[go: up one dir, main page]

CN102451174A - 原儿茶醛在制备治疗人神经退行性疾病药物中的用途 - Google Patents

原儿茶醛在制备治疗人神经退行性疾病药物中的用途 Download PDF

Info

Publication number
CN102451174A
CN102451174A CN2010105301948A CN201010530194A CN102451174A CN 102451174 A CN102451174 A CN 102451174A CN 2010105301948 A CN2010105301948 A CN 2010105301948A CN 201010530194 A CN201010530194 A CN 201010530194A CN 102451174 A CN102451174 A CN 102451174A
Authority
CN
China
Prior art keywords
protocatechualdehyde
cells
oxidative stress
protein
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105301948A
Other languages
English (en)
Inventor
蒲小平
有贺宽芳
高建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN2010105301948A priority Critical patent/CN102451174A/zh
Publication of CN102451174A publication Critical patent/CN102451174A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了原儿茶醛在制备治疗人神经退行性疾病药物中的用途。本发明首先发现原儿茶醛具有与帕金森病相关蛋白DJ-1相互作用的活性;进一步的实验发现,原儿茶醛具有抗氧化应激、防止氧化应激诱导的SH-SY5Y神经细胞的死亡以及抑制神经细胞内活性氧产生等作用。实验结果表明原儿茶醛对神经细胞的作用是由DJ-1蛋白所介导,具有确切的神经保护作用,可用于预防或治疗包括帕金森病在内的神经退行性疾病。

