CN102388119B - 生物质炭的制造方法及用于其中的生物质炭的制造装置 - Google Patents
生物质炭的制造方法及用于其中的生物质炭的制造装置 Download PDFInfo
- Publication number
- CN102388119B CN102388119B CN201080013726.9A CN201080013726A CN102388119B CN 102388119 B CN102388119 B CN 102388119B CN 201080013726 A CN201080013726 A CN 201080013726A CN 102388119 B CN102388119 B CN 102388119B
- Authority
- CN
- China
- Prior art keywords
- biomass
- tar
- furnace
- carbonization
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/30—Other processes in rotary ovens or retorts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B49/00—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
- C10B49/02—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
- C10B49/04—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
- C10B49/06—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated according to the moving bed type
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/02—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/005—After-treatment of coke, e.g. calcination desulfurization
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/12—Applying additives during coking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Coke Industry (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Carbon And Carbon Compounds (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种生物质炭的制造方法,将生物质炭化,生成生物质炭和含有焦油的废气,使所述排出的气体中的焦油的至少一部分与所述生物质及/或所述生物质炭接触,制造焦油附着而作为炭化物析出的生物质炭。
Description
技术领域
本发明涉及将生物质炭化来制造生物质炭的方法及用于其中的生物质炭的制造装置。
背景技术
从防止地球温暖化的观点考虑,二氧化碳的排出量削减是紧急的课题。作为二氧化碳排出量削减的方法,进行了以下的技术开发。
·削减输入的碳量。
·回收输出的二氧化碳。
·将现有的煤/石油等替代为无碳的炭源。
作为无碳的炭源已知有生物质。作为生物质,有建筑家居的解体所产生的木材废弃物、木材加工所产生的木质系废弃物、森林等的修剪废弃物、农业系废弃物等。作为其处理利用方法,主要为填埋、放置、焚烧、燃料等。另外,还已知有以燃料利用为目的的生物燃料作物。
另一方面,在钢铁业,特别是炼铁工序为以煤为还原材料还原铁矿石的工艺。另外,在炼钢工序中,由煤等供给精炼所需的热。因此,在钢铁业,必须使用炭源。另一方面,生物质由碳、氧、氢构成,但生物质自身为高含水率、低发热量(例如水分15质量%、发热量16.2MJ/kg-干燥基准),直接在钢铁工艺中使用在效率方面没有效率。因此,存在将生物质干馏,实施脱水、脱碳酸等处理,除去水分,提高发热量而在钢铁工艺中使用的方法。因干馏而引起脱水、脱气(脱碳酸、脱甲烷、焦油产生等),生物质中的碳成分作为气体及焦油成分产生,因此,作为固体残留的碳成分(生物质炭)少。在钢铁工艺中作为煤替代品,为了将这样的干馏后作为固体残留的碳成分作为生物质炭有效地利用,需要以高产率制造生物质炭。
还已知有将这样的生物质热分解来制造可燃性气体、炭化物(生物质炭)并再利用的技术。
专利文献1中公开有对于通过将生物质加热干馏而得到的炭化物循环吸收加热时产生的挥发分来制造高发热量炭化物的方法。
