[go: up one dir, main page]

CN102458720B - 低能研磨方法、低结晶度合金和负极组合物 - Google Patents

低能研磨方法、低结晶度合金和负极组合物 Download PDF

Info

Publication number
CN102458720B
CN102458720B CN201080030255.2A CN201080030255A CN102458720B CN 102458720 B CN102458720 B CN 102458720B CN 201080030255 A CN201080030255 A CN 201080030255A CN 102458720 B CN102458720 B CN 102458720B
Authority
CN
China
Prior art keywords
nano
alloy
millbase
alloy particle
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080030255.2A
Other languages
English (en)
Other versions
CN102458720A (zh
Inventor
黎丁巴
马克·N·奥布罗瓦茨
罗伯特·Y·库贝
詹姆斯·R·兰代茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN102458720A publication Critical patent/CN102458720A/zh
Application granted granted Critical
Publication of CN102458720B publication Critical patent/CN102458720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/10Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with one or a few disintegrating members arranged in the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种制备纳米结构化的合金粒子的方法,所述方法包括将研磨基料在含有研磨介质的砾磨机中进行研磨。所述研磨基料包含:(i)硅,和(ii)碳或过渡金属中的至少一者,且其中所述纳米结构化的合金粒子基本上不含尺寸大于50纳米的晶畴。本发明还公开了一种制备用于锂离子电池的包含纳米结构化的合金粒子的负极组合物的方法。

