "Planar Spiral Inductor with Gradual Variation of Metal Line Width and Metal Space" (Application No. 200420114664, Publication No. 20060329), which proposes a planar spiral inductor with gradual change of metal line width and metal spacing. The wire width of the metal wire of the inductor increases sequentially from the inside to the outside, and the distance between the metal wires increases with the increase of the wire width from the inside to the outside, thereby reducing the ohmic loss of the metal wire, and the quality factor Q value is high. However, the disadvantage of this patent application is that the mutual inductance between the spiral inductor coils is reduced, and the inductance value is relatively low.
李清华,邵志标等人公开发表发表一篇文章(高频单片DC/DC转换器中双层平面电感的优化,李清华,邵志标,耿莉,西安交通大学电子与信息工程学院,西安电子科技大学学报(自然科学版),第34卷第2期,2007年4月,321-324])文中提出一种线宽和间距都为定值的圆形平面螺旋电感。这种平面螺旋电感存在的不足是:品质因数Q值过低(最大Q值仅为5),而且工艺要求非常高。Li Qinghua, Shao Zhibiao and others published an article (Optimization of double-layer planar inductors in high-frequency monolithic DC/DC converters, Li Qinghua, Shao Zhibiao, Geng Li, School of Electronics and Information Engineering, Xidian Jiaotong University, Journal of Xidian University (Natural Science Edition), Volume 34,
Lu Huang等人公开发表了一篇文献(Lu Huang,Wan-Rong Zhang,Hong-Yun Xie,Pei Shen,Jun-Ning Gan,Yi-Wen Huang,Ning Hu.Analysis and Optimum Design of RFSpiral Inductors on Silicon Substrate,3rd IEEE International Symposium on Microwave,Antenna,Propagation and EMC Technologies for Wireless Communications,2009,Beijing,990-993)文中提出一种线宽、间距尺寸从外圈到内圈逐渐减小的渐变结构平面螺旋电感,提高了电感的Q值。这种平面螺旋电感存在的不足是:电感值没有明显的改善。Lu Huang et al published a document (Lu Huang, Wan-Rong Zhang, Hong-Yun Xie, Pei Shen, Jun-Ning Gan, Yi-Wen Huang, Ning Hu. Analysis and Optimum Design of RFSpiral Inductors on Silicon Substrate , 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2009, Beijing, 990-993) This article proposes a planar spiral inductor with a gradient structure whose line width and spacing gradually decrease from the outer ring to the inner ring , improving the Q value of the inductor. The disadvantage of this planar spiral inductor is that the inductance value has not been significantly improved.
发明内容 Contents of the invention
为了克服上述现有技术的不足,本发明的目的在于从电感结构参数角度出发,提供一种金属线宽间距交变型平面螺旋电感,与传统CMOS工艺兼容。本发明能同时提高Q值和电感值。In order to overcome the disadvantages of the above-mentioned prior art, the object of the present invention is to provide a planar spiral inductor with alternating metal line width and spacing from the perspective of inductor structure parameters, which is compatible with traditional CMOS technology. The invention can simultaneously improve the Q value and the inductance value.