专利文献2中公开有如下有机物的处理方法:将有机物在燃烧用空气的非供给下热分解而生成无定形碳,使从热分解中途的有机物产生的含有可燃性气体和气体状的焦油的未处理气体在大气压下以800~1000℃的温度向无定形碳流通,将焦油大致完全热分解,得到除去了焦油的处理气体。
专利文献3中公开有如下废弃物的热分解处理装置,使投入到竖炉的废弃物通过与从气体吹入喷嘴吹入的加热气体的接触而热分解,在炉内分离成炭化物和热分解气体。
专利文献4中公开有在箱状炉的炉体中充填木炭的原料,进行加热且干燥、干馏、炭化,来制造木炭的木炭制造装置。
专利文献5中公开有如下炭化炉,其包括:具有原料的装入口和炭的排出口的箱型的炉主体;设于该主体内的横截面为四角形的炭化室;使对该炭化室内的木质材料进行加热而产生的可燃气体在该上部空间燃烧的燃烧室;向该燃烧室内吹入空气的风口;调节来自该风口的空气吹入量的单元;及设于所述炭化室的侧面或底面的导热壁。
专利文献6中公开有如下木材的炭化方法:利用回转炉或旋转式干燥器将木材以300~1000℃、氧浓度10%以下进行加热,将通过加热而产生的气体在与上述回转炉或上述旋转式干燥器连结的燃烧炉燃烧。
专利文献1:日本特开2003-213273号公报
专利文献2:专利第3781379号公报
专利文献3:日本特开2001-131557号公报
专利文献4:日本特开平03-122191号公报
专利文献5:日本特开2007-146016号公报
专利文献6:日本特开2002-241762号公报
发明内容
在通过专利文献1所记载的方法制造生物质炭时,生物质炭的产率仅提高所附着的焦油等的量。但是,认为通过吸收液状挥发分的方法得到的炭化物的表面有粘附性,难以进行处理。通常,将生物质热分解得到的焦油为热分解而得到的液体,但生物质的炭化物的发热量约为30MJ/kg,与之相对,焦油最大约为10MJ/kg,为重油的一半以下。另外,在将生物质热分解而得到炭化物时,生物质中的大量氧分作为焦油成分、挥发分从生物质脱离,因此,炭化物中的含氧率小于10质量%,与之相对,焦油中的含氧率也有时超过20质量%、变为接近40质量%。氧分高且反应性高的焦油的发火性也高,安全上也存在问题。
如上,焦油成分与炭化物相比,含氧率高且发热量低,为高粘性,反应性高且稳定性低,因此,附着于生物质炭的情况会使生物质炭的品质降低。
专利文献2中,其目的在于,在生成无定形碳和可燃性气体时,与水蒸气改质无关地分解焦油,由此,增大可燃性气体的产量。从炭化物的制造的观点考虑,通过原料中的碳成分气化或焦油化,从而炭化物的产率降低。如专利文献2所记载,如果以接近1000℃的温度将焦油热分解,则几乎全转化为气体,从焦油得到的炭化物的产率最多为数质量%。
专利文献3中,在竖炉将生物质等炭化来制造炭化物。通常,从炉下部送入无氧的高温气体而对内容物进行加热来进行,但由于该干馏引起的热分解,在生成炭化物的同时,也产生气体、焦油等。这些气体、焦油也能够被有效利用,因此,从制造炭化物的观点考虑,通过原料中的碳成分气化或焦油化,炭化物的产率降低。
专利文献4~6所记载的现有技术中,存在以下(a)~(d)的课题。
(a)分批方式及回转方式均为仅通过控制加热温度、环境条件等而将生物质炭化的方法。炭化的生物质(生物质炭)的产率在分批方式中为约25质量%、在回转方式中为约20质量%,难以进一步提高生物质炭的产率。
(b)使产生的气体及焦油燃烧而作为生物质的干馏的热源时,气体、焦油成分不能作为生物质炭回收。期望所产生的焦油积极地变换为生物质炭。
(c)专利文献4、5的分批方式中,由于不是连续工艺,所以炭化需要耗费5小时以上,是不经济的。
(d)生物质干馏生成物中,除轻质气体以外,还产生木醋及重质烃(焦油)成分,为了将焦油成分完全燃烧而需要进行空气比、温度等的管理。另外,为了不进行燃烧处理而另行利用干馏生成物,需要进行焦油除去等的废气处理。
本发明的目的在于,解决这样的现有技术的课题,提供生物质炭的制造方法及用于该方法中的生物质炭的制造装置,在使用竖炉将生物质炭化来制造生物质炭时,可提高生物质炭的产率,而且生物质炭的品质的降低少。
(1)一种生物质炭的制造方法,其中,
使生物质炭化而形成生物质炭,
将含有在所述炭化时产生的焦油的废气排出,
使所述废气中的所述焦油的至少一部分与所述生物质及/或所述生物质炭接触,
使与所述生物质及/或所述生物质炭接触的所述焦油的至少一部分转化成炭化物。
(2)如(1)所述的生物质炭的制造方法,其中,
从竖炉的顶部或侧方上部投入生物质,
从所述竖炉的底部或比所述废气的排出位置靠下方的位置即侧方下部吹入热风,
在所述竖炉内使所述生物质炭化而形成生物质炭,
将含有在所述炭化时产生的焦油的废气从所述竖炉的顶部或侧方上部排出,
将所述废气中的所述焦油的至少一部分吹入至所述竖炉而与所述生物质及/或所述生物质炭接触,
将与所述生物质及/或所述生物质炭接触的所述焦油的至少一部分转化为炭化物。
(3)如(2)所述的生物质炭的制造方法,其中,
将所述废气中的所述焦油的至少一部分与所述热风一同吹入至所述竖炉。
(4)如(2)或(3)所述的生物质炭的制造方法,其中,
从所述竖炉的底部或侧方下部供给冷却用气体。
