CN102519671B - A space pose measurement device based on binocular vision for measuring static balance of gyroscope - Google Patents
A space pose measurement device based on binocular vision for measuring static balance of gyroscope Download PDFInfo
- Publication number
- CN102519671B CN102519671B CN2011104411292A CN201110441129A CN102519671B CN 102519671 B CN102519671 B CN 102519671B CN 2011104411292 A CN2011104411292 A CN 2011104411292A CN 201110441129 A CN201110441129 A CN 201110441129A CN 102519671 B CN102519671 B CN 102519671B
- Authority
- CN
- China
- Prior art keywords
- leading screw
- camera
- frame
- motor
- slide block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 23
- 230000003068 static effect Effects 0.000 title abstract description 11
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 230000001360 synchronised effect Effects 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 239000005341 toughened glass Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 2
- 238000010276 construction Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000003708 edge detection Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 238000003854 Surface Print Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Studio Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种静平衡的测量装置,更特别地说,是指一种基于双目原理的、用于测量陀螺仪静平衡空间位姿的测量装置。The invention relates to a statically balanced measuring device, more particularly to a measuring device based on the binocular principle for measuring the statically balanced space pose of a gyroscope.
背景技术Background technique
陀螺仪工作原理:基于高速旋转刚体的运动轴所指的方向在不受外力影响时,相对于惯性空间是不会改变的。它能利用高速回转体的动量矩测量壳体相对惯性空间内的绕正交于自转轴的一个或二个轴的角运动的特殊检测装置。由于其检测结果不依赖于外界参考信号,陀螺仪在航空、航天、航海以及陆地自主导航上存在着广泛和难以替代的作用。The working principle of the gyroscope: the direction pointed by the motion axis based on the high-speed rotating rigid body will not change relative to the inertial space when it is not affected by external forces. It can use the momentum moment of the high-speed revolving body to measure the angular motion of the housing relative to one or two axes perpendicular to the rotation axis in the inertial space. Because its detection results do not depend on external reference signals, gyroscopes play a wide and irreplaceable role in aviation, spaceflight, navigation and land autonomous navigation.
陀螺仪的质量不平衡会使其输出信号产生很大的零位误差(零漂),而零位误差是影响惯性系统性能的最重要因素之一。因此,在陀螺仪的生产过程中,必须对其进行静平衡测试。传统的静平衡测试都是人工基于肉眼或者经纬仪实施,精度很难得到保证,生产效率也十分低。The mass imbalance of the gyroscope will cause a large zero error (zero drift) in its output signal, and the zero error is one of the most important factors affecting the performance of the inertial system. Therefore, in the production process of the gyroscope, it must be tested for static balance. The traditional static balance test is carried out manually based on the naked eye or theodolite, the accuracy is difficult to be guaranteed, and the production efficiency is also very low.
发明内容Contents of the invention
本发明的目的是提供一种用于测量陀螺仪静平衡的基于双目视觉的空间位姿测量装置,该静平衡测量装置通过在三个方向对陀螺仪转子进行图像跟踪和识别,从而实现对陀螺仪转子的非接触式、高精度、高速实时测量。The object of the present invention is to provide a binocular vision-based space pose measurement device for measuring the static balance of a gyroscope, which can track and identify the gyroscope rotor image in three directions, thereby realizing the Non-contact, high-precision, high-speed real-time measurement of gyroscope rotors.
