CN102412336A - Miniaturized infrared thermal sensing module and method of manufacturing the same - Google Patents
Miniaturized infrared thermal sensing module and method of manufacturing the same Download PDFInfo
- Publication number
- CN102412336A CN102412336A CN2010102926726A CN201010292672A CN102412336A CN 102412336 A CN102412336 A CN 102412336A CN 2010102926726 A CN2010102926726 A CN 2010102926726A CN 201010292672 A CN201010292672 A CN 201010292672A CN 102412336 A CN102412336 A CN 102412336A
- Authority
- CN
- China
- Prior art keywords
- pads
- infrared thermal
- chip
- thermal sensing
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 229910000679 solder Inorganic materials 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000005530 etching Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 235000012431 wafers Nutrition 0.000 claims description 39
- 230000003287 optical effect Effects 0.000 claims description 19
- 239000000853 adhesive Substances 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 13
- 238000005476 soldering Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 238000003032 molecular docking Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 abstract description 3
- 238000005304 joining Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 41
- 238000003466 welding Methods 0.000 description 13
- 239000002994 raw material Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
一种微小化的红外线热感测组件的制造方法,其步骤包括:提供一晶圆与一基板,晶圆设有数个晶片。于晶片底部成形四个焊垫部、一热敏电阻以及一红外线热感测层,该四个焊垫部分别电性连接于热敏电阻与红外线热感测层。将数个焊料分别固定于焊垫部上。将晶片顶面进行背向蚀刻,使晶片成形一感测薄膜及环绕连接于感测薄膜周围的一环侧壁。将晶圆与基板对接。加热焊料,使每一晶片与基板焊接在一起。将数个滤光片分别插设于每一晶片的环侧壁内。切割晶圆与基板以成形数个红外线热感测组件。此外,本发明另提供一种微小化的红外线热感测组件。
A method for manufacturing a miniaturized infrared thermal sensing component, the steps of which include: providing a wafer and a substrate, wherein the wafer is provided with a plurality of chips. Forming four pads, a thermistor, and an infrared thermal sensing layer at the bottom of the chip, wherein the four pads are electrically connected to the thermistor and the infrared thermal sensing layer, respectively. Fixing a plurality of solders on the pads, respectively. Back-etching the top surface of the chip to form a sensing film and a ring side wall surrounding the sensing film. Butt-joining the wafer and the substrate. Heating the solder to weld each chip to the substrate. Inserting a plurality of filters into the ring side wall of each chip, respectively. Cutting the wafer and the substrate to form a plurality of infrared thermal sensing components. In addition, the present invention further provides a miniaturized infrared thermal sensing component.
Description
技术领域 technical field
本发明是有关一种微小化的红外线热感测组件,尤指一种接收红外线的热感测组件及其制造方法。The invention relates to a miniaturized infrared thermal sensing component, especially a thermal sensing component for receiving infrared rays and a manufacturing method thereof.
背景技术 Background technique
请参阅图1至图2,此为习知的红外线热感测组件,其包括:一基座1a、数个接脚2a、一晶片3a、数个导线4a、一盖体5a、一滤光片6a以及一热敏电阻7a。Please refer to Fig. 1 to Fig. 2, this is the conventional infrared thermal sensing assembly, which includes: a base 1a,
该基座1a形成数个贯穿基座1a的穿孔11a,该些接脚2a分别设置于穿孔11a;该晶片3a具有一感测薄膜31a以及环绕于感测薄膜31a周围的一环侧壁32a,环侧壁32a底面形成一开口321a,并且环侧壁32a的底面固定于基座1a上,该热敏电阻7a设置于基座1a上,该些导线4a分别将该些接脚2a连接于环侧壁32a顶面以及热敏电阻7a;该盖体5a固定于基座1a上且晶片3a设置于盖体5a内,盖体5a对应于感测薄膜31a的部位形成一固定孔51a,该滤光片6a固定于固定孔51a上。The base 1a forms several through
上述结构的成形,主要是先准备一晶圆(图略),该晶圆具有数个晶片3a,并且该些晶片3a于组装前,其皆先进行背向蚀刻,藉以将各晶片3a内形成一凹槽状结构。The forming of the above-mentioned structure mainly prepares a wafer (figure omitted) earlier, and this wafer has
接着,再将晶圆做切割,藉以形成数个晶片3a,取其中一个晶片3a,以黏晶机(图略)将晶片3a黏接于具有接脚2a的基座1a上,且将热敏电阻7a设置于基座1a上,其后以打线机(图略)将晶片3a与热敏电阻7a分别连接于接脚2a上,最后,将装设有滤光片6a的盖体5a密合于基座1a上。其中,接脚2a装设于基座1a内以及滤光片6a固定于盖体5a,此两部分须在进行上述组装前就准备完成。Then, the wafer is cut to form