(5)如(4)所述的生物质炭的制造方法,其中,
所述冷却用气体循环使用所述废气。
(6)如(4)或(5)所述的生物质炭的制造方法,其中,
将所述焦油的一部分与所述冷却用气体一同向炉内供给。
(7)如(2)~(6)中任一项所述的生物质炭的制造方法,其中,
从所述废气分离所述焦油,并将分离后的所述焦油吹入至竖炉。
(8)如(2)~(7)中任一项所述的生物质炭的制造方法,其中,
使所述废气以空气比小于1燃烧,作为热风吹入至竖炉。
(9)如(2)~(8)中任一项所述的生物质炭的制造方法,其中,
所述生物质炭的炭化温度为300~700℃。
(10)如(2)~(9)中任一项所述的生物质炭的制造方法,其中,
所述废气的温度为50~300℃。
(11)如(2)~(10)中任一项所述的生物质炭的制造方法,其中,
所述热风为无氧或低氧,温度为400~1200℃。
(12)如(1)所述的生物质炭的制造方法,其中,
所述生物质的炭化通过从竖炉的顶部或侧方上部向所述竖炉投入生物质且从竖炉的底部或侧方下部吹入热风来进行,
所述废气的排出通过从竖炉的顶部或侧方上部排出含有在所述炭化时产生的焦油的废气来进行,
所述焦油的至少一部分的接触通过将在所述炭化时产生的废气中的焦油的至少一部分吹入至所述竖炉来进行。
(13)如(1)所述的生物质炭的制造方法,其中,
将生物质干馏而形成干馏生物质,
使通过所述生物质的干馏而产生的气体和焦油与所述干馏生物质接触,使所述气体及所述焦油中的碳成分在所述干馏生物质上附着析出。
(14)如(13)所述的生物质炭的制造方法,其中,
所述干馏生物质的比表面积为10m2/g以上。
(15)如(13)所述的生物质炭的制造方法,其中,
生物质的干馏温度为450℃~700℃,使气体和焦油中的碳成分在干馏生物质上附着析出时的温度为450~700℃。
(16)如(13)所述的生物质炭的制造方法,其中,
所述干馏通过回转式干馏炉进行。
(17)如(13)所述的生物质炭的制造方法,其中,
所述焦油中的碳成分向干馏生物质的附着析出通过充填层或移动层方式焦化炉进行。
(18)如(1)所述的生物质炭的制造方法,其中,
所述生物质的炭化包括将生物质干馏,生成干馏生物质和含有焦油的废气,且将所述干馏生物质焦化,
所述焦油的至少一部分的接触,包括使含有所述焦油的废气与所述干馏生物质接触,使所述气体及所述焦油中的碳成分在所述干馏生物质上附着析出。
(19)如(1)所述的生物质炭的制造方法,
使用具有彼此连接的两座干馏炉的双塔式的充填移动层方式的炉将生物质干馏来制造生物质炭,其中,
使通过在一个干馏炉中的生物质的干馏而产生的气体和焦油与另一个干馏炉内的生物质接触,
在所述另一个干馏炉内的生物质的干馏时使所述气体及所述焦油中的碳成分在所述另一个干馏炉内的生物质上附着析出。
(20)如(19)所述的生物质炭的制造方法,其中,
将干馏炉内的生物质的干馏温度设为400℃~800℃。
(21)如(19)所述的生物质炭的制造方法,其中,
将干馏炉内的生物质的滞留时间设为30分钟以上。
(22)如(1)所述的生物质炭的制造方法,其中,
所述生物质的炭化包括在第一干馏炉内将生物质干馏,产生气体和焦油,
所述焦油的至少一部分的接触,包括使在第一干馏炉内产生的气体和焦油与第二干馏炉内的生物质接触,在第二干馏炉内的生物质的干馏时使所述气体及所述焦油在第二干馏炉内的生物质上附着析出。
(23)一种生物质炭的制造装置,具有:
将生物质炭化来制造生物质炭的竖炉;
设置于所述竖炉的顶部或侧方上部的生物质的投入口;
设置于所述竖炉的顶部或侧方上部的废气的排出口;
设置于所述竖炉的底部、或比所述排出口靠下方的位置即侧方下部的热风的吹入口;及
使所述废气的至少一部分以空气比小于1燃烧的部分燃烧机。
(24)如(23)所述的生物质炭的制造装置,其中,
还具有从废气至少分离出气体成分和焦油的分离机。
根据本发明,可使用竖炉将生物质炭化来有效地制造生物质炭,可提高生物质炭的产率。所制造的生物质炭的品质比仅使焦油附着的生物质炭提高。
另外,有效利用焦油,且焦油处理的负担也减轻。可将干馏生成物轻质化,且也可以减轻废气处理工序。由此,可促进生物质的再利用,对CO2排出量削减有贡献。
附图说明
图1是表示实施方式1的生物质炭的制造装置的一实施方式的图。
图2是表示实施方式1的生物质炭的制造装置的另一实施方式的图。
图3是表示实施方式1的生物质炭的制造装置的另一实施方式的图。
图4是表示实施方式1的生物质炭的制造装置的另一实施方式的图。
图5是表示实施方式1的生物质炭的制造装置的另一实施方式的图。
图6是表示实施方式1的生物质炭的制造装置的另一实施方式的图。
图7是实施方式2的一实施方式的说明图。
图8是实施方式2的另一实施方式的说明图。
图9是实施方式3的使用双塔式的充填移动层方式的炉的生物质炭制造装置的概略图。
图10是图9的干馏炉的剖面图。
图11是使用图9的装置的本发明的一实施方式的说明图。
图12是实施方式3的实施例中使用的双塔式的充填移动层方式的炉的概略图。
图13是实施方式3的另一实施方式的说明图。
具体实施方式