本发明的一种用于测量陀螺仪静平衡的基于双目视觉的空间位姿测量装置,该测量装置包括有用于采集被测试样(40)的X轴方向上图像信息的X轴图像采集组件(10)、用于采集被测试样(40)的Z轴方向上图像信息的Z轴图像采集组件(30)、以及支撑架(1)和背景板;A binocular vision-based space position and attitude measurement device for measuring the static balance of a gyroscope according to the present invention, the measurement device includes an X-axis image acquisition component for collecting image information in the X-axis direction of a tested sample (40) (10), a Z-axis image acquisition component (30) for acquiring image information in the Z-axis direction of the tested sample (40), a support frame (1) and a background plate;
支撑架(1)为一框形结构,支撑架(1)的第一板面(1A)的外侧上安装有第一丝杠架(11);支撑架(1)的第二板面(1B)的外侧上安装有第四背景板(5);支撑架(1)的第三板面(1C)的内侧上安装有第一背景板(2);支撑架(1)的第四板面(1D)的内侧上安装有第二背景板(3);支撑架(1)的底板面(1E)上安装有第三背景板(4);支撑架(1)的上顶上安装有第五丝杠架(15);The support frame (1) is a frame structure, and the first lead screw frame (11) is installed on the outside of the first plate surface (1A) of the support frame (1); the second plate surface (1B) of the support frame (1) ) is installed on the outside of the fourth background board (5); the inside of the third board surface (1C) of the support frame (1) is installed with the first background board (2); the fourth board surface of the support frame (1) The second background plate (3) is installed on the inner side of (1D); the third background plate (4) is installed on the bottom surface (1E) of the support frame (1); the first background plate (4) is installed on the top of the support frame (1). Five screw racks (15);
X轴图像采集组件(10)包括有第一丝杠架(11)、第一丝杠(11B)、第一电机(11A)、第二丝杠架(12)、第二丝杠(12B)、第二电机(12A)、第一滑块(21)、第二滑块(22)和第一摄像头(17);所述第一摄像头(17)用于采集被测试件(40)的主视图;The X-axis image acquisition assembly (10) includes a first lead screw frame (11), a first lead screw (11B), a first motor (11A), a second lead screw frame (12), and a second lead screw (12B) , the second motor (12A), the first slider (21), the second slider (22) and the first camera (17); the first camera (17) is used to collect the main view;
第一丝杠(11B)的一端安装在第一丝杠架(11)的A侧板(11C)的A滚珠轴承(11E)内,该A滚珠轴承(11E)安装在A侧板(11C)的A通孔(11F)内;第一丝杠(11B)的另一端通过联轴器与第一电机(11A)的输出轴连接;第一电机(11A)安装在第一丝杠架(11)的B侧板(11D)上;One end of the first lead screw (11B) is installed in the A ball bearing (11E) of the A side plate (11C) of the first lead screw frame (11), and the A ball bearing (11E) is installed in the A side plate (11C) The other end of the first lead screw (11B) is connected to the output shaft of the first motor (11A) through a coupling; the first motor (11A) is installed on the first lead screw frame (11 ) on the B side plate (11D);
第二丝杠(12B)的一端安装在第二丝杠架(12)的A侧板(12C)的B滚珠轴承(12E)内,该B滚珠轴承(12E)安装在A侧板(12C)的B通孔(12F)内,第二丝杠(12B)的另一端通过联轴器与第二电机(12A)的输出轴连接;第二电机(12A)安装在第二丝杠架(12)的B侧板(12D)上;One end of the second lead screw (12B) is installed in the B ball bearing (12E) of the A side plate (12C) of the second lead screw frame (12), and the B ball bearing (12E) is installed in the A side plate (12C) In the B through hole (12F), the other end of the second lead screw (12B) is connected with the output shaft of the second motor (12A) through a coupling; the second motor (12A) is installed on the second screw frame (12 ) on the B side plate (12D);
第一滑块(21)安装在第二丝杠架(12)的背部,且第一滑块(21)上的中心丝杠孔用于第一丝杠(11B)穿过;第二滑块(22)上安装有第一摄像头(17);且第二滑块(22)上的中心丝杠孔用于第二丝杠(12B)穿过;The first slider (21) is installed on the back of the second screw frame (12), and the center screw hole on the first slider (21) is used for the first screw (11B) to pass through; the second slider (22) is equipped with a first camera (17); and the center lead screw hole on the second slider (22) is used for the second lead screw (12B) to pass through;