习知的红外线热感测组件主要由红外线穿透滤光片6a,进而被感测薄膜31a所接收。但滤光片6a与感测薄膜31a之间的距离过大,所以容易产生目标红外线辐射的重叠干扰现象。再者,于生产时须以单颗红外线热感测组件为一个单位进行生产,并且接脚2a装设于基座1a内、滤光片6a固定于盖体5a,以及热敏电阻7a需黏接于基座1a,且接线至接脚2a,此三部分须有额外的制程,使得整体生产成本过高。The conventional infrared thermal sensing components are mainly received by the
因此,本发明人有感上述缺失的可改善,乃特潜心研究并配合学理的运用,终于提出一种设计合理且有效改善上述缺失的本发明。Therefore, the inventor of the present invention feels that the above shortcomings can be improved, so he devoted himself to research and combined with the application of theories, and finally proposed an invention with reasonable design and effective improvement of the above shortcomings.
发明内容 Contents of the invention
本发明的主要目的,在于提供一种尺寸小、生产成本低以及可避免红外线重叠干扰现象的红外线热感测组件。The main object of the present invention is to provide an infrared heat sensing component with small size, low production cost and avoiding infrared overlapping interference phenomenon.
为达上述的目的,本发明提供一种微小化的红外线热感测组件的制造方法,其步骤包括:提供一晶圆以及一基板,该晶圆设有数个晶片;于每一晶片底部成形四个焊垫部、一热敏电阻以及一红外线热感测层,将该四个焊垫部其中两个电性连接于该热敏电阻,另两个焊垫部电性连接于该红外线热感测层;将数个焊料分别固定于该四个焊垫部上;将每一晶片顶面进行背向蚀刻,使每一晶片内皆成形一感测薄膜以及环绕连接于该感测薄膜周围的一环侧壁;将数个焊料分别固定于该至少两焊垫与该热敏电阻上;将该晶圆与该基板对接;加热该些焊料,使每一晶片与该基板焊接在一起;将数个滤光片分别插设于每一晶片的该环侧壁内;以及切割该晶圆与该基板以成形数个红外线热感测组件。In order to achieve the above-mentioned purpose, the present invention provides a method for manufacturing a miniaturized infrared thermal sensing component. The steps include: providing a wafer and a substrate, the wafer is provided with several chips; forming four chips at the bottom of each chip Two pads, a thermistor and an infrared thermal sensing layer, two of the four pads are electrically connected to the thermistor, and the other two pads are electrically connected to the infrared thermal sensor A plurality of solders are respectively fixed on the four soldering pads; the top surface of each chip is etched backward, so that a sensing film is formed in each chip and a sensor is connected around the sensing film. a ring side wall; several solders are respectively fixed on the at least two welding pads and the thermistor; the wafer is connected to the substrate; the solders are heated to weld each chip to the substrate; Several optical filters are respectively inserted in the ring side wall of each wafer; and the wafer and the substrate are cut to form several infrared thermal sensing components.
本发明另提供一种微小化的红外线热感测组件的制造方法,其步骤包括:提供一晶圆以及一基板,该晶圆设有数个晶片;于每一晶片底部成形四个焊垫部、一热敏电阻与一红外线热感测层,将该四个焊垫部其中两个电性连接于该热敏电阻,另两个焊垫部电性连接于该红外线热感测层;将数个焊料分别固定于该四个焊垫部上;将每一晶片顶面进行背向蚀刻,使每一晶片内皆成形一感测薄膜以及环绕连接于该感测薄膜周围的一环侧壁;切割该晶圆为数个晶片;将数个焊料分别固定于该至少两焊垫与该热敏电阻上;将每一晶片接合于该基板上;加热该些焊料,使每一晶片与该基板焊接在一起;将数个滤光片分别插设于每一晶片的该环侧壁内;以及切割该基板以成形数个红外线热感测组件。The present invention also provides a method for manufacturing a miniaturized infrared thermal sensing component, the steps of which include: providing a wafer and a substrate, the wafer is provided with several chips; forming four pads at the bottom of each chip, A thermistor and an infrared heat sensing layer, two of the four pads are electrically connected to the thermistor, and the other two pads are electrically connected to the infrared heat sensing layer; A solder is respectively fixed on the four welding pads; the top surface of each chip is etched backward, so that a sensing film is formed in each chip and a ring side wall is connected around the sensing film; cutting the wafer into several chips; fixing several solders on the at least two pads and the thermistor respectively; bonding each chip to the substrate; heating the solders to weld each chip to the substrate together; inserting several optical filters in the ring side wall of each wafer; and cutting the substrate to form several infrared thermal sensing components.