[实施方式1]
生物质是指集聚了某一定量的动植物资源和以其为起源的废弃物的总称。但是,化石资源不属于生物质。实施方式1中使用的生物质可以使用农业系、林业系、畜牧系、水产系、废弃物系等的进行热分解而生成炭化物的一切生物质。优选使用有效发热量高的生物质,且优选使用木质系生物质。
作为木质系生物质,可列举如下。
·纸浆黑液、木屑等制纸副产物、树皮、锯末等木材加工副产物、
·树枝、树叶、树梢、短尺寸材料等林地残留材料、
·柳杉、柏树、松树类等采伐材料、
·来自食用菌类的废香菇木等特用林产的材料、
·米槠、枹栎、松树等薪炭林材、柳树、白杨、桉树、松树等短伐期林业等林业系生物质、
·市、镇、村的街道树木、个人房屋的庭园的树木等修剪树枝条等一般废弃物、
·国、县的街道树木、企业的庭园的树木等修剪树枝条、
·建设/建筑废料等工业废弃物。
按农业系生物质分类的、以废弃物/副产物为发生源的稻壳、麦杆、稻杆、甘蔗气、棕榈等、或以能量作物为发生源的米糠、油菜籽、大豆等农业系生物质的一部分也可以作为木质系生物质适合使用。
实施方式1中,使用竖炉作为炭化炉将生物质炭化,制造作为炭化物的生物质炭。作为竖炉,优选使用井式炉。
将生物质炭化时的炭化是指切断或限制空气(氧)的供给而进行加热,并得到气体(也称作木煤气)、液体(焦油)、固体(炭)的生成物。通过使加热温度、加热时间变化,所得到的气体、液体、固体的成分、比例发生变化。实施方式1中,将炭化时产生的废气中的焦油与气体一同回收,将该焦油的至少一部分与热风一同吹入进行生物质的炭化的竖炉,由此使焦油附着于生物质炭上,进而使焦油的炭化物在生物质炭上析出,提高生物质炭的产率。通过使因生物质的炭化而生成的焦油再次在竖炉内炭化并在生物质炭上析出,从而生物质炭与仅附着焦油的状态相比,含氧率更低,发热量变高,反应性低且发火性也降低,从而安全性高,品质提高。
在此所说的“焦油的炭化物在生物质炭上析出”是指“在生物质炭上进行焦油的热分解反应或聚合反应,由此焦油在生物质炭上转化成炭化物”。要引起这种热分解反应或聚合反应,需要在生物质炭上首先附着焦油,对附着有该焦油的生物质炭加热而使其成为更高温。在实施方式1的竖炉内,焦油在炉上部的低温部附着于生物质炭上,该焦油所附着的生物质炭降到炉下部而进行加热使其成为更高温,因此,产生焦油的炭化物在生物质炭上析出。
因生物质的炭化而生成的焦油再次在竖炉内炭化并在生物质炭上析出,由此,生物质炭与仅焦油附着的状态相比,含氧率更低,发热量变高,反应性降低且发火性也降低,从而安全性高且品质提高。实施方式1的生物质炭得到与现有未附着焦油的生物质炭相同的30MJ/kg程度的发热量。例如,在以专利文献1所示的方法使焦油附着时,由于焦油的发热量为10MJ/kg程度,所以在根据专利文献1的实施例的能量产率提高的比例假想计算焦油的附着量时,仅能得到14~20MJ/kg程度的发热量。假设,专利文献1中,即使附着的焦油为将热分解生物质得到的液体通过静置或蒸馏而分离除去了褐色透明的液体(醋酸)的黑褐色的高粘性的液状物,除去了醋酸后的焦油的发热量也最大约为20MJ/kg,结果是生物质炭的发热量达到23~27MJ/kg。
如上,为了将生物质炭化来制造生物质炭,在实施方式1中,从竖炉的顶部或侧方上部投入生物质,在炉内形成充填层,通过从竖炉的底部或侧方下部吹入热风而将生物质炭化,从竖炉的上部排出含有炭化时产生的焦油的废气,将该焦油的至少一部分与热风一同吹入竖炉并进行生物质的炭化。下面,将顶部或侧方上部总称而记为“上部”。下面,将底部或侧方下部总称而记为“下部”。将焦油附着并作为炭化物析出的生物质炭从竖炉的下部排出。吹入热风的位置为比废气的排出位置靠下方的位置。生物质通过热风的显热而炭化。在此,侧方上部是指竖炉的高度方向上的上半部分的侧部,但进而优选为上方1/4以上。同样,侧方下部是指竖炉的高度方向上的下半部分的侧部,但进而优选为下方1/4以下。
焦油从废气分离,至少将焦油的一部分吹入竖炉。优选将从废气分离的焦油的10~100%吹入竖炉,使所述焦油与上述生物质及/或上述生物质炭接触。设为10%以上时,炭化产率提高的效果大。更优选将从废气分离的焦油的50~100%吹入竖炉。吹入的方法是任意的,优选吹入至生物质充填层(从热风吹入位置到充填层表面)的下半部分的位置。通过将焦油与热风混合而与热风一同吹入时,焦油转化为炭化物的效率提高,另外在设备性上方便,故而优选。优选将与上述生物质及/或上述生物质炭接触的上述焦油的10~100%转化为炭化物。从炭化产率提高的观点考虑,优选10%以上。更优选为20~100%。或者,使含有焦油的废气直接部分燃烧,至少将该一部分作为热风使用,由此可以与热风一同吹入。
热风可以使用任意的发生源的热风,可以使用由热风炉等发生的热风,也可以循环使用使从废气中分离了焦油及水的气体部分燃烧得到的热风,也可以循环使用使废气直接部分燃烧得到的热风。
由于竖炉中的生物质炭为高温,所以优选对切出并排出的生物质炭进行冷却。为了使该冷却容易,优选从竖炉的下部向炉内供给冷却用气体。作为冷却用气体,优选循环使用废气,能够将部分燃烧从废气中分离了焦油、水的剩余部分的气体而得到的气体的一部分冷却而使用。冷却用气体也需要切断或限制空气(氧)的供给。