本发明的思路是在射频无源器件的损耗机理的基础上提出的,旨在减小金属导体的欧姆损耗和涡流损耗,增强电感金属导线间的互感。欧姆损耗由传导电流引起,涡流损耗由涡流电流引起。当传导电流流过金属导体时,它所产生的欧姆损耗将与金属导体的电阻值有关,该电阻值与金属导体的电阻率和总长度成正比,与金属导线的宽度成反比。由法拉第和楞次定理可以得出,涡流效应将导致电感中心的磁感应强度大大增强,并使金属导线中的电流密度不平均,从而增大了金属导体的串联电阻。另外,从涡流效应可知,当两相邻金属导体间距越小时,它们之间的磁场相互作用越强烈,临近效应影响严重,导致金属导体中的电流密度更加不均匀,使金属导体的串联电阻进一步变大,从而影响电感Q值。而且,电感导线间距越小,金属导线受磁力线影响就越严重,导致电感值下降。基于上述原理,本发明提出交替变化的金属线宽和金属线间距,采用宽窄交替变化的金属线,使得内圈线宽窄,增大电感内径,降低涡流损耗;对欧姆损耗为主的外圈导体,采用宽度宽的金属线,达到了降低金属导体欧姆损耗的目的。另外,采用间距交变结构,降低了金属导线之间的磁力线影响,增强导线间的互感,提高了电感值。因此,本发明采用金属线间距从外圈到内圈交变结构可以增强互感,降低损耗,提高电感Q值和电感值。The idea of the invention is proposed on the basis of the loss mechanism of radio frequency passive devices, and aims to reduce the ohmic loss and eddy current loss of metal conductors and enhance the mutual inductance between inductive metal wires. Ohmic losses are caused by conduction current and eddy current losses are caused by eddy currents. When conduction current flows through a metal conductor, the ohmic loss it produces will be related to the resistance value of the metal conductor, which is proportional to the resistivity and total length of the metal conductor and inversely proportional to the width of the metal wire. It can be concluded from Faraday and Lenz theorem that the eddy current effect will greatly enhance the magnetic induction intensity at the center of the inductor, and make the current density in the metal wire uneven, thereby increasing the series resistance of the metal conductor. In addition, it can be seen from the eddy current effect that when the distance between two adjacent metal conductors is smaller, the magnetic field interaction between them is stronger, and the proximity effect is seriously affected, resulting in more uneven current density in the metal conductors and further increasing the series resistance of the metal conductors. becomes larger, thereby affecting the Q value of the inductor. Moreover, the smaller the distance between the inductor wires, the more severely the metal wires will be affected by the magnetic lines of force, resulting in a decrease in inductance. Based on the above principles, the present invention proposes alternately changing metal wire widths and metal wire spacing, and adopts alternately changing metal wires in width to make the inner ring wire width narrow, increase the inner diameter of the inductor, and reduce eddy current loss; , the use of wide-width metal wires achieves the purpose of reducing the ohmic loss of metal conductors. In addition, the alternate spacing structure is adopted, which reduces the influence of the magnetic field lines between the metal wires, enhances the mutual inductance between the wires, and increases the inductance value. Therefore, the present invention adopts the alternating structure of metal wire spacing from the outer ring to the inner ring, which can enhance mutual inductance, reduce loss, and increase inductance Q value and inductance value.
本发明包括硅衬底、绝缘层、平面螺旋电感底层金属层、通孔、平面螺旋电感金属层,硅衬底上生长有螺旋电感的绝缘层,绝缘层上镀金属薄膜刻蚀电感底层金属层,底层金属层上沉积绝缘层,绝缘层刻蚀通孔,连接底层金属层和螺旋电感层,绝缘层上镀金属薄膜刻蚀螺旋电感金属层,螺旋电感金属层线圈为多匝,线圈图案由导电金属构成;所述平面螺旋电感金属层的金属线宽自外圈向内圈宽窄交替变化,金属线间距自外圈向内圈宽窄交替变化。The invention includes a silicon substrate, an insulating layer, a bottom metal layer of a planar spiral inductor, a through hole, and a metal layer of a planar spiral inductor. The insulating layer of the spiral inductor is grown on the silicon substrate, and the insulating layer is coated with a metal film to etch the bottom metal layer of the inductor. , an insulating layer is deposited on the bottom metal layer, the insulating layer etches a through hole, connects the bottom metal layer and the spiral inductor layer, the metal layer is coated with a metal film on the insulating layer, and the spiral inductor metal layer is etched. The coil of the spiral inductor metal layer is multi-turn, and the coil pattern is composed of Composed of conductive metal; the metal line width of the planar spiral inductor metal layer changes alternately from the outer ring to the inner ring, and the distance between the metal lines changes alternately from the outer ring to the inner ring.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
第一,本发明金属线宽采用交变结构,降低了电感金属导线的欧姆损耗,克服了现有技术中因电感欧姆损耗过大而导致电感Q值过低的缺陷,由此使得本发明在不改变版图大小的基础上提高了电感Q值。First, the metal line width of the present invention adopts an alternating structure, which reduces the ohmic loss of the inductance metal wire, and overcomes the defect in the prior art that the inductance Q value is too low due to the excessive ohmic loss of the inductance, thus making the present invention in The Q value of the inductor is improved without changing the layout size.