本发明又提供一种微小化的红外线热感测组件,包括:一晶片,其具有一感测薄膜以及环绕连接于该感测薄膜周围的一环侧壁,该感测薄膜内形成有一红外线热感测层,该环侧壁顶面形成一开口,该环侧壁底部形成有四个焊垫部以及一热敏电阻;以及一滤光片,其通过该开口设置于该环侧壁内缘;其中,该四个焊垫部其中两个电性连接于该热敏电阻,另两焊垫部电性连接于该红外线热感测层。The present invention also provides a miniaturized infrared heat sensing component, including: a chip, which has a sensing film and a ring side wall surrounding and connected to the sensing film, and an infrared heat sensor is formed in the sensing film. In the sensing layer, an opening is formed on the top surface of the side wall of the ring, four pads and a thermistor are formed on the bottom of the side wall of the ring; and an optical filter is arranged on the inner edge of the side wall of the ring through the opening ; Among them, two of the four pads are electrically connected to the thermistor, and the other two pads are electrically connected to the infrared thermal sensing layer.
本发明具有下述有益的效果:The present invention has following beneficial effect:
(1)可批量生产降低生产成本:本发明的制造方法可进行大规模的量产制造,而不须以单个进行生产,因此,可大幅地降低生产成本。(1) Mass production is possible to reduce production cost: the manufacturing method of the present invention can be mass-produced on a large scale without the need for individual production, therefore, the production cost can be greatly reduced.
(2)避免红外线的重叠干扰现象:本发明将滤光片设置于环侧壁的内缘,使得滤光片与感测薄膜之间的距离大幅的缩短,进而可有效地避免红外线的重叠干扰现象。(2) Avoid overlapping interference of infrared rays: the present invention arranges the optical filter on the inner edge of the ring side wall, so that the distance between the optical filter and the sensing film is greatly shortened, thereby effectively avoiding overlapping interference of infrared rays Phenomenon.
(3)大幅缩小尺寸:本发明将滤光片的一部份设置于环侧壁内缘所包覆的空间,使得红外线热感测组件的高度大幅降低,进而缩小尺寸。并且,使用电路板令尺寸更进一步的缩小。(3) Significantly reduced size: In the present invention, a part of the optical filter is arranged in the space covered by the inner edge of the ring side wall, so that the height of the infrared thermal sensing component is greatly reduced, thereby reducing the size. Also, the use of circuit boards further reduces the size.
(4)降低原料耗费成本:本发明不须使用盖体,并且将热敏电阻直接形成于环侧壁底部,因此,每个红外线热感测组件所需耗费的原料成本将显著地下降。(4) Reduce raw material cost: the present invention does not need to use a cover body, and the thermistor is directly formed on the bottom of the ring side wall, therefore, the raw material cost required for each infrared heat sensing component will be significantly reduced.
(5)应用范围广:本发明的整体大小与一个晶片的尺寸相当,因此,本发明的微小化的红外线热感测组件的应用范围更广,如可应用于手机、耳温枪以及传感器等装置,并且使该些装置具有缩小尺寸的空间。(5) Wide range of applications: the overall size of the present invention is equivalent to the size of a chip, therefore, the miniaturized infrared heat sensing component of the present invention has a wider range of applications, such as being applicable to mobile phones, ear thermometers and sensors, etc. devices, and enable these devices to have a reduced size space.
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,但是此等说明与附图仅是用来说明本发明,而非对本发明的权利范围作任何的限制。In order to enable a further understanding of the features and technical contents of the present invention, please refer to the following detailed descriptions and drawings of the present invention, but these descriptions and drawings are only used to illustrate the present invention, rather than to limit the scope of rights of the present invention. any restrictions.
