CN102497941B - Control method for a processing line for a stretched rolling stock - Google Patents
Control method for a processing line for a stretched rolling stock Download PDFInfo
- Publication number
- CN102497941B CN102497941B CN201080042639.6A CN201080042639A CN102497941B CN 102497941 B CN102497941 B CN 102497941B CN 201080042639 A CN201080042639 A CN 201080042639A CN 102497941 B CN102497941 B CN 102497941B
- Authority
- CN
- China
- Prior art keywords
- control
- variable
- rolling stock
- control variable
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 160
- 238000012545 processing Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 65
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 45
- 230000006870 function Effects 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 18
- 238000001595 flow curve Methods 0.000 claims description 17
- 238000011156 evaluation Methods 0.000 claims description 14
- 239000005712 elicitor Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 6
- 238000005265 energy consumption Methods 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 description 49
- 239000002826 coolant Substances 0.000 description 10
- 238000004590 computer program Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
- B21B37/76—Cooling control on the run-out table
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
- Feedback Control In General (AREA)
Abstract
用于延长的轧件的处理设备,具有前置的及后置的设备部件,其被轧件直接顺序穿过。设备部件各构造为精轧机列或与精轧机列不同的设备部件。对于从处理设备中穿过的轧件的区段为控制装置相应地预先给定至少一个最终参量,其从相应期望的最终状态中推导出,区段在穿过后置的设备部件之后具有最终状态。控制装置实现至少一个控制量求取器,其向至少一个对区段的状态加以影响的装置输出控制量。这在至少一个区段处于前置的设备部件中的时刻进行。在求取控制量时,控制量求取器考虑区段的在模型支持下求得的期待的处于控制量求取器的预测期之内的状态。如此确定预测期,求取器在求取控制量时考虑为轧件区段预测的在后置设备部件中期待的状态。
A processing plant for elongated rolling stock has upstream and downstream plant parts, which are passed through directly in succession by the rolling stock. The plant parts are each configured as a finishing train or as plant parts different from the finishing train. For a section of the rolling stock passing through the processing plant, the control device accordingly predetermines at least one final variable, which is derived from a corresponding desired final state, the section having the final state after passing through downstream plant components. . The control device realizes at least one control variable ascertainer, which outputs the control variable to at least one device which influences the state of the section. This takes place at the moment when at least one segment is located in an upstream system part. When ascertaining the manipulated variable, the manipulated variable ascertainer takes into account the expected state of the segment within the prediction period of the manipulated variable ascertainer, ascertained with the aid of the model. The prediction period is determined in such a way that the ascertainment unit takes into account the expected states in the downstream equipment components predicted for the rolling stock section when ascertaining the control variable.
Description
技术领域 technical field
本发明涉及一种用于延长的轧件尤其带状的轧件的处理设备的控制方法, The invention relates to a control method for processing equipment for extended rolling stock, especially strip-shaped rolling stock,
-其中所述处理设备至少具有一个前置的设备部件和一个后置的设备部件,所述设备部件被轧件直接顺序穿过, - wherein the processing plant has at least one preceding plant part and one downstream plant part, which are passed through directly in sequence by the rolling stock,
-其中所述前置的或后置的设备部件构造为精轧机列,在所述精轧机列中在减小横截面的情况下对轧件进行轧制,并且另一个设备部件构造为与所述精轧机列不同的设备部件, - wherein the preceding or downstream plant part is configured as a finishing mill train in which the rolling stock is rolled with a reduced cross-section, and the other plant part is designed in conjunction with the The different equipment components of the finishing mill listed above,
-对于从所述处理设备中穿过的轧件的区段给用于所述处理设备的控制装置相应地预先给定至少一个最终参量, - correspondingly predefine at least one final variable to a control device for the processing plant for a section of the rolling stock passing through the processing plant,
-其中所述相应的最终参量从相应的所期望的最终状态中推导出来,所述轧件的相应的区段在穿过后置的设备部件之后应该具有所述最终状态。 - wherein the respective final variable is derived from a respective desired final state which the respective section of the rolling stock is to have after passing through downstream plant components.
此外,本发明涉及一种具有机器代码的计算机程序,所述机器代码能够直接由用于轧件尤其带状的轧件的处理设备的控制装置来执行并且通过所述控制装置来执行所述机器代码使得所述控制装置执行这样的控制方法。 Furthermore, the invention relates to a computer program having a machine code which can be executed directly by a control device of a processing plant for rolling stock, in particular strip-shaped rolling stock, and by which the machine is executed. The code causes the control device to execute such a control method. the
此外,本发明涉及一种用于轧件尤其带状的轧件的处理设备的控制装置,该控制装置如此构成,使得其在运行中执行这样的控制方法。 Furthermore, the invention relates to a control device for a processing plant for rolling stock, in particular strip-shaped rolling stock, which is designed in such a way that it executes such a control method during operation. the
背景技术 Background technique
开头所提到的主题众所周知。在此纯示范性地参照DE 101 56 008 A1或者说相应的US 7,197,802 B2。在这方面也可以提及EP 1 596 999 B1或者说相应的US 7,251,971 B2和US 7,310,981 B2。 The themes mentioned at the outset are well known. Reference is here made purely by way of example to DE 101 56 008 A1 or the corresponding US 7,197,802 B2. Mention may also be made in this connection of EP 1 596 999 B1 or the corresponding US 7,251,971 B2 and US 7,310,981 B2. the
对于现有技术的控制方法来说,通常单独地控制每个设备部件。如果-纯示范性地-所述前置的设备部件构造为精轧机列并且所述后置的设备部件构造为冷却段,那么在现有技术中通常如此运行所述精轧机列,使得轧件的在精轧机列的出口处(=冷却段的入口处)的区段具有预先确定的终轧温度。在所述冷却段中,而后如此进行所述轧件的区段的冷却,使得所述轧件的区段以预先确定的卷取温度离开所述冷却段。所述两个设备部件的运行的协调在现有技术中仅仅通过以下方式来进行,即以测量技术的方式来检测相应的区段的终轧温度并且作为用于相应的区段的起始值为所述冷却段预先给定所述终轧温度。 With prior art control methods, each plant component is usually controlled individually. If—purely by way of example—the upstream plant part is designed as a finishing train and the downstream plant part is designed as a cooling section, the finishing train is usually operated in the prior art in such a way that the rolled stock The section at the exit of the finishing train (=entrance of the cooling section) has a predetermined finishing temperature. In the cooling section, the section of the rolling stock is then cooled in such a way that the section of the rolling stock leaves the cooling section at a predetermined coiling temperature. In the prior art, the coordination of the operation of the two plant components takes place only by measuring the finishing temperature of the respective section and using it as a starting value for the respective section. The finishing temperature is predetermined for the cooling section. the
上面提到的现有技术的处理方式相对于传统的现有技术已经代表着一种进步。因为对于这种现有技术来说,进行处理设备的跨设备部件的控制。尤其可以节拍式地调整对于轧件的每个区段来说所期待的借助于跨设备部件的模型来求得的温度。借助于相应所期待的温度和相对应的额定温度,在现有技术中相应地求得控制量,该控制量应该输出给刚好对所述轧件的相应的区段的状态加以影响的装置。 The above-mentioned prior art approach already represents an improvement over conventional prior art. For this state of the art, the control of the cross-plant components of the processing plant takes place. In particular, the temperature expected for each section of the rolling stock, which is ascertained by means of the model spanning the plant components, can be adjusted in a cycled manner. With the aid of the corresponding expected temperature and the corresponding target temperature, in the prior art a corresponding control variable is ascertained which is to be output to the device which influences the state of the particular section of the rolling stock. the
在此借助于控制量求取器(Stellgr??enersteller)来求得用于单个装置的控制量,所述控制量求取器可以构造为常规的调节器,比如构造为P、PI或者PID调节器。从所提到的现有技术中也已经知道,将所述调节器构造为预估调节器,该预估调节器具有预估水平线。尤其最后提到的处理方式已经引起较好的结果。但是,最后提到的处理方式尤其关于控制量求取的设计方案还有待改进。本发明的任务是,进行相应的得到改进的控制量求取。 In this case, the control variable for the individual devices is ascertained by means of a control variable ascertainer, which can be designed as a conventional controller, for example, as a P, PI or PID controller device. It is also known from the mentioned prior art to design the controller as a predictive controller which has a predictive level. In particular the last-mentioned procedure already leads to better results. However, the last mentioned processing method, especially the design scheme for obtaining the control quantity, still needs to be improved. The object of the invention is to carry out a correspondingly improved control variable determination. the
发明内容 Contents of the invention
该任务通过一种用于延长的轧件的处理设备的控制方法来完成, This task is accomplished by a control method for a processing plant for extended rolled stock,
-其中所述处理设备至少具有一个前置的设备部件和一个后置的设备部件,所述设备部件被轧件直接顺序穿过, - wherein the processing plant has at least one preceding plant part and one downstream plant part, which are passed through directly in sequence by the rolling stock,
-其中所述前置的或后置的设备部件构造为精轧机列,在所述精轧机列中在减小横截面的情况下对轧件进行轧制,并且另一个设备部件构造为与所述精轧机列不同的设备部件, - wherein the preceding or downstream plant part is configured as a finishing mill train in which the rolling stock is rolled with a reduced cross-section, and the other plant part is designed in conjunction with the The different equipment components of the finishing mill listed above,
-其中对于从所述处理设备中穿过的轧件的区段给用于所述处理设备的控制装置相应地预先给定至少一个最终参量, - in which at least one final variable is correspondingly predetermined for a section of the rolling stock passing through the processing plant to a control device for the processing plant,
-其中所述相应的最终参量从相应的所期望的最终状态中推导出来,所述轧件的相应的区段在穿过后置的设备部件之后应该具有所述最终状态, - wherein the respective final variable is derived from the respective desired final state, which the respective section of the rolling stock is to have after passing through downstream plant components,
-其中所述控制装置实现至少一个控制量求取器, - wherein said control device implements at least one control variable seeker,
-其中所述控制量求取器向至少一个对穿过处理设备的轧件的区段中的至少一个区段的状态加以影响的装置输出控制量, - wherein said control variable elicitor outputs a control variable to at least one device influencing the state of at least one of the sections of the rolled stock passing through the processing plant,
-其中所述控制量求取器在所述至少一个区段处于所述前置的设备部件中的时刻输出所述控制量, - wherein the control variable finder outputs the control variable at the moment when the at least one section is in the preceding plant part,
-其中在求取所述控制量时,所述控制量求取器考虑到所述轧件的至少一个区段的在模型支持下求得的所期待的处于相应的控制量求取器的第一预测期之内的状态, -wherein when determining the control variable, the control variable finder takes into account the expected first position of the corresponding control variable finder obtained with the support of the model of at least one section of the rolling stock the state within a forecast period,
-其中如此确定所述第一预测期,使得所述控制量求取器在求取由其输出的控制量时考虑到至少一个为所述轧件的至少一个区段所预测的状态,对所述轧件的至少一个区段来说在所述后置的设备部件中期待该状态。还提出一种用于轧件的处理设备的控制装置,其中,该控制装置如此构成,使得其在运行中执行所述的控制方法的所有步骤的控制方法。 - wherein the first prediction period is determined in such a way that the control variable elicitor takes into account at least one predicted state for at least one section of the rolling stock when obtaining the control variable output by it, for the This state is expected in the downstream plant component for at least one section of the rolling stock. A control device for a processing plant for rolling stock is also proposed, wherein the control device is designed in such a way that it executes the control method for all steps of the control method described during operation.