Z轴图像采集组件(30)包括有第五丝杠架(15)、第五丝杠(15B)、第五电机(15A)、第六丝杠架(16)、第六丝杠(16B)、第六电机(16A)、第五滑块(25)、第六滑块(26)、第二摄像头(18)、第三摄像头(19)和摄像头支架(20);The Z-axis image acquisition assembly (30) includes a fifth lead screw frame (15), a fifth lead screw (15B), a fifth motor (15A), a sixth lead screw frame (16), and a sixth lead screw (16B) , the sixth motor (16A), the fifth slider (25), the sixth slider (26), the second camera (18), the third camera (19) and the camera bracket (20);
摄像头支架(20)安装在第六滑块(26)上,摄像头支架(20)上安装有第二摄像头(18)和第三摄像头(19),第二摄像头(18)用于采集被测试件(40)的左俯视图,第三摄像头(19)用于采集被测试件(40)的右俯视图;The camera bracket (20) is installed on the sixth slider (26), the second camera (18) and the third camera (19) are installed on the camera bracket (20), and the second camera (18) is used to collect the tested object The left top view of (40), the third camera (19) is used to collect the right top view of the tested piece (40);
第五丝杠(15B)的一端安装在第五丝杠架(15)的A侧板(15C)的E滚珠轴承(15E)内,该E滚珠轴承(15E)安装在A侧板(15C)的E通孔(15F)内,第五丝杠(15B)的另一端通过联轴器与第五电机(15A)的输出轴连接;第五电机(15A)安装在第五丝杠架(15)的B侧板(15D)上;One end of the fifth lead screw (15B) is installed in the E ball bearing (15E) of the A side plate (15C) of the fifth lead screw frame (15), and the E ball bearing (15E) is installed in the A side plate (15C) In the E through hole (15F), the other end of the fifth lead screw (15B) is connected to the output shaft of the fifth motor (15A) through a coupling; the fifth motor (15A) is installed on the fifth lead screw frame (15 ) on the B side plate (15D);
第六丝杠(16B)的一端安装在第六丝杠架(16)的A侧板(16C)的F滚珠轴承(16E)内,该F滚珠轴承(16E)安装在A侧板(16C)的F通孔(16F)内,第六丝杠(16B)的另一端通过联轴器与第六电机(16A)的输出轴连接;第六电机(16A)安装在第六丝杠架(16)的B侧板(16D)上;One end of the sixth lead screw (16B) is installed in the F ball bearing (16E) of the A side plate (16C) of the sixth lead screw frame (16), and the F ball bearing (16E) is installed in the A side plate (16C) In the F through hole (16F), the other end of the sixth lead screw (16B) is connected with the output shaft of the sixth motor (16A) through a coupling; the sixth motor (16A) is installed on the sixth screw frame (16 ) on the B side plate (16D);
第五滑块(25)安装在第六丝杠架(16)的背部,且第五滑块(25)上的中心丝杠孔用于第五丝杠(15B)穿过;第六滑块(26)上安装有摄像头支架(20),且第六滑块(26)上的中心丝杠孔用于第六丝杠(16B)穿过。The fifth slider (25) is installed on the back of the sixth screw frame (16), and the center screw hole on the fifth slider (25) is used for the fifth screw (15B) to pass through; the sixth slider A camera bracket (20) is installed on (26), and the center lead screw hole on the sixth slide block (26) is used for the sixth lead screw (16B) to pass through.
所述的用于测量陀螺仪静平衡的基于双目视觉的空间位姿测量装置,其四个电机的运动方式为:通过第一电机(11A)和第二电机(12A)分别控制第一丝杠(11)和第二丝杠(12)产生同步运动,从而推动第一滑块(21)和第二滑块(22),使第一摄像头(17)产生X和Z方向上的联动;通过第五电机(15A)和第六电机(16A)分别控制第五丝杠(15)和第六丝杠(16)产生同步运动,从而推动第五滑块(25)和第六滑块(26),使第二摄像头(18)和第三摄像头(19)产生X和Y方向上的联动。The binocular vision-based space pose measurement device for measuring the static balance of the gyroscope, the movement mode of its four motors is: the first wire is controlled by the first motor (11A) and the second motor (12A). The rod (11) and the second lead screw (12) produce synchronous movement, thereby pushing the first slider (21) and the second slider (22), so that the first camera (17) produces linkage in the X and Z directions; The fifth lead screw (15) and the sixth lead screw (16) are respectively controlled by the fifth motor (15A) and the sixth motor (16A) to generate synchronous motion, thereby pushing the fifth slider (25) and the sixth slider ( 26), so that the second camera (18) and the third camera (19) are linked in the X and Y directions.
本发明基于双目视觉的空间位姿测量装置的优点在于:The advantages of the binocular vision-based space pose measurement device of the present invention are:
(1)由于本测量装置基于视觉测量,无需和被测试样(陀螺仪)产生直接接触,因此不会对被测试样的姿态变化产生干扰,对于提高测量精度及其有利。(1) Since the measurement device is based on visual measurement and does not need to have direct contact with the tested sample (gyroscope), it will not interfere with the attitude change of the tested sample, which is extremely beneficial for improving the measurement accuracy.