Description

原儿茶醛在制备治疗人神经退行性疾病药物中的用途
技术领域
本发明涉及原儿茶醛在制备人神经保护药物中的用途,尤其涉及原儿茶醛在预防或治疗由神经细胞氧化应激损伤所诱导的人神经退行性疾病的药物中的用途,属于原儿茶醛的药理用途领域。
背景技术
帕金森病(Parkinson’s disease,PD)是一种常见的神经退行性疾病,其主要的病理特征是中脑黑质致密部多巴胺神经元变性缺失和Lewy小体形成。帕金森病的临床症状主要表现为静止性震颤、运动迟缓、肌肉强直和姿势步态异常等运动症状,此外还可伴发抑郁、人格改变等精神症状。PD的病因和发病机制十分复杂,至今仍未彻底研究清楚,认为是遗传因素、环境毒素、氧化应激增加、兴奋性氨基酸毒性等多种因素共同作用的结果,尽管这些因素可导致不同的病理生理改变,但最终都可导致氧化应激增加,因此氧化应激被认为是PD发病的核心机制。
在60岁以上的人群中PD的发病率约为1%-2%,随着年龄的增长而逐渐增加,且大部分患者为散发病例,少数显性或隐性遗传家族性患者是由于基因突变引起的。目前家族性PD致病基因的鉴定与克隆以及功能研究为阐明PD的发病机制提供了重要线索,也为PD的治疗提供了新的策略。1997年DJ-1首次被报道(Nagakubo D,Taira T,Kitaura H,et al.DJ-1,a novel oncogene which transforms mouseNIH3T3 cells in cooperation with ras.Biochem Biophys Res Commun,1997,231(2):509-13.)是一种癌基因,可与激活的ras协同转化小鼠NIH3T3细胞。2003年Bonifati等(Bonifati V,Rizzu P,van Baren MJ,et al.Mutations in the DJ-1 gene associated with autosomal recessiveearly-onset parkinsonism.Science,2003,299(5604):256-9.)在2个常染色体隐性遗传性早发型帕金森综合征家系中发现了DJ-1基因(PARK7)的两种突变(L166P、第1~5外显子缺失突变),至今已发现了10余种DJ-1基因突变类型。目前研究发现DJ-1有众多功能,包括参与基因转录调节、抗氧化应激、线粒体调节、分子伴侣以及蛋白酶的功能。DJ-1基因突变后导致帕金森病的发病机制主要与DJ-1的抗氧化应激功能相关。DJ-1可通过多种途径发挥抗氧化应激作用,首先,DJ-1可通过自身氧化清除氧自由基发挥作用。DJ-1蛋白序列中共有三个半胱氨酸残基,分别位于46位,53位和106位,其中106位的半胱氨酸对氧化应激非常敏感,可被逐步氧化由Cys-SH转变为Cys-SOH,Cys-SO2H,Cys-SO3H,这一改变使DJ-1等电点向偏酸的方向转移,也说明可通过自身氧化清除氧自由基。但DJ-1蛋白的过氧化可导致蛋白功能的丧失,在帕金森病患者中,DJ-1过氧化状态随着年龄的增长而逐渐增多。其次,DJ-1可转录调控抗氧化应激相关基因。在氧化应激的状态下,DJ-1的亚细胞定位和功能状态发生改变。在氧化应激早期,DJ-1转移到线粒体,主要定位在线粒体外膜,这对于维持线粒体外膜的完整性以及阻止凋亡蛋白引发的凋亡级联反应非常重要。长时间的氧化应激可使DJ-1向细胞核转移,发挥转录调控的功能,诱导抗氧化基因的表达,如Nrf2基因。Nrf2(nuclear factor erythroid 2-related factor),其作用于ARE(antioxidant response element),是细胞抗氧化应激反应时重要的转录调节因子,调节一系列超过200个基因的表达,包括抗氧化基因和解毒酶类,如NADPH quinine oxidoreductase-1(NQO-1),hemeoxygenase-1(HO-1)等。再次DJ-1参与信号转导途径激活细胞生存通路如PI3K\AKT通路等。多种因素如胰岛素、生长因子、细胞因子和细胞应激等可诱导细胞内PI3K向细胞内膜转移。PI3K磷酸化PIP2产生PIP3,同时PTEN可以抑制这一过程使PIP3去磷酸化。PIP3通过磷酸化作用而激活AKT,活化的AKT参与多种细胞生理病理过程,如细胞生存、生长、增殖、葡萄糖摄取、代谢和血管生成等。Aleyasin等研究发现DJ-1在氧化应激条件下可以调节AKT的活化。此外DJ-1可与PTEN结合降低PTEN的活性减弱对PIP3生成的抑制作用,从而刺激AKT的活化。在PD患者中脑多巴胺神经元内发现总AKT和磷酸化AKT水平均较正常组降低,表明PD患者存在AKT信号通路缺陷。DJ-1蛋白对AKT信号通路的调节作用有助于多巴胺能神经元的存活。在体外实验中,过表达野生型DJ-1可保护神经元抵抗氧化应激诱导的细胞损伤。在体内实验中,转染了野生型DJ-1的小鼠对MPTP引起的黑质纹状体的损伤有抵抗作用,使更多的多巴胺能神经元存活。敲除DJ-1基因后增加细胞或动物模型对氧化应激损伤的敏感性。在DJ-1敲除的细胞中,对H2O2,MPP+,6-OHDA等刺激诱导细胞死亡的敏感性增加。在DJ-1敲除的小鼠中,黑质纹状体多巴胺能神经元和纹状体中神经纤维密度和多巴胺的含量正常。但是MPTP处理后多巴胺能神经元的丢失和纹状体的去神经支配增多。然而使DJ-1缺陷的细胞或动物模型恢复过表达DJ-1后,该模型对氧化应激的敏感性也恢复正常。因此细胞内表达一定量的DJ-1蛋白以及DJ-1蛋白维持在正常功能状态对于细胞抵抗氧化应激至关重要。