按本发明,作为开头提到的特征的补充来规定, According to the invention, it is stipulated as a complement to the features mentioned at the outset,
-所述控制装置实现至少一个控制量求取器, - said control device implements at least one control variable seeker,
-所述控制量求取器向至少一个对从处理设备中穿过的轧件的区段中的至少一个区段的状态加以影响的装置输出控制量, - said control variable elicitor outputs the control variable to at least one device which influences the state of at least one of the sections of the rolled stock passing through the processing plant,
-所述控制量求取器在所述至少一个区段处于所述前置的设备部件中的时刻输出所述控制量, - the control variable ascertainer outputs the control variable at the moment when the at least one section is located in the preceding system part,
-在求取所述控制量时,所述控制量求取器考虑到所述轧件的至少一个区段的在模型支持下求得的所期待的处于相应的调节器的第一预测期之内的状态, - when ascertaining the control variable, the control variable ascertainer takes into account the model-supported expected value of at least one section of the rolling stock within the first prediction period of the corresponding regulator state within,
-如此确定所述第一预测期,使得所述控制量求取器在求取由其输出的控制量时考虑到至少一个为所述轧件的至少一个区段所预测的状态,对所述轧件的至少一个区段来说在所述后置的设备部件中期待该状态。 - the first prediction period is determined in such a way that the control variable elicitor takes into account at least one predicted state for at least one section of the rolling stock when determining the control variable output by it, for the This state is expected for at least one section of the rolling stock in the downstream plant component.
在本发明的一种可能的设计方案中规定, In a possible design scheme of the present invention, it is stipulated that
-所述控制装置为所述轧件的每个区段分别实现一个控制量求取器,该控制量求取器在所述轧件的相应的区段的整个从处理设备中穿过的过程中作为局部的控制量求取器保持耦合到所述轧件的相应的区段上,并且 - the control device realizes for each section of the rolling stock a respective control variable elicitor, which controls the entire passage of the corresponding section of the rolling stock through the processing plant The control variable elicitor as local remains coupled to the corresponding section of the rolling stock, and
-当相应的装置作用于所述轧件的相应的区段上时,所述相应的局部的控制量求取器就将控制量输出给对从处理设备中穿过的轧件的状态局部地加以影响的装置。 - When the corresponding device acts on the corresponding section of the rolling piece, the corresponding local control quantity obtainer will output the control quantity to the state of the rolling piece passing through the processing equipment locally device to be affected.
由此可以简化控制量求取过程。 This simplifies the control variable determination process. the
优选在这种设计方案中规定,至少一个对从处理设备中穿过的轧件的状态局部地加以影响的装置布置在所述前置的设备部件中。 Provision is preferably made in this refinement that at least one device which locally influences the state of the rolling stock passing through the processing plant is arranged in the upstream plant part. the
所述控制装置可选可以构造为统一的不是划分为多个子控制装置的对整个处理设备进行控制的控制装置或者可以划分为多个子控制装置。在最后提到的情况中,优选相应的控制量求取器在所述轧件的相应的区段的整个从处理设备中穿过的过程中在同一个子控制装置上得到实现。 Optionally, the control device can be configured as a unified control device that controls the entire processing device instead of being divided into a plurality of sub-control devices, or can be divided into a plurality of sub-control devices. In the last-mentioned case, the corresponding control variable ascertainer is preferably realized on the same control sub-device throughout the entire passage of the respective section of the rolling stock through the processing plant. the
作为局部的控制量求取器的替代方案或者补充方案,所述控制装置可以为轧件的所有区段实现一个控制量求取器,该控制量求取器作为全局的控制量求取器对轧件的质量流产生影响。 As an alternative or in addition to the local control variable finder, the control device can realize a control variable finder for all sections of the rolling stock, which acts as a global control variable finder for The mass flow of the rolling stock is affected. the
如果不仅实现全局的控制量求取器而且实现局部的控制量求取器,那就优选规定, If not only the global control quantity seeker but also the local control quantity seeker are realized, it is preferable to specify,
-由所述局部的控制量求取器根据上面所解释的方式求得的控制量首先是暂时的控制量,其中所述局部的控制量求取器在当前产生的质量流曲线没有变化这种假设下求得所述暂时的控制量, - The controlled variables determined by the local controlled variable determiner in the manner explained above are initially temporary controlled variables, wherein the local controlled variable determiner does not change the mass flow curve currently generated Assuming that the temporary control quantity is obtained,
-所述全局的控制量求取器借助于输入参量来求得新的质量流曲线, - the global control variable finder obtains a new mass flow curve by means of input parameters,
-所述输入参量至少包括由局部的控制量求取器求得的暂时的控制量以及至少一个用于所述暂时的控制量的评估参量,其中所述评估参量是最小可能的控制量、最大可能的控制量、最大可能的控制量变化或者处于最小可能的控制量与最大可能的控制量之间的中间值,并且 - the input variables include at least a temporary control variable determined by a local control variable finder and at least one evaluation variable for the temporary control variable, wherein the evaluation variable is the smallest possible control variable, the maximum the possible control quantity, the maximum possible control quantity change, or an intermediate value between the minimum possible control quantity and the maximum possible control quantity, and
-所述局部的控制量求取器借助于所述暂时的控制量、当前产生的质量流曲线和新的质量流曲线来求得其最终的控制量。 - The local control variable ascertainer determines its final control variable using the provisional control variable, the currently generated mass flow curve and the new mass flow curve.
所述全局的控制量求取器的其它输入参量可以按需要来确定。优选规定,所述输入参量也可以包括轧件的至少一个还没有进入到前置的设备部件中的区段的所期待的状态,和/或对于所述轧件的这个区段来说由相应的局部的控制量求取器所求得的所期待的暂时的控制量以及相应对应的评估参量。 Other input parameters of the global control variable finder can be determined as required. It is preferably provided that the input variable can also include the desired state of at least one section of the rolling stock that has not yet entered the upstream plant part, and/or for this section of the rolling stock a corresponding The expected temporary control quantity obtained by the local control quantity obtainer and the corresponding evaluation parameter. the
通常所述至少一个控制量求取器在多个时刻分别将一个控制量输出给对从处理设备中穿过的轧件的区段中的至少一个区段的状态加以影响的装置。在这种情况下,经常所述时刻中的第一时刻与第二时刻之间的时间间隔小于第一预测期。由此可以做到的是,所述至少一个控制量求取器为求得在所述时刻中的第一时刻输出的控制量而求得为所述时刻中的第二时刻所期待的控制量,并且在求取在时间上在所述时刻中的第二时刻之后但是还处于第一预测期之内的所预测的状态时对这个所期待的控制量加以考虑。尤其所述至少一个控制量求取器可以构造为模型预估的调节器。 Usually, the at least one control variable ascertainer outputs a control variable at multiple instants in each case to a device which influences the state of at least one of the sections of the rolling stock passing through the processing installation. In this case, often the time interval between the first and the second of said times is smaller than the first forecast period. It can thus be achieved that the at least one control variable ascertainment unit determines the control variable expected for the second of the times in order to determine the control variable output at the first of the times , and this expected control variable is taken into account when ascertaining the predicted state which is temporally after a second of the times but is still within the first prediction period. In particular, the at least one controlled variable ascertainer can be designed as a model-predictive controller. the
可以根据需要来确定所述第一预测期。尤其可以如此确定所述第一预测期,使得其至少从首次影响处于前置的设备部件中的轧件的状态起一直延伸到所述轧件从后置的设备部件中出来。 The first forecast period can be determined as needed. In particular, the first forecast period can be determined such that it extends at least from the state in which the rolling stock in the upstream plant part is first affected until the rolling stock emerges from the downstream plant part. the
就至此所说明的情况而言,所述预测仅仅涉及轧件的单个的区段。所述控制方法可以通过以下方式进一步得到改进,即所述控制装置为影响轧件的状态的装置中的至少一个装置求得相应的装置的在第二预测期之内所期待的状态,并且所述控制装置在求取由控制量求取器输出给相应的装置的控制量时对相应的装置的在第二预测期中所期待的状态加以考虑。 In the case described so far, the prediction only concerns individual sections of the rolling stock. The control method can be further improved in that the control device ascertains, for at least one of the devices influencing the state of the rolling stock, the expected state of the respective device within the second forecast period, and the resulting The control device takes into account the expected state of the respective device in the second forecast period when ascertaining the control variable output by the controlled variable determiner to the respective device. the
在所述按本发明的控制方法的一种优选的设计方案中,所述至少一个控制量求取器通过目标函数的优化(也就是说最大化或者最小化)来求得所述控制量,其中除了轧件的至少一个区段的所预测的状态的偏离相应的额定状态的偏差之外所述处理设备的能耗也加入到所述目标函数中。通过这种处理方式,可以降低所述处理设备的能量需求并且甚至可能将其降低到最低限度。 In a preferred refinement of the control method according to the invention, the at least one control variable ascertainer determines the control variable by optimizing (ie maximizing or minimizing) an objective function, In this case, besides the deviation of the predicted state of the at least one section of the rolling stock from the corresponding setpoint state, the energy consumption of the processing plant is also included in the objective function. By means of this treatment, the energy requirement of the treatment plant can be reduced and possibly even minimized. the
所述精轧机列一般具有多台轧制机架,所述轧制机架在轧件穿过精轧机列的过程中被轧件顺序从中穿过。所述按本发明的控制方法尤其在所述精轧机列的首先穿过的轧制机架之前并且在所述精轧机列的轧制机架之间没有布置冷却装置时也能够使用。 The finishing train generally has a plurality of rolling stands, and the rolling stands are sequentially passed through by the rolling stock during the process of the rolling stock passing through the finishing mill train. The control method according to the invention can also be used, in particular, upstream of the first passing rolling stand of the finishing rolling train and if no cooling device is arranged between the rolling stands of the finishing rolling mill train. the
可以这样安排,即所述前置的设备部件构造为精轧机列并且所述后置的设备部件构造为冷却段。在另一种可能的设计方案中,所述后置的设备部件构造为精轧机列。所述前置的设备部件在这种情况下优选构造为炉,比如构造为感应炉。所述按本发明的控制方法尤其也能够在所述处理设备的一种设计方案中使用,在该设计方案中在所述炉之前布置了粗轧机列,在所述粗轧机列的前面布置了连铸设备并且所述设备以浇铸速度来运行,从而通过所述浇铸速度以及轧件在粗轧机列中的横截面减小量来确定所述轧件进入到所述精轧机列中的速度。 It can be arranged that the upstream installation part is designed as a finishing train and the downstream installation part is designed as a cooling section. In another possible configuration, the downstream plant component is designed as a finishing train. In this case, the upstream system part is preferably designed as a furnace, for example as an induction furnace. In particular, the control method according to the invention can also be used in a configuration of the treatment plant in which a roughing train is arranged upstream of the furnace and a roughing train is arranged upstream of the roughing train. The continuous casting plant and the plant are operated at a casting speed, so that the rate at which the rolling stock enters the finishing train is determined by the casting speed and the cross-sectional reduction of the rolling stock in the roughing train. the
此外,所述任务通过一种开头所提到的类型的计算机程序得到解决,如此设计该计算机程序的机器代码,从而通过所述控制装置来执行所述机器代码使得所述控制装置执行按本发明的控制方法。所述计算机程序尤其可以以机器可读的形式(尤其只能以机器可读的形式比如以电子方式)保存到数据载体上。 Furthermore, the object is solved by a computer program of the type mentioned at the outset, the machine code of which is designed in such a way that the execution of the machine code by the control unit causes the control unit to execute the computer program according to the invention. control method. In particular, the computer program can be stored on a data carrier in machine-readable form, in particular only in machine-readable form, for example electronically. the
此外,所述任务通过一种用于轧件尤其带状的轧件的处理设备的控制装置得到解决,该控制装置如此构成,使得其在运行中执行按本发明的控制方法。 Furthermore, the object is solved by a control device for a processing plant for rolling stock, in particular strip-shaped rolling stock, which is designed in such a way that it executes the control method according to the invention during operation. the
附图说明 Description of drawings
其它的优点和细节从以下结合附图对实施例所作的说明中获得。附图以原理示意图出如下: Additional advantages and details emerge from the following description of exemplary embodiments with reference to the drawings. The accompanying drawings are shown as a schematic diagram as follows:
图1是用于轧件的处理设备的示意图; Fig. 1 is a schematic diagram of the processing equipment for rolling stock;
图2至5是图1的处理设备的可能的设计方案; Figures 2 to 5 are possible designs of the processing equipment of Figure 1;
图6到9是流程图并且 Figures 6 to 9 are flowcharts and
图10和11是控制装置的可能的设计方案。 10 and 11 show possible configurations of the control device.
