CN102420385A - Passive Q-switched microchip laser device - Google Patents
Passive Q-switched microchip laser device Download PDFInfo
- Publication number
- CN102420385A CN102420385A CN2011103599270A CN201110359927A CN102420385A CN 102420385 A CN102420385 A CN 102420385A CN 2011103599270 A CN2011103599270 A CN 2011103599270A CN 201110359927 A CN201110359927 A CN 201110359927A CN 102420385 A CN102420385 A CN 102420385A
- Authority
- CN
- China
- Prior art keywords
- laser
- gain medium
- graphene
- optical element
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种被动调Q微片激光器,属于激光技术领域。主要包括激光增益介质、石墨烯或碳纳米管可饱和吸收体、光学元件以及LD泵浦装置。将厚度纳米量级的石墨烯、碳纳米管可饱和吸收体紧密夹贴于激光器增益介质与光学元件之间,利用器件镀膜构成平平腔或平凹腔,使用胶合、光胶或深化光胶的方法将器件全固化为简单紧凑的三明治结构。利用石墨烯、碳纳米管材料可饱和吸收波长范围宽、导热性好的特点可实现微片激光器不同波长的宽带脉冲调制和良好的散热特性。本发明具有光学体积小、全固化易维护、波长调制范围宽的优点,可降低脉冲微片激光器的工艺难度和生产成本,有着广泛应用前景。
The invention discloses a passive Q-switched microchip laser, which belongs to the technical field of lasers. It mainly includes laser gain medium, graphene or carbon nanotube saturable absorber, optical element and LD pumping device. Graphene and carbon nanotube saturable absorbers with a thickness of nanometers are tightly clamped between the laser gain medium and the optical element, and the device coating is used to form a flat cavity or a flat concave cavity, and the glue, optical glue or deepening of the optical glue is used The method fully cured the device into a simple and compact sandwich structure. Using graphene and carbon nanotube materials with wide saturable absorption wavelength range and good thermal conductivity can realize broadband pulse modulation of different wavelengths of microchip lasers and good heat dissipation characteristics. The invention has the advantages of small optical volume, full curing and easy maintenance, and wide wavelength modulation range, can reduce the process difficulty and production cost of pulsed microchip lasers, and has wide application prospects.
Description
技术领域 technical field
本发明涉及激光器领域,尤其涉及微片式结构被动调Q激光器与新型可饱和吸收体材料——石墨烯、碳纳米管。The invention relates to the field of lasers, in particular to passive Q-switched lasers with a microchip structure and novel saturable absorber materials—graphene and carbon nanotubes.
背景技术 Background technique
全固化被动调Q微片激光器结构简单紧凑易维护,特别是其毫米量级的极短腔长可实现单频和高峰值功率脉冲激光输出,有着较高的倍频效率。这些特点使得被动调Q微片激光器在科学研究、工业加工、生物医学、军事探测等领域获得了广泛应用。目前LD泵浦的被动调Q微片激光器已可实现脉宽皮秒至纳秒量级、重频千赫兹量级、峰值功率千瓦量级的脉冲输出。被动调Q微片激光器多使用Cr4+:YAG等晶体作为可饱和吸收体,亦有使用半导体可饱和吸收镜(SESAM)的报道。前者即便采用键合的Cr4+:YAG/Nd:YAG晶体,仍存在激光腔长不易控制的问题,而且此类晶体的掺杂工艺要求严格,损伤阈值也不理想。The all-solidified passive Q-switched microchip laser has a simple and compact structure and is easy to maintain. In particular, its extremely short cavity length on the order of millimeters can achieve single-frequency and high-peak-power pulsed laser output, and has high frequency-doubling efficiency. These characteristics make passive Q-switched microchip lasers widely used in scientific research, industrial processing, biomedicine, military detection and other fields. At present, the passively Q-switched microchip laser pumped by LD can realize the pulse output of the pulse width from picosecond to nanosecond, the repetition frequency of the kilohertz level, and the peak power of the kilowatt level. Most passive Q-switched microchip lasers use crystals such as Cr 4+ :YAG as saturable absorbers, and there are also reports using semiconductor saturable absorber mirrors (SESAM). Even if the former uses bonded Cr 4+ :YAG/Nd:YAG crystals, there is still the problem that the laser cavity length is not easy to control, and the doping process requirements of this type of crystals are strict, and the damage threshold is not ideal.