附图说明 Description of drawings
图1为习知红外线感测组件的示意图。FIG. 1 is a schematic diagram of a conventional infrared sensing device.
图2为习知红外线感测组件的剖视图。FIG. 2 is a cross-sectional view of a conventional infrared sensing component.
图3为本发明第一实施例的步骤流程图。FIG. 3 is a flowchart of the steps of the first embodiment of the present invention.
图4为本发明第二实施例的步骤流程图。FIG. 4 is a flowchart of the steps of the second embodiment of the present invention.
图5为本发明第三实施例的俯视图。Fig. 5 is a top view of a third embodiment of the present invention.
图6为本发明第三实施例的仰视图。Fig. 6 is a bottom view of the third embodiment of the present invention.
图7为本发明第三实施例反射层涂设于感测薄膜的剖视图。7 is a cross-sectional view of a reflective layer coated on a sensing film according to a third embodiment of the present invention.
图8为本发明第三实施例反射层涂设于电路板的剖视图。8 is a cross-sectional view of a reflective layer coated on a circuit board according to a third embodiment of the present invention.
图9为本发明第四实施例反射层涂设于感测薄膜的剖视图。9 is a cross-sectional view of a reflective layer coated on a sensing film according to a fourth embodiment of the present invention.
图10为本发明第四实施例反射层涂设于电路板的剖视图。10 is a cross-sectional view of a reflective layer coated on a circuit board according to a fourth embodiment of the present invention.
符号说明Symbol Description
1a基座 11a穿孔
2a接脚 3a晶片
31a感测薄膜 32a环侧壁
321a开口 4a导线321a opening 4a wire
5a盖体 51a固定孔
6a滤光片 7a热敏电阻
1基板 11电路板1
111接点 112线路111
2晶片 21感测薄膜2
211红外线热感测材料 212开孔211 infrared
22环侧壁 221开口22
222斜面 223阶梯面222
23焊垫部 231焊垫23 Welding
24热敏电阻 3焊料24 Thermistor 3 Solder
4第一黏接件 5滤光片4 The
6第二黏接件 7反射层6 The
具体实施方式 Detailed ways
请参阅图3并且参酌图5至图10,其为本发明的第一实施例,本实施例为一种微小化的红外线热感测组件的制造方法,其步骤包括:Please refer to FIG. 3 and refer to FIG. 5 to FIG. 10 , which is the first embodiment of the present invention. This embodiment is a method of manufacturing a miniaturized infrared thermal sensing component. The steps include:
提供一晶圆(图略)以及一基板1,该晶圆设有数个晶片2。其中,该基板1可为电路板11、陶瓷板或硅晶圆(图略)。A wafer (not shown) and a
请参阅图6,于每一晶片2底部成形四个焊垫部23、一热敏电阻24以及一红外线热感测层211。热敏电阻24以薄膜制程成形,并且将该四个焊垫部23其中两个电性连接于热敏电阻24,另两个焊垫部23电性连接于红外线热感测层211。其中,该四个焊垫部23各成形至少一焊垫231,且焊垫部23成形于红外线热感测层211的外侧。此外,本实施例的焊垫部23数量以四个为例,每一焊垫部23的焊垫231以三个为例,但并不以此为限。Referring to FIG. 6 , four
其后,将数个焊料3(如图7所示)分别固定于焊垫部23的焊垫231上。其中,该些焊料3可固定于每一焊垫部23中的至少一个焊垫231上,或者,该些焊料3可固定于每一焊垫部23的所有焊垫231上。Thereafter, several solders 3 (as shown in FIG. 7 ) are respectively fixed on the
请参阅图5,将每一晶片2顶面进行背向蚀刻,使每一晶片2内皆成形一感测薄膜21以及环绕连接于该感测薄膜21周围的一环侧壁22。红外线热感测层211位于感测薄膜21内,并且感测薄膜21的边缘可成形数个开孔212(如图6)。环侧壁22的内缘皆成形为斜面状(如图7和图8)或阶梯状(如图9和图10)。其中,若环侧壁22的内缘成形为阶梯状,则晶片2顶面需进行至少两次背向蚀刻。Referring to FIG. 5 , the top surface of each
请参阅图6和图7,于基板1上涂布一第一黏接件4。使用覆晶黏晶机(图略)且以覆晶封装方式将晶圆与基板1对接。其后,加热焊料3使每一晶片2与基板1焊接在一起。Referring to FIGS. 6 and 7 , a
请参阅图7,使用黏晶机(图略)将数个滤光片5分别插设于每一晶片2的环侧壁22内,其后,于每一晶片2的顶面涂布一第二黏接件6。Please refer to FIG. 7 , use a die bonder (figure omitted) to insert several
切割晶圆与基板1以成形数个红外线热感测组件。The wafer and the
此外,本发明可进一步于感测薄膜21与基板1之间涂布一反射层7。其中,反射层7可涂布于感测薄膜21或基板1上。In addition, the present invention can further coat a