具体实施方式 Detailed ways
按照图1,用于延长的轧件1的处理设备具有前置的及后置的设备部件2、3。所述前置的及后置的设备部件2、3被轧件1直接顺序穿过。所述轧件1尤其可以是带状的轧件。它一般由金属制成,比如由钢、铝、红铜、黄铜或者其它的有色金属制成。 According to FIG. 1 , the processing plant for an extended rolling stock 1 has upstream and downstream plant parts 2 , 3 . The preceding and downstream plant parts 2 , 3 are passed directly sequentially by the rolling stock 1 . The rolling stock 1 can in particular be a strip-shaped rolling stock. It is generally made of metal, such as steel, aluminum, copper, brass or other non-ferrous metals. the
所述前置的或者后置的设备部件2、3构造为精轧机列。在图2和3的设计方案中,所述前置的设备部件2构造为精轧机列。在按图4和5的设计方案中,所述后置的设备部件3构造为精轧机列。 The upstream or downstream plant parts 2 , 3 are designed as finishing trains. In the embodiments of FIGS. 2 and 3 , the upstream plant part 2 is designed as a finishing train. In the refinement according to FIGS. 4 and 5 , the downstream plant part 3 is designed as a finishing train. the
在不依赖于所述前置的或者后置的设备部件2、3是否构造为精轧机列的情况下,所述精轧机列一般具有多台轧制机架4,所述轧制机架4在轧件1穿过精轧机列的过程中先后被所述轧件从中穿过。在所述精轧机列的轧制机架4中在减小横截面的情况下对所述轧件1进行轧制。轧制机架4的数目一般在4与8之间,比如为6或7。作为替代方案,可以进行可逆的轧制。在这种情况下,通常存在着一台唯一的轧制机架4。 Regardless of whether the upstream or downstream plant parts 2 , 3 are configured as a finishing train, the finishing train generally has a plurality of rolling stands 4 , which During the process of the rolling stock 1 passing through the finishing mill row, the rolling stock passes through it successively. The rolling stock 1 is rolled with a reduced cross-section in the rolling stands 4 of the finishing train. The number of rolling stands 4 is generally between 4 and 8, for example 6 or 7. As an alternative, reversible rolling can be performed. In this case, there is usually a single rolling stand 4 . the
所述另一个设备部件3、2构造为与所述精轧机列不同的设备部件。按照图2和3,所述后置的设备部件构造为冷却段,该冷却段具有辊道5及冷却装置6。在所述冷却段中,轧件1的横截面(除热收缩之外)不再变化。也就是说在所述冷却段中不再进行轧件1的变形。按照图4和5,所述前置的设备部件2构造为炉,比如构造为感应炉。 The further plant part 3 , 2 is designed as a different plant part than the finishing train. According to FIGS. 2 and 3 , the downstream system part is designed as a cooling section with a roller table 5 and a cooling device 6 . In the cooling section, the cross-section of the rolling stock 1 (apart from the thermal contraction) no longer changes. That is to say no deformation of the rolling stock 1 takes place in the cooling section. According to FIGS. 4 and 5 , the upstream system part 2 is designed as a furnace, for example as an induction furnace. the
如在图1中用虚线示出的一样,可以这样安排,即在所述前置的设备部件2本身的前面布置了另一个设备部件7。比如在图2和3的设计方案中,在所述精轧机列的前面额外地布置了一个炉和/或其它的组件。在按图5的设计方案中,比如在所述炉的前面作为另一个设备部件7布置了粗轧机列。在所述粗轧机列的前面又布置了连铸设备8。 As indicated by the dashed lines in FIG. 1 , it can be arranged that a further equipment part 7 is arranged in front of the upstream equipment part 2 itself. For example, in the embodiments of FIGS. 2 and 3 , a furnace and/or other components are additionally arranged upstream of the finishing train. In the configuration according to FIG. 5 , for example, a roughing train is arranged upstream of the furnace as a further plant part 7 . A continuous casting installation 8 is again arranged upstream of the roughing train. the
根据图1的用虚线示出的示意图,同样可以在所述后置的设备部件3的后面布置其它的设备部件9。比如在图4的设计方案中可以在所述精轧机列的后面作为另一个设备部件9来布置冷却段。 According to the schematic diagram shown in dashed lines in FIG. 1 , further equipment parts 9 can likewise be arranged behind the downstream equipment part 3 . For example, in the refinement of FIG. 4 , a cooling section can be arranged downstream of the finishing train as a further plant component 9 . the
所述另外的设备部件7、9可以一同纳入到下面详细解释的控制方案中。作为替代方案,可以以按本发明的方式来仅仅运行所述前置的及后置的设备部件2、3并且以其它方式来运行另外的设备部件7、9。 Said further plant components 7, 9 can be incorporated together into a control scheme explained in detail below. As an alternative, only the upstream and downstream system components 2 , 3 can be operated in the manner according to the invention and the further system components 7 , 9 can be operated in a different manner. the
所述设备部件8、7、2、3、9之间的界线可以根据需要来确定。尤其所述设备部件8、7、2、3、9之间的界线可以处于相应前置的设备部件8、7、2、3的最后一个有效元件与相应后置的设备部件7、2、3、9的第一个有效元件之间。炉与布置在该炉前面的设备部件7比如粗轧机列7之间的界线因此处于所述粗轧机列7的最后一台机架与所述炉的第一个加热装置18之间。以类似的方式,炉与所述精轧机列之间的界线处于所述炉的最后一个加热装置18与所述精轧机列的第一台机架4之间。所述精轧机列与冷却段之间的界线处于所述精轧机列的最后一台轧制机架4与所述冷却段的第一个冷却装置6之间。如果在每两个直接彼此先后相随的设备部件8、7、2、3、9之间布置了温度测量点19(或者其它的比如用于带材厚度或者带材形状的测量工位),那么优选相应的测量装置19的位置代表着所述设备部件8、7、2、3、9之间的界线。 The boundaries between the device parts 8 , 7 , 2 , 3 , 9 can be determined according to requirements. In particular, the boundary between the device parts 8 , 7 , 2 , 3 , 9 can lie between the last active element of the respectively upstream device part 8 , 7 , 2 , 3 and the respectively downstream device part 7 , 2 , 3 , between the first valid element of 9. The boundary between the furnace and the installation part 7 arranged upstream of the furnace, such as the roughing train 7 , is thus between the last stand of the roughing train 7 and the first heating device 18 of the furnace. In a similar manner, the boundary between the furnace and the finishing train is between the last heating device 18 of the furnace and the first stand 4 of the finishing train. The boundary line between the finishing train and the cooling section is between the last rolling stand 4 of the finishing train and the first cooling device 6 of the cooling section. If a temperature measuring point 19 (or another measuring station, for example for strip thickness or strip shape) is arranged between every two plant parts 8 , 7 , 2 , 3 , 9 directly following one another, The position of the corresponding measuring device 19 then preferably represents the boundary between the plant parts 8 , 7 , 2 , 3 , 9 . the
图1到5的处理设备由控制装置10来控制(仅仅在图1中示出)。所述控制装置10通常构造为能够软件编程的控制装置。这在图1中通过以下方式来表明,即在所述控制装置10的内部写入了字母“μp”所述控制装置10的作用方式因此通过计算机程序11来确定。该计算机程序11具有机器代码12,该机器代码12能够直接由所述控制装置10来执行。通过所述控制装置10来执行机器代码12,使得所述控制装置10执行下面要详细解释的控制方法。由于所述机器代码12的执行,如此构成所述控制装置10,使得其在运行中执行按本发明的控制方法。 The processing device of FIGS. 1 to 5 is controlled by a control device 10 (shown only in FIG. 1 ). The control device 10 is generally designed as a software-programmable control device. This is shown in FIG. 1 in that the letter “μp” is written inside the control unit 10 , and the mode of operation of the control unit 10 is thus determined by the computer program 11 . The computer program 11 has a machine code 12 which can be executed directly by the control device 10 . The machine code 12 is executed by the control device 10 so that the control device 10 executes a control method which will be explained in detail below. Due to the execution of the machine code 12 , the control device 10 is designed such that it executes the control method according to the invention during operation. the
所述计算机程序11可以以任意的方式比如通过计算机-计算机-连接来输送给所述控制装置10。尤其考虑通过互联网或者局域网来进行输送。作为替代方案,所述计算机程序11可以通过移动的数据载体13来输送给所述控制装置10,在所述数据载体上以机器可读的形式保存了所述计算机程序11。在此在图1中作为USB记忆棒纯示范性地示出了所述移动的数据载体13。但是所述移动的数据载体也可以构造为其它的形式。 The computer program 11 can be supplied to the control device 10 in any desired manner, for example via a computer-to-computer connection. In particular, transmission via the Internet or a local area network is conceivable. Alternatively, the computer program 11 can be delivered to the control device 10 via a removable data carrier 13 on which the computer program 11 is stored in a machine-readable form. The removable data carrier 13 is shown here purely by way of example in FIG. 1 as a USB memory stick. However, the mobile data carrier can also be embodied in other forms. the
下面结合图6对一种可能的按本发明的控制方法进行解释。 A possible control method according to the invention is explained below with reference to FIG. 6 . the
按照图6,在步骤S1中向所述控制单元10输送轧件1的当前的状态Z和点14的当前的位置。所述当前的位置基于加工设备。所述当前的位置在所述前置的设备部件2的始端,在图2和3的设计方案中也就是比如在所述精轧机列的第一轧制机架4的前面。如果所述精轧机列根据图2的示意图具有中间机架冷却装置15并且也在所述精轧机列的第一台轧制机架4之前布置了这样的中间机架冷却装置15,那么所述位置也可以处于这个中间冷却装置15之前。必要时这个位置也可以处于更加靠前的部位。 According to FIG. 6 , in step S1 the current state Z of the rolling stock 1 and the current position of the point 14 are fed to the control unit 10 . The current location is based on the processing facility. The current position is at the beginning of the upstream plant part 2 , that is, for example in front of the first rolling stand 4 of the finishing train in the embodiment of FIGS. 2 and 3 . If the finishing train has an intermediate stand cooling device 15 according to the schematic illustration in FIG. The location can also be upstream of this intercooler 15 . If necessary, this position can also be in a more forward position. the
在使用处理设备的其它设计方案比如按图4的设计方案的情况中,所述位置布置在其它部位。如果比如将布置在所述精轧机列的前面的炉一同纳入到所述按本发明的控制方法中,那么所述位置就必须在所述炉之前,更确切地说必须在所述炉的第一个加热装置18之前。一般来说适用这一点,即所述位置必须布置在第一个纳入到所述按本发明的控制方法中的设备部件的始端之前或布置在更加靠前的部位。 In the case of other configurations of the processing plant, such as the configuration according to FIG. 4 , the locations are arranged elsewhere. If, for example, a furnace arranged in front of the finishing train is also included in the control method according to the invention, then the position must be before the furnace, to be more precise in the first position of the furnace. A heating device 18 before. In general, it applies that the position must be arranged before the start of the first plant component incorporated into the control method according to the invention or further forward. the
可以从外面或者以其它方式来为所述控制装置10预先给定所述状态Z。作为替代方案可以通过测量技术来检测所述状态Z。也可以考虑混合形式。比如为确定相关的点14的能量的状态,可以在所述当前的位置上布置温度测量点19,借助于所述温度测量点在轧件1的表面上来检测轧件1的点14的当前的温度T。在所述轧件1的厚度范围内看,温度变化曲线比如可以通过模型来求得。这样的模型普遍为本领域的技术人员所熟知。 State Z can be predetermined for control device 10 from the outside or in another way. Alternatively, state Z can be detected by means of measurement technology. Mixed forms can also be considered. For example, in order to determine the energy state of the relevant point 14, a temperature measuring point 19 can be arranged at the current position, by means of which temperature measuring point is on the surface of the rolling stock 1 to detect the current state of the point 14 of the rolling stock 1. temperature T. Viewed in the thickness range of the rolling stock 1 , the temperature profile can be determined, for example, by means of a model. Such models are generally known to those skilled in the art. the