第二,本发明金属线宽采用交变结构,电感内径减小,降低了涡流损耗,克服了现有技术中因涡流损耗过大而导致电感Q值过低的缺陷,由此使得本发明在不改变版图大小的基础上,降低了涡流损耗,提高了电感Q值。Second, the metal line width of the present invention adopts an alternating structure, the inner diameter of the inductor is reduced, and the eddy current loss is reduced, which overcomes the defect in the prior art that the Q value of the inductance is too low due to excessive eddy current loss, thus making the present invention in On the basis of not changing the size of the layout, the eddy current loss is reduced and the Q value of the inductor is improved.
第三,本发明金属线间距采用交变结构,降低了导线间的临近效应,克服了现有技术中因临近效应影响,导致电感等效串联电阻增大的缺陷,由此使得本发明降低了电感线圈中临近效应的影响,使串联等效电阻下降,提高了电感Q值。Third, the pitch of the metal wires in the present invention adopts an alternating structure, which reduces the proximity effect between the wires and overcomes the defect in the prior art that the equivalent series resistance of the inductor increases due to the proximity effect, thereby reducing the inductance of the present invention. The influence of the proximity effect in the inductance coil reduces the equivalent resistance in series and increases the Q value of the inductance.
第四,本发明金属线间距采用交变结构,增强了金属导线中的磁通量,降低了磁力线的影响,克服了现有技术中电感线圈间互感不强的缺陷,由此使得本发明增强了电感线圈间的互感,提高了电感值。Fourth, the spacing between the metal wires of the present invention adopts an alternating structure, which enhances the magnetic flux in the metal wires, reduces the influence of the magnetic force lines, and overcomes the defect that the mutual inductance between the inductance coils in the prior art is not strong, thus making the present invention enhance the inductance The mutual inductance between the coils increases the inductance value.
第五,本发明与传统CMOS兼容,克服了现有技术中使用特殊工艺导致电感加工时的工艺难度增大的缺陷,由此使得本发明加工简单,易于实现。Fifth, the present invention is compatible with traditional CMOS, and overcomes the defect that the special process in the prior art leads to increased process difficulty in inductive processing, thus making the present invention simple to process and easy to implement.
附图说明 Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明与传统螺旋电感品质因数Q值仿真结果比较图;Fig. 2 is the simulation result comparison figure of the present invention and traditional spiral inductor quality factor Q value;
图3为本发明与传统螺旋电感电感值仿真结果比较图。Fig. 3 is a comparison diagram of the simulation results of the inductance value of the present invention and the traditional spiral inductor.
具体实施方式 Detailed ways
下面结合附图对本发明做进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
图1所示的线宽间距交变结构型平面螺旋电感,包括硅衬底、绝缘层、平面螺旋电感底层金属层、通孔、平面螺旋电感金属层。在450μm厚的硅基上生长一层1μm厚的氧化物,形成绝缘层,绝缘层之上溅射一层10nm厚的钛金薄膜,钛金薄膜表面之上镀500nm厚的金属薄膜,刻蚀金属薄膜,形成螺旋电感底层金属层,螺旋电感底层金属层之上沉积900nm厚的氧化物,形成绝缘层,刻蚀绝缘层形成通孔,绝缘层之上镀2μm厚金属薄膜,有选择性的刻蚀形成螺旋电感金属层。The planar spiral inductor with alternating line width and spacing structure shown in Figure 1 includes a silicon substrate, an insulating layer, a bottom metal layer of the planar spiral inductor, through holes, and a metal layer of the planar spiral inductor. A layer of 1 μm thick oxide is grown on a 450 μm thick silicon base to form an insulating layer, a layer of 10 nm thick titanium gold film is sputtered on the insulating layer, and a 500 nm thick metal film is plated on the surface of the titanium gold film, etched Metal film, forming the bottom metal layer of the spiral inductor, depositing a 900nm thick oxide on the bottom metal layer of the spiral inductor to form an insulating layer, etching the insulating layer to form a through hole, and plating a 2μm thick metal film on the insulating layer, selectively Etching forms the spiral inductor metal layer.