Description

低能研磨方法、低结晶度合金和负极组合物
关于联邦资助研究或开发的声明
本发明是利用能源部授予的合同号DE-EE0000650下的政府支持作出的。政府拥有本发明的某些权利。
技术领域
本发明广义地涉及粉末研磨技术,由此形成的合金,以及这种合金作为锂离子电池的电极组合物的用途。
背景技术
砾磨机是以在水平轴上旋转的圆柱形或锥形容器为特征的一类球磨机。砾磨机可具有钢内壁,但通常衬有陶瓷、橡胶、塑料或其他材料。砾磨机与通常为钢或陶瓷的研磨介质结合使用,尽管可使用其他研磨介质。
砾磨机可为圆柱形罐的形式,装料是从该罐的一端上的可密封口进行。在研磨过程中,通常将较小的砾磨机置于用动力推动的辊组上。较大的砾磨机通常由圆柱形容器组成,所述圆柱形容器沿其纵向轴线水平安装在销上,并通过轴、齿轮或运动带驱动。这种砾磨机常常还包括包封所述研磨容器的固定覆盖物。该覆盖物使得可以在容器旋转的同时进行磨机的卸料。砾磨机容器有时具有双壁以使得可以对研磨容器进行水冷却、具有提升器以防止容器内壁上的介质的滑动和/或具有口以使得可以在操作过程中进行气体吹扫。
砾磨机常用于将粉末磨削至细小粒度,或将粉末或颜料分散在溶剂中。在常规干磨削操作中,通常用研磨介质和待磨削的粉末(通常称为研磨基料(millbase))的混合物将砾磨机填充至其体积的一半。研磨介质通常为三类:球形、圆柱形或不规则。在球形研磨介质的情况中,研磨介质与研磨基料的体积比通常为30:20。设定容器的旋转速度使得容器内的介质形成连续泻流(cascade),泻流角相对于水平面在45-60°范围内。这些条件被广泛使用,因为它们对于粉末的有效研磨是最佳的。在更高旋转速度下,介质趋于在容器内射向空中,从而形成奔流(cataract)。在甚至更高的旋转速度下,介质可因离心力而变得压在容器的侧面。介质变得压在容器侧面时的理论旋转速度(单位为转/分钟(rpm))称为磨机的临界速度,由下式给出:
rpm临界=54.2/R0.5
其中R为研磨容器的内半径(单位英尺)。
发明内容
在一方面,本发明提供一种制备纳米结构化的合金粒子的方法,所述方法包括:将研磨基料在含有研磨介质的砾磨机中进行研磨以提供纳米结构化的合金粒子,其中所述研磨基料包含:(i)硅,和(ii)碳或过渡金属中的至少一者,且其中所述纳米结构化的合金粒子基本上不含尺寸大于50纳米的晶畴。
在另一方面,本发明提供一种制备用于锂离子电池的负极组合物的方法,所述方法包括:
(a)通过包括将研磨基料在含有研磨介质的砾磨机中进行研磨的方法来制备纳米结构化的合金粒子,所述研磨基料包含:
(i)硅;和
(ii)碳或过渡金属中的至少一者,其中所述纳米结构化的合金粒子基本上不含尺寸大于50纳米的晶畴;以及
(b)将所述纳米结构化的合金粒子分散于聚合物粘合剂中以提供负极组合物。
在一些实施例中,研磨介质与研磨基料的体积比大于1.5:1。在一些实施例中,研磨介质与研磨基料的体积比大于5:1。在一些实施例中,纳米结构化的合金粒子为无定形的。在一些实施例中,砾磨机与组合的研磨介质和研磨基料的体积比为2:1或更小。在一些实施例中,砾磨机具有理论临界速度,且其中砾磨机具有在理论临界速度的50%至120%范围内的旋转速度。在一些实施例中,砾磨机具有在0.01至0.3焦耳范围内的最大冲击能。在一些实施例中,砾磨机具有带有温度的安全壳壁(containment wall),其中所述温度保持在100摄氏度或100摄氏度以下。在一些实施例中,砾磨机具有钢内壁。在一些实施例中,砾磨机具有陶瓷的或内衬陶瓷的安全壳壁。
在一些实施例中,纳米结构化的合金粒子包含硅、锡和过渡金属。在一些实施例中,研磨基料包含硅铁。在一些实施例中,(ii)包含碳。在一些实施例中,砾磨机还含有研磨助剂,所述研磨助剂包含饱和高级脂肪酸或其盐。在一些实施例中,研磨助剂包含硬脂酸。在一些实施例中,纳米结构化的合金粒子适合于用作锂离子电池中的负极组合物的活性材料。在一些实施例中,纳米结构化的合金粒子包含至少10、20、30、40、50、60或甚至70重量%的硅或更多。
有利地,本申请人已发现根据本发明的研磨方法能制得基本上不含尺寸超过50纳米的晶区的纳米结构化的合金粒子。例如,纳米结构化的合金粒子可具有小于1重量%、小于0.5重量%或甚至小于0.1重量%的尺寸超过50纳米的晶区。
此外,所述研磨方法可易于放大至商业生产水平。相反,目前所用的技术(例如高冲击磨机)倾向于形成较大晶区和/或难以放大以制备商业上有用数量的纳米结构化的合金粒子。对于在锂离子电池的负极中的用途而言,纳米结构化的合金粒子应为无定形的,或至少基本上不含尺寸超过50纳米的晶区,因为具有这种晶区的材料通常不适合于进行反复的锂化/脱锂化。
在一些实施例中,本申请人还发现使用具有内衬陶瓷的内壁的砾磨机而不是相应的内衬金属的砾磨机,能基本上消除会降低内衬金属的砾磨机的效率的结块问题。
本发明中所用的:
术语“合金”指具有一个或多个金属相并包含两种或更多种金属元素的物质;
术语“金属化合物”指包含至少一种金属元素的化合物;
术语“合金化”指形成合金的过程;
应用于材料的术语“无定形”意指该材料不含如x射线衍射所观察到的结晶材料特征性的长程原子秩序;
术语“脱锂化”指从电极材料去除锂的过程;
术语“电化学活性”指能在锂离子电池的充电和放电过程中通常遇到的条件下与锂可逆反应的材料;
术语“金属元素”指所有元素金属(包括锡)、硅和碳;
术语“磨机”指用于将材料合金化、磨削、研磨、粉碎或以其他方式破碎成小粒子的装置(例子包括砾磨机、喷磨机、球磨机、棒磨机和碾磨机);
术语“研磨”指将材料置于磨机中并运行磨机以对该材料进行合金化或将该材料磨削、粉碎或破碎成小粒子或更小粒子的过程;且
术语“纳米结构化的合金”指基本上不含尺寸大于50纳米的晶畴的合金;
术语“负极”指在放电过程中发生电化学氧化和脱锂化的锂离子电池的电极(通常称为阳极);且
短语“正极”指在放电过程中发生电化学还原和锂化的电极(通常称为阴极)。
具体实施方式
砾磨机是粉末加工领域公知的。它们可广泛地商购自多个制造商。无论是通常圆柱形的、通常锥形的或某种其他形状的,可用的砾磨机可相对较小(例如具有6英寸(15cm)或更小的最大内径),或者它们可具有较大的最大内径(例如高达6英尺(2m)或更大)。有利地,本发明的方法完全适用于整个尺寸范围,从而使得它可用于商业规模生产。砾磨机可例如具有钢壁或内衬有陶瓷材料。如本领域常见的,砾磨机可为双壁型,其中冷却介质(例如水)可在壁之间循环,从而调节内壁的温度。例如,内(安全壳)壁的温度可保持在100℃或更低。
在正常操作中,砾磨机通常具有理论临界速度,在该速度下,砾磨机中所含的研磨介质在理论上会因离心力而压在壁上,从而研磨效率显著下降。然而,在至少一些情况中,本申请人已出乎意料地发现接近理论临界速度或在理论临界速度以上的研磨速度可产生纳米结构化的合金。尽管实验条件一定程度地取决于砾磨机的设计而变化,但发现在临界速度的50%至120%范围内的旋转速度通常适于制备无定形的或至少基本上不含尺寸大于50纳米的晶畴的纳米结构化的合金粒子。