优选向上述冷却用气体混合在生物质炭化时产生的焦油的一部分,并将焦油与冷却用气体一同供给到竖炉内。焦油附着在冷却了的生物质炭上,生物质炭的产率提高。和与热风一同吹入的焦油相比,该比例少,但与冷却用气体一同供给的焦油的一部分也在炉内炭化而在生物质炭上析出。在将废气循环用于冷却用气体的情况下,焦油以预先与冷却用气体混合的状态吹入。
也可以在与热风或冷却用气体一同吹入的焦油中追加外部产生的焦油。作为外部产生的焦油,优选使用有炭化的余地的来自生物质的焦油,特别优选使用将生物质在700℃以下热分解而产生的焦油。
废气的剩余部分可以作为燃料使用,或者另行通过燃烧器等燃烧而作为高温的废气利用于热回收、生物质的干燥用等。
竖炉中的生物质的充填层的高度为从热风吹入位置至充填层表面的高度。该充填层的高度优选为2m以上且小于15m。如果加热生物质的部分的高度过低,则热交换没有效率,且基于焦油的产率提高的效果也少。另一方面,如果加热生物质的部分的高度过高,则压力损失过大,设备成本增大。
使用图1说明实施方式1的一实施方式。
从上部的投入口向作为竖炉的炭化炉10供给木质系生物质等原料1。另外,从作为热风吹入口的热风入口11供给热风5。热风5为了不导致炉内充填物的燃烧而进行炭化,而为无氧或低氧。低氧是指例如小于1体积%的氧含量。热风5中可以混合焦油4。
原料1在炭化炉10内形成充填层12,通过由热风5加热而炭化,从下部的切出装置13作为炭化物2被排出。通过在热风入口11设置旋转机构等,能够促进炭化物的切出。另一方面,从充填层12产生的废气3自炉上部的排出口排出。产生气体大致为无氧状态,混入有焦油。
作为原料1的形态,优选为对充填层的气体流通不产生障碍的形态、即5mm~200mm程度为主体(90质量%以上)的大小的块状物。就这里的粒径而言,200mm以下是指通过网眼为200mm的筛的筛下的状态,5mm以上是指5mm的筛的筛上的状态。
在将原料1向炭化炉10供给时,优选充填层12的上表面为某种程度平均的平坦化状态。这是为了防止气体的偏流且实现有效的炭化。
热风5的温度优选为400~1200℃。这是因为如果吹入温度过低,则原料的炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。优选为600~1200℃,更优选为600~1000℃。
通过炭化生成的炭化物温度优选为300~700℃程度。这是因为如果温度过低,则炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。优选为400~700℃,更优选为400~600℃。在由切出装置13切出时,通过水冷套等间接冷却或基于水喷雾的直接冷却而可以以安全的温度切出炭化物2。
从充填层12上部的排出口排出的废气的温度优选为50~300℃程度。这是因为如果温度过低则水分无法从充填层充分排出,如果温度过高则焦油成分从充填层的排出过大,炭化物的产率降低,容易在下游产生焦油问题。优选为70~200℃程度。
在热风5中混合焦油4。焦油4优选使用从废气3分离的焦油。通过在热风5中混合焦油4,焦油4的一部分附着于炭化物2上,作为炭化物被回收,因此,炭化物2的产率可提高。通过直接使用废气3的一部分作为热风5,也可以吹入混合了焦油的状态的热风。
焦油4与热风5混合而向炉内充填层12供给,通过吸附于充填层内的炭化物而有助于炭化物2的产率提高。焦油4的大部分在充填层12内热分解而生成碳成分,即,成为炭化物。
热风5如图所示从炉下部通过热风入口而供给,但也可以从炉的横向使用喷嘴供给。
使用图2说明本发明的另一实施方式。
从上部向炭化炉10供给原料1。另外,将热风21向炉内中段部供给。在热风21中混合焦油22。另外,冷风23从冷风入口25向炉内供给。可以在冷风23中混合焦油24。热风21及冷风23为了不导致炉内充填物的燃烧而进行炭化,为无氧或低氧。
原料1在炉内形成充填层12,通过由热风21进行加热而炭化,在炭化后由冷风23进行冷却,从下部的切出装置13作为炭化物2排出。冷风入口25通过设置旋转机构等而可以促进炭化物的切出。另一方面,从充填层12产生的废气3自炉上部排出。
作为原料1的形态,优选为对充填层的气体流通不产生障碍的形态、即5mm~200mm程度为主体(90质量%以上)的大小的块状物。就这里的粒径而言,200mm以下是指通过网眼为200mm的筛的筛下的状态,5mm以上是指5mm的筛的筛上的状态。
在将原料1向炭化炉10供给时,优选充填层12的上表面为某种程度平均的平坦化状态。这是为了防止气体的偏流且实现有效的炭化。
热风21的温度作为400~1200℃送风。这是因为如果送风温度过低,则原料的炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。优选为600~1000℃。
充填层中段的热风21入口附近的炭化物温度优选为300~700℃程度。如果温度过低则炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。优选为400~700℃,更优选为400~600℃。