平面螺旋电感金属层的金属线宽自外圈向内圈宽窄交替变化是指,金属导线1、5、9、12、13宽度是所有金属导线中宽度最宽的;金属导线2、6、10、14宽度较金属导线1、5、9、12、13变窄;金属导线3、7、11、15宽度较金属导线2、6、10、14宽度变宽,其宽度窄于金属导线1、5、9、12、13;金属导体4、8宽度变窄,其宽度窄于金属导线2、6、10、14的宽度。The metal line width of the metal layer of the planar spiral inductor changes alternately from the outer ring to the inner ring, which means that the width of the
平面螺旋电感金属层的金属线间距自外圈向内圈宽窄交替变化是指,金属导线1、5、9、13与金属导线2、6、10、14之间的间距是导线间距中最大的;金属导线2、6、10、14与金属导线3、7、11、15之间的间距小于金属导线1、5、9、13与金属导线2、6、10、14之间的间距;金属导线3、7与金属导线4、8之间的间距大于金属导线2、6与金属导体线3、7之间的间距。The metal line spacing of the metal layer of the planar spiral inductor changes alternately from the outer ring to the inner ring, which means that the spacing between the
金属导线宽度的范围值为0.03微米~20微米。金属导线之间的间距值的范围为0.04微米~10微米。平面螺旋电感外径的范围为0.1微米~400微米。The range of the width of the metal wire is 0.03 microns to 20 microns. The distance between the metal wires ranges from 0.04 microns to 10 microns. The outer diameter of the planar spiral inductor ranges from 0.1 microns to 400 microns.
图2所示为本发明的电感品质因数Q值与传统金属线宽间距固定的平面螺旋电感Q值仿真结果比较图。其中实线表示本发明的螺旋电感品质因数Q值随频率的变化曲线,虚线表示传统平面螺旋电感品质因数Q值随频率的变化曲线。FIG. 2 is a graph showing the comparison of the Q value of the inductance quality factor of the present invention with the simulation results of the Q value of the traditional planar spiral inductor with fixed metal line width and spacing. The solid line represents the variation curve of the quality factor Q value of the spiral inductor of the present invention with frequency, and the dotted line represents the variation curve of the quality factor Q value of the traditional planar spiral inductor with frequency.
图2所示,本发明的电感品质因数Q值在2.70GHz时达到最大值14.86,传统平面螺旋电感的电感品质因数Q值在2.55GHz时达到最大值13.37。本发明Q值较传统螺旋电感Q值提高了11%。As shown in FIG. 2 , the Q value of the inductance quality factor of the present invention reaches the maximum value of 14.86 at 2.70 GHz, and the Q value of the inductance quality factor of the traditional planar spiral inductor reaches the maximum value of 13.37 at 2.55 GHz. The Q value of the invention is 11% higher than that of the traditional spiral inductor.
图3所示为本发明的电感值与传统金属线宽间距固定的平面螺旋电感的电感值仿真结果比较图。其中实线表示本发明的螺旋电感电感值随频率的变化曲线,虚线表示传统平面螺旋电感电感值随频率的变化曲线。FIG. 3 is a graph showing the comparison of the inductance value of the present invention and the inductance value simulation results of the traditional planar spiral inductor with fixed metal line width spacing. Wherein the solid line represents the variation curve of the inductance value of the spiral inductor of the present invention with frequency, and the dotted line represents the variation curve of the inductance value of the traditional planar spiral inductor with frequency.