在这些条件下,砾磨机中所含的研磨介质的最大冲击能通常不足以引起纳米结构化的合金粒子的显著结晶。例如,在对研磨基料的研磨过程中,最大冲击能(无论其为理论的和/或实际的)可通常为在0.01至0.3焦耳范围内而不引起纳米结构化的合金粒子的显著结晶。
可用的研磨介质可易于得自商业来源,并包括钢、玻璃和陶瓷介质,然后也可使用其他研磨介质。研磨介质可具有球、棒、不规则形体和它们的组合的形式。研磨介质的例子包括铬钢球、陶瓷球、陶瓷圆柱体、长钢条、短钢条和它们的组合。
在一些实施例中,研磨基料包含多种类型的具有不同组成的粒子。例如,研磨基料可包含硅粒子、锡粒子、碳粒子和过渡金属粒子。在一些实施例中,研磨基料包含硅粒子、锡粒子、碳粒子和/或过渡金属粒子的一种或多种合金。合金的例子包括硅铁和包括一种或多种过渡金属(包括稀土金属)的合金,所述过渡金属例如Fe、Ti、Y、V、Cu、Zr、Zn、Co、Mn、Mo和Ni;例如混合稀土金属。
无论研磨基料的组成如何,如果旨在在锂离子电池中的负极组合物中使用纳米结构化的合金粒子,则通常应调节比例以使得所得负极组合物为电化学活性的,如电池领域所公知。
研磨基料还可包含研磨助剂。研磨助剂的例子包括一种或多种饱和高级脂肪酸(例如硬脂酸、月桂酸和棕榈酸)及其盐;烃(如矿物油、十二烷、聚乙烯粉末)。一般地,任何任选的研磨助剂的量为研磨基料的5重量%以下,通常1重量%以下。
如果需要,固体研磨基料成分可作为粉末获得,或者可在将它们置于砾磨机中之前先从锭或块体碎成粉末。在一些情况中,锭或块体可在砾磨机中直接使用,在此情况中锭或块体在研磨过程中破碎。纯元素可用作研磨基料的组分,或者纯元素中的一种或多种可被预成型的合金取代;例如,如在2009年5月14日提交的名称为“METHOD OFMAKING AN ALLOY”(制备合金的方法)的美国专利申请号12/465,865中所概述。
可使用研磨基料与研磨介质的任何相对量,但通常大于1.5:1或甚至大于5:1的研磨介质与研磨基料体积比能提供相对较高的生产率和质量。
可使用砾磨机封闭体积与研磨介质和研磨基料的任何体积比。通常,当砾磨机的封闭体积除以组合的研磨介质和研磨基料在2:1或更低的范围内时,获得基本上不含尺寸超过50纳米的晶区的纳米结构化的合金粒子。
通常,研磨应在受控氧气环境中进行,例如在惰性气体(例如氮气、氦气和/或氩气)环境中进行。
示例性的纳米结构化的合金包括硅合金,其中活性材料包含约50至约85摩尔%的硅、约5至约25摩尔%的铁、约0至约12摩尔%的钛和约0至约12摩尔%的碳。可用的硅合金的更多例子包括包含硅、铜和银或银合金的组合物,如美国专利申请公布号2006/0046144 A1(Obrovac等人)中讨论的那些;多相含硅电极,如美国专利No.7,498,100(Christensen等人)中讨论的那些;含有锡、铟和镧系、锕系元素或钇的硅合金,如美国专利申请公布号2007/0020521 A1(Obrovac等人)、2007/0020522 A1(Obrovac等人)中描述的那些;和具有高硅含量的无定形合金,如美国专利申请公布号2007/0128517A1(Christensen等人)中讨论的那些;和硅-锡-金属-碳化物合金,如美国专利申请公布号2007/0148544 A1(Le)中描述的那些。
可使用电池领域公知的技术将根据本发明制得的纳米结构化的合金粒子分散于聚合物粘合剂中,以形成负极组合物和/或正极组合物。示例性的聚合物粘合剂包括含氧酸及它们的盐,如羧甲基纤维素钠、聚丙烯酸和聚丙烯酸锂。聚合物粘合剂的其他例子包括聚烯烃(如由乙烯、丙烯或丁烯单体制得的那些);氟化聚烯烃(如由偏二氟乙烯单体制得的那些);全氟化聚烯烃(如由六氟丙烯单体制得的那些);全氟化聚(烷基乙烯基醚);全氟化聚(烷氧基乙烯基醚);或它们的组合。其他聚合物粘合剂包括聚酰亚胺,如芳族、脂族或脂环族聚酰亚胺和聚丙烯酸酯。
聚合物粘合剂可以是交联的。交联可改进粘合剂的机械性质,并可改进活性材料组合物与任何可能存在的导电稀释剂之间的接触。
电极组合物可含有如本领域技术人员熟知的添加剂。例如,电极组合物可包含导电稀释剂,以有利于电子从粉末状材料转移至集电器。导电稀释剂包括(但不限于)碳(例如用于负极的炭黑以及用于正极的炭黑、片状石墨等)、金属、金属氮化物、金属碳化物、金属硅化物(metal suicides)和金属硼化物。代表性的导电碳稀释剂包括炭黑,例如SUPER P和SUPER S炭黑(均得自MMM Carbon,比利时)、SHAWANIGAN BLACK(Chevron Chemical Co.,Houston,TX)、乙炔黑、炉黑、灯黑、石墨、碳纤维以及它们的组合。
可用的电极组合物也可包含充当活性材料的石墨。石墨为活性负极材料,并另外可用于在压延过程中减小电极的孔隙率。可用的石墨的例子为MAG-E(Hitachi Chemical Co.Ltd.,日本东京)和SLP30和SFG-44(两者均来自TIMCAL Ltd.,瑞士Bodio)。
可用的电极组合物可包含能促进粉末材料或导电稀释剂粘附至粘合剂的增粘剂。
可用的电极组合物可包含能促进电极成分在涂布溶剂中的分散的表面活性剂。
为了制备负极,将任选含有涂布粘度调节剂(如羧甲基纤维素)和本领域技术人员已知的其他添加剂的负极组合物在合适的涂布溶剂(如水、乙醇、甲醇、异丙醇、正丙醇或N-甲基吡咯烷酮)中混合,以形成涂布分散体或涂布混合物。将分散体充分混合,然后通过任何适当的分散体涂布技术(例如刮涂、凹棒涂覆、狭缝式模具涂布、浸涂、喷涂、电喷涂或凹版印刷涂覆)将分散体施加至金属箔集电器。
集电器通常为导电金属的薄片,例如铜、不锈钢或镍箔。在将浆料涂布至集电器箔上之后,让其干燥,随后通常在加热烘箱(通常设定在约80℃至约300℃下)中干燥约1小时以去除溶剂。负极可通过在两个板或辊之间压制而进行压缩,如本领域技术人员已知。电极也可设置有凸起图案,如美国专利申请公布号2008/0248386 A1(Obrovac等人)中所公开。
正极可以类似于负极的方式形成,例如由涂布于铝集电器上的正极组合物形成。示例性的正极组合物可包含聚合物粘合剂和锂过渡金属氧化物,如LiV3O8、LiV2O5、LiCo0.2Ni0.8O2、LiNiO2、LiFePO4、LiMnPO4、LiCoPO4、LiMn2O4、LiCoO2;包含混合金属氧化物(例如钴、锰和镍中的两种或三种)的组合物。
将正极和负极与电解质组合以形成锂离子电池。制造锂离子电池的方法会是电池领域普通技术人员公知的。在电池中,电解质与正极组合物和负极组合物两者接触,而正极与负极不彼此物理接触;通常,正极和负极通过夹在电极之间的聚合物隔膜而分隔。
