CN205066775U - High accuracy movement track detection device - Google Patents
High accuracy movement track detection device Download PDFInfo
- Publication number
- CN205066775U CN205066775U CN201520721883.5U CN201520721883U CN205066775U CN 205066775 U CN205066775 U CN 205066775U CN 201520721883 U CN201520721883 U CN 201520721883U CN 205066775 U CN205066775 U CN 205066775U
- Authority
- CN
- China
- Prior art keywords
- processor
- subsystem
- sub
- detection device
- positioning subsystem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 title claims abstract description 22
- 230000004927 fusion Effects 0.000 claims abstract description 37
- 230000005672 electromagnetic field Effects 0.000 claims description 5
- 230000005291 magnetic effect Effects 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims 5
- 238000004020 luminiscence type Methods 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 description 17
- 230000005284 excitation Effects 0.000 description 14
- 230000006698 induction Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及一种运动轨迹检测装置,具体的涉及一种采用惯性传感、机器视觉和电磁定位子系统组成的高精度运动轨迹检测装置,应用领域包括工业机器人等运动部件的运动轨迹检测。 The utility model relates to a motion track detection device, in particular to a high-precision motion track detection device composed of inertial sensing, machine vision and electromagnetic positioning subsystems. The application field includes the motion track detection of moving parts such as industrial robots.
背景技术 Background technique
工业机器人和移动机器人等运动部件日益广泛应用导致对其操作性能,尤其是对运动执行器的动态定位精度提出很高的要求。例如工业机器人作为由减速器、伺服电机、增量式编码器和负载反馈单元实现半闭环的运动控制方式,其机械手臂结构高度非线性,高速末端动态变异(偏移、抖动)和高负载变异(末端工具置换)将影响路径定位精度。所以一种高精度的运动轨迹检测系统来实现机器人的实时运动反馈与控制在装配定位、振动分析以及性能指标的测量与评价等应用显得非常的必要。 The increasingly widespread use of moving parts such as industrial robots and mobile robots has led to high requirements for their operational performance, especially for the dynamic positioning accuracy of motion actuators. For example, an industrial robot is a semi-closed-loop motion control method realized by a reducer, a servo motor, an incremental encoder, and a load feedback unit. (end tool displacement) will affect path positioning accuracy. Therefore, a high-precision motion trajectory detection system to realize the real-time motion feedback and control of the robot is very necessary for applications such as assembly positioning, vibration analysis, and performance index measurement and evaluation.
目前国内外对运动跟踪和定位技术的研究相对集中在射频信号检测定位、惯性传感、磁场定位、视觉定位和声源定位等。基于惯性传感技术的Xsens动作捕捉系统,将加速度计、陀螺仪和磁力计进行信息融合,能获得精度较高的三维姿态信息,因为加速度值二次积分后误差较大,获得的线性位移只能作为参考值。电磁定位系统通过磁传感器阵列对永磁体或者电磁线圈在空间分布的三维磁场强度进行检测,再进行迭代求解得到永磁体或电磁线圈的空间位置和姿态信息,NDI公司的电磁定位系统就采用两个垂直放置的3轴电磁感应线圈实现完整6轴的运动检测,但是电磁定位系统容易受到环境电磁波及铁磁物质的干扰,在工业环境下这种干扰难以避免;基于光学定位技术的VICON动作捕捉系统由红外高速摄像机、一个数据处理器构成,红外高速摄像机捕捉被动发光标记点,采用机器视觉原理和激光扫描技术,实现运动位置信息的测量,但光学定位系统只能测量标记点的空间位置信息,且容易受到遮挡以及环境光和背景的影响。 At present, research on motion tracking and positioning technology at home and abroad is relatively concentrated on radio frequency signal detection and positioning, inertial sensing, magnetic field positioning, visual positioning and sound source positioning. The Xsens motion capture system based on inertial sensing technology fuses information from accelerometers, gyroscopes and magnetometers to obtain high-precision three-dimensional attitude information. Because the acceleration value has a large error after secondary integration, the obtained linear displacement is only can be used as a reference value. The electromagnetic positioning system detects the three-dimensional magnetic field intensity of the permanent magnet or electromagnetic coil in space through the magnetic sensor array, and then iteratively solves the spatial position and attitude information of the permanent magnet or electromagnetic coil. NDI's electromagnetic positioning system uses two The vertically placed 3-axis electromagnetic induction coil realizes complete 6-axis motion detection, but the electromagnetic positioning system is susceptible to interference from environmental electromagnetic waves and ferromagnetic substances, which is unavoidable in industrial environments; VICON motion capture system based on optical positioning technology It consists of an infrared high-speed camera and a data processor. The infrared high-speed camera captures passive luminous marking points, and uses the principle of machine vision and laser scanning technology to measure the movement position information. However, the optical positioning system can only measure the spatial position information of the marking points. And is susceptible to occlusion as well as ambient light and background.