作为一种新型材料,石墨烯及碳纳米管有着优异的电学、光学和力学特性,在高性能电子器件、传感探测、信息存储、复合材料等领域具有重要的潜在应用价值。石墨烯及碳纳米管对多波长激光有可观的光限幅作用,特别是原子层级的石墨烯材料能够实现从可见光到中红外波段的可饱和吸收,使其在激光器制造与应用方面有着非同寻常的重要意义。随着石墨烯、碳纳米管材料大规模生产制备技术的提高与成熟,利用其作可饱和吸收体将十分有利于降低脉冲激光器工艺难度和生产成本,有望替代现有的激光脉冲被动调制器件。As a new type of material, graphene and carbon nanotubes have excellent electrical, optical and mechanical properties, and have important potential application values in high-performance electronic devices, sensing detection, information storage, composite materials and other fields. Graphene and carbon nanotubes have considerable light-limiting effects on multi-wavelength lasers. In particular, graphene materials at the atomic level can achieve saturable absorption from visible light to mid-infrared bands, making them unique in laser manufacturing and applications. unusual significance. With the improvement and maturity of the large-scale production and preparation technology of graphene and carbon nanotube materials, using them as saturable absorbers will be very beneficial to reduce the process difficulty and production cost of pulsed lasers, and is expected to replace the existing laser pulse passive modulation devices.
发明内容 Contents of the invention
本发明的目的是利用纳米量级厚度石墨烯或碳纳米管材料作可饱和吸收体,实现结构简单紧凑的三明治型全固化微片激光器及其不同波长的被动调Q。The purpose of the present invention is to use nanoscale thick graphene or carbon nanotube material as a saturable absorber to realize a sandwich-type fully solidified microchip laser with a simple and compact structure and its passive Q-switching at different wavelengths.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
微片激光器包括激光增益介质、石墨烯或碳纳米管可饱和吸收体、光学元件以及LD泵浦装置。将纳米量级厚度的石墨烯或碳纳米管可饱和吸收体紧密夹贴于激光增益介质与光学元件之间,构成三明治结构。在激光增益介质与光学元件上镀膜作前后腔镜构成平行平面谐振腔或平凹腔。上述光学元件为温度补偿介质、倍频晶体、波片、对振荡波长通过的光学玻璃或晶体等器件,亦可是此类器件的组合。使用胶合、光胶或深化光胶等方法将各器件全固化。采用LD或光纤耦合输出型LD对上述三明治结构微片激光器进行端面泵浦。所述的石墨烯或碳纳米管可饱和吸收体含有石墨烯、氧化石墨烯、石墨烯聚合物、碳纳米管中的一种或多种成分,可以直接生长在基质表面,可以制备为固体粉末或薄膜形式,也可以与PVC等溶剂混合制备成聚合物薄膜形式。Microchip lasers include laser gain media, graphene or carbon nanotube saturable absorbers, optical elements, and LD pumping devices. The graphene or carbon nanotube saturable absorber with nanometer thickness is tightly sandwiched between the laser gain medium and the optical element to form a sandwich structure. Coating the laser gain medium and the optical element as the front and rear cavity mirrors constitutes a parallel plane resonant cavity or a flat concave cavity. The above-mentioned optical elements are devices such as temperature compensation media, frequency doubling crystals, wave plates, optical glass or crystals that pass the oscillation wavelength, or a combination of such devices. Each device is fully cured using gluing, photoresist, or deepening photoresist. The above-mentioned sandwich structure microchip laser is end-pumped by LD or fiber-coupled output LD. The graphene or carbon nanotube saturable absorber contains one or more components of graphene, graphene oxide, graphene polymer, and carbon nanotubes, can be directly grown on the surface of the substrate, and can be prepared as a solid powder Or film form, also can be mixed with PVC and other solvents to prepare polymer film form.