冷风23的温度期望为200℃以下。优选为100℃以下。这是因为如果温度过高则冷却没有效率。
在由切出装置13切出时,可通过水冷套等间接冷却或基于水喷雾的直接冷却以安全的温度切出炭化物2。
从充填层12上部排出的废气的温度优选为50~300℃程度。这是因为如果温度过低则水分无法从充填层充分排出,如果温度过高则焦油成分从充填层的排出过大,炭化物的产率降低,在下游容易引起焦油问题。更优选为70~200℃程度。
在热风21中混合焦油22时,焦油22使用从废气3分离出的焦油。通过在热风21中混合焦油22,焦油22的一部分包含于炭化物2中,因此,可以提高炭化物2的产率。直接使用废气3的一部分作为热风21的情况也可以吹入混合了焦油的状态的热风。
也可以在冷风23中混合焦油24,焦油24优选使用从废气3分离出的焦油。通过在冷风23中混合焦油24,焦油24的一部分包含于生成炭化物2,因此,可以提高炭化物2的产率。
焦油22或焦油24与热风21或冷风23混合而向炉内充填层12供给,通过吸附于充填层内的炭化物,有助于炭化物2的产率提高。焦油22或24进一步在充填层12内热分解而生成碳成分,即成为炭化物,有助于炭化物2的产率提高。对于焦油24,除了在炉内热分解而生成碳成分的焦油以外,还有在附着于炭化物的状态下排出至炉外的焦油。
如图所示,焦油22或焦油24与热风21、冷风23混合且向炉内供给,但也可以不与热风、冷风混合而直接向炉内充填层12供给。
如图所示,冷风23从炉下部通过热风入口而进行供给,但也可以从炉的横向使用喷嘴进行供给。
使用图3对本发明的另一实施方式进行说明。
从上部向炭化炉10供给原料1,在炉内形成充填层12,通过由热风5进行加热而炭化,作为炭化物2被排出。
在充填层12产生的废气3由分离机311分离成气体32、醋酸33、焦油34。在此得到的焦油是指将热分解生物质而得到的液体通过静置或蒸馏分离并除去褐色透明的液体(醋酸)的黑褐色的高粘性的液状物。就该情况下的焦油的发热量而言,通过除去醋酸,最大为约20MJ/kg。作为分离机311的方式,可以以醋酸的冷凝温度以下的温度使醋酸及焦油液相分离,使气体气相分离,如果为可以将液相分离为水相(醋酸相)和油相(焦油相)的构造,则就没有特别限定。在水相中也含有水溶性的有机物。在分离机311中,通过根据需要进行冷却,可以提高分离效率。
由分离机311分离出的气体32和分离出的焦油34的一部分通过部分燃烧机312利用空气35进行所谓的不完全燃烧。在此,空气35的量为空气比小于1,产生无氧或极低氧的热风36。在将热风升温至规定的温度时,如果使用通常的生物质原料,则空气比可以小于1,但优选为0.5以上。另外,由于在热风中残留焦油,所以优选空气比为0.8以下。
由分离机311分离出的醋酸废弃或实现溶入的水溶性有机物等的有效利用。根据情况,通过燃烧机313进行燃烧处理而作为废气38排出。
在部分燃烧机312产生的热风36的一部分作为热风5被送至炭化炉10,成为用于炭化的热源。
由分离机311分离出的焦油34的一部分作为焦油4与热风5一同被送至炭化炉10。
由部分燃烧机312产生的热风的一部分通过燃烧机313与空气37混合而使残留的可燃气体成分燃烧,将废气38排出。
原料1的形态等与使用图1、2的实施方式所说明的方式相同。
热风5的温度优选为400~1200℃。这是因为如果温度过低则原料的炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。更优选为600~1000℃。
生成的炭化物温度期望为300~700℃程度。这是因为如果温度过低则炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。优选为400~700℃,更优选为400~600℃。
期望从充填层12上部排出的废气3的温度为50~300℃程度。这是因为如果温度过低则水分无法从充填层充分排出,如果温度过高则焦油成分从充填层的排出过大,炭化物的产率降低,容易在下游产生焦油问题。优选为70~200℃程度。
在热风5中混合由分离机311分离的焦油34的一部分的焦油4。通过在热风5中混合焦油4,焦油4的一部分包含于炭化物2,因此,可以提高炭化物2的产率。
焦油4与热风5混合而向炉内充填层12供给,通过吸附于充填层内的炭化物,有助于炭化物2的产率提高。焦油4进一步在充填层12内热分解而生成碳成分,即成为炭化物,有助于炭化物2的产率提高。
如图所示,焦油4与热风5混合而向炉内供给,但也可以不与热风5混合而直接向炉内充填层12供给。
通过由分离机311分离焦油34,可以有效利用焦油而使炭化物2的产率提高。
通过由分离机311分离醋酸33,与不分离醋酸的情况相比,可以减少向部分燃烧机312供给的醋酸策成分,所以具有以下的效用。
第一,可以使相同空气比下的部分燃烧机312的温度上升,容易向炭化炉10供给必要的热。
第二,由于可以使热风5中含有的水蒸气减少,因此,具有抑制在炭化炉内的水蒸气引起的碳消耗反应的效果,带来炭化物产率的提高。