可能的是,所述能量的状态已经通过所述点14的温度T完全得到了描述。因为所述温度T在实际上经常处于一个范围内,在该范围内借助于所述温度可以明确地判定,轧件1处于哪种相态中。比如在对钢进行轧制时,所述温度在精轧机列的入口处一般大约为1000℃或者更高并且由此远远高于钢的相变温度(大约723℃到911℃)。因此知道,所述轧件1在这种情况中处于相态“奥氏体”中。 It is possible that the energy state is already completely described by the temperature T of the point 14 . In practice, the temperature T is often in a range within which it can be determined unambiguously by means of the temperature in which phase the rolling stock 1 is in. For example, when rolling steel, the temperature at the entrance to the finishing train is generally about 1000° C. or higher and is thus well above the phase transformation temperature of the steel (approximately 723° C. to 911° C.). It is thus known that the rolling stock 1 is in the phase "austenite" in this case. the
所述轧件1的尺寸-比如对于带状的轧件来说带材厚度及带材宽度-可以以其它方式来求得或者以其它方式为所述控制装置10所了解。 The dimensions of rolling stock 1 , such as strip thickness and strip width for strip-shaped rolling stock, can be ascertained in other ways or known to control device 10 in other ways. the
在步骤S2中,所述控制装置10借助于所期望的最终状态Z*来求得所期望的最终参量,所述点14在穿过后置的设备部件3之后应该具有所期望的最终状态Z*。比如所述控制装置10可以求得轧件1的所期望的最终热函、所期望的最终温度、所期望的相份额,比如对于钢来说可以求得奥氏体的份额等等。作为求得最终参量的做法的替代方案,也可以为所述控制装置10预先给定所期望的最终参量。 In step S2 , the control device 10 ascertains the desired final variable with the aid of the desired final state Z*, the point 14 should have the desired final state Z* after passing through the downstream system part 3 . For example, the control device 10 can ascertain the desired final enthalpy, the desired final temperature, the desired phase fraction of the rolling stock 1 , eg for steel the fraction of austenite, etc. As an alternative to ascertaining the final variable, it is also possible to predetermine the desired final variable for the control device 10 . the
在步骤S3中,所述控制装置10为所检测的点14实现控制量求取器16(参见图10和11)。所述控制量求取器16在步骤S3的范围内用相应的点14的状态Z来初始化并且起动。所述控制量求取器16作为局部的控制量求取器16耦合到所述轧件1的相应的点14上。该控制量求取器在点14的整个穿过所述处理设备的过程中保持耦合到这个点14上。 In step S3 , control device 10 implements control variable ascertainer 16 for detected point 14 (see FIGS. 10 and 11 ). Control variable ascertainer 16 is initialized and started with state Z of respective point 14 within the scope of step S3 . The control variable ascertainer 16 is coupled as a local control variable ascertainer 16 to the corresponding point 14 of the rolling stock 1 . The control variable ascertainer remains coupled to this point 14 throughout its entire passage through the processing device. the
所实现的局部的控制量求取器16总是在相应的装置作用于轧件1的相应的点14上时将控制量S输出给所述处理设备的装置。所述相应的装置仅仅局部地也就是在布置了相应的装置的部位上影响从所述处理设备中穿过的轧件1的状态Z。在有关的装置作用于所述轧件1的有关的点14上的时刻,轧件1的其它部位虽然可能受到其它装置的影响,但是不受这个装置的影响。 The realized local control variable ascertainer 16 always outputs the control variable S to the devices of the processing plant when the corresponding device acts on the corresponding point 14 of the rolling stock 1 . The corresponding devices influence the state Z of the rolling stock 1 passing through the processing plant only locally, ie at the point where the corresponding device is arranged. At the moment when the relevant device acts on the relevant point 14 of the rolling stock 1, other regions of the rolling stock 1 are not affected by this device, although they may be affected by other devices. the
所述处理设备的单个装置-比如图2的冷却装置6和中间机架冷却装置15或者图4的炉的加热装置18-作用于所述轧件1的相应的点14上的时刻可以容易地求取。尤其可以实现-为本领域的技术人员所熟知-行程跟踪。 The individual devices of the processing plant—such as the cooling device 6 and the intermediate stand cooling device 15 of FIG. 2 or the heating device 18 of the furnace of FIG. 4—act on the corresponding point 14 of the rolling stock 1. ask for. In particular - as is known to those skilled in the art - travel tracking can be implemented. the
在步骤S4中,所述局部的控制量求取器16确定暂时的控制量变化曲线。在步骤S5中,所述局部的控制量求取器16在预测期之内借助于轧件1的在所述控制装置10的内部实现的模型17来求得相应的点14的所期待的在所述预测期的末端期待的状态。所述局部的控制量求取器16在当前产生的质量流曲线没有变化这种假设下求得所述相应的点14的所期待的状态,所述相应的点14现在并且在将来预计以当前所产生的质量流曲线穿过所述处理设备。 In step S4 , the local controlled variable ascertainer 16 determines a temporary controlled variable profile. In step S5, the local control variable ascertainer 16 determines the expected position of the corresponding point 14 within the forecast period by means of the model 17 of the rolling stock 1 realized inside the control device 10 The expected state at the end of the forecast period. The local control variable finder 16 obtains the expected state of the corresponding point 14 under the assumption that the currently generated mass flow curve does not change, and the corresponding point 14 is currently and will be expected to be at the current The resulting mass flow profile is passed through the processing equipment. the
通常为求得所期待的状态必须解基于时间的微分方程式。在这种情况下,有必要以较小的时间上的间距来调整所述状态。因此,在这种情况下求得整个状态变化曲线。 Usually time-based differential equations must be solved to obtain the desired state. In this case, it is necessary to adjust the states at small temporal intervals. In this case, therefore, the entire state change curve is ascertained. the
所述相应的模型17作为这样的模型为人所知并且不是本发明的主题。所述模型17基于傅里叶的导热方程式、相变模型、传热模型、轧制模型等等。 The corresponding model 17 is known as such a model and is not the subject of the present invention. The model 17 is based on Fourier's heat conduction equation, phase transition model, heat transfer model, rolling model, etc. the
在预测的范围内,所述局部的控制量求取器16一方面考虑到控制量S,该局部的控制量求取器16作为下一步用该控制量S来控制对相应的点14的状态Z加以影响的装置之一。 Within the scope of the prediction, the local control variable ascertainer 16 takes into account the control variable S on the one hand, which the local control variable ascertainer 16 uses as a next step to control the state of the corresponding point 14 One of the devices that Z influences. the
在个别情况中-比如在仅仅存在一个唯一的加热装置18时-所述局部的控制量求取器16仅仅在一个唯一的时刻输出控制量S。但是,通常所述局部的控制量求取器16在多个时刻分别将一个控制量S输出给刚好对轧件1的相应的点14加以影响的装置。如果其它的时刻与所述当前的时刻(在当前的时刻所述局部的控制量求取器输出其控制量S)的时间间隔小于所述局部的控制量求取器16的预测期,那么所述局部的控制量求取器16不仅求得作为下一个有待输出的控制量S,而且也为处于所述预测期之内的其它的时刻分别输出一个所期待的控制量。这里所述局部的控制量求取器16以以下情况为出发点,即当前的质量流曲线没有变化,所研究的点14现在并且在将来预计以所述当前的质量流曲线来穿过所述处理设备。所述局部的控制量求取器16在求取所述轧件1的相应的点14的在预测期的末端所期待的状态时当然考虑到所求得的期待的控制量。所述局部的控制量求取器16可以为此目的而尤其构造为模型预估的调节器。 In individual cases—for example when only a single heating device 18 is present—the local controlled variable ascertainer 16 outputs the controlled variable S only at a single instant. Usually, however, local control variable ascertainers 16 each output a control variable S at several times to the device which affects exactly the corresponding point 14 of the rolling stock 1 . If the time interval between other moments and the current moment (the local control quantity obtainer outputs its control quantity S at the current moment) is less than the prediction period of the local control quantity obtainer 16, then the The local control variable ascertainer 16 not only determines the control variable S to be output next, but also outputs an expected control variable for each other time within the forecast period. The local control variable ascertainer 16 here takes as a starting point the fact that the current mass flow profile with which the point 14 under investigation is and will be expected to pass through the process has not changed equipment. The local control variable ascertainer 16 naturally takes the ascertained expected control variable into account when ascertaining the expected state of the respective point 14 of the rolling stock 1 at the end of the forecast period. For this purpose, local control variable ascertainer 16 can in particular be designed as a model-predictive regulator. the
在步骤S5中,所述局部的控制量求取器16通过目标函数的优化(也就是最小化或者最大化)来求得其控制量S。当然,所述轧件1的点14的所预测的状态的偏离相应的额定状态的偏差加入到所述目标函数中。作为替代方案,在此可以使用所述状态本身或者从所述状态中推导出来的参量。 In step S5 , the local control variable obtainer 16 obtains its control variable S by optimizing (ie, minimizing or maximizing) the objective function. Of course, the deviation of the predicted state of the point 14 of the rolling stock 1 from the corresponding setpoint state is added to the objective function. Alternatively, the state itself or variables derived from the state can be used here. the
作为所期望的最终状态的补充,也可以为所述控制装置10对于所述处理设备的其它位置并且/或者对于自轧件1的相应的点14进入到处理设备中起计算的特定的时间预先给定所期望的中间状态。如果是这种情况,那就当然为相应的位置和/或时间求得相应的所期望的中间参量并且在求取所述局部的控制量求取器16的控制量S时对其加以考虑。 In addition to the desired end state, it is also possible for the control device 10 to predetermine for other positions of the processing plant and/or for a specific time calculated since the entry of the corresponding point 14 of the rolling stock 1 into the processing plant. Given the desired intermediate state. If this is the case, then of course the corresponding desired intermediate variable is ascertained for the respective position and/or time and taken into account when ascertaining the control variable S of the local control variable ascertainer 16 . the
目标函数通常是具有多个变量的函数。按照SQP方法使所述目标函数最小化(或者最大化)。所述SQP方法为本领域的技术人员所熟知。 The objective function is usually a function with multiple variables. The objective function is minimized (or maximized) according to the SQP method. The SQP method is well known to those skilled in the art. the
所述局部的控制量求取器16在步骤S7中将由其求得的当前有待输出的控制量S输出给相应的装置,利用该装置可以在当前影响有关的点14的状态Z。所述控制装置10比如借助于已经提到的行程跟踪来求取相应的装置。此外,所述相应的局部的控制量求取器16对给其分配的点14的状态Z进行更新。 In step S7 , the local control variable ascertainer 16 outputs the control variable S determined therefrom to be output currently to a corresponding device, by means of which the state Z of the relevant point 14 can be currently influenced. Control device 10 ascertains corresponding devices, for example by means of the already mentioned path tracking. Furthermore, the respective local control variable ascertainer 16 updates the state Z of the point 14 assigned to it. the