(2)由于目前视觉测量技术能达到亚像素的级别,利用该技术设计的静平衡测量装置的精度远远高于目前的人工测量方法。(2) Since the current visual measurement technology can reach the sub-pixel level, the accuracy of the static balance measurement device designed with this technology is much higher than the current manual measurement method.
(3)该测量装置能实现陀螺仪转子的动态、高速、实时测量,对于提高检测以及生产效率有巨大帮助。(3) The measuring device can realize the dynamic, high-speed and real-time measurement of the gyroscope rotor, which is of great help to improve the detection and production efficiency.
(4)采用空腔六面体结构的支撑架作为空间位置定位,以及三个丝杠架与支撑架的垂直安装,保证了分布在三个轴位置上的摄像头对图像信息(正视图、侧视图、俯视图)的采集。(4) The support frame with a cavity hexahedron structure is used as the spatial position positioning, and the vertical installation of the three screw frames and the support frame ensures that the image information of the cameras distributed on the three axes (front view, side view, top view) collection.
(5)每个轴上的两个丝杠架采用两两垂直安装,有利于安装在丝杠架上的摄像头在安装面内运动,从而实现不同视角的图像采集。(5) The two screw frames on each axis are vertically installed in pairs, which is conducive to the movement of the camera mounted on the screw frames in the installation surface, so as to realize image acquisition from different angles of view.
附图说明Description of drawings
图1是本发明静平衡测量装置的结构图。Fig. 1 is a structural diagram of the static balance measuring device of the present invention.
图1A是未装配支撑架的本发明静平衡测量装置的结构图。Fig. 1A is a structural view of the static balance measuring device of the present invention without a supporting frame.
图1B是本发明支撑架的结构图。Fig. 1B is a structural diagram of the support frame of the present invention.
图2是本发明X轴图像采集组件的结构图。Fig. 2 is a structural diagram of the X-axis image acquisition assembly of the present invention.
图3是本发明Z轴图像采集组件的结构图。Fig. 3 is a structural diagram of the Z-axis image acquisition assembly of the present invention.
图4A是采用本发明测量装置中三个摄像头采集图像的示意图。Fig. 4A is a schematic diagram of collecting images by using three cameras in the measuring device of the present invention.
图4B是被测试件为圆柱、以及圆柱展开后的示意图。Fig. 4B is a schematic diagram of the tested object being a cylinder and the cylinder being expanded.
图中编号:1.支撑架;1A.第一板面;1B.第二板面;1C.第三板面;1D.第四板面;1E.底板面;2.第一背景板;3.第二背景板;4.第三背景板;5.第四背景板;11.第一丝杠架;11A.第一电机;11B.第一丝杠;11C.A侧板;11D.B侧板;11E.A滚珠轴承;11F.A通孔;12.第二丝杠架;12A.第二电机;12B.第二丝杠;12C.A侧板;12D.B侧板;12E.B滚珠轴承;12F.B通孔;15.第五丝杠架;15A.第五电机;15B.第五丝杠;15C.A侧板;15D.B侧板;15E.E滚珠轴承;15F.E通孔;16.第六丝杠架;16A.第六电机;16B.第六丝杠;16C.A侧板;16D.B侧板;16E.F滚珠轴承;16F.F通孔;17.第一摄像头;18.第二摄像头;19.第三摄像头;20.摄像头支架;21.第一滑块;22.第二滑块;25.第五滑块;26.第六滑块;10.X轴图像采集组件;30.Z轴图像采集组件;40.被测试样。Numbers in the figure: 1. Support frame; 1A. First board; 1B. Second board; 1C. Third board; 1D. Fourth board; 1E. Bottom board; 2. First background board; 3 .The second background plate; 4. The third background plate; 5. The fourth background plate; 11. The first screw frame; 11A. The first motor; 11B. The first screw; 11C.A side plate; Side plate; 11E.A ball bearing; 11F.A through hole; 12. Second screw frame; 12A. Second motor; 12B. Second screw; 12C.A side plate; 12D.B side plate; 12E. B ball bearing; 12F.B through hole; 15. Fifth screw frame; 15A. Fifth motor; 15B. Fifth screw; 15C.A side plate; 15D.B side plate; .E through hole; 16. Sixth screw frame; 16A. Sixth motor; 16B. Sixth screw; 16C.A side plate; 16D.B side plate; 16E.F ball bearing; 16F.F through hole; 17. First camera; 18. Second camera; 19. Third camera; 20. Camera bracket; 21. First slider; 22. Second slider; 25. Fifth slider; 26. Sixth slider ; 10. X-axis image acquisition component; 30. Z-axis image acquisition component; 40. Tested sample.