一种被动调Q的微片激光器,包括激光增益介质、石墨烯或碳纳米管可饱和吸收体、光学元件或光学材料以及LD泵浦装置;其特征在于:在增益介质泵浦端面镀对泵浦光增透光学膜、或者对激光全反射或部分反射光学膜,或者同时镀上述增透光学膜和反射光学膜;光学元件镀对激光全反射或部分反射光学膜,利用增益介质和光学元件的镀膜作前后腔镜构成平平腔或平凹腔,将厚度0.5纳米至5纳米的石墨烯、碳纳米管可饱和吸收体紧密夹贴于激光器增益介质与光学元件之间构成三明治结构。A passively Q-switched microchip laser, comprising a laser gain medium, a graphene or carbon nanotube saturable absorber, an optical element or an optical material, and an LD pumping device; it is characterized in that: a pair of pumps is plated on the pump end face of the gain medium Puguang anti-reflection optical film, or laser total reflection or partial reflection optical film, or the above-mentioned anti-reflection optical film and reflective optical film are coated at the same time; optical components are coated with laser total reflection or partial reflection optical film, using gain media and optical components The coating is used as the front and rear cavity mirrors to form a flat cavity or a flat concave cavity. Graphene and carbon nanotube saturable absorbers with a thickness of 0.5 nm to 5 nm are tightly clamped between the laser gain medium and the optical element to form a sandwich structure.
所制备的石墨烯或碳纳米管材料可饱和吸收体厚度为0.5纳米至5纳米;石墨烯可饱和吸收体中石墨烯材料的层数1至10层。The prepared graphene or carbon nanotube material saturable absorber has a thickness of 0.5 nanometers to 5 nanometers; the number of graphene material layers in the graphene saturable absorber is 1 to 10 layers.
激光增益介质为Nd:YAG晶体、Nd:YVO4晶体、Er:Yb:glass激光材料。The laser gain medium is Nd:YAG crystal, Nd:YVO 4 crystal, Er:Yb:glass laser material.
光学元件为温度补偿介质、倍频晶体、波片、对振荡波长通过的光学玻璃或晶体器件或材料,以及此类器件或材料的组合。The optical element is a temperature compensation medium, a frequency doubling crystal, a wave plate, an optical glass or crystal device or material that passes through the oscillation wavelength, and a combination of such devices or materials.
使用胶合、光胶或深化光胶的方法将微片激光器器件全固化为三明治结构。The microchip laser device is fully cured into a sandwich structure by gluing, photoresist or deepening photoresist.
使用LD直接端面泵浦,采用光纤耦合输出LD经光学系统进行端面泵浦。The LD is used for direct end-pumping, and the fiber-coupled output LD is used for end-pumping through the optical system.
所述的一种被动调Q的微片激光器,其特征在于:依次包括LD泵浦源601、准直系统602、激光增益介质301与光学元件402将石墨烯或碳纳米管可饱和吸收体201紧密夹贴在中间,构成的三明治结构;激光增益介质301泵浦端面镀有对泵浦光增透并对激光全反射的光学膜,其与镀有对激光部分反射光学膜的光学元件402作前后腔镜构成平行平面谐振腔或平凹腔。The microchip laser of a kind of passive Q-switching is characterized in that: successively comprises
光纤耦合输出LD泵浦源601提供泵浦,泵浦光经准直系统602聚焦到激光增益介质301泵浦端面并耦合注入;激光增益介质301与光学元件402将石墨烯或碳纳米管可饱和吸收体201紧密夹贴在中间,构成三明治结构;激光增益介质301泵浦端面镀有对泵浦光增透并对激光全反射的光学膜,其与镀有对激光部分反射光学膜的光学元件402作前后腔镜构成平行平面谐振腔或平凹腔;石墨烯或碳纳米管可饱和吸收体201作为激光调Q装置,调Q脉冲激光通过光学元件402输出。The fiber-coupled output
