CN102409293A - Preparation method of aluminum oxide film - Google Patents
Preparation method of aluminum oxide film Download PDFInfo
- Publication number
- CN102409293A CN102409293A CN2011103963746A CN201110396374A CN102409293A CN 102409293 A CN102409293 A CN 102409293A CN 2011103963746 A CN2011103963746 A CN 2011103963746A CN 201110396374 A CN201110396374 A CN 201110396374A CN 102409293 A CN102409293 A CN 102409293A
- Authority
- CN
- China
- Prior art keywords
- substrate
- aluminum oxide
- oxide film
- ion beam
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 229910052786 argon Inorganic materials 0.000 claims abstract description 18
- 238000000151 deposition Methods 0.000 claims abstract description 15
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 15
- 150000002500 ions Chemical class 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229920005570 flexible polymer Polymers 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000004544 sputter deposition Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000010849 ion bombardment Methods 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 230000010354 integration Effects 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 13
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 7
- -1 argon ions Chemical class 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 26
- 239000010409 thin film Substances 0.000 description 14
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 238000007735 ion beam assisted deposition Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种氧化铝薄膜的制备方法,属于表面工程技术领域。所述方法包括以下步骤:将柔性聚合物薄膜基底放在真空室内,对真空室抽真空至真空室内压强≤2.0×10-3Pa;用离子源对基底进行氩离子轰击处理,提高镀制膜层的附着力;其中氩气流量为15sccm,离子束放电电压为280V,离子束电流为1A;采用氧离子束辅助脉冲反应磁控溅射技术沉积氧化铝薄膜,靶源为铝靶。制备过程中基底一直保持室温,避免了高温对柔性聚合物薄膜基底的损害。可以在柔性聚合物基底上实现高质量氧化铝薄膜的快速沉积。The invention relates to a method for preparing an aluminum oxide film, and belongs to the field of surface engineering technology. The method comprises the following steps: placing a flexible polymer film substrate in a vacuum chamber, evacuating the vacuum chamber to a pressure of ≤2.0×10 -3 Pa in the vacuum chamber; using an ion source to bombard the substrate with argon ions to improve the adhesion of the plated film layer; wherein the argon gas flow rate is 15 sccm, the ion beam discharge voltage is 280V, and the ion beam current is 1A; and using oxygen ion beam assisted pulse reactive magnetron sputtering technology to deposit the aluminum oxide film, the target source is an aluminum target. During the preparation process, the substrate is kept at room temperature to avoid damage to the flexible polymer film substrate by high temperature. Rapid deposition of high-quality aluminum oxide film can be achieved on a flexible polymer substrate.
Description
技术领域 technical field
本发明涉及一种氧化铝薄膜的制备方法,属于表面工程技术领域。The invention relates to a method for preparing an aluminum oxide film, which belongs to the technical field of surface engineering.
背景技术 Background technique
Al2O3薄膜是一种重要的功能薄膜材料,由于具有较高的介电常数、高热导率、抗辐照损伤能力强、抗碱离子渗透能力强以及在很宽的波长范围内透明等诸多优异的物理、化学性能,使其在微电子器件、电致发光器件、光波导器件以及抗腐蚀涂层等众多领域有着广泛的应用。Al 2 O 3 film is an important functional film material, due to its high dielectric constant, high thermal conductivity, strong resistance to radiation damage, strong resistance to alkali ion penetration and transparency in a wide range of wavelengths, etc. Many excellent physical and chemical properties make it widely used in many fields such as microelectronic devices, electroluminescent devices, optical waveguide devices and anti-corrosion coatings.