请参阅图4并且参酌图5至图10,其为本发明的第二实施例,本实施例为一种微小化的红外线热感测组件的制造方法,其步骤包括:Please refer to FIG. 4 and refer to FIG. 5 to FIG. 10, which is the second embodiment of the present invention. This embodiment is a method of manufacturing a miniaturized infrared thermal sensing component, the steps of which include:
提供一晶圆(图略)以及一基板1,晶圆设有数个晶片2。其中,基板1可为电路板11、陶瓷板或硅晶圆(图略)。A wafer (not shown) and a
请参阅图6,于每一晶片2底部成形四个焊垫部23、一热敏电阻24以及一红外线热感测层211。热敏电阻24以薄膜制程成形,且将该四个焊垫部23其中两个电性连接于热敏电阻24,另两个焊垫部23电性连接于红外线热感测层211。其中,该四个焊垫部23各成形至少一焊垫23 1,且焊垫部23成形于红外线热感测层211的外侧。此外,本实施例的焊垫部23数量以四个为例,每一焊垫部23的焊垫231以三个为例,但并不以此为限。Referring to FIG. 6 , four
其后,将数个焊料3(如图7所示)分别固定于焊垫部23的焊垫231上。其中,该些焊料3可固定于每一焊垫部23中的至少一个焊垫231上,或者,该些焊料3可固定于每一焊垫部23的所有焊垫231上。Thereafter, several solders 3 (as shown in FIG. 7 ) are respectively fixed on the
请参阅图5,并将每一晶片2顶面进行背向蚀刻,使每一晶片2内皆成形一感测薄膜21以及环绕连接于该感测薄膜21周围的一环侧壁22。红外线热感测层211位于感测薄膜21内,并且感测薄膜21的边缘可成形数个开孔212(如图6)。环侧壁22的内缘皆成形为斜面状(如图7和图8)或阶梯状(如图9和图10)。其中,若环侧壁22的内缘成形为阶梯状,则晶片2顶面需进行至少两次背向蚀刻。Referring to FIG. 5 , the top surface of each
请参阅图6和图7,切割该晶圆为数个晶片2,并于基板1上涂布一第一黏接件4。将每一晶片2接合于基板1上。其后,加热焊料3,使每一晶片2与基板1焊接在一起。Referring to FIGS. 6 and 7 , the wafer is cut into
请参阅图7,使用黏晶机(图略)且以覆晶封装方式将数个滤光片5分别插设于每一晶片2的环侧壁22内,其后,于每一晶片2的顶面涂布一第二黏接件6。Please refer to FIG. 7 , use a die bonder (figure omitted) and insert several
切割基板1以成形数个红外线热感测组件。The
此外,本实施例可进一步于感测薄膜21与基板1之间涂布一反射层7。In addition, in this embodiment, a
请参阅图5至图8,其为本发明的第三实施例,本实施例为使用上述方法所制造的微小化的红外线热感测组件,其包括:一基板1、一晶片2、数个焊料3、一滤光片5以及一反射层7。该些焊料3连接基板1与晶片2,该滤光片5插设于晶片2内。Please refer to Fig. 5 to Fig. 8, which is the third embodiment of the present invention. This embodiment is a miniaturized infrared heat sensing component manufactured by the above method, which includes: a
请参阅图7,该基板1以电路板11为例,但并不以此为限,基板1亦可为陶瓷板或硅晶圆。该电路板11的顶面形成四个接点111,而电路板11顶面的四个接点111向下延伸形成导通该电路板11顶面与底面的四条线路112。另,接点111与线路112的数量各以四个为例,但并不以此为限。Please refer to FIG. 7 , the
请参阅图5和图6,该晶片2具有一感测薄膜21以及环绕连接于感测薄膜21周围的一环侧壁22。感测薄膜21内形成有一红外线热感测层211,环侧壁22的顶面形成一开口221,环侧壁22的内缘为一斜面222,环侧壁22的底部形成四个焊垫部23与一热敏电阻24,该四个焊垫部23各形成至少一焊垫23 1。焊垫部23形成于感测薄膜21的外侧。热敏电阻24形成于两个焊垫部23之间且电性连接于上述两个焊垫部23,而另两个焊垫部23电性连接于红外线热感测层211。此外,感测薄膜21外缘可设有数个开孔212,藉以使感测薄膜21受热时,不易膨胀破裂。另,此处焊垫部23以四个为例,每一焊垫部23的焊垫23 1以三个为例,但并不以此为限。Please refer to FIG. 5 and FIG. 6 , the
请参阅图6和图7,焊料3分别设置于接点111与焊垫231之间。其中,焊料3可为锡球。该滤光片5通过该开口221设置于该斜面222上。Please refer to FIG. 6 and FIG. 7 , the
该反射层7可涂设于感测薄膜21的底面(如图7所示),或者反射层7可涂设于电路板11的顶面(如图8所示)。The
此外,本发明可具有一第一黏接件4与一第二黏接件6。第一黏接件4设置于该电路板11顶面以及环侧壁22的底面之间,藉以胶合电路板11与晶片2,进而防止湿气影响组件特性。第二黏接件6设置于环侧壁22的顶面且抵触该滤光片5,藉以黏接晶片2与滤光片5。其中,第一黏接件4与第二黏接件6可为硅胶。In addition, the present invention may have a first
请参阅图9至图10,其为本发明的第四实施例,本实施例相较于第三实施例主要的不同在于,环侧壁22的内缘为阶梯状且形成至少一阶梯面223。滤光片5通过开口221设置于阶梯面223上。Please refer to FIG. 9 to FIG. 10 , which is the fourth embodiment of the present invention. Compared with the third embodiment, the main difference of this embodiment is that the inner edge of the
再者,该反射层7可涂设于感测薄膜21的底面(如图9所示),或者反射层7可涂设于电路板11的顶面(如图10所示)。Furthermore, the
〔本发明的特点〕[Features of the present invention]