电解质可为液体、固体或凝胶。固体电解质的例子包括聚合物电解质,如聚环氧乙烷、聚四氟乙烯、含氟共聚物和它们的组合。液体电解质的例子包括碳酸亚乙酯、碳酸1-氟亚乙酯(1-fluoroethylenecarbonate)、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸乙烯酯、碳酸丙烯酯和它们的组合。电解质具有锂电解质盐。合适的锂电解质盐的例子包括LiPF6、LiBF4、LiClO4、双(乙二酸)硼酸锂、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiAsF6、LiC(CF3SO2)3和它们的组合。
通过以下非限制性实例进一步说明本发明的目的和优点,但这些实例中所述的具体材料及其用量,以及其他条件和细节不应视为对本发明进行不当限定。
实施例
除非另外指明,否则在实例和说明书的其余部分中的所有份数、百分比、比率等都是以重量计。
以下缩写用于全部实例中。
X射线测量
使用配备了铜靶X射线管及衍射光束单色器的Siemens ModelKristalloflex 805D500衍射仪收集X射线衍射图谱。使用20至60度的散射角以步长0.05度[2θ]收集X射线衍射图谱。使用Scherrer公式由x射线衍射峰的宽度计算晶畴尺寸。
比较例A
将SiFeTi1合金粉末(957.444g)和42.556g Graphite1加入磨机(Simoloyer,CM20-20lm型,可得自Zoz GmbH,Maltoz-Strasse,Wenden,德国)的20升腔室。将直径为0.476cm(0.1875英寸)的25kg铬钢球加入腔室。在650转/分钟(rpm)的腔室旋转下在氩气氛中进行研磨1小时。该过程被认为是高能量球磨过程。在研磨之后,制得含有约66.4摩尔%的硅、11.2摩尔%的铁、11.2摩尔%的钛和11.2摩尔%的碳的Si/Fe/Ti/C合金粉末,为粉末A。
原料的X射线衍射图谱含有石墨、结晶Si、结晶FeSi2和结晶FeTiSi2的特征性的峰。粉末A的X射线衍射图谱含有纳米晶FeTiSi2和纳米晶Si的特征性的峰。FeTiSi2晶粒和Si晶粒的晶粒度分别测定为约12nm和19nm。
实例1
将SiFeTi1合金粉末(95.94g)和4.26g Graphite1置于钢砾磨机(611型,Jar尺寸1,可得自U.S.Stoneware,Youngstown,OH)的5升钢腔室中。该腔室为圆柱形,内径为约18.8cm(7.4英寸),长度为约17.1cm(6.75英寸)。除了该大晶粒合金粉末之外,将10kg 1.27cm(0.5英寸)直径的铬钢球、一个23.2cm(9.125英寸)长×1.27cm(0.5英寸)直径的圆柱形钢棒和两个21.5cm(8.625英寸)长×1.27cm(0.5英寸)直径的圆柱形钢棒加入腔室。用N2吹扫腔室,在85rpm(转/分钟)下进行研磨6天。在研磨之后,制得含有约66.4摩尔%的硅、11.2摩尔%的铁、11.2摩尔%的钛和11.2摩尔%的碳的Si/Fe/Ti/C合金粉末,为粉末1。上述研磨过程被认为是低能量球磨过程(LEBM)。该过程将在其他实例中提及。
粉末1的X射线衍射图谱显示晶粒度为约9nm的纳米结构化的FeTiSi2的特征性的峰。粉末1的X射线图谱未显示Si的特征性的峰,表明粉末1中的Si相为无定形的。
实例2
通过电弧熔融120.277克(g)Si1和79.723g Fe1而制得大晶粒SiFe合金。将含有约75摩尔%的硅和25摩尔%的铁的Si75Fe25合金锭块压碎并使尺寸小于150微米,并按照实例1中所述的程序进行研磨。在研磨之后,制得含有约75摩尔%的硅和25摩尔%的铁的Si/Fe合金粉末,为粉末2。起始的Si75Fe25合金锭块的X射线衍射图谱显示结晶Si相和FeSi2相的特征性的峰。粉末2的X射线衍射图谱显示晶粒度小于50nm的纳米晶FeSi2的特征性的峰。粉末2的X射线衍射图谱不含来自Si的峰,表明粉末2中的Si相为无定形的。
实例3
通过电弧熔融90.155g Si1、57.159g Fe1、33.130g Sn2和19.556gMm1制得大晶粒Si69Fe22Sn6Mm3。将合金锭块压碎并使尺寸小于500微米。使用实例1中所述的程序研磨所得粉末(90g),制得含有约69摩尔%的硅、22摩尔%的铁、6摩尔%的锡和3摩尔%的Mm的Si/Fe/Sn/Mm合金粉末,为粉末3。合金锭块原料的X射线衍射图谱显示结晶Si相、结晶Sn相和结晶CeSi2相的特征性的峰。粉末3的X射线衍射图谱显示晶粒度小于50nm的纳米晶CeSi2的特征性的峰。粉末3的X射线衍射图谱不含来自Si或Sn的峰,表明这些相为无定形的。
实例4
通过电弧熔融130.70g Si1和69.30g Fe1制得大晶粒Si75Fe20。将合金锭块压碎并使尺寸小于150微米。使用实例1中所述的程序同时研磨所得粉末(98.27g)和1.73g Graphite1,得到含有约75摩尔%的硅、20摩尔%的铁和5摩尔%的碳的Si/Fe/C合金粉末,为粉末4。起始合金锭块的X射线衍射图谱含有结晶Si相和FeSi2相的特征性的峰。粉末4的X射线衍射图谱含有晶粒度小于50nm的纳米晶FeSi2的特征性的峰。根据化学计量学,此合金还含有Si相和SiC相,然而,粉末4的X射线衍射图谱不含来自Si或SiC的峰,表明这些相为无定形的。
实例5
通过电弧熔融121.64g Si1和78.38g Fe1制得大晶粒Si71Fe23。通过电弧熔融242.86g Sn2和57.14g Fe1制得大晶粒度Sn2Fe。然后在氩气中在490℃下将Sn2Fe锭块退火48小时。将合金锭块压碎并使尺寸小于500微米。使用实例1中所述的程序同时研磨Si71Fe23(110.27g)和19.73g Sn2Fe,得到含有约71摩尔%的硅、25摩尔%的铁和4摩尔%的锡的Si/Fe/Sn合金粉末,为粉末5。起始Si71Fe23合金锭块的X射线衍射图谱含有结晶Si相和FeSi2相的特征性的峰。起始Sn2Fe合金锭块的X射线衍射图谱含有结晶Sn相和Sn2Fe相的特征性的峰。粉末5的X射线衍射图谱含有晶粒度小于50nm的纳米晶FeSi2的特征性的峰。粉末5的X射线衍射图谱不含来自Si或Sn的峰,表明这些相为无定形的。
比较例B
重复实例5的程序,例外的是容器在10rpm而不是85rpm下旋转,且研磨时间为12天而不是6天,得到含有71摩尔%的硅、25摩尔%的铁和4摩尔%的锡的Si/Fe/Sn合金粉末,为粉末B。起始Si71Fe23合金锭块的X射线衍射图谱含有结晶Si相和FeSi2相的特征性的峰。起始Sn2Fe合金锭块的X射线衍射图谱含有结晶Sn相和Sn2Fe相的特征性的峰。粉末B的X射线衍射图谱含有来自Si和Sn的峰,表明这些相为晶粒度为195nm(Si相)和58nm(Sn相)的结晶体。这与其中Si相和Sn相均为无定形的粉末5(参见实例5)相反。
实例6
使用实例1中所述的程序研磨FerroSi75(46.21g)、69.06g FerroSi50和15.97g Sn1,得到含有约71摩尔%的硅、25摩尔%的铁和4摩尔%的锡的Si/Fe/Sn合金粉末,为粉末6。粉末6的X射线衍射图谱显示晶粒度小于50nm的纳米晶FeSi2的特征性的峰。粉末6的X射线衍射图谱不含来自Si和Sn的峰,表明粉末6中的Si相和Sn相为无定形的。