废气38的热可以利用于原料1的干燥等。
使用图4对本发明的另一实施方式进行说明。
从上部向炭化炉10供给原料1。另外,可以将热风21向炉内中段部供给,在热风21中混合焦油22。另外,可以将冷风23向炉内供给,且在冷风23中混合焦油24。热风21及冷风23为了不会导致炉内充填物的燃烧而进行干馏,为无氧或低氧。
原料1在炉内形成充填层12,通过由热风21加热而炭化,在炭化后利用冷风23进行冷却,作为炭化物2被排出。
从充填层产生的废气3自炉上部排出,由分离机311分离成气体32、醋酸33、焦油34。作为分离机311的方式,可以以醋酸的冷凝温度以下的温度使醋酸及焦油液相分离,使气体气相分离,如果为可以将液相分离成水相和油相(焦油相)的构造,则没有特别限定。在分离机311中,通过根据需要进行冷却,可以提高分离效率。
由分离机311分离出的气体32和分离出的焦油34的一部分通过部分燃烧机312利用空气35进行所谓的不完全燃烧。在此,空气35的量为空气比小于1,产生无氧或极低氧的热风36。在将热风升温至规定的温度时,如果使用通常的生物质原料,则空气比可以小于1,但优选为0.5以上。另外,为了在热风中残留焦油,优选空气比为0.8以下。
由分离机311分离出的醋酸被废弃或实现溶入的水溶性有机物等的有效利用。根据情况由燃烧机313进行燃烧处理而作为废气38排出。
在部分燃烧机312产生的热风36的一部分作为热风21被送至炭化炉10,成为用于炭化的热源。
在部分燃烧机312产生的热风36的一部分由冷却机411进行冷却,作为冷风23被送至炭化炉10,利用于炭化物的冷却。
在部分燃烧机312产生的热风的一部分通过燃烧机313与空气37混合而使残留的可燃气体成分燃烧,且排出废气38。
原料1的形态等与使用图1、2的实施方式中所说明的情况相同。
热风21的温度优选为400~1200℃。这是因为如果温度过低则原料的炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。更优选为600~1000℃。
充填层中段的热风21入口附近的炭化物温度优选为300~700℃程度。这是因为如果温度过低则炭化无法充分进行,如果过高则炭化物的产率降低且设备成本升高。更优选为400~700℃,最优选为400~600℃。
冷风23的温度优选为200℃以下。更优选为100℃以下。如果温度过高则冷却没有效率。
从充填层12上部排出的废气的温度优选为50~300℃程度。这是因为如果温度过低则水分不能从充填层充分排出,如果温度过高则焦油成分从充填层的排出过大,炭化物的产率降低,容易在下游产生焦油问题。更优选为70~200℃程度。
在热风21中混合焦油22。焦油22使用由分离机311分离出的焦油34。通过在热风21中混合焦油22,焦油22的一部分包含于炭化物2中,因此,可以提高炭化物2的产率。
可以在冷风23中混合焦油24,焦油24优选使用由分离机311分离出的焦油34。通过在冷风23中混合焦油24,焦油24的一部分包含于生成炭化物2中,因此,可以提高炭化物2的产率。
焦油22或焦油24与热风21或冷风23混合而向炉内充填层12供给,通过吸附于充填层内的炭化物,有助于炭化物2的产率提高。焦油22或24进一步在充填层12内热分解而生成碳成分,即成为炭化物,有助于炭化物2的产率提高。对于焦油24,除了在炉内热分解而生成碳成分的焦油以外,还有在附着于炭化物的状态下排出到炉外的焦油。
如图所示,焦油22或焦油24与热风21、冷风23混合而向炉内供给,但也可以不与热风5混合而直接向炉内充填层12供给。
如图所示,冷风23从炉下部通过热风入口而进行供给,但也可以从炉的横向使用喷嘴进行供给。
通过由分离机311将焦油34分离,可以有效利用焦油而提高炭化物2的产率。
通过由分离机311将醋酸33分离,与不分离醋酸的情况相比,可以减少向部分燃烧机312供给的醋酸成分,所以具有如下效用。第一,可以使相同空气比下的部分燃烧机312的温度上升,容易向炭化炉10供给必要的热。第二,由于可以使热风5中含有的水蒸气减少,所以具有抑制基于炭化炉内的水蒸气引起的碳消耗反应的效果,带来炭化物产率的提高。
废气38的热可以用于原料1的干燥等。
使用图5对本发明的另一实施方式进行说明。
图5中,代替图4中冷风23及焦油24,将废气3的一部分作为冷风523使用。
废气3中含有产生的焦油,且为低温,因此能够有助于在炭化炉10内的炭化物的冷却和炭化物2的产率提高。
相比图4的情况,图5中可以进一步简化设备,为低成本。
使用图6对本发明的另一实施方式进行说明。
图6中省略了图5中的分离机311。
废气3中含有产生的焦油,且为低温,因此可以有助于在炭化炉10内的炭化物的冷却和炭化物2的产率提高。
相比图5的情况,图6中可以进一步简化设备,为低成本。
[实施例1]
使用与图3所示相同的设备,将生物质干馏,进行制造生物质炭的试验。
对于在热风5中混合焦油4的情况和不混合焦油4的情况,进行了炭化物2的产率的比较。作为原料1,使用在生成棕榈油的过程中产生的油棕的空果串(emptyfruitbunch(EFB)所构成的生物质系的残渣。EFB的含水率为30质量%。