如已经提到的并且也在图2中示出的一样,所述局部的控制量求取器16比如作用于冷却装置6、15。所述冷却装置可以布置在图2的冷却段中。作为替代方案或者补充方案,所述冷却装置可以布置在精轧机列中,也就是布置在按照图2前置的设备部件2中。同样比如在图4和5的设计方案中,所述局部的控制量求取器16可以作用于所述炉的加热装置18。在这种情况下所述相应的装置由此布置在所述前置的设备部件2中。 As already mentioned and also shown in FIG. 2 , local control variable ascertainer 16 acts on cooling devices 6 , 15 , for example. The cooling device can be arranged in the cooling section of FIG. 2 . As an alternative or in addition, the cooling device can be arranged in the finishing train, that is to say in the upstream installation part 2 according to FIG. 2 . Likewise, for example, in the embodiments of FIGS. 4 and 5 , the local control variable ascertainer 16 can act on the heating device 18 of the furnace. In this case, the corresponding device is thus arranged in the upstream system part 2 . the
恰当地确定所述局部的控制量求取器16的预测期。尤其如此确定所述预测期,从而对于常见的轧件速度来说,在所述局部的控制量求取器16控制处于所述前置的设备部件2中的装置(比如在按图2的设计方案中控制所述中间机架冷却装置15之一或者在按图4的设计方案中控制所述炉的加热装置18之一)的时刻,所述局部的控制量求取器16考虑到所述轧件1的相应的点14的所预测的状态,只有在所述轧件1的相应的点14处于所述后置的设备部件3中时该相应的点14才拥有所预测的状态。 The prediction period of the local control variable ascertainer 16 is suitably determined. In particular, the forecast period is determined such that for typical rolling stock speeds, the local control variable determiner 16 controls the devices located in the upstream equipment part 2 (for example, in the configuration according to FIG. 2 ). Control one of the intermediate rack cooling devices 15 in the scheme or control one of the heating devices 18 of the furnace in the configuration according to FIG. 4 ), the local control variable determiner 16 takes into account the The predicted state of the respective point 14 of the rolling stock 1 has the predicted state only if the respective point 14 of the rolling stock 1 is located in the downstream plant part 3 . the
这种实情在图2中直观地通过以下方式来示出,即纯示范性地绘出不同的可能的预测期。所述可能的预测期在图2中用附图标记PH1到PH3来表示。 This fact is shown visually in FIG. 2 by plotting the different possible forecast periods purely by way of example. The possible forecast periods are indicated in FIG. 2 with the reference numerals PH1 to PH3. the
按照预测期PH1,所述局部的控制量求取器16在其求得用于所述精轧机列的最后一个中间机架冷却装置15的控制量S时考虑到所述轧件1的相应的点14的所期待的状态,所述相应的点14只有在冷却段中才拥有所期待的状态。根据预测期PH2,在所述局部的控制量求取器16求得用于倒数第二个中间机架冷却装置15的控制量S时就已经是这种情况。按照预测期PH3,甚至可以如此确定所述预测期,使得其从在前置的设备部件2中(也就是比如在图2中在布置在所述第一轧制机架4之前的中间机架冷却装置15中,在按图4的设计方案中在所述第一加热装置18中)首次影响所述轧件1的状态起一直延伸到轧件1从所述后置的设备部件3中移出来。类似的实施当然也在所述处理设备的按图3、4和5的设计方案中适用。 According to the forecast period PH1, the local control variable ascertainer 16 takes into account the corresponding control variable S of the rolling stock 1 when it determines the control variable S for the last intermediate stand cooling device 15 of the finishing train. The desired state of a point 14, which corresponding point 14 has the desired state only in the cooling section. According to the prediction period PH2 , this is already the case when the local control variable ascertainer 16 determines the control variable S for the penultimate intermediate rack cooling device 15 . According to the forecast period PH3, the forecast period can even be determined in such a way that it starts from the preceding plant part 2 (that is, for example, in FIG. In the cooling device 15 , in the configuration according to FIG. 4 in the first heating device 18 ), the state of the rolling stock 1 is first influenced until the rolling stock 1 is removed from the downstream plant part 3 come out. A similar implementation also applies, of course, to the configurations of the treatment plant according to FIGS. 3 , 4 and 5 . the
所述预测期可以是静态的或者是动态的。优选所述预测期在预测的一开始是静态的,直到所述预测期到达所述后置的设备部件3(或者说通常最后一个纳入到所述按本发明的控制方法中的设备部件)的末端。而后优选动态地缩短所述预测期,使得其从分配给相应的局部的控制量求取器16的点14的相应的当前的位置一直延伸到所述后置的设备部件3的末端。在这种情况下可以介绍一种如伸缩杆一样的预测期,对于该伸缩杆来说一个端部连接到分配给相应的局部的控制量求取器16的点14上并且另一个端部“伸向未来”。所述伸缩杆保持拉出的状态,直到另一个端部“碰到”所述后置的设备部件3的末端。而后所述伸缩杆相应地“缩短”。 The forecast period can be static or dynamic. Preferably, the forecast period is static at the beginning of the forecast until the forecast period reaches the end of the downstream plant component 3 (or usually the last plant component incorporated into the control method according to the invention). end. The prediction period is then preferably shortened dynamically so that it extends from the respective current position of the point 14 assigned to the respective local control variable ascertainer 16 to the end of the downstream system part 3 . In this case it is possible to introduce a predictive period like a telescopic rod, for which one end is connected to the point 14 assigned to the corresponding local control variable determiner 16 and the other end " into the future". The telescopic rod remains pulled out until the other end "touches" the end of the rear-mounted equipment part 3 . The telescoping rod is then correspondingly "shortened". the
在步骤S8和S9中,所述控制装置10检查,有关的点14是否已经从所述后置的设备部件3中出来,也就是说比如在图2的设计方案中是否已经离开所述冷却段。如果不是这种情况,那么所述控制装置10就退回到步骤S4。如果是这种情况,所述控制装置10就转到步骤S10。在步骤S10中,所述控制装置10删除为出来的点14所实现的局部的控制量求取器16。至少在按本发明的控制方法的范围内,不再对所述出来的点14进行考察。 In steps S8 and S9, the control device 10 checks whether the relevant point 14 has come out of the downstream system part 3, that is to say, for example, in the configuration of FIG. 2 has left the cooling section. . If this is not the case, the control device 10 returns to step S4. If this is the case, the control device 10 goes to step S10. In step S10 , control device 10 deletes local control variable ascertainer 16 realized for outgoing point 14 . At least within the scope of the control method according to the invention, the outgoing point 14 is no longer considered. the
必要时可以在单个设备部件2、3之间并且/或者在所述后置的设备部件3的后面-按照图2的设计方案也就是比如在所述精轧机列与所述冷却段之间并且/或者在所述冷却段的后面-布置其它的测量装置19,借助于所述其它的测量装置来检测与所期望的最终参量相关的参量G,比如所述轧件1的相应的点14的温度T。通过这种方式,比如可以对所述模型17进行适配。相应的处理方式作为这样的处理方式为人所知并且作为这样的处理方式不是本发明的主题。 Optionally between the individual plant parts 2, 3 and/or behind the downstream plant part 3—that is, according to the configuration of FIG. 2, for example between the finishing train and the cooling section and /Or behind the cooling section-an additional measuring device 19 is arranged, by means of which other measuring device is used to detect the variable G related to the desired final variable, such as the corresponding point 14 of the rolling stock 1 temperature T. In this way, for example, the model 17 can be adapted. Corresponding treatments are known as such and are not the subject-matter of the present invention. the
节拍式地执行图6的方法。比如相应地用通常处于0.1与1.0秒之间的工作节拍来相应地检测轧件1的新的点14。所述工作节拍的优选的数值处于0.2与0.5秒之间,比如大约为0.3秒。所述控制装置10因此平行地对所有在特定的时刻处于所述处理设备中的点14来说执行上面结合图6所解释的方法。 The method of FIG. 6 is executed in a tick mode. For example, a corresponding detection of a new point 14 of the rolling stock 1 takes place with a cycle time which usually lies between 0.1 and 1.0 seconds. A preferred value for the duty cycle is between 0.2 and 0.5 seconds, for example approximately 0.3 seconds. The control device 10 thus executes the method explained above in conjunction with FIG. 6 in parallel for all points 14 present in the processing plant at a particular time. the
此外,所述轧件1在进入到所述前置的设备部件2中时具有-恒定的或者可变的-入口速度v。所述点14中的每个点因此与轧件1的一个区段相对应,所述区段的长度是所述工作节拍与当前的入口速度v的乘积,所述相应的点14以所述当前的入口速度v进入到所述前置的设备部件2中。 Furthermore, the rolling stock 1 has a—constant or variable—inlet velocity v when it enters the upstream plant part 2 . Each of the points 14 thus corresponds to a section of the rolling stock 1 whose length is the product of the working cycle and the current inlet velocity v, the corresponding point 14 being represented by the The current inlet velocity v enters the upstream system part 2 . the
接下来结合图7所解释的方法优选用在按图2或图3的处理设备的设计方案中。所述方法具有步骤S11到S24。步骤S11到S20以1:1的比例与图6的步骤S1到S10相一致。因此,关于步骤S11到S20,不再需要更加详细的解释。 The method explained below in connection with FIG. 7 is preferably used in the configuration of the processing plant according to FIG. 2 or 3 . The method has steps S11 to S24. Steps S11 to S20 correspond to steps S1 to S10 of FIG. 6 at a ratio of 1:1. Therefore, no more detailed explanation is needed regarding steps S11 to S20. the
在步骤S21中,所述控制装置10实现全局的控制量求取器20(参见图10和11)。所述全局的控制量求取器20作用于所述轧件1的质量流并且由此同时作用于所述轧件1的所有的点14/区段14。通过所述步骤S22和S23将所述全局的控制量求取器20整合到所述按本发明的控制方法中。 In step S21 , the control device 10 implements a global control variable ascertainer 20 (see FIGS. 10 and 11 ). Global control variable ascertainer 20 acts on the mass flow of rolling stock 1 and thus simultaneously on all points 14 /sections 14 of rolling stock 1 . Global control variable ascertainer 20 is integrated into the control method according to the invention via steps S22 and S23 . the
在步骤S22中,所述全局的控制量求取器20求得新的质量流曲线。所述求取过程在此借助于由局部的控制量求取器16在步骤S16中求得的控制量S来进行。所述全局的控制量求取器20在步骤S22的范围内优选不仅考虑到有待由局部的控制量求取器16在步骤S17中输出的控制量S,而且考虑到由所述局部的控制量求取器16求得的所期待的处于局部的控制量求取器16的预测期之内的控制量。 In step S22, the global control variable obtainer 20 obtains a new mass flow curve. The ascertainment process here takes place using the controlled variable S ascertained in step S16 by the local controlled variable ascertainer 16 . Within the scope of step S22, global control variable ascertainer 20 preferably takes into account not only control variable S to be output by local control variable ascertainer 16 in step S17, but also The expected control variable obtained by the obtainer 16 is within the prediction period of the local control variable obtainr 16 . the
所述全局的控制量求取器20在步骤S22的范围内借助于至少一个评估参量来对局部的控制量求取器16的控制量S进行评估。不仅所述评估参量而且所述由局部的控制量求取器16求得的控制量S由此代表着所述全局的控制量求取器20的输入参量。所述评估参量可以(对于每个局部的控制量求取器16)尤其是以下参量中的至少一个参量: Global controlled variable ascertainer 20 evaluates controlled variable S of local controlled variable ascertainer 16 within the scope of step S22 using at least one evaluation variable. Both the evaluation variable and the controlled variable S ascertained by the local controlled variable ascertainer 16 thus represent the input variable for the global controlled variable ascertainer 20 . The evaluation variable can (for each local control variable finder 16) in particular at least one of the following parameters:
-最小可能的控制量, - the smallest possible amount of control,
-最大可能的控制量, - the maximum possible amount of control,
-处于最小可能的控制量与最大可能的控制量之间的中间值,以及 - an intermediate value between the smallest possible amount of control and the largest possible amount of control, and
-最大可能的控制量变化。 - Maximum possible control volume change.