具体实施方式Detailed ways
下面将结合附图对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
参见图1、图1A所示,本发明是一种用于测量陀螺仪静平衡的基于双目视觉的空间位姿测量装置,该测量装置包括有用于采集被测试样40的X轴方向上图像信息的X轴图像采集组件10、用于采集被测试样40的Z轴方向上图像信息的Z轴图像采集组件30、以及支撑架1和背景板。Referring to Fig. 1 and shown in Fig. 1A, the present invention is a binocular vision-based space pose measurement device for measuring the static balance of a gyroscope. The X-axis
(一)支撑架(1) Support frame
参见图1、图1B所示,支撑架1为一框形结构,支撑架1选用钢化玻璃材质。Referring to Fig. 1 and Fig. 1B, the
支撑架1的第一板面1A的外侧上安装有第一丝杠架11;A first
支撑架1的第二板面1B的外侧上安装有第四背景板5;A
支撑架1的第三板面1C的内侧上安装有第一背景板2;A
支撑架1的第四板面1D的内侧上安装有第二背景板3;A
支撑架1的底板面1E上安装有第三背景板4;A
支撑架1的上顶上安装有第五丝杠架15。A fifth
在本发明中,支撑架1用于支撑起整个测量装置。支撑架1设计为六面体结构,能够方便X轴和Z轴上的摄像头对被测试件40图像信息的采集,同时也是在空间上实现被测试件40的空间定位部件。In the present invention, the supporting
(二)背景板(2) Background board
参见图1、图1A所示,本发明中背景板用于增强图像对比度,提高测量装置的测量精度。背景板选用黑色铝材制作加工。Referring to Fig. 1 and Fig. 1A, the background plate in the present invention is used to enhance the image contrast and improve the measurement accuracy of the measuring device. The background board is made of black aluminum.
第一背景板2安装在支撑架1的第三板面1C的内侧上;The
第二背景板3安装在支撑架1的第四板面1D的内侧上;The
第三背景板4安装在支撑架1的底板面1E上;The
第四背景板5安装在支撑架1的第二板面1B的内侧上。The
(三)X轴图像采集组件10(3) X-axis
参见图1、图1A、图2所示,X轴图像采集组件10包括有第一丝杠架11、第一丝杠11B、第一电机11A、第二丝杠架12、第二丝杠12B、第二电机12A、第一滑块21、第二滑块22和第一摄像头17。所述第一摄像头17用于采集被测试件40的主视图。1, FIG. 1A, and FIG. 2, the X-axis
第一丝杠11B的一端安装在第一丝杠架11的A侧板11C的A滚珠轴承11E(丝杠与滚珠轴承的连接为常规技术)内,该A滚珠轴承11E安装在A侧板11C的A通孔11F内;第一丝杠11B的另一端通过联轴器(图中未示出,丝杠、联轴器与电机的连接为常规技术)与第一电机11A的输出轴连接;第一电机11A安装在第一丝杠架11的B侧板11D上。One end of the
第二丝杠12B的一端安装在第二丝杠架12的A侧板12C的B滚珠轴承12E(丝杠与滚珠轴承的连接为常规技术)内,该B滚珠轴承12E安装在A侧板12C的B通孔12F内,第二丝杠12B的另一端通过联轴器(图中未示出,丝杠、联轴器与电机的连接为常规技术)与第二电机12A的输出轴连接;第二电机12A安装在第二丝杠架12的B侧板12D上。One end of the
第一滑块21安装在第二丝杠架12的背部,且第一滑块21上的中心丝杠孔用于第一丝杠11B穿过。在第一电机11A驱动第一丝杠11B运动的条件下,第一滑块21在第一丝杠11B上也跟随运动,然而第一滑块21的运动使得第一摄像头17沿X轴方向平移运动。The
第二滑块22上安装有第一摄像头17,且第二滑块22上的中心丝杠孔用于第二丝杠12B穿过。在第二电机12A驱动第二丝杠12B运动的条件下,第二滑块22在第二丝杠12B上也跟随运动,然而第二滑块22的运动使得第一摄像头17沿Y轴方向平移运动。The
第一滑块21上的中心丝杠孔用于第一丝杠11B穿过。The central lead screw hole on the
第二滑块22上的中心丝杠孔用于第二丝杠12B穿过。The central lead screw hole on the
在本发明中,X轴图像采集组件10利用安装在支撑架1的第一板面1A(X安装面)上的第一丝杠架11,实现第一摄像头17采集到的被测试件40的图像信息均为正视图。In the present invention, the X-axis
(四)Z轴图像采集组件30(4) Z-axis
参见图1、图1A、图3所示,Z轴图像采集组件30包括有第五丝杠架15、第五丝杠15B、第五电机15A、第六丝杠架16、第六丝杠16B、第六电机16A、第五滑块25、第六滑块26、第二摄像头18、第三摄像头19和摄像头支架20。1, FIG. 1A, and FIG. 3, the Z-axis
摄像头支架20安装在第六滑块26上,摄像头支架20上安装有第二摄像头18和第三摄像头19,第二摄像头18用于采集被测试件40的左俯视图,第三摄像头19用于采集被测试件40的右俯视图。
第五丝杠15B的一端安装在第五丝杠架15的A侧板15C的E滚珠轴承15E(丝杠与滚珠轴承的连接为常规技术)内,该E滚珠轴承15E安装在A侧板15C的E通孔15F内,第五丝杠15B的另一端通过联轴器(图中未示出,丝杠、联轴器与电机的连接为常规技术)与第五电机15A的输出轴连接;第五电机15A安装在第五丝杠架15的B侧板15D上。One end of the fifth lead screw 15B is installed in the E ball bearing 15E of the A side plate 15C of the fifth lead screw frame 15 (the connection between the lead screw and the ball bearing is a conventional technology), and the E ball bearing 15E is installed in the A side plate 15C In the E through hole 15F, the other end of the fifth lead screw 15B is connected to the output shaft of the