实例7
使用实例1中所述的程序研磨FerroSi75(64.29g)、42.77gFerroSi50、16.14g Sn1和8.14g Ti1,例外的是研磨时间为13天。在研磨之后,获得含有约71摩尔%的硅、20摩尔%的铁、4%的锡和5%的钛的Si/Fe/Sn/Ti合金粉末,为粉末7。粉末7的X射线衍射图谱显示晶粒度小于50nm的纳米晶FeSi2的特征性的峰。粉末7的X射线衍射图谱不含来自Si、Sn和TiSi2(和/或FeTiSi2)的峰,表明Si相、Sn相和TiSi2相(和/或FeTiSi2相)为无定形的。
制备合金电极、电池组件和电池测试的程序
使用四个1.27cm(0.5英寸)碳化钨球在45毫升不锈钢容器中混合合金粉末(1.84g)和1.6g PAA-Li。在来自德国Fritsch的PlanetaryMicro Mill Pulverisette 7中在速度2下进行混合1小时。使用间隙模头(gap die)(通常3密耳间隙)将所得溶液手动铺展至10微米厚的Cu箔上。然后在真空烘箱中在120℃下干燥样品1-2小时,从而制得合金电极膜。然后从该合金电极膜冲压出直径为16mm的圆形物,并将其用作电池的电极(如下)。
使用2325纽扣电池制得一半硬币电池。在进行组装和电池制备之前在具有-70℃露点的干燥腔室中干燥所有组件。由如下组件并以如下顺序由下至上地构造电池:电池底部/Cu垫片/Li金属膜/电池扣眼(cellgrommet)/隔板/合金电极/Cu垫片/电池顶部。每个电池由如下组件组成:2325纽扣电池硬件、20毫米(mm)直径×0.762mm(30密耳)厚的Cu垫片的盘、16mm直径的合金电极的盘、20mm直径的微孔隔板(CELGARD 2400p,可得自Separation Products,Hoechst Celanese Corp.,Charlotte,North Carolina)、18mm直径×0.38mm厚的Li金属膜的盘(锂带,可得自Aldrich Chemical Co.,Milwaukee,WI)和20mm直径×0.762mm(30密耳)的铜垫片的盘。电解质为含有90重量%的EC/DEC溶液(2/1,以体积计)和10重量%的FEC的溶液,并具有1M浓度的用作导电盐的LiPF6。在加入LiPF6之前,用分子筛(3A型)干燥溶剂溶液12小时。该电池填充有100微升电解质溶液。在测试之前将电池进行压褶密封(crimp-sealed)。
使电池以100mA/g合金的比速率自0.005V至0.90V进行循环,在第一循环的放电(合金的锂化)结束时缓慢降至10mA/g。此后,使电池在相同电压范围内,但在200mA/g合金且在放电结束时缓慢降至20mA/g合金下进行循环。在每半个循环结束时让电池在开路下静止15min。
实例8
使用粉末1根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例9
使用粉末2根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例10
使用粉末4根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例11
使用粉末5根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例12
使用粉末6根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例13
使用粉末7根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例14
将FerroSi75(261.24g)、390.47g FerroSi50、90.29g Sn1和2.23g硬脂酸(作为研磨助剂)置于陶瓷砾磨机(3.9-Gal Porcelain Jar,可得自Paul Abbe,Bensenville,IL)的腔室中。该腔室为圆柱形,内径为30.5cm(12英寸),长度为约25.4cm(10英寸)。除了大晶粒合金粉末和硬脂酸之外,将37.1kg 1.27cm(0.5英寸)直径的铬钢球加入腔室。用N2吹扫腔室,在77rpm(转/分钟)下进行研磨120小时。在研磨之后,制得含有约71摩尔%的硅、4摩尔%的锡和25摩尔%的铁的Si/Sn/Fe合金粉末,为粉末14。
粉末14的X射线衍射图谱显示晶粒度小于50nm的纳米晶FeSi2的特征性的峰。粉末14的X射线衍射图谱不含来自Si和Sn的峰,表明粉末14中的Si相和Sn相为无定形的。
实例15
重复实例14的程序,例外的是使用0.742g硬脂酸锂(作为研磨助剂)而不是硬脂酸,且研磨时间为140小时(而不是120小时)。在研磨之后,制得含有约71摩尔%的硅、4摩尔%的锡和25摩尔%的铁的Si/Sn/Fe合金粉末,为粉末15。
粉末15的X射线衍射图谱显示晶粒度小于50nm的纳米晶FeSi2的特征性的峰。粉末15的X射线衍射图谱不含来自Si和Sn的峰,表明粉末15中的Si相和Sn相为无定形的。
实例16
将FerroSi75(3.838kg)、5.736kg FerroSi50、1.326kg Sn1和0.109kg硬脂酸(作为研磨助剂)置于内衬陶瓷的砾磨机(内衬60-Gal陶瓷的砾磨机,8B型,可得自Paul Abbe,Bensenville,IL)的腔室。该腔室为圆柱形,内径为73.7cm(29英寸)。除了大晶粒合金粉末和硬脂酸之外,将545kg 1.27cm(0.5英寸)直径的铬钢球加入腔室。在密封之前用N2吹扫腔室,在48rpm下进行研磨96小时。在研磨过程中,通过使自来水流过磨机的双壁来冷却磨机。在研磨之后,制得含有约71摩尔%的硅、4摩尔%的锡和25摩尔%的铁的Si/Sn/Fe合金粉末,为粉末16。
粉末16的X射线衍射图谱显示晶粒度小于50nm的纳米晶FeSi2和晶粒度小于50nm的新FeSi2相(低温相)的特征性的峰。粉末16的X射线衍射图谱不含来自Si和Sn的峰,表明粉末16中的Si相和Sn相为无定形的。
实例17
使用粉末14根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1中。
实例18
使用粉末15根据“制备合金电极、电池组件和电池测试的程序”制备和测试合金电极膜和三个硬币电池。结果记录于表1(如下)中。
表1
在表1(如上)中,效率=循环50的容量/循环2的容量。
表1显示如上制得的合金粉末在制成电极并进一步制成电池时在许多循环下显示稳定的容量,使得它们适合用作电池应用(包括可充电锂离子电池应用)中的活性阳极材料。
本申请所提及的所有专利和出版物据此全文以引用方式并入。除非另外指明,本文给出的所有实例被认为是非限定性的。在不脱离本发明的范围和精神实质的条件下,本领域技术人员可对本发明进行各种修改和更改,并且应当理解,本发明不应当不当地受限于本文所述的示例性实施例。