临床上对帕金森病的治疗主要分为药物治疗和外科手术治疗。常用的药物有复方左旋多巴、多巴胺受体激动剂、多巴胺增效剂和金刚烷胺等,治疗的原则主要为对症治疗以减轻患者运动障碍的症状,提高生活质量为主,至今尚没有明确的起到神经保护作用的药物。左旋多巴制剂仍旧是缓解帕金森病运动症状最有效的药物,然而左旋多巴的长期应用会出现许多严重副作用,如“开-关”现象、剂末恶化、剂峰运动障碍、肌张力障碍、精神障碍等,并且随着神经元变性的发展其效能逐渐减小。此外由于左旋多巴的代谢过程会产生氧自由基,因此关于左旋多巴是否存在神经毒性尚有争论。外科手术治疗有苍白球切开术、脑深部电刺激术等,但手术治疗的风险性大,手术的最佳效果并不优于药物治疗,只适用于少数长期服用药物疗效不满意或药物不良反应较严重的患者。自体或胎儿肾上腺髓质或胎脑移植术的疗效不确定,且存在供体来源有限、免疫排斥等问题。利用酪氨酸羟化酶和神经营养因子基因进行的基因治疗目前技术还不成熟,还处在细胞和动物实验阶段。因此亟待开发出具有神经保护作用的药物来治疗帕金森病。
原儿茶醛是丹参有效成分中水溶性酚酸类化合物之一,丹参是常用中药,为唇形科植物丹参的干燥根及根茎,中医理论认为丹参性苦微寒,归心、肝二经,具有祛瘀止痛、活血通经,清心除烦的功效。丹参的有效成分包括脂溶性二萜醌类和水溶性酚酸类化合物。此外原儿茶醛还存在于四季青叶、乌蕨等药用植物中。许多研究表明原儿茶醛具有增加冠脉流量、降低冠脉阻力、抑制血小板聚集、减低血小板膜流动性、降低红细胞浆Ca2+浓度等作用。韩纯洁等(韩纯洁,林蓉,刘俊田,等.原儿茶醛对ox2LDL损伤的血管内皮细胞保护作用.中药材,2007(30),12:1541-44.)发现原儿茶醛可保护ox-LDL诱导的人脐静脉血管内皮细胞株(CRL21730)损伤,可能通过抗炎作用起到保护内皮细胞的作用。Zhou等(Zhou Z,Liu Y,Miao AD,et al.Protocatechuic aldehyde suppresses TNF-alpha-inducedICAM-1 and VCAM-1 expression in human umbilical vein endothelialcells.Eur J Pharmacol,2005,513(1-2):1-8)通过研究发现原儿茶醛可抑制TNF-α诱导的血管内皮粘附分子VCAM-1和ICAM-1的表达,从而起到预防和阻断动脉粥样硬化的作用。叶志华等(叶志华,邢雅玲,田琳琳等.原儿茶醛对叔丁基过氧化氢损伤HepG2细胞的保护作用.军事医学科学院院刊,2007,31(2):126-129)在叔丁基过氧化氢损伤人肝癌细胞(HepG2)模型中考察了原儿茶醛对肝损伤的保护作用,其机制可能是通过提高抗氧化酶活性、加快活性氧的清除实现细胞保护作用。
迄今为止,有关原儿茶醛在神经细胞中的抗氧化应激保护作用、机制以及预防治疗帕金森病的应用前景目前尚没有文献报道。
发明内容
本发明主要目的是提供原儿茶醛的一种新的药理用途。
本发明的上述目的是通过以下技术方案来实现的:
本发明人通过大量的实验发现,原儿茶醛具有与帕金森病相关蛋白DJ-1相互作用的活性。通过进一步的实验发现:原儿茶醛具有抗氧化应激,防止氧化应激诱导的SH-SY5Y神经细胞的死亡,抑制细胞内活性氧产生等作用,而且在AKT细胞信号通路中,是原儿茶醛保护细胞生存通路之一,原儿茶醛激活AKT,抑制PTEN,升高DJ-1基因的表达,从而起到保护神经细胞的作用。并且原儿茶醛可以阻止DJ-1蛋白中半胱氨酸巯基的过氧化,从而维持DJ-1的正常活性等药理作用。上述实验结果表明原儿茶醛具有神经保护作用,且其作用与DJ-1蛋白相关,可用于制备成预防或治疗包括帕金森病在内的由神经细胞氧化损伤所导致的神经退行性疾病。
DJ-1被鉴定为一种隐性遗传家族性帕金森病的致病基因。DJ-1蛋白在细胞的功能中起着非常重要的作用,如转录调节、抗氧化应激等。基于对DJ-1功能的认识以及DJ-1基因的突变可导致帕金森病,本发明旨在发现以DJ-1蛋白为靶点的抗帕金森病的药物,以期为帕金森病的治疗提供新的有效药物。
本发明发现了原儿茶醛(protocatechuic a1dehyde,PAL一种中药单体化合物)在体外能够与重组DJ-1蛋白结合。在SH-SY5Y细胞PAL能够阻止氧化应激诱导的损伤,但是在DJ-1knockdown细胞中,PAL却失去了保护作用,这表明PAL的保护作用是由DJ-1蛋白介导的。PAL可以抑制氧自由基的产生,在DJ-1knockdown细胞中PAL清除氧自由基的能力减弱。