Al2O3薄膜的制备方法有很多种,如:磁控溅射、离子束辅助沉积(IBAD)、脉冲激光沉积(PLD)、电子束物理气相沉积、化学气相沉积(CVD)、原子层沉积(ALD)和溶胶-凝胶(Sol-Gel)等。脉冲反应磁控溅射因可以在大面积范围内保持薄膜的均匀性,并能有效地解决制备介质膜如Al2O3膜时的放电效应,成为研究的热点。但是,脉冲反应磁控溅射方法制备Al2O3薄膜时受到迟滞现象的影响,在基底不加热且靶材处于金属态的情况下无法得到完全化学计量比的Al2O3薄膜,只有在采用基底加热(500℃以上)或在靶材中毒的情况下镀制纯Al2O3薄膜,无法实现薄膜的低温、快速沉积,这限制了柔性聚合物基底上化合物薄膜的制备与应用。离子束辅助沉积技术可以在低衬底温度下合成化合物薄膜,所制备的薄膜具有膜基结合强度高、薄膜密度大等特点,在结构薄膜材料和功能薄膜材料制备方面均有广泛的应用。在传统的IBAD方法中,氧化物薄膜的制备一般采用Ar离子辅助的电子束蒸发沉积方法。这一方法的沉积速率低、薄膜成分难于控制。因此,急需开发一种新的制备方法,来降低沉积温度、提高沉积速率。There are many methods for preparing Al 2 O 3 thin films, such as: magnetron sputtering, ion beam assisted deposition (IBAD), pulsed laser deposition (PLD), electron beam physical vapor deposition, chemical vapor deposition (CVD), atomic layer deposition (ALD) and sol-gel (Sol-Gel), etc. Pulse reactive magnetron sputtering has become a research hotspot because it can maintain the uniformity of the film in a large area and can effectively solve the discharge effect when preparing dielectric films such as Al 2 O 3 films. However, the preparation of Al 2 O 3 thin films by pulse reactive magnetron sputtering is affected by hysteresis. When the substrate is not heated and the target is in a metallic state, it is impossible to obtain a completely stoichiometric Al 2 O 3 thin film. Using substrate heating (above 500°C) or plating pure Al 2 O 3 thin films under the condition of target poisoning cannot achieve low-temperature and rapid deposition of thin films, which limits the preparation and application of compound thin films on flexible polymer substrates. Ion beam assisted deposition technology can synthesize compound thin films at low substrate temperature. The prepared thin films have the characteristics of high film-base bonding strength and high film density. They are widely used in the preparation of structural thin film materials and functional thin film materials. In the traditional IBAD method, the oxide thin film is generally prepared by Ar ion-assisted electron beam evaporation deposition method. The deposition rate of this method is low and the film composition is difficult to control. Therefore, it is urgent to develop a new preparation method to reduce the deposition temperature and increase the deposition rate.
发明内容 Contents of the invention
本发明的目的是为克服现有技术中氧化铝薄膜沉积温度高和金属靶材中毒导致沉积速率低的问题,而提供一种实现高质量氧化铝薄膜低温、快速制备的方法,该方法所选用基底可推广应用于柔性聚合物薄膜,大大拓展氧化铝薄膜的应用范围。The purpose of the present invention is to provide a low-temperature and rapid preparation method for high-quality aluminum oxide film to overcome the problems of high deposition temperature of aluminum oxide film and low deposition rate caused by metal target poisoning in the prior art. The substrate can be popularized and applied to flexible polymer films, greatly expanding the application range of aluminum oxide films.
一种氧化铝薄膜的制备方法,所述方法包括以下步骤:A method for preparing an aluminum oxide film, said method comprising the following steps:
(1)将柔性聚合物薄膜基底放在真空室内,对真空室抽真空至真空室内压强≤2.0×10-3Pa;(1) Place the flexible polymer film substrate in a vacuum chamber, and evacuate the vacuum chamber until the pressure in the vacuum chamber is ≤2.0×10 -3 Pa;
(2)用离子源对基底进行氩离子轰击处理,提高镀制膜层的附着力;其中氩气流量为15sccm,离子束放电电压为280V,离子束电流为1A;(2) Carry out argon ion bombardment treatment to substrate with ion source, improve the adhesive force of plating film layer; Wherein argon gas flow rate is 15sccm, ion beam discharge voltage is 280V, and ion beam current is 1A;
(3)采用氧离子束辅助脉冲反应磁控溅射技术沉积氧化铝薄膜,靶源为铝靶,工艺参数如下:(3) The alumina film was deposited by oxygen ion beam assisted pulse reaction magnetron sputtering technology, the target source was aluminum target, and the process parameters were as follows:
工作气体 氩气流量为8~15sccm;The working gas flow rate of argon is 8~15sccm;
离子源氧气体积分量为86%~89%;The volume fraction of oxygen in the ion source is 86% to 89%;
工作气压 0.3~0.5Pa;Working pressure 0.3~0.5Pa;
离子源电压 300~500V;Ion source voltage 300~500V;
离子束电流 0.85~1A;Ion beam current 0.85~1A;
Al靶溅射功率 400~600W;Al target sputtering power 400~600W;
溅射脉冲频率 20~25KHz;Sputtering pulse frequency 20~25KHz;
其中,所述氩气和氧气为纯度为99.99%的高纯气体。Wherein, the argon and oxygen are high-purity gases with a purity of 99.99%.