Claims (14)

1.一种制备纳米结构化的合金粒子的方法,所述方法包括:将研磨基料在含有研磨介质的砾磨机中进行研磨以提供所述纳米结构化的合金粒子,其中所述研磨基料包含:(i)结晶硅,和(ii)碳或过渡金属中的至少一者,其中所述纳米结构化的合金粒子基本上不含尺寸大于50纳米的晶畴,和其中所述砾磨机具有理论临界速度,且其中所述砾磨机具有在所述理论临界速度的50%至120%范围内的旋转速度。
2.根据权利要求1所述的方法,其中所述纳米结构化的合金粒子包含50至85摩尔%的硅,5至25摩尔%的铁,0至12摩尔%的钛和0至12摩尔%的碳。
3.一种制备用于锂离子电池的负极组合物的方法,所述方法包括:
(a)通过包括将研磨基料在含有研磨介质的砾磨机中进行研磨的方法来制备纳米结构化的合金粒子,所述研磨基料包含:
(i)结晶硅;和
(ii)碳或过渡金属中的至少一者,其中所述纳米结构化的合金粒子基本上不含尺寸大于50纳米的晶畴;以及
(b)将所述纳米结构化的合金粒子分散于聚合物粘合剂中以提供所述负极组合物,
其中所述砾磨机具有理论临界速度,且其中所述砾磨机具有在所述理论临界速度的50%至120%范围内的旋转速度。
4.根据权利要求1或3所述的方法,其中所述研磨介质与所述研磨基料的体积比大于5:1。
5.根据权利要求1或3所述的方法,其中所述纳米结构化的合金粒子为无定形的。
6.根据权利要求1或3所述的方法,其中所述砾磨机与组合的所述研磨介质和所述研磨基料的体积比为2:1或更小。
7.根据权利要求1或3所述的方法,其中所述研磨介质具有在0.01至0.3焦耳范围内的最大冲击能。
8.根据权利要求1或3所述的方法,其中所述砾磨机具有带有温度的安全壳壁,且其中所述温度保持在100摄氏度或低于100摄氏度。
9.根据权利要求1或3所述的方法,其中所述纳米结构化的合金粒子包含硅、锡和过渡金属。
10.根据权利要求1或3所述的方法,其中所述研磨基料包含硅铁。
11.根据权利要求1或3所述的方法,其中(ii)包含碳。
12.根据权利要求1或3所述的方法,所述砾磨机还含有研磨助剂,所述研磨助剂包含饱和高级脂肪酸或其盐。
13.根据权利要求12所述的方法,其中所述研磨助剂包含硬脂酸。
14.根据权利要求1或3所述的方法,其中所述纳米结构化的合金粒子适合于用作锂离子电池中的负极组合物中的活性材料。
CN201080030255.2A 2009-05-14 2010-05-07 低能研磨方法、低结晶度合金和负极组合物 Active CN102458720B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/465,852 US8287772B2 (en) 2009-05-14 2009-05-14 Low energy milling method, low crystallinity alloy, and negative electrode composition
US12/465,852 2009-05-14
PCT/US2010/033955 WO2010132279A1 (en) 2009-05-14 2010-05-07 Low energy milling method, low crystallinity alloy, and negative electrode composition