现有文献中报道的具有抗氧化功能的化合物多达几十种,但是没有文献报道原儿茶醛具有保护神经细胞抗氧化应激损伤的作用。叶志华等公开了原儿茶醛能清除肝细胞的活性氧自由基从而对肝损伤有保护作用,推测了其作用机制可能是因为原儿茶醛通过提高抗氧化酶活性、加快活性氧的清除实现了肝细胞保护作用。但是肝细胞和神经细胞在形态、结构、代谢和功能等方面存在巨大的差异,造成了肝脏和脑在机体中行使着不同的功能,形成了器官的特异性和复杂性。另外,从分子生物学方面来讲,肝细胞和神经细胞的蛋白质表达谱也存在很大的差异。所以,文献中虽然报道了原儿茶醛对肝细胞的氧化应激损伤有保护作用,但是不能据此推测原儿茶醛对神经细胞的氧化应激损伤也一定有确切的保护作用。本发明基于以帕金森病的致病基因相关蛋白DJ-1为靶点进行的药物筛选之后获得结果,本发明同时以现有技术中报道的其它19种化合物进行实验,结果发现,这些化合物对于神经细胞并无确切的保护作用。帕金森病患者在抗氧化应激的信号转导通路方面存在缺损,在AKT细胞信号通路中,是原儿茶醛保护细胞生存通路之一,原儿茶醛激活AKT,抑制PTEN,升高DJ-1基因的表达,从而起到保护神经细胞的作用。此外,原儿茶醛还可以阻止DJ-1蛋白中半胱氨酸巯基的过氧化,从而维持DJ-1的正常活性等药理作用。可见,原儿茶醛保护神经细胞抗氧化应激损伤的作用机制与其保护肝细胞氧化应激损伤的作用机制全然不同。
原儿茶醛在临床应用于治疗或预防包括帕金森病在内的神经退行性疾病时,可向其加入所需的各种辅料和药学上可接受的赋形剂或载体后制备成任何一种临床上可接受的适宜制剂,包括口服制剂或注射制剂。例如,可以是注射剂(粉针、冻干粉针、水针、输液等)、片剂、口服液、颗粒剂、胶囊剂、软胶囊、滴丸等;其中,所述的辅料可以是抗氧络合剂、填充剂、骨架材料等;所述的药学上可接受的载体是木糖醇、甘露醇、乳糖、果糖、葡聚糖、葡萄糖、聚乙烯吡咯烷酮、低分子右旋糖酐、氯化钠、葡萄糖酸钙或磷酸钙中的一种或几种,优选为甘露醇或乳糖。
附图说明
图1原儿茶醛的化学结构式。
图2石英晶体微天平(QCM)检测原儿茶醛与DJ-1蛋白(A)和BSA(B)相互作用的实验结果。
图3原儿茶醛保护SH-SY5Y细胞抵抗H2O2诱导的氧化应激的实验结果。
图4原儿茶醛的抗氧化应激作用依赖于细胞内DJ-1蛋白的存在。(A)SH-SY5Y细胞DJ-1 Knockdown后Western blot检测DJ-1表达水平(B)转染DJ-1siRNA的SH-SY5Y细胞,(C)转染control siRNA的SH-SY5Y细胞。
图5原儿茶醛清除氧自由基依赖于细胞内DJ-1的正常表达。
图6Western blot分析显示原儿茶醛可激活AKT信号通路,增加磷酸化AKT的表达,降低磷酸化PTEN的表达,轻度上调DJ-1蛋白的表达。
图7原儿茶醛阻止DJ-1蛋白Cys-106的过氧化实验结果。
图8 19种化合物对神经细胞的保护作用实验结果。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实验例
1、实验材料和实验方法
1.1、细胞培养
人神经母细胞瘤细胞SH-SY5Y(购自美国ATCC细胞库)培养在含有10%牛血清的Dulbecco’s modified Eagle’smedium(DMEM)培养液中,培养条件为37℃,5%CO2的培养箱。
1.2、MTT法分析细胞活力
SH-SY5Y细胞按每孔100ulDMEM含有1x104个细胞的密度接种于96孔板,24小时后待细胞贴附于板底后加入不同浓度的原儿茶醛(5uM、10uM、20uM)继续在培养箱中孵育24小时。然后加入10ul不同浓度的H2O2(325uM、350uM、375uM)3小时诱导氧化应激。之后加入10ul Cell CountingKit-8(CCK-8)试剂(购自日本DOJINDO公司)孵育4小时,用microplate reader(Bio-Rad)在450nm下检测吸光度值。实验设立未损伤组(不加原儿茶醛和H2O2)、损伤组(只加H2O2)和药物保护组(加原儿茶醛和H2O2)。
1.3、石英晶体微天平(QCM)分析与DJ-1结合的化合物
用去离子水冲洗QCM的芯片,取50ul 1%SDS滴于芯片上并用棉棒轻轻涂擦,然后取5ul洗净液(H2O2∶硫酸1∶3)滴于QCM的芯片室温孵育5分钟,之后用去离子水洗净芯片并吹干。将4ul溶于氯仿的化合物(1uM)滴于芯片上,待溶剂挥发干净后用去离子水冲洗吹干。将芯片装置于QCM上,并浸入盛有8ml PBS(137mM NaCl,26.8mM KCl,8mM Na2HPO4,1.5mM KH2PO4)的反应杯中,设定温度为25℃,旋转速度1000rmp/min,用affinix version 1.52软件记录芯片振动频率的变化。待基线稳定(noise<3Hz/sec,drift<30Hz/10min)后,向反应杯中加入8ul(1mg/ml)BSA或DJ-1蛋白,记录加入蛋白后芯片振动频率的改变,频率的变化反应了化合物与蛋白的结合速度以及结合量。
1.4、细胞内活性氧(ROS)水平的测定
采用荧光探针H2DCFDA测定ROS,H2DCFDA溶于乙醇配成10mM的储存液分装-20℃保存。将细胞接种于6孔板(2×105细胞/孔,板底加盖玻片),待24h细胞贴壁后,加入20uM的原儿茶醛培养24小时。用H2O2处理细胞作用1h后,用Hank’s液(日本NISSUI制药公司产品;KH2PO4 0.06g,NaCl 8.0g,NaHCO3 0.35g,KCl 0.4g,葡萄糖1.0g,Na2HPO4·H2O 0.06g,加H2O至1000ml)洗2次。每孔加入终浓度10uM(Hank’s液)的荧光探针,避光反应20min后,吸掉探针,Hank’s洗3次。荧光显微镜(Biozero BZ-8000;Keyence,Osaka)下观察照相。
1.5、蛋白提取
培养的SH-SY5Y细胞吸去培养基,用预冷的PBS洗2次,加入细胞裂解液(150mM NaCl,5mM EDTA,50mM Tris(pH7.5),0.5% NP-40,蛋白酶抑制剂),冰上放置30分钟。12,000rpm/min,4℃离心15分钟,取上清液做蛋白定量。