针对光学定位系统容易受遮挡的问题,申请号为201420695742.6的中国实用新型专利申请,该实用新型提出一种基于惯性检测的激光跟踪仪靶球定位装置,可实现断光续接功能,便于对难测点或遮档位置的测量,但主要不是提升目标定位跟踪的精度和维度。 Aiming at the problem that the optical positioning system is easily blocked, a Chinese utility model patent application with the application number 201420695742.6 proposes a laser tracker target ball positioning device based on inertial detection, which can realize the function of disconnection and connection, and is convenient for difficult positioning. Measurement of measuring points or occlusion positions, but mainly not to improve the accuracy and dimension of target positioning and tracking.
因此,在复杂多变的测试环境中,使用单个定位测量系统会存在以下不足:1、测量获得的信息量单一,如光学定位系统只能测量到位置信息,惯性定位系统只能测量到姿态信息;2、受到环境因素的干扰而导致定位精度不高,如电磁定位系统容易受电磁波的干扰,光学定位系统容易受到遮挡以及环境光和背景的影响。 Therefore, in a complex and changeable test environment, the use of a single positioning measurement system will have the following disadvantages: 1. The amount of information obtained from the measurement is single. For example, the optical positioning system can only measure the position information, and the inertial positioning system can only measure the attitude information. ; 2. The positioning accuracy is not high due to the interference of environmental factors. For example, the electromagnetic positioning system is easily disturbed by electromagnetic waves, and the optical positioning system is easily affected by occlusion, ambient light and background.
实用新型内容 Utility model content
为克服单个定位系统存在的问题,本实用新型的目的在于提供一种高精度运动轨迹检测装置,实现工业机器人等运动部件的6维位姿的高精度、高稳定和快速运动检测系统。 In order to overcome the problems of a single positioning system, the purpose of this utility model is to provide a high-precision motion trajectory detection device to realize a high-precision, high-stability and fast motion detection system for 6-dimensional poses of moving parts such as industrial robots.
为解决上述技术问题,本实用新型采用以下技术方案: In order to solve the above technical problems, the utility model adopts the following technical solutions:
一种高精度运动轨迹检测装置,包括惯性传感定位子系统、电磁定位子系统、机器视觉定位子系统以及用于数据融合的处理器,其中: A high-precision motion trajectory detection device, including an inertial sensor positioning subsystem, an electromagnetic positioning subsystem, a machine vision positioning subsystem, and a processor for data fusion, wherein:
所述惯性传感定位子系统,其输入端测量运动部件三维姿态角,输出端连接到所述用于数据融合的处理器; The inertial sensing positioning subsystem has an input end to measure the three-dimensional attitude angle of the moving part, and an output end connected to the processor for data fusion;
所述电磁定位子系统,其输入端测量运动部件三维位置和三维姿态角,输出端连接到所述用于数据融合的处理器; The electromagnetic positioning subsystem, its input end measures the three-dimensional position and three-dimensional attitude angle of the moving part, and the output end is connected to the processor for data fusion;
所述机器视觉定位子系统,其输入端测量运动部件三维位置信息,输出端连接到所述用于数据融合的处理器; The machine vision positioning subsystem, its input end measures the three-dimensional position information of the moving parts, and the output end is connected to the processor for data fusion;
所述用于数据融合的处理器同时连接惯性传感定位子系统、电磁定位子系统、机器视觉定位子系统的输出端,并将三个子系统的数据进行融合,得到运动部件的运动轨迹。 The processor for data fusion is simultaneously connected to the output terminals of the inertial sensor positioning subsystem, the electromagnetic positioning subsystem, and the machine vision positioning subsystem, and fuses the data of the three subsystems to obtain the motion trajectory of the moving parts.
优选地,所述的惯性传感定位子系统包括MEMS传感器和第一子处理器,MEMS传感器贴附于运动部件并实现实时三维姿态信息的获取,所述MEMS传感器的输出端连接到第一子处理器,第一子处理器对MEMS传感器采集的数据进行融合,获得运动部件精确的三维姿态角信息。 Preferably, the inertial sensing positioning subsystem includes a MEMS sensor and a first sub-processor, the MEMS sensor is attached to the moving part and realizes the acquisition of real-time three-dimensional attitude information, and the output end of the MEMS sensor is connected to the first sub-processor The processor, the first sub-processor fuses the data collected by the MEMS sensor to obtain accurate three-dimensional attitude angle information of the moving part.
优选地,所述的MEMS传感器包括三轴陀螺仪、三轴加速度计、三轴磁力计,所述三轴陀螺仪、三轴加速度计、三轴磁力计均连接到第一子处理器。 Preferably, the MEMS sensor includes a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer, and the three-axis gyroscope, three-axis accelerometer, and three-axis magnetometer are all connected to the first sub-processor.