所述的一种被动调Q的微片激光器,其特征在于:依次包括LD泵浦源,LD泵浦源601紧贴激光增益介质301;激光增益介质301与光学元件402将石墨烯或碳纳米管可饱和吸收体201紧密夹贴在中间,构成的三明治结构;激光增益介质301泵浦端面镀有对泵浦光增透并对激光全反射的光学膜,其与镀有对激光部分反射光学膜的光学元件402作前后腔镜构成平行平面谐振腔或平凹腔。The microchip laser of a kind of passive Q-switching is characterized in that: it comprises LD pumping source in turn, and
LD泵浦源601紧贴于激光增益介质301进行端面泵浦;激光增益介质301与光学元件402将石墨烯或碳纳米管可饱和吸收体201紧密夹贴在中间,构成三明治结构;激光增益介质301泵浦端面镀有对泵浦光增透并对激光全反射的光学膜,其与镀有对激光部分反射光学膜的光学元件402作前后腔镜构成平行平面谐振腔或平凹腔;石墨烯或碳纳米管可饱和吸收体201作为激光调Q装置,调Q脉冲激光通过光学元件402输出。The
所述的一种被动调Q的微片激光器,其特征在于:依次包括LD泵浦源601、准直系统602、部分反射镜603;激光增益介质301与光学元件402将石墨烯或碳纳米管可饱和吸收体201紧密夹贴在中间,构成的三明治结构;激光增益介质301的泵浦端面镀有对泵浦光增透同时对激光部分反射的光学膜,其与对激光和泵浦光全反射的光学元件402构成谐振腔。The microchip laser of a kind of passive Q-switching is characterized in that: comprise
LD泵浦源601经准直系统602和部分反射镜603耦合注入激光增益介质301;激光增益介质301与光学元件402将石墨烯或碳纳米管可饱和吸收体201紧密夹贴在中间,构成三明治结构;激光增益介质301的泵浦端面镀有对泵浦光增透同时对激光部分反射的光学膜,其与对激光和泵浦光全反射的光学元件402构成谐振腔;石墨烯或碳纳米管可饱和吸收体201作为激光调Q装置,调Q脉冲激光从增益介质泵浦端面经部分反射镜603反射输出。The
本发明采用以上技术方案,由于石墨烯、碳纳米管可饱和吸收体厚度在纳米量级、几乎不影响谐振腔长的特点,使得利用镀膜构成的激光谐振腔腔长只取决于激光增益介质厚度与腔内光学元件厚度。而使用胶合、光胶或深化光胶的方法将微片激光器器件全固化为简单紧凑的三明治结构,可有效减小激光器光学体积,便于维护。特别地,石墨烯、碳纳米管材料可饱和吸收作用波长覆盖范围宽,利用其作可饱和吸收体进行被动调Q,选用合适的激光增益介质(e.g Nd:YAG、Nd:YVO4、Er:Yb:glass)即可实现不同波长的激光脉冲输出。此外石墨烯、碳纳米管材料具有良好的导热性,十分有利于腔内器件的导热与散热。同时灵活应用各种光学器件及其组合,可以进一步实现微片激光器脉冲激光的稳频、倍频、偏振等特性。The present invention adopts the above technical scheme, because the thickness of the saturable absorber of graphene and carbon nanotubes is on the order of nanometers, which hardly affects the length of the resonant cavity, so that the length of the laser resonant cavity formed by coating film only depends on the thickness of the laser gain medium vs. cavity optics thickness. However, the method of gluing, optical glue or deepening optical glue is used to fully cure the microchip laser device into a simple and compact sandwich structure, which can effectively reduce the optical volume of the laser and facilitate maintenance. In particular, graphene and carbon nanotube materials have a wide range of saturable absorption wavelengths, and they can be used as saturable absorbers for passive Q-switching, and suitable laser gain media (eg Nd:YAG, Nd:YVO 4 , Er: Yb:glass) can realize laser pulse output with different wavelengths. In addition, graphene and carbon nanotube materials have good thermal conductivity, which is very beneficial to the heat conduction and heat dissipation of devices in the cavity. At the same time, the flexible application of various optical devices and their combinations can further realize the characteristics of frequency stabilization, frequency doubling, and polarization of the pulsed laser of the microchip laser.