(1)可批量生产降低生产成本:本发明的制造方法可进行大规模的量产制造,而不须以单个进行生产,因此,可大幅地降低生产成本。(1) Mass production is possible to reduce production cost: the manufacturing method of the present invention can be mass-produced on a large scale without the need for individual production, therefore, the production cost can be greatly reduced.
(2)良率提升:感测薄膜21外缘设有数个开孔212,藉以令感测薄膜21受热时,不易膨胀破裂,进而提升生产良率。(2) Improvement of yield rate:
(3)避免红外线的重叠干扰现象:本发明将滤光片5设置于环侧壁22的内缘,使得滤光片5与感测薄膜21之间的距离大幅的缩短,进而可有效地避免红外线的重叠干扰现象。(3) Avoid overlapping interference of infrared rays: the present invention arranges the
(4)大幅缩小尺寸:本发明将滤光片5的一部份设置于环侧壁22内缘所包覆的空间,使得红外线热感测组件的高度大幅降低,进而缩小尺寸。并且,以电路板11取代习知的基座和接脚,令尺寸更进一步的缩小。(4) Significantly reduced size: In the present invention, a part of the
(5)降低原料耗费成本:本发明不须使用盖体,以电路板11取代习知的基座和接脚,以焊料3替代习知的打线,并且将热敏电阻24直接形成于环侧壁22底部,因此,每个红外线热感测组件所需耗费的原料成本将显著地下降。(5) Reduce the cost of raw materials: the present invention does not need to use the cover body, replaces the conventional base and pins with the
(6)提升感测灵敏度:本发明的反射层7可将已穿透感测薄膜21的红外线,再次反射回感测薄膜21,藉以提高红外线热感测组件的感测灵敏度。(6) Improve sensing sensitivity: the
(7)应用范围广:本发明的整体大小与一个晶片2的尺寸相当,并且相较于习知的接脚,本发明的电路板11底面即可进行电性连接,故相当于表面安装组件(SMD),因此,本发明的微小化的红外线热感测组件的应用范围更广,如可应用于手机、耳温枪以及传感器等装置,并且使该些装置具有缩小尺寸的空间。(7) Wide range of applications: the overall size of the present invention is equivalent to the size of a
以上所揭露者,仅为本发明较佳实施例而已,自不能以此限定本发明的权利范围,因此依本发明申请范围所做的均等变化或修饰,仍属本发明所涵盖的范围。The above disclosures are only preferred embodiments of the present invention, and cannot limit the scope of rights of the present invention. Therefore, equivalent changes or modifications made according to the application scope of the present invention still fall within the scope of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102926726A CN102412336B (en) | 2010-09-25 | 2010-09-25 | Miniaturized infrared thermal sensing component and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102926726A CN102412336B (en) | 2010-09-25 | 2010-09-25 | Miniaturized infrared thermal sensing component and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102412336A true CN102412336A (en) | 2012-04-11 |
CN102412336B CN102412336B (en) | 2013-09-11 |
Family
ID=45914302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102926726A Expired - Fee Related CN102412336B (en) | 2010-09-25 | 2010-09-25 | Miniaturized infrared thermal sensing component and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102412336B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11430906B2 (en) | 2018-07-26 | 2022-08-30 | Advanced Semiconductor Engineering, Inc. | Optical device including lid having first and second cavity with inclined sidewalls |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1118103C (en) * | 1998-10-21 | 2003-08-13 | 李韫言 | Thermal radiation infrared sensor for fine machining |
CN201680915U (en) * | 2010-04-30 | 2010-12-22 | 友丽系统制造股份有限公司 | Miniaturized infrared thermal sensing assembly |
-
2010
- 2010-09-25 CN CN2010102926726A patent/CN102412336B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1118103C (en) * | 1998-10-21 | 2003-08-13 | 李韫言 | Thermal radiation infrared sensor for fine machining |