优选地,所述的电磁定位子系统包括三轴正交的激励线圈和三轴正交的感应线圈,以及第二子处理器,其中:感应线圈固定在运动部件上,激励线圈则作为固定点;激励线圈交替通过相同频率和幅度的交流电流,交变的电流信号通过激励线圈在空间产生交变的电磁场,感应线圈在交变的电磁场中输出频率相同的信号;第二子处理器根据感应线圈输出信号的幅值和相位信息,得到感应线圈相对于激励线圈的位置和方向信息。 Preferably, the electromagnetic positioning subsystem includes a three-axis orthogonal excitation coil and a three-axis orthogonal induction coil, and a second sub-processor, wherein: the induction coil is fixed on the moving part, and the excitation coil is used as a fixed point ; The excitation coil alternately passes through the alternating current of the same frequency and amplitude, and the alternating current signal generates an alternating electromagnetic field in space through the excitation coil, and the induction coil outputs a signal with the same frequency in the alternating electromagnetic field; the second sub-processor according to the induction The amplitude and phase information of the output signal of the coil can be used to obtain the position and direction information of the induction coil relative to the excitation coil.
优选地,所述的机器视觉定位子系统由若干个相机和FPGA嵌入式处理器组成,其中:若干个相机安装在特征点的周围,用于从不同的方位实时连续采集特征点的图像信号并输出给FPGA嵌入式处理器;所述特征点采用主动发光或被动发光的标记点,且贴附于运动部件上;FPGA嵌入式处理器用于控制相机获取含有标记点的图像信号,并将图像信号进行处理,实现特征点图像坐标的获取。 Preferably, the machine vision positioning subsystem is made up of several cameras and FPGA embedded processors, wherein: several cameras are installed around the feature points for continuously collecting the image signals of the feature points from different orientations in real time and Output to the FPGA embedded processor; the feature points adopt active or passive luminous marking points, and are attached to the moving parts; the FPGA embedded processor is used to control the camera to obtain the image signal containing the marking point, and the image signal Perform processing to realize the acquisition of the image coordinates of the feature points.
与现有技术相比,本实用新型的有益效果: Compared with the prior art, the utility model has the beneficial effects:
本实用新型装置包括三个子系统,并且每个子系统中均设置相应的处理器,从而生成局部的定位跟踪轨迹通过串行通信总线传送至用于数据融合的处理器,用于数据融合的处理器对子系统的数据进行融合,得到运动部件的运动轨迹。本实用新型采用三个子系统采集多源信息、借助多源信息提升检测的精度和维度,克服单个系统获得的定位信息量单一以及容易受环境因素干扰的问题。 The device of the utility model includes three subsystems, and each subsystem is provided with a corresponding processor, so that the generated local positioning tracking trajectory is transmitted to the processor for data fusion through the serial communication bus, and the processor for data fusion The data of the subsystems are fused to obtain the trajectory of the moving parts. The utility model adopts three sub-systems to collect multi-source information, improves detection accuracy and dimension by means of multi-source information, and overcomes the problem that the amount of positioning information obtained by a single system is single and easily interfered by environmental factors.
进一步的,该装置中,不仅具有局部独立的定位跟踪能力(三个子系统的设计),而且还有全局监视和评估特性。通过各个定位子系统中获取的多源信息,并进一步融合,实现工业机器人等运动部件的六维位姿(三维位置和三维姿态角)的高精度、高稳定和快速运动检测。 Furthermore, the device not only has local independent position tracking capabilities (design of three subsystems), but also has global monitoring and evaluation features. Through the multi-source information obtained in each positioning subsystem and further fusion, the six-dimensional pose (three-dimensional position and three-dimensional attitude angle) of industrial robots and other moving parts can be detected with high precision, high stability and fast motion.
附图说明 Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本实用新型的其它特征、目的和优点将会变得更明显: Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本实用新型一实施例的运动轨迹检测装置的结构框图; Fig. 1 is the structural block diagram of the motion locus detection device of an embodiment of the present invention;
图2为本实用新型一实施例的惯性传感定位子系统结构示意图; Fig. 2 is a schematic structural diagram of an inertial sensing positioning subsystem of an embodiment of the present invention;
图3为本实用新型一实施例的电磁定位子系统结构示意图; Fig. 3 is a schematic structural diagram of the electromagnetic positioning subsystem of an embodiment of the present invention;
图4为本实用新型一实施例的机器视觉定位子系统结构示意图; Fig. 4 is a schematic structural diagram of a machine vision positioning subsystem according to an embodiment of the present invention;
图中:运动部件1,惯性传感定位子系统2,MEMS传感器21,电磁定位子系统3,感应线圈31,激励线圈32,机器视觉定位子系统4,相机41,特征点42,FPGA嵌入式处理器43,用于数据融合的处理器5。 In the figure: moving part 1, inertial sensor positioning subsystem 2, MEMS sensor 21, electromagnetic positioning subsystem 3, induction coil 31, excitation coil 32, machine vision positioning subsystem 4, camera 41, feature point 42, FPGA embedded Processor 43, processor 5 for data fusion.