优选所述基底为膜厚为25~125微米的聚酰亚胺膜。Preferably, the substrate is a polyimide film with a film thickness of 25-125 microns.
有益效果Beneficial effect
本发明通过氧离子束辅助脉冲反应磁控溅射技术,可以利用氧离子高的化学活性以及离子的动能对表面吸附、解离以及扩散作用的增强而降低沉积温度,同时解决靶中毒现象提高沉积速率,进而达到氧化铝薄膜的低温、快速制备。沉积过程中基底一直保持室温,避免了高温对柔性聚合物薄膜基底的损害。可以在柔性聚合物基底上实现高质量氧化铝薄膜的快速沉积,配以相应的柔性衬底卷绕设备,即可实现大面积连续化沉积。The present invention uses oxygen ion beam-assisted pulse-response magnetron sputtering technology, which can reduce the deposition temperature by utilizing the high chemical activity of oxygen ions and the enhancement of the kinetic energy of ions to surface adsorption, dissociation and diffusion, and at the same time solve the phenomenon of target poisoning and improve the deposition rate. speed, and then achieve low-temperature and rapid preparation of aluminum oxide thin films. During the deposition process, the substrate is kept at room temperature, which avoids the damage of high temperature to the flexible polymer film substrate. Rapid deposition of high-quality aluminum oxide films can be achieved on flexible polymer substrates, and with corresponding flexible substrate winding equipment, large-area continuous deposition can be achieved.
具体实施方式 Detailed ways
下面结合具体实施例,对本发明所述的技术方案进行详细的说明。The technical solution of the present invention will be described in detail below in conjunction with specific embodiments.
实施例Example
一种氧化铝薄膜的制备方法,所述方法包括以下步骤:A method for preparing an aluminum oxide film, said method comprising the following steps:
(1)将50μm厚的聚酰亚胺薄膜基底放在真空室内,对真空室抽真空至真空室内压强为2.0×10-3Pa;(1) Place a 50 μm thick polyimide film substrate in a vacuum chamber, and evacuate the vacuum chamber until the pressure in the vacuum chamber is 2.0×10 -3 Pa;
(2)用离子源对基底进行氩离子轰击处理,提高镀制膜层的附着力;其中氩气流量为15sccm,离子束放电电压为280V,离子束电流为1A;(2) Carry out argon ion bombardment treatment to substrate with ion source, improve the adhesive force of plating film layer; Wherein argon gas flow rate is 15sccm, ion beam discharge voltage is 280V, and ion beam current is 1A;
(3)采用氧离子束辅助脉冲反应磁控溅射技术沉积氧化铝薄膜,过程和工艺参数如下:(3) The aluminum oxide thin film was deposited by oxygen ion beam assisted pulse reactive magnetron sputtering technology, the process and process parameters are as follows:
溅射用的金属铝靶纯度为99.99%,靶为长条形,面积为560mm×80mm,靶和基底之间的距离为100mm,溅射工作气体为纯度99.99%的氩气和氧气,氧气体积占86%~89%,溅射电源是美国AE公司产的脉冲电源,输出功率最高5kW。氧氩混合气体通入离子源中,产生的氧离子使溅射的铝在基底上氧化制备氧化铝薄膜。The purity of the metal aluminum target used for sputtering is 99.99%. The target is long and the area is 560mm×80mm. The distance between the target and the substrate is 100mm. The sputtering working gas is argon and oxygen with a purity of 99.99%. Accounting for 86% to 89%, the sputtering power supply is a pulse power supply produced by AE Company in the United States, and the output power is up to 5kW. The oxygen-argon mixed gas is passed into the ion source, and the oxygen ions generated oxidize the sputtered aluminum on the substrate to prepare an aluminum oxide film.