图3所示,本发明的电感值在2GHz时电感值为7.31nH,传统平面螺旋电感在2GHz时电感值为5.52nH。本发明电感值较传统电感的电感值提高了36%。As shown in FIG. 3 , the inductance value of the present invention is 7.31nH at 2GHz, and the inductance value of the traditional planar spiral inductor is 5.52nH at 2GHz. The inductance value of the invention is 36% higher than that of the traditional inductance.
从仿真结果可知,采用本发明线宽间距交变结构型平面螺旋电感能够有效的提高螺旋电感的性能。It can be seen from the simulation results that the performance of the spiral inductor can be effectively improved by adopting the planar spiral inductor with alternating line width and spacing structure of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210001680 CN102522181B (en) | 2012-01-04 | 2012-01-04 | Planar spiral inductor with wide-narrow-alternatingly line width and space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210001680 CN102522181B (en) | 2012-01-04 | 2012-01-04 | Planar spiral inductor with wide-narrow-alternatingly line width and space |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102522181A true CN102522181A (en) | 2012-06-27 |
CN102522181B CN102522181B (en) | 2013-08-14 |
Family
ID=46293070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210001680 Expired - Fee Related CN102522181B (en) | 2012-01-04 | 2012-01-04 | Planar spiral inductor with wide-narrow-alternatingly line width and space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102522181B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103475357A (en) * | 2013-08-31 | 2013-12-25 | 西安电子科技大学 | Semi-active on-chip inductor based on active inductor |
CN104283554A (en) * | 2013-07-08 | 2015-01-14 | 群联电子股份有限公司 | Clock adjusting circuit and memory storage device |
WO2015073209A1 (en) * | 2013-11-12 | 2015-05-21 | Qualcomm Incorporated | Multi spiral inductor |
US9431473B2 (en) | 2012-11-21 | 2016-08-30 | Qualcomm Incorporated | Hybrid transformer structure on semiconductor devices |
US9449753B2 (en) | 2013-08-30 | 2016-09-20 | Qualcomm Incorporated | Varying thickness inductor |
CN106206553A (en) * | 2016-08-22 | 2016-12-07 | 西安电子科技大学 | A kind of three-dimensional spiral inductor based on silicon via-hole array |
US9634645B2 (en) | 2013-03-14 | 2017-04-25 | Qualcomm Incorporated | Integration of a replica circuit and a transformer above a dielectric substrate |
US9906318B2 (en) | 2014-04-18 | 2018-02-27 | Qualcomm Incorporated | Frequency multiplexer |
CN108106758A (en) * | 2017-12-21 | 2018-06-01 | 中国电子科技集团公司第四十八研究所 | A kind of silicon fiml current vortex micro-pressure sensor |
US10002700B2 (en) | 2013-02-27 | 2018-06-19 | Qualcomm Incorporated | Vertical-coupling transformer with an air-gap structure |
CN109166708A (en) * | 2018-08-21 | 2019-01-08 | 武汉理工大学 | A kind of change turn-to-turn is away from planar spiral winding |
CN109215979A (en) * | 2018-10-17 | 2019-01-15 | 安徽安努奇科技有限公司 | A kind of patch type inductance and preparation method thereof |
CN109361042A (en) * | 2018-11-16 | 2019-02-19 | 安徽安努奇科技有限公司 | A kind of frequency demultiplexer |
CN109686545A (en) * | 2019-02-26 | 2019-04-26 | 维沃移动通信有限公司 | Preparation method of charging coil, charging module of terminal equipment and terminal equipment |
CN109860146A (en) * | 2019-02-18 | 2019-06-07 | 西安电子科技大学 | A high-density three-dimensional integrated spiral inductor based on through-silicon via interconnection |
US10374464B2 (en) | 2013-11-25 | 2019-08-06 | A.K. Stamping Company, Inc. | Wireless charging coil |
CN111446928A (en) * | 2019-01-16 | 2020-07-24 | 三星电机株式会社 | Inductor and low noise amplifier including the same |