Publications (2)

Publication Number Publication Date
CN102458720A CN102458720A (zh) 2012-05-16
CN102458720B true CN102458720B (zh) 2015-07-15

Family

ID=42271890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080030255.2A Active CN102458720B (zh) 2009-05-14 2010-05-07 低能研磨方法、低结晶度合金和负极组合物

Country Status (7)

Country Link
US (1) US8287772B2 (zh)
EP (1) EP2429744B1 (zh)
JP (1) JP6230232B2 (zh)
KR (2) KR20120026536A (zh)
CN (1) CN102458720B (zh)
PL (1) PL2429744T3 (zh)
WO (1) WO2010132279A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287772B2 (en) 2009-05-14 2012-10-16 3M Innovative Properties Company Low energy milling method, low crystallinity alloy, and negative electrode composition
US8257864B2 (en) * 2009-06-29 2012-09-04 3M Innovative Properties Company Method of making tin-based alloys for negative electrode compositions
US9373839B2 (en) * 2011-12-13 2016-06-21 Samsung Sdi Co., Ltd. Negative electrode active material and secondary battery including the same
JP6322362B2 (ja) * 2012-02-01 2018-05-09 山陽特殊製鋼株式会社 Si系合金負極材料
WO2013155397A1 (en) * 2012-04-12 2013-10-17 Actacell Energy Systems, Inc. Low crystallinity silicon composite anode material for lithium ion battery
US9947925B2 (en) * 2012-05-11 2018-04-17 Santoku Corporation Negative electrode for lithium-ion secondary battery
US9093705B2 (en) 2013-03-15 2015-07-28 GM Global Technology Operations LLC Porous, amorphous lithium storage materials and a method for making the same
KR20160016893A (ko) * 2013-05-30 2016-02-15 쓰리엠 이노베이티브 프로퍼티즈 컴파니 전극 조성물, 전기화학 전지 및 전기화학 전지의 제조방법
WO2015162848A1 (ja) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池
EP3149793A4 (en) 2014-05-29 2017-11-08 3M Innovative Properties Company Anode compositions for rechargeable batteries and methods of making same
CN104084591B (zh) * 2014-07-03 2016-08-17 哈尔滨工业大学 一种制备Ag-Cu-Ti纳米合金焊料的方法
JP6032501B2 (ja) * 2014-07-23 2016-11-30 株式会社Gsユアサ 非水電解質二次電池用電極材料及び非水電解質二次電池
KR102234705B1 (ko) * 2014-09-16 2021-04-01 삼성에스디아이 주식회사 복합음극활물질, 이를 채용한 음극과 리튬전지 및 그 제조방법
WO2016098207A1 (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JPWO2016098213A1 (ja) * 2014-12-17 2017-11-02 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
KR102448293B1 (ko) * 2015-10-02 2022-09-28 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 음극 및 리튬 전지
JP6954911B2 (ja) 2015-12-22 2021-10-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムイオン電池用アノード材料並びにその製造方法及び使用方法
JP6686652B2 (ja) * 2016-04-13 2020-04-22 株式会社豊田自動織機 炭素被覆Si含有負極活物質の製造方法
CN107138731A (zh) * 2017-06-07 2017-09-08 广州艾普纳米科技有限公司 一种纳米金属粉末的制备方法
EP3900082B1 (en) 2018-12-19 2024-04-10 Novonix Battery Technology Solutions Inc. Electrochemically active dispersions and composites for rechargeable battery anodes
KR20220054822A (ko) 2019-08-29 2022-05-03 노보닉스 배터리 테크놀로지 솔루션즈 인크. 개선된 미세과립화 방법 및 이로부터의 생성물 입자
CN116018223A (zh) * 2020-08-31 2023-04-25 松下知识产权经营株式会社 二次电池用负极活性物质及二次电池
WO2022056260A2 (en) * 2020-09-11 2022-03-17 The Regents Of The University Of California Cryogenic milling techniques for fabrication of nanostructured electrodes
CA3152799A1 (en) 2021-04-14 2022-10-14 Novonix Battery Technology Solutions Inc. Method for making low surface area alloy particulate with high silicon content
WO2025038427A1 (en) 2023-08-11 2025-02-20 Trion Energy Solutions Corp. Electrode compositions comprising silicon alloys of aluminum nitride and batteries containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850597A (zh) * 2006-04-28 2006-10-25 中国科学院上海硅酸盐研究所 一种高能球磨制备锂二次电池硅/富锂相复合负极材料的方法
CN1909266A (zh) * 2006-07-13 2007-02-07 上海交通大学 一种锂离子电池用复合负极材料的制备方法
CN101304088A (zh) * 2008-06-27 2008-11-12 三峡大学 球形锂离子电池硅/锡二元储锂母体复合负极材料的制备方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2633303A (en) * 1949-03-04 1953-03-31 Union Machine Company Rotary grinding ball mill
US4048395A (en) 1976-08-18 1977-09-13 Rockwell International Corporation Lithium electrode for electrical energy storage device
DE2961100D1 (en) * 1978-05-30 1982-01-07 Ici Plc Comminution process and products thus obtained
US4443249A (en) * 1982-03-04 1984-04-17 Huntington Alloys Inc. Production of mechanically alloyed powder
US4627959A (en) * 1985-06-18 1986-12-09 Inco Alloys International, Inc. Production of mechanically alloyed powder
JP3359030B2 (ja) * 1988-12-22 2002-12-24 アドバンスト ナノ テクノロジィーズ プロプライエタリ リミテッド 金属類、合金類及びセラミック材料類の製造法
JPH05159780A (ja) 1991-12-02 1993-06-25 Asahi Glass Co Ltd リチウム二次電池
JP3805053B2 (ja) 1997-02-10 2006-08-02 旭化成エレクトロニクス株式会社 リチウム二次電池
JPH10265810A (ja) * 1997-03-25 1998-10-06 Sumitomo Metal Ind Ltd 水素吸蔵合金粉末とその製造方法及びそれからなる電極
JP3277845B2 (ja) 1997-05-12 2002-04-22 住友金属工業株式会社 リチウムイオン2次電池用負極材料の製造方法
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
JP3620703B2 (ja) 1998-09-18 2005-02-16 キヤノン株式会社 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
EP2219253B1 (en) 1998-09-18 2015-06-10 Canon Kabushiki Kaisha Electrode material
JP4045033B2 (ja) 1998-10-07 2008-02-13 三井金属鉱業株式会社 微小スズ粉末の製造方法
JP4461511B2 (ja) * 1999-06-09 2010-05-12 株式会社日立製作所 ディスクアレイ装置及びディスク装置へのデータ読み出し/書き込み方式
US6495291B1 (en) * 1999-08-09 2002-12-17 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2001118575A (ja) 1999-10-18 2001-04-27 Japan Storage Battery Co Ltd リチウム二次電池
JP4126715B2 (ja) 1999-11-22 2008-07-30 ソニー株式会社 負極材料の製造方法および二次電池の製造方法
JP4608743B2 (ja) 2000-07-19 2011-01-12 パナソニック株式会社 非水電解質二次電池
KR100435180B1 (ko) 2001-09-28 2004-06-11 가부시끼가이샤 도시바 비수전해질 전지용 음극 재료, 음극, 비수전해질 전지 및비수전해질 전지용 음극 재료의 제조 방법
JP3624417B2 (ja) 2002-08-07 2005-03-02 ソニー株式会社 負極活物質及びその製造方法、並びに非水電解質電池
JP4344121B2 (ja) 2002-09-06 2009-10-14 パナソニック株式会社 非水電解質二次電池用負極材料と非水電解質二次電池
US20040122708A1 (en) * 2002-12-18 2004-06-24 Avinash Gopal B. Medical data analysis method and apparatus incorporating in vitro test data
US7169328B2 (en) * 2003-01-17 2007-01-30 T/J Technologies, Inc. Multiphase nanocomposite material and method for its manufacture
US7378041B2 (en) 2003-03-26 2008-05-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
EP2302720B1 (en) 2003-03-26 2012-06-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure including the same
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
JP4029291B2 (ja) 2003-09-02 2008-01-09 福田金属箔粉工業株式会社 リチウム二次電池用負極材料及びその製造方法
JP4992128B2 (ja) 2004-06-02 2012-08-08 パイオニクス株式会社 リチウム二次電池用負極活物質粒子および負極の製造方法
US20060046144A1 (en) 2004-09-01 2006-03-02 3M Innovative Properties Company Anode composition for lithium ion battery
TWI306319B (en) 2004-09-30 2009-02-11 Sony Corp Anode active material and battery using the same
JP4051686B2 (ja) 2004-09-30 2008-02-27 ソニー株式会社 負極活物質およびそれを用いた電池
JP5030414B2 (ja) * 2004-11-15 2012-09-19 パナソニック株式会社 非水電解質二次電池
US20060172196A1 (en) 2005-01-11 2006-08-03 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte rechargeable battery and manufacturing method of negative electrode employed therein
JP4984402B2 (ja) 2005-02-28 2012-07-25 パナソニック株式会社 非水電解質二次電池
JP2006344403A (ja) 2005-06-07 2006-12-21 Sony Corp 負極活物質およびそれを用いた電池、ならびに負極活物質の製造方法
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US20070098803A1 (en) * 2005-10-27 2007-05-03 Primet Precision Materials, Inc. Small particle compositions and associated methods
US7662514B2 (en) 2005-11-17 2010-02-16 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
WO2007064531A1 (en) 2005-12-01 2007-06-07 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
JP5061458B2 (ja) 2005-12-19 2012-10-31 パナソニック株式会社 非水電解質二次電池用負極材料及びその製造方法
US7906238B2 (en) * 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US20080248386A1 (en) 2007-04-05 2008-10-09 Obrovac Mark N Electrodes with raised patterns
US8168329B2 (en) * 2007-06-18 2012-05-01 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
JP2010533786A (ja) * 2007-07-18 2010-10-28 アルカン テヒノロギー ウント メーニッジメント アクツィエンゲゼルシャフト 第一相と第二相を有するアルミニウム・ベースの二相系アルミニウム材料及び二相系アルミニウム材料を製造するための方法
US20090035661A1 (en) * 2007-08-01 2009-02-05 Jeffrey Swoyer Synthesis of cathode active materials
US20090111022A1 (en) * 2007-10-24 2009-04-30 3M Innovative Properties Company Electrode compositions and methods
US20100288077A1 (en) * 2009-05-14 2010-11-18 3M Innovative Properties Company Method of making an alloy
US8287772B2 (en) 2009-05-14 2012-10-16 3M Innovative Properties Company Low energy milling method, low crystallinity alloy, and negative electrode composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850597A (zh) * 2006-04-28 2006-10-25 中国科学院上海硅酸盐研究所 一种高能球磨制备锂二次电池硅/富锂相复合负极材料的方法
CN1909266A (zh) * 2006-07-13 2007-02-07 上海交通大学 一种锂离子电池用复合负极材料的制备方法
CN101304088A (zh) * 2008-06-27 2008-11-12 三峡大学 球形锂离子电池硅/锡二元储锂母体复合负极材料的制备方法