第六丝杠16B的一端安装在第六丝杠架16的A侧板16C的F滚珠轴承16E(丝杠与滚珠轴承的连接为常规技术)内,该F滚珠轴承16E安装在A侧板16C的F通孔16F内,第六丝杠16B的另一端通过联轴器(图中未示出,丝杠、联轴器与电机的连接为常规技术)与第六电机16A的输出轴连接;第六电机16A安装在第六丝杠架16的B侧板16D上。One end of the sixth screw 16B is installed in the F ball bearing 16E of the A side plate 16C of the sixth screw frame 16 (the connection between the screw and the ball bearing is a conventional technology), and the F ball bearing 16E is installed in the A side plate 16C In the F through hole 16F, the other end of the sixth lead screw 16B is connected to the output shaft of the
第五滑块25安装在第六丝杠架16的背部,且第五滑块25上的中心丝杠孔用于第五丝杠15B穿过。在第五电机15A驱动第五丝杠15B运动的条件下,第五滑块25在第五丝杠15B上也跟随运动,然而第五滑块25的运动使得第二摄像头18和第三摄像头19沿Y轴方向平移运动。The
第六滑块26上安装有摄像头支架20,且第六滑块26上的中心丝杠孔用于第六丝杠16B穿过。在第六电机16A驱动第六丝杠16B运动的条件下,第六滑块26在第六丝杠16B上也跟随运动,然而第六滑块26的运动使得第二摄像头18和第三摄像头19沿X轴方向平移运动。The
第五滑块25上的中心丝杠孔用于第五丝杠15B穿过。The central lead screw hole on the
第六滑块26上的中心丝杠孔用于第六丝杠16B穿过。The central lead screw hole on the
在本发明中,Z轴图像采集组件30中的第五丝杠架15安装在支撑架1上方,且第五丝杠架15与支撑架1的底板面1E平行,从而实现第二摄像头18和第三摄像头19采集到的被测试件40的图像信息均为俯视图。In the present invention, the
在本发明中,第一摄像头17、第二摄像头18和第三摄像头19选用相同性能的摄像头。如摄像头采用美国Point Grey公司的Gazelle4.0工业相机,图像分辨率为2048×2048,帧速为170fps;镜头采用日本Kowa的LM8HC百万像素镜头,焦距8.5mm。In the present invention, the
参见图4A、图4B所示,本发明测量装置的运动主要是根据被测试件40(陀螺仪)的转子的质心位置进行实时动态调整,其步骤为:Referring to Fig. 4A and Fig. 4B, the movement of the measuring device of the present invention is mainly based on the real-time dynamic adjustment of the center of mass position of the rotor of the test piece 40 (gyroscope), and the steps are as follows:
第一步,在被测试件40(陀螺仪转子)的侧面喷印一条螺旋线,该螺旋线等效于转子侧面的某一个展开矩形的对角线(如图4B所示);In the first step, a helical line is printed on the side of the test piece 40 (gyroscope rotor), which is equivalent to the diagonal of a certain expanded rectangle on the side of the rotor (as shown in Figure 4B);
第二步,用第一摄像头17(采集正视图)、第二摄像头18(采集左俯视图)和第三摄像头19(采集右俯视图)来采集图像信息;In the second step, image information is collected with the first camera 17 (collecting the front view), the second camera 18 (collecting the left top view) and the third camera 19 (collecting the right top view);
第三步,图像信息被传输至计算机中,所述计算机中安装有边缘检测和轮廓识别处理软件;通过边缘检测和轮廓识别处理软件处理后,能够检测出陀螺转子在两幅俯视图和正视图上形成的侧边直线特征;通过计算正、俯视图的柱体侧边直线倾斜角度,就可换算出陀螺转子的俯仰、偏航角度;In the third step, the image information is transmitted to the computer, and the edge detection and contour recognition processing software is installed in the computer; after being processed by the edge detection and contour recognition processing software, it can be detected that the gyro rotor is on the two top views and the front view The formed side straight line features; the pitch and yaw angles of the gyro rotor can be converted by calculating the inclination angle of the side straight line of the cylinder in the front view and the top view;
第四步,通过对三个摄像头采集的各视图所检测到的轮廓特征,计算出陀螺转子的质心坐标;The fourth step is to calculate the coordinates of the center of mass of the gyro rotor through the contour features detected by the views collected by the three cameras;