CN201680915U (en) * | 2010-04-30 | 2010-12-22 | 友丽系统制造股份有限公司 | Miniaturized infrared thermal sensing assembly |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11430906B2 (en) | 2018-07-26 | 2022-08-30 | Advanced Semiconductor Engineering, Inc. | Optical device including lid having first and second cavity with inclined sidewalls |
TWI791875B (en) * | 2018-07-26 | 2023-02-11 | 日月光半導體製造股份有限公司 | Optical device |
US12094995B2 (en) | 2018-07-26 | 2024-09-17 | Advanced Semiconductor Engineering, Inc. | Optical device including lid having first and second cavity with inclined sidewalls |
Also Published As
Publication number | Publication date |
---|---|
CN102412336B (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7289956B2 (en) | Fingerprint sensing module and method | |
US7705465B2 (en) | Surface-mount type optical semiconductor device and method for manufacturing the same | |
JP6415648B2 (en) | Sensor package structure | |
CN103325803B (en) | Image sensor package method and structure, imageing sensor module and formation method | |
JP2009295959A (en) | Semiconductor device, and method for manufacturing thereof | |
CN106033753B (en) | Packaging module and substrate structure thereof | |
CN106653742B (en) | Proximity sensor, electronic device and method of manufacturing proximity sensor | |
CN105789197A (en) | Optical module, method of manufacturing the same, and electronic device having the same | |
CN107619020B (en) | Bottom package exposed die MEMS pressure sensor integrated circuit package design | |
JP3173006U (en) | Sensor element | |
CN103247650B (en) | A kind of onboard chip module and manufacture method thereof | |
US9073750B2 (en) | Manufacturing method of micro-electro-mechanical system device and micro-electro-mechanical system device made thereby | |
CN103296043B (en) | Image sensor package method and structure, imageing sensor module and formation method | |
JP2018006760A (en) | Sensor package structure | |
US8153976B2 (en) | Infrared sensor and manufacturing method thereof | |
CN105047615B (en) | The encapsulating structure and packaging method of MEMS sensor | |
CN201680915U (en) | Miniaturized infrared thermal sensing assembly | |
CN102412336B (en) | Miniaturized infrared thermal sensing component and manufacturing method thereof | |
TW201344994A (en) | Semiconductor laser chip package with encapsulated recess molded on substrate and method for forming same | |
CN104568784B (en) | Sensing module and manufacturing method thereof | |
CN105280630B (en) | Electronic equipment including optical sensor chip | |
CN210325795U (en) | Optical scanning module | |
JP2006114737A (en) | Optical semiconductor equipment and manufacturing method thereof | |
TWI359481B (en) | Sensor semiconductor package and method thereof | |
CN205211751U (en) | Proximity sense and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130911 Termination date: 20150925 |
|
EXPY | Termination of patent right or utility model |