具体实施方式 detailed description
下面结合具体实施例对本实用新型进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本实用新型,但不以任何形式限制本实用新型。应当指出的是,对本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进。这些都属于本实用新型的保护范围。 The utility model is described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the utility model, but do not limit the utility model in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present utility model. These all belong to the protection domain of the present utility model.
如图1所示,一种高精度运动轨迹检测装置,该装置由惯性传感定位子系统2、电磁定位子系统3和机器视觉定位子系统4,以及用于数据融合的处理器5组成;其中: As shown in Figure 1, a high-precision motion trajectory detection device is composed of an inertial sensor positioning subsystem 2, an electromagnetic positioning subsystem 3, a machine vision positioning subsystem 4, and a processor 5 for data fusion; in:
所述惯性传感定位子系统2,其输入端测量运动部件三维姿态角,输出端连接到所述用于数据融合的处理器; The inertial sensing positioning subsystem 2 has an input end that measures the three-dimensional attitude angle of the moving parts, and an output end that is connected to the processor for data fusion;
所述电磁定位子系统3,其输入端测量运动部件三维位置和三维姿态角,输出端连接到所述用于数据融合的处理器; The electromagnetic positioning subsystem 3, its input end measures the three-dimensional position and three-dimensional attitude angle of the moving part, and the output end is connected to the processor for data fusion;
所述机器视觉定位子系统4,其输入端测量运动部件三维位置信息,输出端连接到所述用于数据融合的处理器; The machine vision positioning subsystem 4, its input end measures the three-dimensional position information of the moving parts, and the output end is connected to the processor for data fusion;
所述用于数据融合的处理器5,同时连接惯性传感定位子系统、电磁定位子系统、机器视觉定位子系统的输出端,并将三个子系统的数据进行融合,得到运动部件的运动轨迹。 The processor 5 for data fusion is simultaneously connected to the output terminals of the inertial sensor positioning subsystem, the electromagnetic positioning subsystem, and the machine vision positioning subsystem, and fuses the data of the three subsystems to obtain the motion trajectory of the moving parts .
本实施例中,各个子系统的数据通过串行通信总线(SPI或者CAN)传输到所述用于数据融合的处理器5,实现数据融合。 In this embodiment, the data of each subsystem is transmitted to the processor 5 for data fusion through a serial communication bus (SPI or CAN) to realize data fusion.
所述用于数据融合的处理器5,其具体融合技术可以采用现有技术,在一优选实施例中,也可以采用基于分布式状态融合结构模型,对数据进行坐标转换和数据校正、数据关联和状态估计融合。用于数据融合的处理器5能够有效利用多重定位系统的定位冗余信息和互补信息,综合考虑噪声干扰和环境因素的影响,能提升目标定位跟踪的精度和维度,还能增强系统的可靠性和鲁棒性。 The processor 5 for data fusion, its specific fusion technology can adopt the existing technology, in a preferred embodiment, also can adopt the fusion structure model based on the distributed state, carry out coordinate transformation and data correction, data association to the data combined with state estimation. The processor 5 used for data fusion can effectively utilize the positioning redundant information and complementary information of multiple positioning systems, comprehensively consider the influence of noise interference and environmental factors, improve the accuracy and dimension of target positioning and tracking, and enhance the reliability of the system and robustness.
以机械手臂法兰盘末端作为测量的运动部件1,结合附图对本实用新型详细实施例进行说明。 Taking the end of the flange plate of the mechanical arm as the moving part 1 for measurement, the detailed embodiments of the utility model will be described in conjunction with the accompanying drawings.
如图2所示,在一优选实施例中,所述的惯性传感定位子系统2包括MEMS传感器21和第一子处理器,MEMS传感器21贴附于运动部件1并实现实时三维姿态信息的获取,所述MEMS传感器21的输出端连接到第一子处理器,第一子处理器对MEMS传感器采集的数据进行融合,获得运动部件精确的三维姿态角信息。 As shown in Figure 2, in a preferred embodiment, the described inertial sensing positioning subsystem 2 includes a MEMS sensor 21 and a first sub-processor, the MEMS sensor 21 is attached to the moving part 1 and realizes real-time three-dimensional posture information To obtain, the output end of the MEMS sensor 21 is connected to the first sub-processor, and the first sub-processor fuses the data collected by the MEMS sensor to obtain accurate three-dimensional attitude angle information of the moving part.