附图说明 Description of drawings
图1为本发明的第一实施例的结构示意图Fig. 1 is the structural representation of the first embodiment of the present invention
图2为本发明的第二实施例的结构示意图Fig. 2 is the structural representation of the second embodiment of the present invention
图3为本发明的第三实施例的结构示意图Fig. 3 is the structural representation of the third embodiment of the present invention
图4为本发明的第四实施例的结构示意图Fig. 4 is the structural representation of the fourth embodiment of the present invention
具体实施方式 Detailed ways
现结合附图和具体实施方式对本发明进一步说明。The present invention will be further described in conjunction with the accompanying drawings and specific embodiments.
本发明主要包括:激光增益介质、石墨烯或碳纳米管可饱和吸收体、光学元件以及泵浦装置。The invention mainly includes: laser gain medium, graphene or carbon nanotube saturable absorber, optical element and pumping device.
具体实施方式1
石墨烯作可饱和吸收体的被动调Q掺钕钇铝石榴石(Nd:YAG)全固化微片激光器。如图2所示,所属结构器件为顺序排列的LD泵浦源601、光学准直耦合系统602、激光增益介质301、石墨烯可饱和吸收体201、光学元件401。本实施例中LD泵浦源601为波长808nm光纤耦合输出LD,激光增益介质301为Nd:YAG晶体、石墨烯可饱和吸收体201为石墨烯层数1~10层的可饱和吸收体薄膜、,光学元件401为YAG晶体。其中激光增益介质301和光学元件401镀膜:S1镀波长808nm增透、1064nm全反射的二色膜,S2镀波长808nm全反射、1064nm增透二色膜,S3镀波长1064nm部分反射膜,S4镀波长1064nm增透膜。S1与S3构成平行平面谐振腔。厚度纳米量级且具有良好导热性的石墨烯可饱和吸收体紧密夹贴于激光腔内,腔长只取决于激光增益介质301的厚度。将上述激光增益介质301、石墨烯可饱和吸收体201、光学元件401紧密压合并光胶固化为紧凑的三明治结构,嵌入铜热沉自然冷却。上述光胶具有对相应波长的高透过率和低吸收率,并有良好的导热性、耐热性和粘结强度。波长808nm泵浦光由S1耦合进入激光增益介质301,激发的激光在谐振腔内振荡,经石墨烯可饱和吸收体201调制后于S3耦合输出波长1064nm的脉冲激光。Passively Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) all-solid-state microchip laser with graphene as saturable absorber. As shown in FIG. 2 , the structural devices are
具体实施方式2Specific implementation mode 2
碳纳米管作可饱和吸收体的被动调Q掺钕钒酸钇晶体(Nd:YVO4)微片激光器实现倍频绿光脉冲输出。如图2所示,所述结构器件为顺序排列的LD泵浦源601、光学准直耦合系统602、激光增益介质301、碳纳米管可饱和吸收体201、光学元件401、光学元件402.。本实施例中LD泵浦源601为波长808nm光纤耦合输出LD,激光增益介质301为Nd:YVO4晶体,碳纳米管可饱和吸收体201为碳纳米管的PVC聚合物膜,光学元件401为温度补偿介质,光学元件402为KTP倍频晶体。其中温度补偿介质的热膨胀系数或光热系数与Nd:YVO4晶体相反。其中激光增益介质301和光学元件402镀膜:S1镀波长808nm增透、1064nm全反射的二色膜,S2镀波长808nm全反射、1064nm增透二色膜,S3镀波长1064nm部分反射、532nm全反射二色膜,S4镀波长1064nm全反射、532nm增透二色膜。厚度纳米量级且具备良好导热性的碳纳米管可饱和吸收体紧密夹贴于激光增益介质301和光学元件401之间,由S1与S3构成平平谐振腔,激光腔长只取决于激光增益介质301和光学元件401的厚度。S3与S4构成倍频腔。将上述激光增益介质301、碳纳米管可饱和吸收体201、光学元件401和光学元件402紧密压合并光胶固化为紧凑的复数三明治结构,嵌入铜热沉自然冷却。上述光胶具有对相应波长的高透过率和低吸收率,并有良好的导热性、耐热性和粘结强度。波长808nm泵浦光由S1耦合进入激光增益介质301,激发的激光在谐振腔内振荡,经碳纳米管可饱和吸收体201调制后于S3耦合输出波长1064nm的脉冲激光。其间由热效应引起的腔内器件形变被光学元件401修正,使得激光腔长对温度不敏感,进而获得稳频效果。此后,由光学元件402提供倍频,在S4实现波长532nm的脉冲激光输出。Passively Q-switched neodymium-doped yttrium vanadate crystal (Nd:YVO 4 ) microchip laser with carbon nanotubes as saturable absorber realizes frequency-doubled green pulse output. As shown in FIG. 2 , the structural device is an
具体实施方式3Specific implementation mode 3