金属铝靶材溅射工作气体氩气经铝管通到磁控靶表面,用质量流量计调节氩气流量为8~15sccm,打开脉冲溅射电源,电压施加在金属Al靶和真空室之间。通入离子源中的氧氩混合气体通过质量流量计进行控制,氧离子使溅射的金属粒子氧化,氩离子对薄膜的轰击用于进一步改善薄膜质量,提高其性能,实现高质量氧化铝薄膜的镀制。薄膜沉积过程中基底均处于自然温升状态,不另加热。The working gas argon for metal aluminum target sputtering passes through the aluminum tube to the surface of the magnetron target, adjust the flow rate of argon gas to 8-15 sccm with a mass flow meter, turn on the pulse sputtering power supply, and apply the voltage between the metal Al target and the vacuum chamber . The mixed gas of oxygen and argon fed into the ion source is controlled by a mass flow meter. Oxygen ions oxidize the sputtered metal particles, and the bombardment of the film by argon ions is used to further improve the quality of the film, improve its performance, and achieve high-quality aluminum oxide films. of plating. During the film deposition process, the substrate is in a state of natural temperature rise without additional heating.
此步骤中较为优选的一个处理技术的条件如下:离子源电压300V,离子束电流0.85A,离子源氧气分量86%,磁控靶溅射功率600V,工作气压0.45Pa。其它脉冲反应磁控溅射参数为:氩气流量15sccm,脉冲频率25kHz,正脉冲幅值300V,正脉冲宽度1μs。沉积30min,所制得的薄膜结构致密,符合化学计量比,沉积速率达到了72.4nm/min。The conditions of a preferred processing technology in this step are as follows: ion source voltage 300V, ion beam current 0.85A, ion source oxygen content 86%, magnetron target sputtering power 600V, working pressure 0.45Pa. Other pulse reaction magnetron sputtering parameters are: argon gas flow rate 15 sccm, pulse frequency 25 kHz, positive pulse amplitude 300 V, positive pulse width 1 μs. After 30 minutes of deposition, the prepared thin film has a dense structure and conforms to the stoichiometric ratio, and the deposition rate reaches 72.4nm/min.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103963746A CN102409293A (en) | 2011-12-04 | 2011-12-04 | Preparation method of aluminum oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103963746A CN102409293A (en) | 2011-12-04 | 2011-12-04 | Preparation method of aluminum oxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102409293A true CN102409293A (en) | 2012-04-11 |
Family
ID=45911630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103963746A Pending CN102409293A (en) | 2011-12-04 | 2011-12-04 | Preparation method of aluminum oxide film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102409293A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183203A (en) * | 2014-08-07 | 2014-12-03 | 北京空间飞行器总体设计部 | Instrument identifier for deep space probe |
CN104561900A (en) * | 2014-12-16 | 2015-04-29 | 兰州空间技术物理研究所 | Method for preparing low-absorption rate silicon oxide film |
CN104962873A (en) * | 2015-07-17 | 2015-10-07 | 广东工业大学 | Method for preparing polycrystalline aluminum oxide hard coating |
WO2016037590A1 (en) * | 2014-09-12 | 2016-03-17 | Hong Kong Baptist University | Sapphire thin film coated flexible substrate |
CN108603288A (en) * | 2015-11-16 | 2018-09-28 | 库伯斯股份有限公司 | The method for producing aluminium oxide and/or aluminium nitride |
CN111621756A (en) * | 2020-03-27 | 2020-09-04 | 中国科学院力学研究所 | Method for preparing crystalline transparent alumina film by room temperature sputtering |
CN111996502A (en) * | 2020-08-31 | 2020-11-27 | 中国科学院上海光学精密机械研究所 | A kind of nickel-chromium alloy surface coating structure and preparation method thereof |
US11028471B2 (en) | 2011-12-23 | 2021-06-08 | Hkbu R&D Licensing Limited | Sapphire thin film coated substrate |