在本实施例中,所述惯性传感定位子系统2固定在机械手臂法兰盘(运动部件1)末端,第一子处理器对MEMS传感器21数据进行处理,以获得机械手臂法兰盘(运动部件1)末端精确的三维姿态角信息。第一子处理器的具体数据处理采用现有技术,比如卡尔曼滤波或正交余弦矩阵融合算法等,这些不属于本实用新型的创新,本实用新型创新在于提供了装置整体结构。 In this embodiment, the inertial sensor positioning subsystem 2 is fixed at the end of the flange of the robot arm (moving part 1), and the first sub-processor processes the data of the MEMS sensor 21 to obtain the flange of the robot arm (moving part 1). 1) Accurate three-dimensional attitude angle information of the end of the moving part. The specific data processing of the first sub-processor adopts existing technologies, such as Kalman filter or orthogonal cosine matrix fusion algorithm, etc., which do not belong to the innovation of the present invention, and the innovation of the present invention lies in providing the overall structure of the device.
进一步的,所述MEMS传感器21包括一个三轴陀螺仪、一个三轴加速度计和一个三轴磁力计,所述三轴陀螺仪、三轴加速度计、三轴磁力计均连接到第一子处理器。三轴陀螺仪、三轴加速度计、三轴磁力计采集的数据均传送到第一子处理器,第一子处理器对三者数据进行处理,得到MEMS传感器21当前的姿态角,由于MEMS传感器21贴附于运动部件1,因此也是运动部件1的姿态角。 Further, the MEMS sensor 21 includes a three-axis gyroscope, a three-axis accelerometer and a three-axis magnetometer, and the three-axis gyroscope, three-axis accelerometer, and three-axis magnetometer are all connected to the first sub-processing device. The data collected by the three-axis gyroscope, the three-axis accelerometer, and the three-axis magnetometer are all transmitted to the first sub-processor, and the first sub-processor processes the data of the three to obtain the current attitude angle of the MEMS sensor 21. 21 is attached to the moving part 1, so it is also the attitude angle of the moving part 1.
优选的,三轴陀螺仪测得角加速度、一次积分后得到物体偏转的姿态角;三轴磁力计测量地磁强度,得到物体的航向角;三轴加速度计测得三轴重力分量,用于测量绝对俯仰角和翻滚角(相对于地球坐标);三轴磁力计和三轴加速度计输出的姿态角动态性能差,用于补偿三轴陀螺仪信号一次积分后得到的姿态角,去除漂移。 Preferably, the three-axis gyroscope measures the angular acceleration and obtains the attitude angle of the deflection of the object after one integration; the three-axis magnetometer measures the geomagnetic intensity to obtain the heading angle of the object; the three-axis accelerometer measures the three-axis gravity component for measuring Absolute pitch angle and roll angle (relative to the earth coordinates); the dynamic performance of the attitude angle output by the three-axis magnetometer and the three-axis accelerometer is poor, which is used to compensate the attitude angle obtained after one integration of the three-axis gyroscope signal and remove the drift.
所述第一子处理器可以采用逻辑电路、集成电路、单片机等实现,其具体处理技术可以采用现有技术实现。 The first sub-processor can be realized by logic circuit, integrated circuit, single-chip microcomputer, etc., and its specific processing technology can be realized by using existing technology.
如图3所示,在另一优选实施例中,所述电磁定位子系统由三轴正交的激励线圈32和三轴正交的感应线圈31、以及第二子处理器组成,其中:感应线圈31固定在机械手臂法兰盘(运动部件1)末端,激励线圈32则作为固定点。在短时间内,激励线圈32交替通过相同频率和幅度的交流电流,使激励线圈32在空间中产生交变的电磁场,感应线圈31在交变的电磁场中输出频率相同的信号;以及第二子处理器根据感应线圈31输出信号的幅值和相位信息,处理得到感应线圈31相对于激励线圈32的位置和方向信息。 As shown in Figure 3, in another preferred embodiment, the electromagnetic positioning subsystem is composed of a three-axis orthogonal excitation coil 32, a three-axis orthogonal induction coil 31, and a second sub-processor, wherein: induction The coil 31 is fixed at the end of the flange (moving part 1) of the mechanical arm, and the exciting coil 32 is used as a fixed point. In a short period of time, the excitation coil 32 alternately passes through the alternating current of the same frequency and amplitude, so that the excitation coil 32 generates an alternating electromagnetic field in space, and the induction coil 31 outputs signals with the same frequency in the alternating electromagnetic field; The processor processes and obtains position and direction information of the induction coil 31 relative to the excitation coil 32 according to the amplitude and phase information of the output signal of the induction coil 31 .