石墨烯作可饱和吸收体实现被动调Q的Er:Yb:glass全固化微片激光器。如图3所示,所述结构器件为顺序排列的LD泵浦源601、激光增益介质301、石墨烯可饱和吸收体201、光学元件401。本实施例中LD泵浦源601为波长980nm的LD,激光增益介质301为Er:Yb:glass材料、石墨烯可饱和吸收体201为在光学元件401上生长的单层石墨烯,光学元件401为6H-SiC晶体。其中激光增益介质301的泵浦端面镀有波长980nm增透、1550nm全反射二色膜。由于6H-SiC晶体本身折射率较高(n=2.6),故光学元件反射率为20%,其与激光增益介质301的泵浦端面共同构成平行平面谐振腔。石墨烯直接生长在光学元件401腔内表面作可饱和吸收体。LD泵浦源601紧贴激光增益介质301的泵浦端面进行直接端面泵浦。将上述器件紧密压合并光胶固化为紧凑的三明治结构,嵌入铜热沉自然冷却。上述光胶具有对相应波长的高透过率和低吸收率,并有良好的导热性、耐热性和粘结强度。980nm激励光经激光增益介质301泵浦端面耦合进入,产生的激光在平平腔内振荡,经石墨烯可饱和吸收体201调制后由光学元件401耦合输出波长1550nm的脉冲激光。Graphene as saturable absorber for passive Q-switching of Er:Yb:glass all-solidified microchip lasers. As shown in FIG. 3 , the structural device is an
具体实施方式4Specific implementation mode 4
石墨烯作可饱和吸收体实现被动调Q的YLF基质外延生长LiYErTmHoF晶体全固化微片激光器。如图1所示,所述结构器件为顺序排列的泵浦源601、光学准直耦合系统602、部分反射镜603、激光增益介质301、石墨烯可饱和吸收体201、光学元件401。本实施例中泵浦源601为波长647nm氪激光器,激光增益介质301为YLF基质外延生长LiYErTmHoF晶体,石墨烯可饱和吸收体201为氧化石墨烯粉末,光学元件401为铜基镀金镜。其中激光增益介质301泵浦端面镀波长647nm增透、2um部分反射二色膜。部分反射镜603镀波长647nm增透、2um全反射二色膜。光学元件401对泵浦光、激光全反射,其与激光增益介质301泵浦端面构成平平谐振腔。石墨烯可饱和吸收体201被激光增益介质301和光学元件401紧密夹贴于腔内。利用石墨烯材料所具备良好导热性,激光增益介质301产生的热量可以迅速传递给光学元件401进而得到冷却。使用深化光胶方法将光学元件401、石墨烯可饱和吸收体201和激光增益介质301固化为简单紧凑的三明治结构。上述光胶具有对相应波长的高透过率和低吸收率,并有良好的导热性、耐热性和粘结强度。波长647nm泵浦光透过部分反射镜603耦合进入激光增益介质301,产生的激光在腔内振荡并被石墨烯可饱和吸收体201调制,最终通过激光增益介质301泵浦端面耦合输出,再经部分反射镜603反射输出波长2um的脉冲激光。Graphene as saturable absorber to achieve passive Q-switched YLF matrix epitaxial growth LiYErTmHoF crystal fully solidified microchip laser. As shown in FIG. 1 , the structural device is a
特别声明,在不脱离所附专利要求书所限定的本发明的精神和范围内,在形式和细节上对本发明所做的任何变化均为本发明的保护范围。In particular, it is stated that within the spirit and scope of the present invention defined by the appended patent claims, any changes made to the present invention in form and details are within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103599270A CN102420385A (en) | 2011-11-14 | 2011-11-14 | Passive Q-switched microchip laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103599270A CN102420385A (en) | 2011-11-14 | 2011-11-14 | Passive Q-switched microchip laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102420385A true CN102420385A (en) | 2012-04-18 |
Family
ID=45944674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103599270A Pending CN102420385A (en) | 2011-11-14 | 2011-11-14 | Passive Q-switched microchip laser device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102420385A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500921A (en) * | 2013-10-22 | 2014-01-08 | 山东大学 | Low-repetition frequency and high-stability subnanosecond pulsed green laser generator |
CN104184027A (en) * | 2014-07-29 | 2014-12-03 | 奉化市宇创产品设计有限公司 | Passive Q-modulating microchip laser |
CN104242046A (en) * | 2014-10-22 | 2014-12-24 | 青岛大学 | Graphene-based mode-locked laser device |
CN104319613A (en) * | 2014-10-29 | 2015-01-28 | 中国科学院半导体研究所 | Bonding mode-locked laser with graphene as saturable absorber |
CN105140771A (en) * | 2015-07-16 | 2015-12-09 | 山东大学 | Passive Q-switched Nd:YAG human eye safe laser based on graphene |
CN105610041A (en) * | 2016-01-22 | 2016-05-25 | 四川大学 | Microchip laser system with low time jitter and picosecond pulse output |