1.6、Western blot分析
每组样品取20ug蛋白加入6×laemmli上样缓冲液,100℃变性5分钟。待冷却后上样到12%的聚丙烯酰胺不连续凝胶上,以浓缩胶电压80v,分离胶电压120v,进行SDS-PAGE,等到溴酚蓝指示剂跑出凝胶下缘时停止电泳。将凝胶从电泳槽中取出,放入转膜缓冲液中平衡10分钟。准备海绵、6张滤纸、一张硝酸纤维素膜,尺寸与凝胶大小相仿,放入转膜缓冲液中平衡5分钟。按以下顺序放置:黑板-海绵-3层滤纸-凝胶-硝酸纤维素膜-3层滤纸-海绵-红板,每层之间赶尽气泡。将凝胶面与负极相连,硝酸纤维素膜面与正极相连,转膜电压16v,4℃过夜。转膜完毕后取出硝酸纤维素膜,将膜放入1X TBST中清洗3次,每次5分钟,摇床摇动;用5%的脱脂奶粉将膜室温封闭1小时,不洗;加入TBST 1∶1000稀释的一抗,室温孵育5小时;将膜放入1X TBST中清洗3次,每次5分钟;加入1×TBST1∶600稀释的荧光二抗,室温2小时;将膜放入1X TBST中清洗3次,每次5分钟;Odyssey远红外成像系统扫描成像。一抗采用下列抗体:anti-phospho-AKT(Ser473)(1∶1000,美国Cell Signaling公司),anti-AKT(1∶1000,美国Cell Signaling公司),anti-phospho-PTEN(Ser380/Thr382/Thr383/Ser385)(1∶1000,美国Novus Biologicals公司),anti-PTEN(1∶1000,美国CellSignaling公司),anti-DJ-1(1∶1000,美国Enzo life sciences公司),anti-actin(1∶10000,美国Millipore公司);
荧光二抗采用下列抗体:IRDye800(美国Rockland公司)or Alexafluor 680-conjugated secondary antibody(美国MolecularProbes公司)。
1.7、利用MALDI-TOF/TOF-MS分析DJ-1中Cys-106氧化状态
用原儿茶醛和H2O2处理各组SH-SY5Y细胞,细胞裂解液提取各组蛋白。向各组蛋白中加入兔抗DJ-1多克隆抗体(2ug/ml)(购自日本Cyclex公司),4℃旋转过夜。然后加入20ulproteinA/G Plus-Agarose 4℃旋转2小时。3000rpm4℃离心5分钟,沉淀用0.1%NP-40洗3次。尽量吸净上清沉淀加入6×laemmli上样缓冲液,100℃变性5分钟。待冷却后上样到12.5%的聚丙烯酰胺不连续凝胶上,以浓缩胶电压80v,分离胶电压120v,进行SDS-PAGE,等到溴酚蓝指示剂跑出凝胶下缘时停止电泳。取出凝胶放于考马斯亮蓝染液中染色过夜,脱色直至背景清晰,切取DJ-1蛋白相应的条带放入EP管中,加入100ul 25mM的NH4HCO3/50%ACN脱色液加入EP管中,振摇10min。3000rmp flash后,吸掉上清。脱色不完全时,再用30%ACN的脱色液再次脱色。胶中加200ul ACN,EP管加盖18G注射针头扎孔的盖子,speed vac干燥。100ul还原液50mM的TCEP/25mM NH4HCO3加到EP管中,60℃ 10min;3000rmp flash去除上清,加100ul洗净液25mM NH4HCO3,振摇10min,3次;3000rmp flash去除上清,加碱化液55mM碘乙酰胺(Iodoacetamide)/25mM NH4HCO3100ul,避光,室温,30-60min;3000rmp flash去除上清,加洗净液100ul,振摇10min,3次;3000rmp flash去除上清,加脱水液100ul,振摇5min 3次;3000rmp flash去除上清,加ACN 100ul,speedvac干燥。取10-20ul消化液10ng/ul Trypin/25mM NH4HCO3加入干燥的胶中,冰上30min,使消化液浸透干胶。吸出多余水分,加入与胶等量的25mM NH4HCO3,薄膜包好放入37℃温箱孵育过夜;消化后的胶中加入50ul抽出液50% TFA,超声2-3min,振摇30min,3000rmp flash,上清含有肽段移入新EP管,speed vac减压浓缩,残余胶加入30ul抽出液,同上处理,合并上清,浓缩至约10ul。点样板用丙酮轻轻擦拭,加1-2ul基质溶液到600um的anchor上,并用pipette移除液体。Anchor会自动吸收基质形成薄膜。滴1ul样品于anchor基质薄膜上,静置3min,不必完全干燥。加2-4ul washingbuffer到残余的液体上,并pipette所有的液体。加1ul结晶液重结晶。点样板装置于Ultraflex II-18 TOF/TOF质谱仪,Flex analysis software2.4获取肽指纹图谱。肽段100-122含有Cys-106,核质比为2267,2283,2299和2258的肽片段峰分别对应含有还原态(-SH)和氧化态(-SOH),(-SO2H),(-SO3H)的Cys-106。
2、实验结果
2.1 石英晶体微天平(QCM)分析与DJ-1相结合的化合物