CN113025959A (en) * | 2021-03-07 | 2021-06-25 | 中国航空制造技术研究院 | Method for preparing hafnium oxide-based ferroelectric film at low temperature by ion beam assisted magnetron sputtering deposition |
CN113322442A (en) * | 2021-06-03 | 2021-08-31 | 哈尔滨工业大学 | Preparation method of gamma-aluminum oxide film with excellent atomic oxygen resistance |
CN114177783A (en) * | 2021-10-22 | 2022-03-15 | 广东电网有限责任公司广州供电局 | Filter membrane for transformer oil and preparation method |
CN115142033A (en) * | 2022-05-06 | 2022-10-04 | 北京大学深圳研究生院 | Non-stoichiometric alumina material and preparation method thereof |
US11535926B2 (en) | 2011-12-23 | 2022-12-27 | Hkbu R&D Licensing Limited | Sapphire thin film coated substrate |
US11713503B2 (en) | 2011-12-23 | 2023-08-01 | Hong Kong Baptist University | Sapphire coated substrate with a flexible, anti-scratch and multi-layer coating |
-
2011
- 2011-12-04 CN CN2011103963746A patent/CN102409293A/en active Pending
Non-Patent Citations (3)
Title |
---|
冯煜东: "柔性基底薄膜太阳能电池研究与试制", 《中国博士学位论文全文数据库 工程科技II辑》 * |
林晶等: "氧化铝薄膜磁控溅射工艺参数对PET 基体温度的影响", 《包装工程》 * |
祝力伟等: "新型热控涂层Al-Al2O3 金属陶瓷复合膜制备与性能研究", 《真空与低温》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11535926B2 (en) | 2011-12-23 | 2022-12-27 | Hkbu R&D Licensing Limited | Sapphire thin film coated substrate |
US11028471B2 (en) | 2011-12-23 | 2021-06-08 | Hkbu R&D Licensing Limited | Sapphire thin film coated substrate |
US11713503B2 (en) | 2011-12-23 | 2023-08-01 | Hong Kong Baptist University | Sapphire coated substrate with a flexible, anti-scratch and multi-layer coating |
CN104183203A (en) * | 2014-08-07 | 2014-12-03 | 北京空间飞行器总体设计部 | Instrument identifier for deep space probe |
CN104183203B (en) * | 2014-08-07 | 2015-06-10 | 北京空间飞行器总体设计部 | Instrument identifier for deep space probe |
WO2016037590A1 (en) * | 2014-09-12 | 2016-03-17 | Hong Kong Baptist University | Sapphire thin film coated flexible substrate |
TWI574840B (en) * | 2014-09-12 | 2017-03-21 | 香港浸會大學 | Sapphire thin film coated flexible substrate |
CN107109623A (en) * | 2014-09-12 | 2017-08-29 | 香港浸会大学 | Flexible substrate coated with sapphire film |
CN107109623B (en) * | 2014-09-12 | 2019-02-15 | 香港浸会大学 | Flexible substrate coated with sapphire film |
CN104561900A (en) * | 2014-12-16 | 2015-04-29 | 兰州空间技术物理研究所 | Method for preparing low-absorption rate silicon oxide film |
CN104962873A (en) * | 2015-07-17 | 2015-10-07 | 广东工业大学 | Method for preparing polycrystalline aluminum oxide hard coating |
CN108603288B (en) * | 2015-11-16 | 2020-01-14 | 库伯斯股份有限公司 | Method for producing aluminum oxide and/or aluminum nitride |
CN108603288A (en) * | 2015-11-16 | 2018-09-28 | 库伯斯股份有限公司 | The method for producing aluminium oxide and/or aluminium nitride |
CN111621756A (en) * | 2020-03-27 | 2020-09-04 | 中国科学院力学研究所 | Method for preparing crystalline transparent alumina film by room temperature sputtering |
CN111621756B (en) * | 2020-03-27 | 2021-12-24 | 中国科学院力学研究所 | Method for preparing crystalline transparent alumina film by room temperature sputtering |
CN111996502B (en) * | 2020-08-31 | 2022-09-02 | 中国科学院上海光学精密机械研究所 | Nickel-chromium alloy surface coating structure and preparation method thereof |
CN111996502A (en) * | 2020-08-31 | 2020-11-27 | 中国科学院上海光学精密机械研究所 | A kind of nickel-chromium alloy surface coating structure and preparation method thereof |
CN113025959A (en) * | 2021-03-07 | 2021-06-25 | 中国航空制造技术研究院 | Method for preparing hafnium oxide-based ferroelectric film at low temperature by ion beam assisted magnetron sputtering deposition |