CN112216495A (en) * | 2020-08-21 | 2021-01-12 | 常州讯磁科技有限公司 | Novel non-equal-width charging coil |
US11004599B2 (en) | 2013-11-25 | 2021-05-11 | A.K. Stamping Company, Inc. | Wireless charging coil |
US12094631B2 (en) | 2018-10-17 | 2024-09-17 | Anhui Anuki Technologies Co., Ltd. | Chip inductor and method for manufacturing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1377071A (en) * | 2001-03-23 | 2002-10-30 | 华邦电子股份有限公司 | Semiconductor technology manufacturing method and structure of inductive component with high Q value |
CN101017816A (en) * | 2007-02-16 | 2007-08-15 | 上海集成电路研发中心有限公司 | Design method for on-chip spiral inductor with the wearing metal conductor line width and gap |
US20080303622A1 (en) * | 2007-06-11 | 2008-12-11 | Samsung Electro-Mechanics Co., Ltd. | Spiral inductor |
-
2012
- 2012-01-04 CN CN 201210001680 patent/CN102522181B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1377071A (en) * | 2001-03-23 | 2002-10-30 | 华邦电子股份有限公司 | Semiconductor technology manufacturing method and structure of inductive component with high Q value |
CN101017816A (en) * | 2007-02-16 | 2007-08-15 | 上海集成电路研发中心有限公司 | Design method for on-chip spiral inductor with the wearing metal conductor line width and gap |
US20080303622A1 (en) * | 2007-06-11 | 2008-12-11 | Samsung Electro-Mechanics Co., Ltd. | Spiral inductor |
Non-Patent Citations (1)
Title |
---|
刘婧等: "金属线宽与间距渐变的片上螺旋电感设计规则研究", 《电子器件》 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9431473B2 (en) | 2012-11-21 | 2016-08-30 | Qualcomm Incorporated | Hybrid transformer structure on semiconductor devices |
US10002700B2 (en) | 2013-02-27 | 2018-06-19 | Qualcomm Incorporated | Vertical-coupling transformer with an air-gap structure |
US9634645B2 (en) | 2013-03-14 | 2017-04-25 | Qualcomm Incorporated | Integration of a replica circuit and a transformer above a dielectric substrate |
US10116285B2 (en) | 2013-03-14 | 2018-10-30 | Qualcomm Incorporated | Integration of a replica circuit and a transformer above a dielectric substrate |
CN104283554A (en) * | 2013-07-08 | 2015-01-14 | 群联电子股份有限公司 | Clock adjusting circuit and memory storage device |
US9449753B2 (en) | 2013-08-30 | 2016-09-20 | Qualcomm Incorporated | Varying thickness inductor |
US10354795B2 (en) | 2013-08-30 | 2019-07-16 | Qualcomm Incorporated | Varying thickness inductor |
CN103475357A (en) * | 2013-08-31 | 2013-12-25 | 西安电子科技大学 | Semi-active on-chip inductor based on active inductor |
CN103475357B (en) * | 2013-08-31 | 2016-07-06 | 西安电子科技大学 | Based on the semi-active on-chip inductor that active inductance realizes |
WO2015073209A1 (en) * | 2013-11-12 | 2015-05-21 | Qualcomm Incorporated | Multi spiral inductor |
US11004599B2 (en) | 2013-11-25 | 2021-05-11 | A.K. Stamping Company, Inc. | Wireless charging coil |
US12142418B2 (en) | 2013-11-25 | 2024-11-12 | A.K. Stamping Company, Inc. | Wireless charging coil |
US10374464B2 (en) | 2013-11-25 | 2019-08-06 | A.K. Stamping Company, Inc. | Wireless charging coil |
US11862383B2 (en) | 2013-11-25 | 2024-01-02 | A.K. Stamping Company, Inc. | Wireless charging coil |
US10886047B2 (en) | 2013-11-25 | 2021-01-05 | A.K. Stamping Company, Inc. | Wireless charging coil |
US11004598B2 (en) | 2013-11-25 | 2021-05-11 | A.K. Stamping Company, Inc. | Wireless charging coil |
US9906318B2 (en) | 2014-04-18 | 2018-02-27 | Qualcomm Incorporated | Frequency multiplexer |
CN106206553A (en) * | 2016-08-22 | 2016-12-07 | 西安电子科技大学 | A kind of three-dimensional spiral inductor based on silicon via-hole array |
CN108106758A (en) * | 2017-12-21 | 2018-06-01 | 中国电子科技集团公司第四十八研究所 | A kind of silicon fiml current vortex micro-pressure sensor |