QCM是一种高度敏感的质量检测仪器,能够记录金电极芯片表面纳克级质量的变化。将原儿茶醛固定在芯片表面,浸入PBS溶液中。芯片振动频率随时间的降低反应了原儿茶醛结合蛋白的量以及结合的速度。图2所示当DJ-1注射到PBS溶液后,QCM记录到振动频率随时间下降,表明DJ-1蛋白不断的结合到原儿茶醛分子上。原儿茶醛与DJ-1蛋白结合的解离常数Kd为9.167 x 10-8。当BSA注射到PBS溶液时,QCM没有记录到芯片振动频率的明显变化。QCM实验结果表明,原儿茶醛体外可与DJ-1特异结合。
2.2 原儿茶醛保护SH-SY5Y细胞抵抗H2O2诱导的氧化应激的实验结果
SH-SY5Y细胞预处理各种浓度原儿茶醛24小时,然后用325uM,350uM和375uM的H2O2诱导氧化应激3小时,MTT分析结果显示,在没有原儿茶醛预处理的细胞,H2O2可以引起细胞毒性导致细胞活力下降且呈剂量依赖性。预处理5uM,10uM和20uM原儿茶醛的细胞组,明显减弱H2O2诱导的细胞死亡,且随着原儿茶醛剂量的增加,生存的细胞也随着增加,呈明显的剂量依赖关系(图3)。
2.3 原儿茶醛抗氧化应激损伤的作用机制
为了确定原儿茶醛针对DJ-1蛋白的特异性,选用DJ-1knockdownSH-SY5Y细胞MTT分析原儿茶醛的抗氧化应激损伤的作用。Western blot检测DJ-1表达的水平以确认DJ-1被Knockdown的效率,与转染control siRNA的细胞相比,转染DJ-1siRNA的细胞DJ-1的表达降低了约78.2%。GAPDH(1∶1000美国Abcam公司)为内参(图4A)。在转染了DJ-1siRNA的细胞中,预处理原儿茶醛24小时后,加入H2O2诱导氧化应激损伤,发现各组细胞的生存率没有明显变化,原儿茶醛失去了预保护作用。然而在转染control siRNA的细胞中,三种剂量的原儿茶醛组均表现明显的保护作用,剂量依赖关系仍然存在。在DJ-1knockdown SH-SY5Y细胞中,MTT分析表明原儿茶醛的抗氧化应激作用依赖于细胞内一定量DJ-1蛋白的存在(图4B,C)。
2.4 原儿茶醛清除氧自由基依赖于细胞内DJ-1的正常表达
当细胞内氧自由基水平超出细胞自身抗氧化能力时,细胞便产生氧化应激导致细胞损伤。采用氧化还原敏感的荧光探针H2DCFDA检测细胞内氧自由基的水平,评价原儿茶醛的清除氧自由基的能力。H2O2可以诱导氧化应激的产生,在正常SH-SY5Y细胞和DJ-1knockdown SH-SY5Y细胞均可见较强的绿色荧光。预处理20uM原儿茶醛在正常SH-SY5Y细胞可以清除氧自由基的产生,绿色荧光明显减弱。但在DJ-1knockdown SH-SY5Y细胞不能完全清除氧自由基,仍然可见较强的荧光。这表明原儿茶醛清除氧自由基的能力依赖于细胞内DJ-1蛋白(图5)。
2.5 Western blot分析结果
与PAL(-)/H2O2(-)组细胞相比,PAL(+)/H2O2(-)处理组磷酸化AKT水平明显增加,增加到183%。当诱导氧化应激后,PAL(+)/H2O2(+)处理组的磷酸化AKT水平增加更为明显,增加到295%。表明原儿茶醛(PAL)可激活AKT信号通路。进一步研究显示,原儿茶醛降低PTEN的表达,PTEN是AKT激活的负性调节因子,因此PTEN的低表达有助于AKT的活化。另外预处理原儿茶醛可以增加DJ-1的表达,DJ-1有抑制PTEN的活性的功能,DJ-1表达的增加有利于激活AKT信号通路。
Western blot分析显示原儿茶醛可激活AKT信号通路,增加磷酸化AKT的表达,降低磷酸化PTEN的表达,轻度上调DJ-1蛋白的表达。
2.6 原儿茶醛阻止DJ-1蛋白Cys-106的过氧化
DJ-1的功能受到106位半胱氨酸残基氧化状态的调节,Cys106的过氧化状态-SO2H和-SO3H导致DJ-1功能的丧失。MALDI-TOF/TOF质谱分析Cys106氧化状态显示,PAL(-)/H2O2(-)和PAL(+)/H2O2(-)组,还原态和-SOH氧化态的Cys106占总Cys106的71.7%。在H2O2处理组,过氧化状态明显增加,占总和的48.9%。预处理原儿茶醛时,可阻止Cys106的过氧化,-SO2H和-SO3H状态恢复至39.1%。质谱分析结果表明,原儿茶醛可阻止DJ-1蛋白Cys106的过氧化,使细胞内活性状态的DJ-1蛋白增加,从而保护H2O2诱导的细胞避免死亡。
对比实验例1MTT法分析19种化合物对神经细胞的保护作用
实验
1、实验方法与材料
1.1 实验方法:同实验例1中的1.2;
1.2 供试化合物:19种供试化合物的结构式如下:
Figure BSA00000331196300181
Figure BSA00000331196300191
Figure BSA00000331196300201
Figure BSA00000331196300211
2、实验结果:从19种供实验化合物的MTT实验检测结果可见,19种供实验化合物在统计学上均显示无显著的神经细胞保护作用(图8)。
对比实验例2 石英晶体微天平(QCM)分析与DJ-1结合的化合物
1、实验方法和材料
1.1 实验方法:同实验例1中的1.3;
1.2 供试化合物:12种供试化合物,其编号分别如下:W9,W22-2,W29,W32,W33,W36,JW42,JYX47,Jia977,XZR61-1,Z16,Z17;12种供试化合物的结构式为对比实验例1所示。
2、实验结果:QCM实验结果表明,12种供试化合物均不能与DJ-1蛋白特异结合。