所述第二子处理器可以采用逻辑电路、集成电路、单片机等实现,其具体处理技术可以采用现有技术实现,当然在一优选实施例中也可以采用以下技术: Described second sub-processor can adopt logic circuit, integrated circuit, single-chip microcomputer etc. to realize, and its specific processing technology can adopt existing technology to realize, certainly also can adopt following technology in a preferred embodiment:
假设所述激励线圈32的中心位置为(a,b,c),所述感应线圈31的中心位置为(x,y,z)且其相对激励线圈32的方向用三个旋转角(α,β,γ)表示,电势幅值EM是相对位置参数(x-a,y-b,z-c)和角度参数(α,β,γ)的函数,即EM=f(x-a,y-b,z-c,α,β,γ)。因此采用六种或以上独立的激励线圈32和感应线圈31的组合关系,对不同激励线圈32下的感应线圈31电势信号进行采样,通过定位算法就能够计算出六个位置参数(x-a,y-b,z-c)和角度参数(α,β,γ)的值。 Assume that the central position of the excitation coil 32 is (a, b, c), the central position of the induction coil 31 is (x, y, z) and its direction relative to the excitation coil 32 uses three rotation angles (α, β, γ) means that the potential amplitude EM is a function of relative position parameters (x-a, y-b, z-c) and angle parameters (α, β, γ), that is, EM=f(x-a, y-b, z-c, α, β, γ ). Therefore, six or more independent combinations of excitation coils 32 and induction coils 31 are used to sample the potential signals of induction coils 31 under different excitation coils 32, and six position parameters (x-a, y-b, x-a, y-b, z-c) and angle parameters (α, β, γ) values.
如图4所示,在另一优选实施例中,所述机器视觉定位子系统包括若干个相机41和FPGA嵌入式处理器43,其中:若干个相机41安装在特征点42的周围,相机41采集的图像数据传到FPGA嵌入式处理器中去处理;特征点42可采用主动发光或被动发光的标记点,且贴附于运动部件上。FPGA嵌入式处理器43用于控制相机获取含有标记点的图像信号,并将图像信号传入内嵌DSPbuilder模块进行处理,实现特征点图像坐标的获取。 As shown in Figure 4, in another preferred embodiment, described machine vision localization subsystem comprises several cameras 41 and FPGA embedded processor 43, wherein: several cameras 41 are installed around feature point 42, camera 41 The collected image data is transmitted to the FPGA embedded processor for processing; the feature point 42 can be an active luminescent or passive luminous marking point, and is attached to the moving part. The FPGA embedded processor 43 is used to control the camera to acquire image signals containing marker points, and transmit the image signals to the embedded DSPbuilder module for processing, so as to realize the acquisition of image coordinates of feature points.
所述FPGA嵌入式处理器43,其具体处理技术可以采用现有技术实现,当然在一优选实施例中也可以采用以下技术:首先多个相机41从不同的方位实时连续采集特征点42的图像信号;各路图像信号采用基于颜色空间模型进行目标识别,即先多次拍摄特征点取平均值,提取出特征点42的颜色分量模型[R,G,B],再和含有该特征点42的待识别图像的每个颜色分量进行对比,进而找出特征点42在该幅图像中的二维坐标;将特征点42在各个相机41中不同时刻的成像位置二维坐标通过优化算法进行2D坐标插值计算,优化算法可以采用最小二乘法、平均法或中值法;在所有相机41成像面中的多个二维平面坐标所构成的多条空间异面直线,通过三维坐标定位算法计算特征点42的空间三维坐标。 Described FPGA embedded processor 43, its specific processing technology can adopt prior art to realize, certainly also can adopt following technology in a preferred embodiment: first a plurality of cameras 41 are collected the image of feature point 42 continuously in real time from different orientations Signal; each channel image signal adopts the target recognition based on the color space model, that is, take the average value of the feature point for many times, extract the color component model [R, G, B] of the feature point 42, and then combine the feature point 42 Each color component of the image to be recognized is compared, and then the two-dimensional coordinates of the feature point 42 in the image are found; the two-dimensional coordinates of the imaging position of the feature point 42 at different times in each camera 41 are 2D through an optimization algorithm. For coordinate interpolation calculation, the optimization algorithm can use the least square method, average method or median method; multiple spatially different straight lines formed by multiple two-dimensional plane coordinates in all camera 41 imaging planes are calculated by three-dimensional coordinate positioning algorithm. The three-dimensional coordinates of point 42 in space.