所提到的参量中的前三个参量对于每个控制量来说(无所谓在步骤S15有待输出还是仅仅处于预测期之内)分别基于装置6、15、18,所述相应的局部的控制量求取器16在相应的输出时刻作用于所述装置6、15、18。只有在所述全局的控制量求取器20将多个控制量S彼此置于关联之中时对所述最大可能的控制量变化加以考虑这种做法才有意义,所述多个控制量由同一个局部的控制量求取器16或者由多个局部的控制量求取器16先后输出给同一个装置6、15、18。 The first three of the mentioned variables are based on the means 6, 15, 18 respectively for each control variable (it does not matter whether it is to be output in step S15 or only within the forecast period), the corresponding local control variable The ascertainer 16 acts on the devices 6 , 15 , 18 at the respective output times. It only makes sense to take into account the maximum possible variation of the controlled variable when the global controlled variable ascertainer 20 correlates the plurality of controlled variables S, which are determined by The same local control variable finder 16 or multiple local control variable finders 16 successively output to the same device 6 , 15 , 18 . the
尤其所述全局的控制量求取器20与所述局部的控制量求取器16相类似可以建立目标函数并对其进行优化。尤其所述目标函数可以包含惩罚项(Strafterme),利用所述惩罚项进行惩罚, In particular, the global control variable ascertainer 20 can create an objective function and optimize it similarly to the local control variable ascertainer 16 . In particular, the objective function can include a penalty term (Strafterme), and the penalty term is used to perform punishment,
-如果所述局部的控制量求取器16的控制量S接近于最小的调节边界和/或最大的调节边界, - if the control variable S of the local control variable finder 16 is close to the minimum regulation limit and/or the maximum regulation limit,
-如果所述局部的控制量求取器16的控制量S离所述中间值太远并且/或者 - if the control variable S of the local control variable elicitor 16 is too far from the intermediate value and/or
-所要求的控制量变化接近于最大可能的控制量变化。 - The required control variable change is close to the maximum possible control variable change.
也可以以类似的方式对所述全局的控制量求取器20的控制量S’进行评估。 The control variable S' of the global control variable ascertainer 20 can also be evaluated in a similar manner. the
通过所述质量流曲线的改变,所述全局的控制量求取器20在步骤S22中尝试对评估进行优化。比如所述全局的控制量求取器20尝试将有待由所述局部的控制量求取器16输出的并且所期待的控制量S保持在允许的范围之内,尽可能保持与调节边界相距并且将所期待的变化速度保持在允许的范围之内。同时,所述全局的控制量求取器20考虑到相对应的用于质量流的边界。所述全局的控制量求取器20也可以构造为模型预估的调节器。 By changing the mass flow curve, global manipulated variable ascertainer 20 attempts to optimize the evaluation in step S22 . For example, the global control variable finder 20 attempts to keep the expected control variable S to be output by the local control variable finder 16 within a permissible range, as far as possible from the regulation limit and Keep the desired rate of change within allowable limits. At the same time, global control variable ascertainer 20 takes into account the corresponding limits for the mass flow. Global control variable ascertainer 20 can also be designed as a model-predictive regulator. the
在步骤S23中,所述局部的控制量求取器16借助于暂时的在步骤S22中新求得的质量流曲线的和此前适用的质量流曲线的控制量来求得其最终的控制量S。在步骤S16中所述局部的控制量求取器必须算出所述轧件1的相应的区段14的直至其预测期的所期待的状态,与所述步骤S16相反,在步骤S20中仅仅标定当前有待输出的控制量S就可以足够。但是不排除完整的重新计算。在不取决于具体的处理方式的情况下,由于在步骤S23中改变了所述控制量S,于是在步骤S16中求得的控制量S仅仅是暂时的控制量S。 In step S23, the local control quantity obtainer 16 calculates its final control quantity S by means of the control quantity of the mass flow curve newly obtained in step S22 and the previously applicable mass flow curve. . In step S16, the local control variable ascertainer has to calculate the expected state of the corresponding section 14 of the rolling stock 1 up to its forecast period. Contrary to the step S16, in step S20 only calibration The control quantity S currently to be output may suffice. However a complete recalculation is not excluded. Without depending on the specific processing method, since the control variable S is changed in step S23, the control variable S obtained in step S16 is only a temporary control variable S. the
在步骤S17中,仅仅所述局部的控制量求取器16将其控制量S输出给相应的装置6、15、18。在几乎与步骤S17同时执行的步骤S24中,所述全局的控制量求取器20向用于质量流的执行机构-比如向用于轧制机架4的转速调节器21-输出相应的控制量S’。 In step S17 , only the local control variable ascertainer 16 outputs its control variable S to the corresponding device 6 , 15 , 18 . In step S24, which is carried out almost simultaneously with step S17, the global control variable ascertainer 20 outputs a corresponding control to an actuator for the mass flow, for example to the rotational speed controller 21 for the rolling stand 4 Volume S'. the
结合图7所描述的处理方式尤其在根据图3不存在中间机架冷却装置15时很重要。但是该处理方式只有在存在所述中间机架冷却装置15时才能实施。但是,在不取决于是否存在所述中间冷却装置15的情况下,在多个区段14处于所述前置的设备部件2中(按照图2和图3比如精轧机列)的时刻,所述全局的控制量求取器20输出其控制量S’。 The procedure described in conjunction with FIG. 7 is particularly relevant when, according to FIG. 3 , no intermediate rack cooling device 15 is present. However, this procedure can only be carried out if the intermediate rack cooling device 15 is present. However, irrespective of whether the intercooler 15 is present, at the moment when a plurality of segments 14 are located in the upstream plant part 2 (according to FIGS. 2 and 3 , for example a finishing train), the The global control variable obtainer 20 outputs its control variable S'. the
与所述局部的控制量求取器16相类似,所述全局的控制量求取器20也具有预测期。所述预测期与图2相类似可以根据需要来确定。它可以与所述局部的控制量求取器16的预测期相同或者与其不同。图3-纯示范性地-示出了所述全局的控制量求取器20的几条可能的预测期,这些预测期在图3中用PH4和PH5来表示。所述预测期最小(参见预测期PH4)从所述前置的设备部件2的始端一直延伸到所述后置的设备部件3的第一个装置6,借助于所述第一个装置6可以局部地影响轧件1的状态。所述预测期最大(参见所述预测期PH5)完全从所述前置的设备部件2的始端一直延伸到所述后置的设备部件3的末端,也就是说一直延伸到轧件1从所述后置的设备部件3中出来。也可以考虑更大的预测期。类似的实施当然也适用于所述处理设备的按图2和4的设计方案。 Similar to local controlled variable ascertainer 16 , global controlled variable ascertainer 20 also has a forecast period. The prediction period is similar to that in Fig. 2 and can be determined as required. It can be the same as or different from the forecast period of the local control variable ascertainer 16 . FIG. 3 —purely exemplary—shows several possible prediction periods of global control variable ascertainer 20 , which are indicated by PH4 and PH5 in FIG. 3 . The minimum forecast period (see forecast period PH4) extends from the beginning of the upstream equipment part 2 to the first device 6 of the downstream equipment part 3, by means of which it is possible to The state of the rolling stock 1 is locally influenced. The maximum forecast period (see forecast period PH5) extends completely from the beginning of the preceding plant part 2 to the end of the downstream plant part 3, that is to say as far as the rolling stock 1 from the Out of the above-mentioned post-installed equipment part 3. Larger forecast periods can also be considered. A similar implementation also applies, of course, to the refinement of the treatment plant according to FIGS. 2 and 4 . the
如果存在全局的控制量求取器20,那么甚至可能的是,所述全局的控制量求取器20的输入参量也可以包括所述轧件1的还没有进入到前置的设备部件2中的区段14的所期待的状态。为此仅仅有必要的是,每个区段14及时事先实现、初始化并且起动相应的局部的控制量求取器16。只要这个局部的控制量求取器16继续为所述轧件1的还没有进入到前置的设备部件2中的区段14求得已经期待的局部的控制量,那么所述全局的控制量求取器20的输入参量也包括这些所期待的控制量以及相对应的评估参量。 If a global control variable ascertainer 20 is present, it is even possible that the input variables of the global control variable ascertainer 20 can also include the rolling stock 1 which has not yet entered the upstream plant part 2 The expected state of segment 14. It is only necessary for this to be realized, initialized and activated in advance for each segment 14 in advance of the corresponding local control variable ascertainer 16 . As long as this local control variable ascertainer 16 continues to ascertain the already expected local control variable for the section 14 of the rolling stock 1 that has not yet entered the upstream plant part 2 , the global control variable The input variables of the ascertainer 20 also include these expected control variables and corresponding evaluation variables. the
图7的处理方式也能够运用在按图2的处理设备上。它也能够运用在按图4的处理设备上。 The processing method of FIG. 7 can also be used in the processing device according to FIG. 2 . It can also be used on processing devices according to FIG. 4 . the