Claims (5)

1.原儿茶醛在制备预防或治疗由神经细胞氧化应激损伤所诱导的神经退行性疾病药物中的用途。
2.按照权利要求1所述的用途,其特征在于:所述的神经退行性疾病包括帕金森病。
3.原儿茶醛在制备保护神经细胞抗氧化应激损伤药物中的用途。
4.原儿茶醛在制备增加人体内DJ-1蛋白表达的药物中的用途。
5.原儿茶醛在制备降低人体内DJ-1蛋白过氧化状态的药物中的用途。
CN2010105301948A 2010-10-29 2010-10-29 原儿茶醛在制备治疗人神经退行性疾病药物中的用途 Pending CN102451174A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105301948A CN102451174A (zh) 2010-10-29 2010-10-29 原儿茶醛在制备治疗人神经退行性疾病药物中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105301948A CN102451174A (zh) 2010-10-29 2010-10-29 原儿茶醛在制备治疗人神经退行性疾病药物中的用途

Publications (1)

Publication Number Publication Date
CN102451174A true CN102451174A (zh) 2012-05-16

Family

ID=46035118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105301948A Pending CN102451174A (zh) 2010-10-29 2010-10-29 原儿茶醛在制备治疗人神经退行性疾病药物中的用途

Country Status (1)