CN108448376A (en) * | 2018-04-12 | 2018-08-24 | 中航华东光电有限公司 | Small-Sized Pulsed green (light) laser |
CN112234421A (en) * | 2020-09-30 | 2021-01-15 | 山东科技大学 | Red pulsed solid-state laser with saturable absorption of monochiral single-walled carbon nanotubes and its working method |
CN112397975A (en) * | 2019-08-16 | 2021-02-23 | 山东华光光电子股份有限公司 | QBH aging heat dissipation device of laser system and working method |
CN113285336A (en) * | 2021-03-29 | 2021-08-20 | 北京镭测科技有限公司 | Double-solid-state microchip laser |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101276984A (en) * | 2008-05-13 | 2008-10-01 | 福州高意通讯有限公司 | Micro-chip laser with safety laser pulse output to human eye |
CN101304150A (en) * | 2008-07-02 | 2008-11-12 | 福州高意通讯有限公司 | Structure of micro-slice type electro-optical Q-switching laser |
US20090290605A1 (en) * | 2006-05-09 | 2009-11-26 | Stepan Essaian | Compact, Efficient and Robust Ultraviolet Solid-State Laser Sources Based on Nonlinear Frequency Conversion in Periodically Poled Materials |
-
2011
- 2011-11-14 CN CN2011103599270A patent/CN102420385A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090290605A1 (en) * | 2006-05-09 | 2009-11-26 | Stepan Essaian | Compact, Efficient and Robust Ultraviolet Solid-State Laser Sources Based on Nonlinear Frequency Conversion in Periodically Poled Materials |
CN101276984A (en) * | 2008-05-13 | 2008-10-01 | 福州高意通讯有限公司 | Micro-chip laser with safety laser pulse output to human eye |
CN101304150A (en) * | 2008-07-02 | 2008-11-12 | 福州高意通讯有限公司 | Structure of micro-slice type electro-optical Q-switching laser |
Non-Patent Citations (1)
Title |
---|
曹镱等: "石墨烯调Q的Nd:YAG晶体微片激光器", 《中国光学学会2011年学术大会摘要集》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500921A (en) * | 2013-10-22 | 2014-01-08 | 山东大学 | Low-repetition frequency and high-stability subnanosecond pulsed green laser generator |
CN104184027A (en) * | 2014-07-29 | 2014-12-03 | 奉化市宇创产品设计有限公司 | Passive Q-modulating microchip laser |
CN104242046A (en) * | 2014-10-22 | 2014-12-24 | 青岛大学 | Graphene-based mode-locked laser device |
CN104319613A (en) * | 2014-10-29 | 2015-01-28 | 中国科学院半导体研究所 | Bonding mode-locked laser with graphene as saturable absorber |
CN105140771A (en) * | 2015-07-16 | 2015-12-09 | 山东大学 | Passive Q-switched Nd:YAG human eye safe laser based on graphene |
CN105610041B (en) * | 2016-01-22 | 2019-12-03 | 四川大学 | Microchip laser system with low time jitter picosecond pulse output |
CN105610041A (en) * | 2016-01-22 | 2016-05-25 | 四川大学 | Microchip laser system with low time jitter and picosecond pulse output |
CN108448376A (en) * | 2018-04-12 | 2018-08-24 | 中航华东光电有限公司 | Small-Sized Pulsed green (light) laser |
CN112397975A (en) * | 2019-08-16 | 2021-02-23 | 山东华光光电子股份有限公司 | QBH aging heat dissipation device of laser system and working method |
CN112397975B (en) * | 2019-08-16 | 2022-02-08 | 山东华光光电子股份有限公司 | QBH aging heat dissipation device of laser system and working method |