Also Published As

Publication number Publication date
JP2012526920A (ja) 2012-11-01
WO2010132279A1 (en) 2010-11-18
EP2429744A1 (en) 2012-03-21
KR20170036135A (ko) 2017-03-31
CN102458720A (zh) 2012-05-16
US20100288982A1 (en) 2010-11-18
KR20120026536A (ko) 2012-03-19
PL2429744T3 (pl) 2020-07-27
JP6230232B2 (ja) 2017-11-15
US8287772B2 (en) 2012-10-16
EP2429744B1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
CN102458720B (zh) 低能研磨方法、低结晶度合金和负极组合物
CN102782908B (zh) 复合物负极材料
EP1195827B2 (en) Method for producing cathode active material and method for producing a non-aqueous electrolyte cell
KR100700962B1 (ko) 리튬 2차 전지용 양극 활성 물질 및 그 제조방법
KR101245418B1 (ko) 티타늄 및 조밀 리튬 복합 산화물의 분말상 화합물과, 이화합물의 제조 방법 및 이 혼합물을 포함하는 전극
EP2966712B1 (en) Silicon-containing particle, negative electrode material for use in non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2008106288A1 (en) Electrolytes, electrode compositions and electrochemical cells made therefrom
JP2003173778A (ja) 複合黒鉛質材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料およびリチウムイオン二次電池
US8586240B2 (en) Method of making tin-based alloys for negative electrode compositions
CN107431191A (zh) 用于锂离子电池的阳极材料及其制备和使用方法
JPWO2012133584A1 (ja) 二次電池用正極活物質、二次電池用正極、および二次電池の製造方法
WO2008106280A1 (en) Electrolytes, electrode compositions, and electrochemical cells made therefrom
EP3067969B1 (en) Negative electrode material for secondary battery, and secondary battery using same
JP2013020899A (ja) 二次電池用正極活物質、二次電池用正極、および二次電池の製造方法
JP2022008661A (ja) リチウムイオン電池用アノード材料並びにその製造方法及び使用方法
CN106463714A (zh) 用于可再充电电池的阳极组合物及其制备方法
JP2003171110A (ja) 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
CN119631214A (zh) 制备固体电解质的方法及固体电解质
CN119650686A (zh) 正极材料、正极极片及二次电池
WO2025033290A1 (ja) 電池、負極材料及び積層体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191230

Address after: England Atsushi

Patentee after: Johnson Matthey Public Limited Company

Address before: American Minnesota

Patentee before: 3M Innovation Co., Ltd.