Country Link
CN (1) CN102451174A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110693862A (zh) * 2019-11-02 2020-01-17 上海中医药大学附属岳阳中西医结合医院 原儿茶醛在抑制CtBP1中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1386517A (zh) * 2001-05-17 2002-12-25 济南市中心医院 治疗帕金森病的药物及其加工方法
CN1628781A (zh) * 2004-08-23 2005-06-22 南通市第一人民医院 治疗帕金森病的药
CN1679528A (zh) * 2004-04-06 2005-10-12 于廷曦 作为预防和治疗各种神经退行性疾病(特别是老年性痴呆症)药物的丹参素及其钠盐
CN1695604A (zh) * 2004-05-15 2005-11-16 于廷曦 防治神经退行疾病、注意力缺陷多动症和抑郁症的药物
CN101433545A (zh) * 2008-12-23 2009-05-20 北京大学 生物类黄酮类或多酚化合物治疗帕金森病的用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1386517A (zh) * 2001-05-17 2002-12-25 济南市中心医院 治疗帕金森病的药物及其加工方法
CN1679528A (zh) * 2004-04-06 2005-10-12 于廷曦 作为预防和治疗各种神经退行性疾病(特别是老年性痴呆症)药物的丹参素及其钠盐
CN1695604A (zh) * 2004-05-15 2005-11-16 于廷曦 防治神经退行疾病、注意力缺陷多动症和抑郁症的药物
CN1628781A (zh) * 2004-08-23 2005-06-22 南通市第一人民医院 治疗帕金森病的药
CN101433545A (zh) * 2008-12-23 2009-05-20 北京大学 生物类黄酮类或多酚化合物治疗帕金森病的用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUI-FANG SHI,ET AL.: "《Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo》", 《NEUROSCIENCE LETTERS》 *
YUKI NAKAJIMA,ET AL.: "《Antioxidant Small Phenolic Ingredients in Inonotus obliquus (persoon) Pilat (Chaga)》", 《CHEM. PHARM. BULL.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110693862A (zh) * 2019-11-02 2020-01-17 上海中医药大学附属岳阳中西医结合医院 原儿茶醛在抑制CtBP1中的应用

Similar Documents

Publication Publication Date Title
Lee et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy
Li et al. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: Involvement of dual PI3K/Akt and Nrf2/HO-1 pathways
Ahmad et al. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice
Zhao et al. Inhibition of HDAC3 ameliorates cerebral ischemia reperfusion injury in diabetic mice in vivo and in vitro
Li et al. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK 2/STAT 3 signaling pathway after ischemic stroke in mice
Sun et al. Rehmannioside A attenuates cognitive deficits in rats with vascular dementia (VD) through suppressing oxidative stress, inflammation and apoptosis
Liu et al. Ferulic acid alleviates myocardial ischemia reperfusion injury via upregulating AMPKα2 expression-mediated ferroptosis depression
Heng et al. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting α-synuclein abnormalities in the substantia nigra
Zhang et al. Gypenosides improve cognitive impairment induced by chronic cerebral hypoperfusion in rats by suppressing oxidative stress and astrocytic activation
Lam et al. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea
Chen et al. Mesenchymal Stem Cells Attenuate Diabetic Lung Fibrosis via Adjusting Sirt3‐Mediated Stress Responses in Rats
Hong et al. Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke
Li et al. N-acetyl serotonin protects neural progenitor cells against oxidative stress-induced apoptosis and improves neurogenesis in adult mouse hippocampus following traumatic brain injury
Li et al. Curcumin suppress inflammatory response in traumatic brain injury via p38/MAPK signaling pathway
Lim et al. Dicaffeoylquinic acids alleviate memory loss via reduction of oxidative stress in stress-hormone-induced depressive mice
Xue et al. Ginsenoside Rc alleviates myocardial ischemia-reperfusion injury by reducing mitochondrial oxidative stress and apoptosis: role of SIRT1 activation
Zhou et al. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model
Hu et al. DL-3-n-butylphthalide alleviates motor disturbance by suppressing ferroptosis in a rat model of Parkinson’s disease
Bai et al. Protective effect of pilose antler peptide on cerebral ischemia/reperfusion (I/R) injury through Nrf-2/OH-1/NF-κB pathway
Zhang et al. Thioredoxin‐interacting protein (TXNIP) knockdown protects against sepsis‐induced brain injury and cognitive decline in mice by suppressing oxidative stress and neuroinflammation
Chen et al. Targeting the TLR4/NF-κB pathway in β-amyloid-stimulated microglial cells: A possible mechanism that oxysophoridine exerts anti-oxidative and anti-inflammatory effects in an in vitro model of Alzheimer’s disease
Yang et al. Macamide B pretreatment attenuates neonatal hypoxic-ischemic brain damage of mice induced apoptosis and regulates autophagy via the PI3K/AKT signaling pathway
Cui et al. Minocycline attenuates oxidative and inflammatory injury in a intestinal perforation induced septic lung injury model via down-regulating lncRNA MALAT1 expression
Jiang et al. LXA4 attenuates perioperative neurocognitive disorders by suppressing neuroinflammation and oxidative stress
Li et al. Protective effect of compound tongluo decoction on brain vascular endothelial cells after ischemia‐reperfusion by inhibition of ferroptosis through regulating Nrf2/ARE/SLC7A11 signaling pathway

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120516