CN113322442A (en) * | 2021-06-03 | 2021-08-31 | 哈尔滨工业大学 | Preparation method of gamma-aluminum oxide film with excellent atomic oxygen resistance |
CN114177783A (en) * | 2021-10-22 | 2022-03-15 | 广东电网有限责任公司广州供电局 | Filter membrane for transformer oil and preparation method |
CN115142033A (en) * | 2022-05-06 | 2022-10-04 | 北京大学深圳研究生院 | Non-stoichiometric alumina material and preparation method thereof |
CN115142033B (en) * | 2022-05-06 | 2024-06-11 | 北京大学深圳研究生院 | Non-stoichiometric alumina material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102409293A (en) | Preparation method of aluminum oxide film | |
CN105951053B (en) | A kind of preparation method of titania-doped transparent conductive film of niobium and the titania-doped transparent conductive film of niobium | |
CN113832430B (en) | A preparation method of diamond-based amorphous carbon-yttrium oxide gradient composite anti-reflection coating | |
CN111334794B (en) | Modified film containing Ti transition layer and titanium-doped diamond-like carbon deposited on surface of substrate and method | |
CN104561900A (en) | Method for preparing low-absorption rate silicon oxide film | |
CN105063560B (en) | The method that the AZO films that resistivity is evenly distributed are prepared using magnetron sputtering method | |
CN102492924A (en) | Autologous ion bombardment assisted electron beam evaporation device, and method for coating film by using same | |
CN111349901A (en) | A kind of preparation method of high temperature resistant alumina thick film coating for cutting tool | |
CN107267916A (en) | It is a kind of in method of the carbide surface by Deposited By Dc Magnetron Sputtering W N hard films | |
CN106756792A (en) | A kind of preparation method of oxide transparent electrode film | |
CN109518148B (en) | A method for preparing vanadium dioxide intelligent thermal control device by high-energy pulse reactive magnetron sputtering | |
CN115322013A (en) | Method for preparing metal carbide coating on surface of graphite device | |
CN113684453A (en) | A kind of film with low secondary electron emission coefficient and preparation method thereof | |
CN111621756A (en) | Method for preparing crystalline transparent alumina film by room temperature sputtering | |
CN104786587B (en) | Preparation method of nano-lanthanum strontium manganese oxide/graphene composite wave absorbing coating | |
CN100575543C (en) | A method of depositing silicon carbide high-radiation coating on the surface of cobalt-based superalloy | |
EP1239056A1 (en) | Improvement of a method and apparatus for thin film deposition, especially in reactive conditions | |
CN117026193A (en) | High-phase-change-performance vanadium dioxide film and preparation method thereof | |
CN116288201A (en) | Iron-carbon alloy target and film preparation method thereof | |
CN100395371C (en) | Device and process of microwave plasma enhanced arc glow coating coating | |
WO2017020535A1 (en) | Copper/aluminium alloy crystal oscillation plate coating process | |
WO2017020534A1 (en) | Silver/aluminium alloy crystal oscillation plate coating process | |
RU2316613C1 (en) | Zinc oxide films deposition method | |
CN108456857A (en) | A kind of coating system and its method for preparing fexible film | |
CN106637116A (en) | Simple preparation of secondary electron emission film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120411 |