上述的各子系统的数据传到用于数据融合的处理器5,所述第二子处理器可以采用现有产品实现,比如数据融合处理器,单片机等,其具体数据融合技术可以采用现有技术实现,当然在一优选实施例中也可以采用以下技术:用于数据融合的处理器5采用分布式状态融合结构模型,该结构模型的特点是每个子系统的传感器数据在进入用于数据融合的处理器5前,先由自己的数据处理器(即第一子处理器、第二子处理器、FPGA嵌入式处理器)生成局部的定位跟踪轨迹,然后把处理过的信息送至用于数据融合的处理器5,用于数据融合的处理器5根据各子系统的定位跟踪轨迹数据,进行坐标转换和数据较正、数据关联以及状态估计融合,最终生成具有6维位姿的目标定位跟踪轨迹。此外,目标定位跟踪轨迹数据还反馈信息到各个子系统中,为各子系统的定位跟踪提供参考和较准。用于数据融合的处理器5能够有效利用多重定位系统的定位冗余信息和互补信息,综合考虑噪声干扰和环境因素的影响,能提升目标定位跟踪的精度和维度,还能增强系统的可靠性和鲁棒性。 The data of above-mentioned each subsystem is transmitted to the processor 5 that is used for data fusion, and described second sub-processor can adopt existing product to realize, such as data fusion processor, single-chip microcomputer etc., its specific data fusion technology can adopt existing Technical realization, certainly also can adopt following technology in a preferred embodiment: the processor 5 that is used for data fusion adopts distributed state fusion structure model, and the characteristic of this structure model is that the sensor data of each subsystem enters and is used for data fusion In front of the processor 5, the local positioning tracking track is generated by its own data processor (i.e. the first sub-processor, the second sub-processor, FPGA embedded processor), and then the processed information is sent to the Processor 5 for data fusion. The processor 5 for data fusion performs coordinate conversion, data correction, data association, and state estimation fusion according to the positioning and tracking trajectory data of each subsystem, and finally generates a target positioning with a 6-dimensional pose. track track. In addition, the target positioning and tracking trajectory data is also fed back to each subsystem to provide reference and calibration for the positioning and tracking of each subsystem. The processor 5 used for data fusion can effectively utilize the positioning redundant information and complementary information of multiple positioning systems, comprehensively consider the influence of noise interference and environmental factors, improve the accuracy and dimension of target positioning and tracking, and enhance the reliability of the system and robustness.
本实用新型装置设置三个定位子系统,通过这三个定位子系统获取的多源信息,后续再进行处理,能实现工业机器人等运动部件的三维位置和三维姿态角的高精度、高稳定和快速运动检测。本实用新型提供了一种结构合理的检测装置,其中各个部分所采用的数据处理技术不属于本实用新型要求保护的内容。 The device of the utility model is equipped with three positioning subsystems, and the multi-source information obtained by these three positioning subsystems is processed later, so that the three-dimensional positions and three-dimensional attitude angles of industrial robots and other moving parts can be realized with high precision, high stability and high accuracy. Fast motion detection. The utility model provides a detection device with a reasonable structure, in which the data processing technology adopted by each part does not belong to the protection content of the utility model.
以上对本实用新型的具体实施例进行了描述。需要理解的是,本实用新型并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本实用新型的实质内容。 The specific embodiments of the present utility model have been described above. It should be understood that the utility model is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which does not affect the essence of the utility model.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520721883.5U CN205066775U (en) | 2015-09-17 | 2015-09-17 | High accuracy movement track detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520721883.5U CN205066775U (en) | 2015-09-17 | 2015-09-17 | High accuracy movement track detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205066775U true CN205066775U (en) | 2016-03-02 |
Family
ID=55393319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520721883.5U Expired - Fee Related CN205066775U (en) | 2015-09-17 | 2015-09-17 | High accuracy movement track detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205066775U (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106197433A (en) * | 2016-09-21 | 2016-12-07 | 北京视境技术有限公司 | Many people high-precision spatial localization method and device is realized based on electromagnetic coupled |
CN107713915A (en) * | 2017-11-27 | 2018-02-23 | 深圳市沃特沃德股份有限公司 | The localization method of sweeping robot and sweeping robot |
CN108332649A (en) * | 2018-02-07 | 2018-07-27 | 桂林电子科技大学 | A kind of landslide deformation comprehensive pre-warning method and system |
CN108489487A (en) * | 2018-03-20 | 2018-09-04 | 广州番禺职业技术学院 | A new fast three-dimensional attitude angle high-precision measurement method and device |
WO2019051961A1 (en) * | 2017-09-18 | 2019-03-21 | 深圳大学 | Pipeline detection method and apparatus, and storage medium |
CN109597005A (en) * | 2018-12-20 | 2019-04-09 | 上海理工大学 | The measuring system for space magnetic field of view-based access control model positioning |
CN110426584A (en) * | 2019-08-14 | 2019-11-08 | 重庆德新机器人检测中心有限公司 | Industrial robot electromagnetic immunity test monitoring method |