第五步,通过边缘检测和轮廓识别处理软件检测出陀螺转子在侧视图上形成的圆、矩形和箭头等特征;结合正、俯视图中的表面喷印线与侧边直线的交点位置和侧视图中的圆、矩形和箭头位置,就可换算出陀螺转子的滚转角度。The fifth step is to use edge detection and contour recognition processing software to detect features such as circles, rectangles and arrows formed on the side view of the gyro rotor; combine the intersection position of the surface printing line and the side straight line in the front and top views and the side view The circle, rectangle and arrow positions in the figure can be converted to the roll angle of the gyro rotor.
本发明设计的测量装置,当陀螺仪转子位置发生变化时,第一摄像头17、第二摄像头18和第三摄像头19都需要动态追踪转子的质心位置。追踪过程为:首先根据第一摄像头17的信息,经图像处理判断出转子的最新质心位置,之后计算出转子在X,Y,Z三个坐标轴上的位移量,然后通过四个电机控制摄像头的联动。即通过第一电机11A和第二电机12A分别控制第一丝杠11和第二丝杠12产生同步运动,从而推动第一滑块21和第二滑块22,使第一摄像头17产生X和Z方向上的联动;通过第五电机15A和第六电机16A分别控制第五丝杠15和第六丝杠16产生同步运动,从而推动第五滑块25和第六滑块26,使第二摄像头18和第三摄像头19产生X和Y方向上的联动。In the measurement device designed in the present invention, when the position of the gyroscope rotor changes, the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104411292A CN102519671B (en) | 2011-12-26 | 2011-12-26 | A space pose measurement device based on binocular vision for measuring static balance of gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104411292A CN102519671B (en) | 2011-12-26 | 2011-12-26 | A space pose measurement device based on binocular vision for measuring static balance of gyroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102519671A CN102519671A (en) | 2012-06-27 |
CN102519671B true CN102519671B (en) | 2013-11-27 |
Family
ID=46290668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104411292A Expired - Fee Related CN102519671B (en) | 2011-12-26 | 2011-12-26 | A space pose measurement device based on binocular vision for measuring static balance of gyroscope |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102519671B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102889883B (en) * | 2012-10-24 | 2014-11-19 | 北京航天控制仪器研究所 | An object space attitude measurement device |
CN106272437B (en) * | 2016-10-12 | 2018-11-09 | 吉林大学 | A kind of optimal visual field for parallel robot binocular visual positioning seeks device |
CN107941456A (en) * | 2018-01-02 | 2018-04-20 | 中国空气动力研究与发展中心低速空气动力研究所 | A kind of vertical wind tunnel two CCD camera measure system demarcates frame |
CN111238729B (en) * | 2020-02-28 | 2020-12-25 | 中国科学院西安光学精密机械研究所 | Precise static balance balancing method for pitching shaft of large-size photoelectric theodolite |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB760678A (en) * | 1952-10-30 | 1956-11-07 | Ferranti Ltd | Improvements relating to the balancing of rotating bodies |
CN1437009A (en) * | 2003-03-04 | 2003-08-20 | 清华大学 | Optical method of dynamic balance test for gyro rotor |
-
2011
- 2011-12-26 CN CN2011104411292A patent/CN102519671B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB760678A (en) * | 1952-10-30 | 1956-11-07 | Ferranti Ltd | Improvements relating to the balancing of rotating bodies |