如上面所描述的一样,在求取所述全局的控制量求取器20的控制量S’以及所述局部的控制量求取器16的控制量S时进行所述轧件1的区段14的状态Z的预测。可以额外地这样安排,即所述控制装置20为对所述轧件1的状态Z加以影响的装置6、15、18、21中的至少一个装置求得相应的装置6、15、18、21的在另一条(第二条)预测期之内所期待的状态,并且在求取由所述控制量求取器16、20输出给相应的装置6、15、18、21的控制量S、S’时对相应的装置6、15、18、21的在这种预测期中所期待的状态加以考虑。这一点接下来结合图8和9进行详细解释。在此,图8示出了图6的一种可能的设计方案,图9示出了图7的一种可能的设计方案。 As described above, when determining the control variable S' of the global control variable determiner 20 and the control variable S of the local control variable determiner 16, the sections of the rolling stock 1 are carried out 14 Prediction of state Z. It can additionally be arranged that the control device 20 determines the corresponding device 6 , 15 , 18 , 21 for at least one of the devices 6 , 15 , 18 , 21 influencing the state Z of the rolling stock 1 The expected state within another (second) prediction period, and when obtaining the control quantities S, S' takes into account the expected state of the respective device 6 , 15 , 18 , 21 in this forecast period. This is explained in more detail below in conjunction with FIGS. 8 and 9 . In this case, FIG. 8 shows a possible configuration of FIG. 6 , and FIG. 9 shows a possible configuration of FIG. 7 . the
按照图8,在步骤S6与S7之间插入了额外的步骤S31和S32。在步骤S31中,所述控制装置10为受到所述局部的控制量求取器16影响的装置6、15、18中的至少一个装置求得其所期待的状态。在步骤S32中,只要有必要,所述控制装置10就在考虑到相应的装置6、15、18的所期待的状态的情况下对由所述局部的控制量求取器16输出给装置6、15、18的控制量S进行修正。 According to FIG. 8 , additional steps S31 and S32 are inserted between steps S6 and S7 . In step S31 , the control device 10 ascertains its desired state for at least one of the devices 6 , 15 , 18 influenced by the local control variable ascertainer 16 . In step S32 , the control device 10 outputs to the device 6 from the local control variable ascertainer 16 , taking into account the expected state of the corresponding device 6 , 15 , 18 as far as necessary. , 15, 18 of the control amount S to be corrected. the
下面借助于一种简单的实施例来对图8的处理方式进行详细解释。 The processing method of FIG. 8 will be explained in detail below by means of a simple embodiment. the
在此假设,所述冷却段的特定的冷却装置6在所述控制装置10的特定的工作节拍中向轧件1的特定的区段14加载冷却剂(比如水)。在下一个工作节拍中,相同的冷却装置6向下一个区段14加载冷却剂,在再下一个工作节拍中向再下一个区段14加载冷却剂。 It is assumed here that a specific cooling device 6 of the cooling section supplies a specific section 14 of the rolling stock 1 with coolant (for example water) in a specific operating cycle of the control device 10 . In the next working cycle, the same cooling device 6 acts as coolant to the next segment 14 , and in the next working cycle to the next segment 14 as well. the
所述局部的控制量求取器16在特定的工作节拍中作用于所提到的冷却装置,该局部的控制量求取器16作为相对的控制量求得80%。所述下一个及再下一个、分配给轧件1的两个接下来的区段14的局部的控制量求取器16作为所期待的控制量求得50%和20%。此外假设,跟随在首次提到的冷却装置6后面的冷却装置6应该由三个刚刚提到的局部的控制量求取器用60%、60%和40%来控制。此外假设,所述冷却装置6构造为相同的结构并且可以从工作节拍到工作节拍最大以25%的幅度来改变其冷却剂流量。 The local control variable ascertainer 16 , which determines 80% as a relative control variable, acts on the cooling device mentioned in a specific operating cycle. The next and next local control variable ascertainers 16 assigned to the two subsequent sections 14 of the rolling stock 1 determine 50% and 20% as expected control variables. Furthermore, it is assumed that the cooling device 6 following the first-mentioned cooling device 6 is to be controlled by the three just-mentioned local control variable determiners with 60%, 60% and 40%. Furthermore, it is assumed that the cooling devices 6 are of uniform design and can vary their coolant flow rate by a maximum of 25% from cycle to cycle. the
如果在上面提到的假设下不存在步骤S31和S32,那么仅仅首先从所述两个冷却装置6中穿过的区段6准确地用80%和60%来冷却。但是,所述第二区段只能由所述第一冷却装置仅仅用55%来冷却,因为所述第一冷却装置6从80%出发无法更快地节制冷却剂流量。误差因而为5%。所述下一个区段用30%而不是用20%来冷却。原因是同一个:相应的冷却装置6只能将冷却剂流量从55%节制到30%。 If steps S31 and S32 were absent under the above-mentioned assumptions, only the segments 6 that first pass through the two cooling devices 6 are cooled with exactly 80% and 60%. However, the second section can only be cooled by the first cooling device with only 55%, since the first cooling device 6 cannot throttle the coolant flow any faster starting from 80%. The error is thus 5%. The next zone is cooled with 30% instead of 20%. The reason is the same: the corresponding cooling device 6 can only throttle the coolant flow from 55% to 30%. the
但是,在考虑到所述冷却装置6的状态和尤其它的调节可能性(最小的和最大的冷却剂流量、每个工作节拍最大的冷却剂流量变化)的情况下,可以智能地改变冷却剂流量,从而比如由所述两个经过探讨的冷却装置6用75%和65%对所述第一区段14进行冷却,用50%和60%对所述第二区段进行冷却,并且用25%和35%对所述第三区段14进行冷却。由此作为结果实现这一点,即-通过所述两个冷却装置6来看-所述轧件的三个区段14作为结果用正确的冷却剂量来冷却。因此,通过冷却剂量的合适的改变,可以进行优化。 However, the coolant can be changed intelligently, taking into account the state of the cooling device 6 and in particular its adjustment options (minimum and maximum coolant flow, maximum change in coolant flow per cycle) flow, so that, for example, the first section 14 is cooled with 75% and 65% by the two considered cooling devices 6, the second section is cooled with 50% and 60%, and with The third section 14 is cooled at 25% and 35%. As a result, it is thus achieved that—viewed by the two cooling devices 6—three sections 14 of the rolling stock are consequently cooled with the correct amount of coolant. Thus, by suitable changes in the amount of coolant, optimization can be performed. the
以类似的方式,在按图9的处理方式中可以在步骤S16的后面存在着步骤S41和S42。所述步骤S41和S42在内容上相当于图8的步骤S31和S32。 In a similar manner, steps S41 and S42 may follow step S16 in the processing according to FIG. 9 . The contents of steps S41 and S42 are equivalent to steps S31 and S32 in FIG. 8 . the
作为替代方案或者补充方案,可以存在步骤S43和S44,这两个步骤S43及S44插在步骤S23的后面。步骤S43和S44在内容方面可以相当于图8的步骤S31和S32。作为步骤S41和S42的补充,步骤S43和S44的存在之所以尤其有意义,是因为由于步骤S22所述局部的控制量求取器16的控制量S可能已经改变。 As an alternative or in addition, there may be steps S43 and S44 which are inserted after step S23. Steps S43 and S44 may be equivalent to steps S31 and S32 of FIG. 8 in content. In addition to steps S41 and S42 , the presence of steps S43 and S44 is particularly meaningful because the control variable S of the local control variable determiner 16 described in step S22 may have changed. the
此外,可能有意义的是,在步骤S22的后面布置步骤S45和S46。在步骤S45和S46中,针对用于质量流的执行机构21采取与步骤S31和S32相类似的处理方式。 Furthermore, it may make sense to arrange steps S45 and S46 after step S22. In steps S45 and S46 , a procedure similar to steps S31 and S32 is carried out for the actuator 21 for the mass flow. the
如已经提到的一样,所述控制量求取器16、20通常通过相应的目标函数的优化来求得其相应的控制量S、S’。作为所预测的状态的偏离相对应的额定状态的偏差的补充,优选以下参量中的一个或者多个可以加入到所述目标函数中: As already mentioned, the control variable ascertainers 16, 20 usually determine their corresponding control variables S, S' by optimizing the corresponding objective function. As a supplement to the deviation of the predicted state from the corresponding nominal state, preferably one or more of the following parameters can be added to the objective function:
-所述控制量S、S’与由相应的控制量求取器16、20控制的装置6、15、18、21的调节边界(最小值和最大值)的间距; - the distance between the control variables S, S' and the regulation boundaries (minimum and maximum values) of the devices 6, 15, 18, 21 controlled by the corresponding control variable finders 16, 20;
-所输出的并且将来期待的控制量S、S’的偏离中间值的偏差,所述中间值大多数大约处于相应的装置6、15、18、21的调节边界之间的中心处; - the deviation of the output and future expected control variables S, S' from the intermediate value, which is mostly approximately in the center between the control boundaries of the corresponding device 6, 15, 18, 21;
-可能地,针对相应的装置6、15、18、21,所期待的控制量变化与所述控制量S、S’的最大可能的变化速度的间距; - Possibly, for the corresponding device 6, 15, 18, 21, the distance between the expected control variable change and the maximum possible rate of change of the control variable S, S';
-尤其在所述处理设备具有炉这样的情况下,轧件1的最大允许的温度以及实际的温度T与这个数值之间的间距; - the maximum permissible temperature of the rolling stock 1 and the distance between the actual temperature T and this value, especially in the case where the processing plant has a furnace;
-所述处理设备的总能耗。 - The total energy consumption of the treatment plant.
在预测期PH1到PH5之内所期待的状态和/或在所述预测期PH1到PH5的末端所期待的状态的偏离相应的额定状态的偏差越小,(自然)就越好解所述目标函数。只要考虑到上面提到的其它的参量中的一个或者多个,那么 The smaller the deviation of the expected state within the forecast period PH1 to PH5 and/or at the end of said forecast period PH1 to PH5 from the corresponding nominal state, the better (naturally) the solution to the target function. As long as one or more of the other parameters mentioned above are considered, then
-所输出的并且将来的控制量S、S’越是远离相应得到控制的装置6、15、18、21的调节边界, - the farther the output and future control variable S, S' is from the control limit of the correspondingly controlled device 6, 15, 18, 21,
-所输出的并且将来所期待的控制量S、S’的偏差越是靠近中间值并且/或者 - the closer the deviation of the output and expected control variables S, S' is to the middle value and/or
-所要求的变化速度越是远离所输出的并且将来的控制量S、S’的最大可能的变化速度, - The farther the required change speed is from the maximum possible change speed of the output and future control variables S, S',
就越好解所述目标函数。 The better the objective function is solved.