CN112234421A (en) * | 2020-09-30 | 2021-01-15 | 山东科技大学 | Red pulsed solid-state laser with saturable absorption of monochiral single-walled carbon nanotubes and its working method |
CN112234421B (en) * | 2020-09-30 | 2021-12-28 | 山东科技大学 | Red pulsed solid-state laser with saturable absorption of monochiral single-walled carbon nanotubes and its working method |
CN113285336A (en) * | 2021-03-29 | 2021-08-20 | 北京镭测科技有限公司 | Double-solid-state microchip laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102420385A (en) | Passive Q-switched microchip laser device | |
CN202695968U (en) | Passive Q-switched laser based on bonded crystal | |
CN103618205B (en) | A kind of full-solid-state single longitudinal mode yellow light laser | |
CN102136670A (en) | Double-end end-pumped solid laser based on polarization coupling | |
CN103887698A (en) | Efficient singular-pump-source and two-end-symmetric type pump laser | |
CN101308991A (en) | Coupled-cavity Raman frequency-doubling all-solid-state yellow laser | |
CN103199430A (en) | Frequency doubling self-regulating Q green laser inside double-doped chrome yttrium aluminum garnet composite photassium titanyl phosphate cavity | |
CN103050870B (en) | Novel microchip laser supporting optical fiber output | |
CN101242076A (en) | A KTA crystal full solid Raman laser | |
CN101299512A (en) | Self Raman multiple frequency complete-solid yellow light laser | |
CN104538823B (en) | With band pumping Er:The 1617nm passive Q-regulaitng lasers of YAG crystal | |
CN103151695B (en) | Topological insulator pulse modulation device and all-solid state laser pulse modulated lasers | |
CN102610992B (en) | Method for realizing high absorption efficiency of Nd:YAG laser for pumping light | |
CN101986480A (en) | Composite self-Raman frequency-doubled yellow laser crystal module | |
CN204391490U (en) | A kind of flat-concave cavity passive Q-regulaitng laser | |
CN101159364A (en) | LD terminal pump Nd:YAG/SrWO4/KTP yellow light laser | |
CN201234055Y (en) | Coupling cavity type Raman frequency doubling completely solid yellow light laser | |
CN101304152A (en) | Coupled cavity self-Raman frequency doubling all-solid-state yellow laser | |
CN107069428A (en) | Based on WS2Passive Q-adjusted c cutting Nd:YVO4From Raman eye-safe laser | |
CN101562311B (en) | Potassium titanyl arsenate crystal all-solid-state Raman self-frequency doubling yellow laser | |
CN101159362A (en) | LD terminal pump yellow light laser | |
CN105470805A (en) | High-performance laser system based on doping concentration gradually-changed ceramics | |
CN206595543U (en) | A kind of inner chamber Raman Yellow light laser of bicrystal composite gain | |
CN2765348Y (en) | Cavity dumping full-solid picosecond laser | |
CN201234056Y (en) | Folding cavity self-raman frequency doubling completely solid yellow laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120418 |