CN109166708A (en) * | 2018-08-21 | 2019-01-08 | 武汉理工大学 | A kind of change turn-to-turn is away from planar spiral winding |
CN109215979A (en) * | 2018-10-17 | 2019-01-15 | 安徽安努奇科技有限公司 | A kind of patch type inductance and preparation method thereof |
US12094631B2 (en) | 2018-10-17 | 2024-09-17 | Anhui Anuki Technologies Co., Ltd. | Chip inductor and method for manufacturing same |
CN109361042A (en) * | 2018-11-16 | 2019-02-19 | 安徽安努奇科技有限公司 | A kind of frequency demultiplexer |
CN109361042B (en) * | 2018-11-16 | 2024-03-19 | 安徽安努奇科技有限公司 | Frequency divider |
CN111446928A (en) * | 2019-01-16 | 2020-07-24 | 三星电机株式会社 | Inductor and low noise amplifier including the same |
CN111446928B (en) * | 2019-01-16 | 2024-03-26 | 三星电机株式会社 | Inductor and low noise amplifier including the inductor |
CN109860146A (en) * | 2019-02-18 | 2019-06-07 | 西安电子科技大学 | A high-density three-dimensional integrated spiral inductor based on through-silicon via interconnection |
CN109686545A (en) * | 2019-02-26 | 2019-04-26 | 维沃移动通信有限公司 | Preparation method of charging coil, charging module of terminal equipment and terminal equipment |
CN112216495A (en) * | 2020-08-21 | 2021-01-12 | 常州讯磁科技有限公司 | Novel non-equal-width charging coil |
Also Published As
Publication number | Publication date |
---|---|
CN102522181B (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102522181B (en) | Planar spiral inductor with wide-narrow-alternatingly line width and space | |
CN200983296Y (en) | Non equal plane spiral inductor | |
CN101494112B (en) | A method for forming coil inductance | |
JP4202914B2 (en) | Planar inductive components and planar transformers | |
JP2015026812A (en) | Chip electronic component and manufacturing method thereof | |
KR102130672B1 (en) | Multilayered electronic component and manufacturing method thereof | |
CN104241242B (en) | Earth shield structure and semiconductor devices | |
CN105575626A (en) | Isolated power converter with magnetics on chip | |
KR101963290B1 (en) | Coil component | |
Park et al. | High Q spiral-type microinductors on silicon substrates | |
TWI489613B (en) | Methods of forming magnetic vias to maximize inductance in integrated circuits and structures formed thereby | |
CN103390484A (en) | EMI (Electro-Magnetic Interference) filter | |
CN113053622B (en) | Radio frequency inductor with three-dimensional structure and design method thereof | |
Chen et al. | A deep submicron CMOS process compatible suspending high-Q inductor | |
CN110211779A (en) | A kind of wireless charging device induction coil | |
CN114823048A (en) | An On-Chip Stacked Differential Inductor | |
Yin et al. | Vertical topologies of miniature multispiral stacked inductors | |
CN105140175B (en) | A kind of etching method for forming through hole of the micro- inductor winding coil of integrated helical path cast | |
Iramnaaz et al. | High-quality integrated inductors based on multilayered meta-conductors | |
CN108369852A (en) | Interposer board with integrated magnetics | |
CN102097429B (en) | Differential integrated spiral inductor in vertical structure | |
CN218826567U (en) | Inductive structure | |
CN2768205Y (en) | Plane helix inductance with metal wire width and metal distance gradual change | |
CN102157515A (en) | Multilayer on-chip integrated spiral inductor with vertical structure | |
JP2013098539A (en) | Inductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130814 Termination date: 20190104 |
|
CF01 | Termination of patent right due to non-payment of annual fee |