作为对调节边界和控制量S、S’的最大可能的变化速度加以考虑的做法的替代方案或者补充方案-优选替代方案,可以作为目标函数的补充来建立相应的等式及不等式附加条件。在这种情况下,在所述目标函数的优化(=最大化或者最小化)的范围内考虑到所述附加条件。比如在对目标函数进行优化时可以建立应该注意的附加条件,即通过冷却装置6、15进行的冷却可能不是负面的并且不会超过某个(设备所特有的、必要时也是动态的)最大值。所提到的SQP方法能够对这样的附加条件加以考虑。 As an alternative or supplementary-preferred alternative to taking into account the maximum possible rate of change of the control limit and the control variables S, S', corresponding equations and inequality additional conditions can be established as a supplement to the objective function. In this case, the additional conditions are taken into account within the framework of the optimization (=maximization or minimization) of the objective function. For example, when optimizing the objective function, it is possible to establish additional conditions that should be taken care of, namely that the cooling by the cooling device 6 , 15 may not be negative and does not exceed a certain (plant-specific, if necessary also dynamic) maximum value . The mentioned SQP method is able to take such additional conditions into account. the
所述实现按本发明的控制方法的控制装置10必须具有较高的计算效率。可以根据图10的示意图在一个唯一的统一的不是划分为多个子控制装置的控制装置10中实现这种计算效率,所述控制装置10控制着整个处理设备。作为替代方案,根据图11的示意图可以将所述控制装置10划分为多个子控制装置22。如果进行这样的划分,那么但是优选每个所实现的局部的控制量求取器16在轧件1的相应的区段14的整个从处理设备中穿过的过程中在同一个子控制装置22上实现。因而优选并非如此处理,使得相应的局部的控制量求取器16比如从在图11中在左边示出的子控制装置22传递到在图11中在右边示出的子控制装置22,如果-比如-所述轧件1的相应的区段14从前置的设备部件2转移到后置的设备部件3中。 The control device 10 implementing the control method according to the invention must have high computational efficiency. This computing efficiency can be achieved according to the schematic diagram of FIG. 10 in a single unified control device 10 , which controls the entire processing plant, and is not divided into a plurality of sub-control devices. As an alternative, the control device 10 can be divided into a plurality of sub-control devices 22 according to the schematic diagram of FIG. 11 . If such a division is made, however, preferably each implemented local control variable ascertainer 16 is located on the same sub-control device 22 during the entire passage of the corresponding section 14 of the rolling stock 1 through the processing plant. accomplish. It is therefore preferably not the case that the corresponding local control variable ascertainer 16 passes, for example, from the sub-control unit 22 shown on the left in FIG. 11 to the sub-control unit 22 shown on the right in FIG. 11 if— For example, the corresponding section 14 of the rolling stock 1 is transferred from the upstream plant part 2 into the downstream plant part 3 . the
上面所解释的处理方式也能够以类似的方式运用到按图4和5的处理设备的设计方案上。唯一的主要的差别在于,所述轧件1的区段14借助于所述炉的加热装置18不是得到冷却而是得到加热。 The processing explained above can also be applied in a similar manner to the embodiment of the processing plant according to FIGS. 4 and 5 . The only essential difference is that the section 14 of the rolling stock 1 is not cooled but heated by means of the heating device 18 of the furnace. the
本发明具有许多优点。尤其首次实现了跨设备部件的预测。因为在现有技术中虽然已经使用模型预估并且由此使用预测。但是所述预测在现有技术中始终局限在相应的设备部件2、3上。 The present invention has many advantages. In particular, for the first time predictions across plant components are possible. Because in the prior art model estimation and thus forecasting is already used. In the prior art, however, the prediction is always limited to the respective plant part 2 , 3 . the
此外,尤其在按图4和5的处理设备的设计方案中可以将所述作为前置的设备部件2的炉用于调节作为后置的设备部件3的精轧机列的出口的调节终轧温度。为此仅仅必须将预测期选择得足够大。 In addition, especially in the configuration of the treatment plant according to FIGS. 4 and 5 , the furnace as upstream plant part 2 can be used for adjusting the finish rolling temperature at the outlet of the finishing train train as downstream plant part 3 . For this purpose, the forecast period simply has to be chosen sufficiently large. the
这种设计方案尤其具有决定性的意义,如果在所述精轧机列中一方面不存在中间机架冷却装置15并且另一方面出于工艺上的原因确定了入口速度v,所述轧件1以所述入口速度v进入到所述精轧机列中。因为而后在所述精轧机列的内部没有任何执行机构可供使用,在此借助于所述执行机构可以调节所述精轧机列的出口上的终轧温度。但是,通过所述按本发明的处理方式,所述炉(=前置的设备部件2)可以用于相应地调节终轧温度(不是精轧机列的入口上的入口温度)。 This configuration is particularly decisive if, on the one hand, there is no intermediate stand cooling device 15 in the finishing train and, on the other hand, the entry velocity v is determined for technical reasons, the rolling stock 1 The entry velocity v enters the finishing train. Since there are then no actuators available inside the finishing train, by means of which the finishing temperature at the outlet of the finishing train can be adjusted here. However, the furnace (=upstream plant part 2 ) can be used to adjust the finish rolling temperature (not the entry temperature at the entry of the finishing train) accordingly by means of the procedure according to the invention. the
所述轧件1以入口速度v进入到所述精轧机列中,之所以比如可以确定该入口速度v,是因为根据图5的示意图在所述精轧机列的前面一方面作为另一个前置的装置7布置了粗轧机列并且另一方面在该粗轧机列的前面又布置了连铸设备8。因为所述连铸设备8的浇铸速度基本上通过所浇铸的金属的凝固特性来确定并且只能在很窄的界限内调节。所述轧件1的入口速度v在这种情况下通过或多或少固定地预先给定的浇铸速度和轧件1的在粗轧机列中的横截面减小量来确定。 The rolling stock 1 enters the finishing train with an entry velocity v, which can be determined, for example, because the schematic diagram according to FIG. The device 7 is arranged with a roughing train and, on the other hand, a continuous casting installation 8 is arranged upstream of the roughing train. This is because the casting speed of the continuous casting plant 8 is essentially determined by the solidification properties of the metal being cast and can only be adjusted within narrow limits. The entry velocity v of the rolling stock 1 is determined in this case by a more or less fixed predetermined casting speed and the cross-sectional reduction of the rolling stock 1 in the roughing train. the
上面的说明书仅仅用于解释本发明。然而,本发明的保护范围只应该通过了随附的权利要求来确定。 The above description is only for explaining the present invention. However, the protection scope of the present invention should only be determined by the appended claims. the
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09171068A EP2301685A1 (en) | 2009-09-23 | 2009-09-23 | Control method for a treatment assembly for an elongated milling product |
EP09171068.1 | 2009-09-23 | ||
PCT/EP2010/063663 WO2011036093A2 (en) | 2009-09-23 | 2010-09-17 | Control method for a processing line for a stretched rolling stock |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102497941A CN102497941A (en) | 2012-06-13 |
CN102497941B true CN102497941B (en) | 2014-10-15 |
Family
ID=41820136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080042639.6A Expired - Fee Related CN102497941B (en) | 2009-09-23 | 2010-09-17 | Control method for a processing line for a stretched rolling stock |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP2301685A1 (en) |
CN (1) | CN102497941B (en) |
PL (1) | PL2480351T3 (en) |
WO (1) | WO2011036093A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2527054A1 (en) | 2011-05-24 | 2012-11-28 | Siemens Aktiengesellschaft | Operating method for a mill train |
EP2527053A1 (en) * | 2011-05-24 | 2012-11-28 | Siemens Aktiengesellschaft | Operating method for a mill train |
EP2540404A1 (en) * | 2011-06-27 | 2013-01-02 | Siemens Aktiengesellschaft | Operating method for a hot strip mill |
DE102013221710A1 (en) * | 2013-10-25 | 2015-04-30 | Sms Siemag Aktiengesellschaft | Aluminum hot strip rolling mill and method for hot rolling an aluminum hot strip |
EP3623068B1 (en) * | 2018-09-12 | 2021-07-14 | Primetals Technologies Germany GmbH | Application devices for cooling lines with second connection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1150554A (en) * | 1995-09-06 | 1997-05-28 | Sms舒路曼-斯玛公司 | Hot strip production plant for rolling thin rolled strip |
CN1225043A (en) * | 1996-06-07 | 1999-08-04 | 霍戈文斯·斯塔尔公司 | Method and apparatus for the manufacture of a steel strip |
US6286349B1 (en) * | 1997-03-11 | 2001-09-11 | Betriebsforschungsinstitut Vdeh-Institut Fur Angewandte Forschung Gmbh | Flatness measurement system for metal strip |
DE10156008A1 (en) * | 2001-11-15 | 2003-06-05 | Siemens Ag | Control method for a finishing train upstream of a cooling section for rolling hot metal strip |
EP1596999B1 (en) * | 2003-02-25 | 2006-12-20 | Siemens Aktiengesellschaft | Method for regulating the temperature of a metal strip, especially in a cooling path |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63168211A (en) * | 1986-12-27 | 1988-07-12 | Sumitomo Metal Ind Ltd | Temperature control method for hot rolling process |
JP2004034056A (en) * | 2002-07-01 | 2004-02-05 | Sumitomo Light Metal Ind Ltd | Method and system for controlling temperature in hot-rolling mill |
ATE360483T1 (en) | 2003-02-25 | 2007-05-15 | Siemens Ag | METHOD FOR CONTROLLING THE TEMPERATURE OF A METAL STRIP, IN PARTICULAR IN A FINISHING LINE FOR ROLLING METAL HOT STRIP |
-
2009
- 2009-09-23 EP EP09171068A patent/EP2301685A1/en not_active Withdrawn
-
2010
- 2010-09-17 CN CN201080042639.6A patent/CN102497941B/en not_active Expired - Fee Related
- 2010-09-17 PL PL10754744T patent/PL2480351T3/en unknown
- 2010-09-17 WO PCT/EP2010/063663 patent/WO2011036093A2/en active Application Filing
- 2010-09-17 EP EP10754744.0A patent/EP2480351B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1150554A (en) * | 1995-09-06 | 1997-05-28 | Sms舒路曼-斯玛公司 | Hot strip production plant for rolling thin rolled strip |
CN1225043A (en) * | 1996-06-07 | 1999-08-04 | 霍戈文斯·斯塔尔公司 | Method and apparatus for the manufacture of a steel strip |
US6286349B1 (en) * | 1997-03-11 | 2001-09-11 | Betriebsforschungsinstitut Vdeh-Institut Fur Angewandte Forschung Gmbh | Flatness measurement system for metal strip |
DE10156008A1 (en) * | 2001-11-15 | 2003-06-05 | Siemens Ag | Control method for a finishing train upstream of a cooling section for rolling hot metal strip |
CN1589184A (en) * | 2001-11-15 | 2005-03-02 | 西门子公司 | Control method for a finishing train, arranged upstream of a cooling section, for rolling hot metal strip |
EP1596999B1 (en) * | 2003-02-25 | 2006-12-20 | Siemens Aktiengesellschaft | Method for regulating the temperature of a metal strip, especially in a cooling path |
Non-Patent Citations (2)
Title |
---|
JP昭63-168211A 1988.07.12 |
JP特開2004-34056A 2004.02.05 |
Also Published As
Publication number | Publication date |
---|---|
WO2011036093A3 (en) | 2011-11-10 |
EP2480351B1 (en) | 2014-04-30 |
PL2480351T3 (en) | 2014-09-30 |
EP2480351A2 (en) | 2012-08-01 |
EP2301685A1 (en) | 2011-03-30 |
WO2011036093A2 (en) | 2011-03-31 |
CN102497941A (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102939173B (en) | For having the operation method of the finishing mill line of the forecast function of guiding speed | |
RU2291750C2 (en) | Control method for finishing line stands arranged in front of cooling section and designed for rolling hot rolled metal strip | |
CN102497941B (en) | Control method for a processing line for a stretched rolling stock | |
CN102482726B (en) | Method for controlling and/or regulating an induction furnace for a rolling mill, control and/or regulating device for a rolling mill, and rolling mill for producing rolling stock | |
KR101424905B1 (en) | Water-injection control device in rolling line, water-injection control method, water-injection control program | |
US6866729B2 (en) | Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device | |
CN103619501B (en) | For the control method of hot-rolled band production line | |
JP4966826B2 (en) | Winding temperature control device and control method | |
JP2016215237A (en) | Hot rolling finish mill outlet side temperature controller and control method thereof | |
RU2683671C2 (en) | Method and casting/rolling system for casting and rolling continuous strand material | |
US11318511B2 (en) | Width setting on a finishing train | |
JP2008149354A (en) | Device and method for controlling winding temperature | |
JP2006518669A (en) | Method for adjusting the temperature of a metal strip, especially in the cooling zone | |
JP2007160316A (en) | Method for controlling water cooling of rolled material | |
US10413950B2 (en) | Cooling path with twofold cooling to a respective target value | |
SK68196A3 (en) | Continuous casting and rolling plant for steel strip, and a control system for such a plant | |
CN110576048B (en) | Steel plate temperature control device of hot rolling endless rolling production line | |
JPH1177134A (en) | Temperature control device and recording medium for hot rolling mill | |
JP3552646B2 (en) | Temperature control method for hot-rolled steel strip | |
JPH10277620A (en) | Temperature Control Method in Hot Continuous Rolling of Steel Pipe | |
JPH01162508A (en) | Cooling control method for steel material | |
JP2007283346A (en) | Method for controlling cooling of rolled stock and rolling equipment | |
KR100711387B1 (en) | Longitudinal temperature control method of hot rolled steel sheet | |
JP5761091B2 (en) | Temperature control method and temperature control system for hot rolling line | |
CN107848000B (en) | Method and apparatus for adjusting rolled piece parameter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160222 Address after: Erlangen, Germany Patentee after: The German Co., Ltd of primary metal science and technology Address before: Munich, Germany Patentee before: Siemens AG |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141015 Termination date: 20170917 |
|
CF01 | Termination of patent right due to non-payment of annual fee |