CN110530356A (en) * | 2019-09-04 | 2019-12-03 | 青岛海信电器股份有限公司 | Processing method, device, equipment and the storage medium of posture information |
CN110587603A (en) * | 2019-09-05 | 2019-12-20 | 北京工业大学 | Pose self-induction joint module motion control system based on multi-sensor data fusion |
CN113358325A (en) * | 2021-07-02 | 2021-09-07 | 中国空气动力研究与发展中心低速空气动力研究所 | Wind tunnel object throwing position and posture measuring method, device, equipment and storage medium |
-
2015
- 2015-09-17 CN CN201520721883.5U patent/CN205066775U/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106197433A (en) * | 2016-09-21 | 2016-12-07 | 北京视境技术有限公司 | Many people high-precision spatial localization method and device is realized based on electromagnetic coupled |
WO2019051961A1 (en) * | 2017-09-18 | 2019-03-21 | 深圳大学 | Pipeline detection method and apparatus, and storage medium |
US10931871B2 (en) | 2017-09-18 | 2021-02-23 | Shenzhen University | Pipeline detection method and apparatus, and storage medium |
CN107713915A (en) * | 2017-11-27 | 2018-02-23 | 深圳市沃特沃德股份有限公司 | The localization method of sweeping robot and sweeping robot |
CN108332649B (en) * | 2018-02-07 | 2020-04-24 | 桂林电子科技大学 | Landslide deformation comprehensive early warning method and system |
CN108332649A (en) * | 2018-02-07 | 2018-07-27 | 桂林电子科技大学 | A kind of landslide deformation comprehensive pre-warning method and system |
CN108489487A (en) * | 2018-03-20 | 2018-09-04 | 广州番禺职业技术学院 | A new fast three-dimensional attitude angle high-precision measurement method and device |
CN109597005A (en) * | 2018-12-20 | 2019-04-09 | 上海理工大学 | The measuring system for space magnetic field of view-based access control model positioning |
CN109597005B (en) * | 2018-12-20 | 2021-04-30 | 上海理工大学 | Space magnetic field measurement system based on visual positioning |
CN110426584A (en) * | 2019-08-14 | 2019-11-08 | 重庆德新机器人检测中心有限公司 | Industrial robot electromagnetic immunity test monitoring method |
CN110530356A (en) * | 2019-09-04 | 2019-12-03 | 青岛海信电器股份有限公司 | Processing method, device, equipment and the storage medium of posture information |
CN110587603A (en) * | 2019-09-05 | 2019-12-20 | 北京工业大学 | Pose self-induction joint module motion control system based on multi-sensor data fusion |
CN113358325A (en) * | 2021-07-02 | 2021-09-07 | 中国空气动力研究与发展中心低速空气动力研究所 | Wind tunnel object throwing position and posture measuring method, device, equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205066775U (en) | High accuracy movement track detection device | |
CN105222772B (en) | A kind of high-precision motion track detection system based on Multi-source Information Fusion | |
CN106643792B (en) | Inertial measurement unit and geomagnetic sensor integral calibration device and calibration method | |
CN109313417A (en) | Help the robot locate | |
CN109520497A (en) | The unmanned plane autonomic positioning method of view-based access control model and imu | |
CN109141410B (en) | Multi-sensor fusion positioning method for AGV (automatic guided vehicle) combined navigation | |
CN106871859B (en) | Rigid space fixed shaft rotation angle detection method | |
CN111091587B (en) | Low-cost motion capture method based on visual markers | |
CN107830854A (en) | Visual positioning method based on ORB sparse point cloud and two-dimensional code | |
CN107389968B (en) | Unmanned aerial vehicle fixed point implementation method and device based on optical flow sensor and acceleration sensor | |
CN105004336A (en) | Robot positioning method | |
CN104515532A (en) | Human motion simulation apparatus based on bluetooth | |
Papoutsidakis et al. | Design of an autonomous robotic vehicle for area mapping and remote monitoring | |
CN208999556U (en) | An electromagnetic positioning system | |
CN113093759A (en) | Robot formation construction method and system based on multi-sensor information fusion | |
CN112884832B (en) | Intelligent trolley track prediction method based on multi-view vision | |
Gao et al. | Altitude information acquisition of uav based on monocular vision and mems | |
CN107588715B (en) | Magnetic effect-based spatial position detection device and measurement method | |
CN203719666U (en) | Combined navigation system | |
CN203053428U (en) | Detection device of azimuth of optical imaging type wheeled mobile robot | |
Yan et al. | A three degree-of-freedom optical orientation measurement method for spherical actuator applications | |
JP5748174B2 (en) | Method and apparatus for measuring relative posture of moving object | |
CN103900603A (en) | Noncontact measurement method for displacement and posture of object performing two-dimensional motion in plane or curved surface without guide rail | |
CN208314856U (en) | A kind of system for the detection of monocular airborne target | |
CN116972844A (en) | Mobile robot indoor positioning system and method based on ArUco array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160302 Termination date: 20180917 |