CN1437009A (en) * | 2003-03-04 | 2003-08-20 | 清华大学 | Optical method of dynamic balance test for gyro rotor |
Non-Patent Citations (2)
Title |
---|
一种标定陀螺仪的新方法;陈杰春等;《哈尔滨工程大学学报》;20070415;第28卷(第4期);407-412 * |
陈杰春等.一种标定陀螺仪的新方法.《哈尔滨工程大学学报》.2007,第28卷(第4期), |
Also Published As
Publication number | Publication date |
---|---|
CN102519671A (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106017839B (en) | Based on flexible, hinged plate benging and twisting vibration detection control apparatus and method | |
CN106226780B (en) | Multi-rotor indoor positioning system and realization method based on laser scanning radar | |
CN209623718U (en) | Patrol robot positioning system | |
CN108592951B (en) | A kind of coalcutter inertial navigation Initial Alignment Systems and method based on optical flow method | |
CN103278177B (en) | Calibration method of inertial measurement unit based on camera network measurement | |
CN202869440U (en) | Five-shaft system solid of revolution measuring instrument | |
CN108519103B (en) | Stable platform multi-attitude precision synchronous evaluation device and method using autocollimator | |
CN102519671B (en) | A space pose measurement device based on binocular vision for measuring static balance of gyroscope | |
CN105571488B (en) | A kind of image detection device and detection method of hole group position degree | |
CN205066775U (en) | High accuracy movement track detection device | |
CN106052584A (en) | Track space linear shape measurement method based on visual and inertia information fusion | |
CN107289910A (en) | A kind of light stream alignment system based on TOF | |
CN105607760A (en) | Trace restoration method and system based on micro inertial sensor | |
CN204125805U (en) | A kind of robot scaling equipment for track detecting | |
CN107144958A (en) | Augmented reality telescope | |
CN106502277A (en) | Three-axis air-bearing table superhigh precision measurement apparatus and method based on tracking technique | |
CN102809367A (en) | Space rotating angle measuring method based on double-shaft obliquity sensor | |
CN102519672B (en) | A six-degree-of-freedom pose measurement device based on the monocular principle for measuring the static balance of a gyroscope | |
CN102538671B (en) | Oscillation center measuring method based on machine vision plane oscillation | |
CN1188681C (en) | Optical method of dynamic balance test for gyro rotor | |
CN112815834A (en) | Optical positioning system | |
CN106223966A (en) | There is duct piece assembling machine spatial attitude measurement apparatus and the shield machine of inertial sensor | |
CN103090863B (en) | Method for measuring posture and height of dynamic platform | |
CN110231008B (en) | Contact net height guiding and pulling-out value measuring device and method based on twice imaging | |
CN103737427A (en) | Machine tool multiple motion shaft parallelism detecting device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131127 Termination date: 20151226 |
|
EXPY | Termination of patent right or utility model |