在热风5中混合焦油4的情况下(本发明例),在将干燥基材的原料1的质量流量设为1时,将混合于热风5的焦油4的质量流量设为0.1。热风5的吹入温度为930℃,炭化温度、即切出紧前的炭化物温度为500℃。从充填层上部排出的废气3的温度为100℃。
在热风5中未混合焦油4的情况下(比较例),热风5的吹入温度为910℃,炭化温度、即切出紧前的炭化物温度为500℃。从充填层上部排出的废气3的温度为100℃。
在热风5中未混合焦油4的比较例的情况下,在将干燥基材的原料1的质量流量设为1时,所制造的炭化物2的质量流量为0.25。即,在干燥基材的炭化物的产率为25%。另一方面,在混合有焦油4的本发明例的情况下,在设干燥基材的原料1的质量流量为1时,所制造的炭化物2的质量流量为0.28。即,在干燥基材的炭化物的产率为28%。通过使用本发明方法,炭化物产率提高一成以上。
[实施例2]
使用与图4所示相同的设备,进行将与实施例1相同的生物质干馏而制造生物质炭的试验。
对于在热风21及冷风23中混合焦油的情况和不混合焦油的情况,进行炭化物2的产率的比较。
在热风21及冷风23中混合焦油22、24的情况下(本发明例),在设干燥基材的原料1的质量流量为1时,设混合于热风21的焦油22的质量流量为0.1,设混合于冷风23的焦油24的质量流量为0.03。热风21的吹入温度为990℃,炭化温度、即切出紧前的炭化物温度为500℃。冷风23的温度为80℃。从充填层上部排出的废气3的温度为100℃。
在热风21及冷风23中未混合焦油22、24的情况下(比较例),热风21的吹入温度为910℃,炭化温度、即切出紧前的炭化物温度为500℃。冷风23的温度为80℃。从充填层上部排出的废气3的温度为100℃。
在热风21及冷风23中未混合焦油22、24的比较例的情况下,在设干燥基材的原料1的质量流量为1时,所制造的炭化物2的质量流量为0.25。即,在干燥基材的炭化物的产率为25%。另一方面,在混合了焦油22、24的本发明例的情况下,在设干燥基材的原料1的质量流量为1时,所制造的炭化物2的质量流量为0.29。即,在干燥基材的炭化物的产率为29%。通过使用本发明方法,炭化物产率提高1.5成以上。
[实施例3]
使用与图5所示相同的设备,进行将与实施例1相同的生物质干馏而制造生物质炭的试验。
对于在热风21及冷风523中混合焦油的情况和不混合焦油的情况,进行炭化物2的产率的比较。
在热风21中混合焦油22的情况下(本发明例),在设干燥基材的原料1的质量流量为1时,设混合于热风21的焦油22的质量流量为0.1。热风21的吹入温度为990℃,炭化温度、即切出紧前的炭化物温度为500℃。混合于冷风523的焦油的质量流量为0.06,其温度为80℃。从充填层上部排出的废气3的温度为100℃。
在热风21中未混合焦油22的情况下,热风21的吹入温度为910℃,炭化温度、即切出紧前的炭化物温度为500℃。与冷风523混合的焦油的质量流量为0.06,其温度为80℃。从充填层上部排出的废气3的温度为100℃。
如果将在热风21及冷风523中未混合焦油的情况设为比较例,则上述实施例2的比较例的情况与其相当。该情况下,在将干燥基材的原料1的质量流量设为1时,所制造的炭化物2的质量流量为0.25。即,在干燥基材的炭化物的产率为25%。
在混合了焦油22的本发明例的情况下,在设干燥基材的原料1的质量流量为1时,所制造的炭化物2的质量流量为0.29。即,在干燥基材的炭化物的产率为29%。通过使用本发明方法,炭化物产率提高一成以上。另外,在热风21中未混合焦油22的情况下,在设干燥基材的原料1的质量流量为1时,所制造的炭化物2的质量流量为0.26。即,在干燥基材的炭化物的产率为26%。由此,炭化物产率提高约0.4成。
[实施例4]
使用与图6所示相同的设备,进行将与实施例1相同的生物质干馏而制造生物质炭的试验。
在通过部分燃烧机使废气3不完全燃烧而得到的热风21中混合有焦油,其质量流量为0.04。另外,由于冷风523也使用废气的一部分,所以混合有焦油,其质量流量为0.06。
在从废气不分离焦油而作为热风21及冷风523使用的情况下(本发明例),热风21的吹入温度为990℃,炭化温度、即切出紧前的炭化物温度为500℃。冷风523的温度为80℃。从充填层上部排出的废气3的温度为100℃。
以在热风21及冷风523中未混合焦油的情况为比较例时,上述的实施例2的比较例的情况与其相当。
该情况下,在设干燥基材的原料1的质量流量为1时,所制造的的炭化物2的质量流量为0.25。即,在干燥基材的炭化物的产率为25%。另一方面,在本发明例的情况下,在设干燥基材的原料1的质量流量为1时,所制造的炭化物2的质量流量为0.27。即,在干燥基材的炭化物的产率为27%。通过使用本发明方法,炭化物产率提高0.8成。
[标号说明]
1原料、2炭化物
3废气、4焦油
5热风、10炭化炉
11热风入口、12充填层
13切出装置、21热风
22焦油、23冷风
24焦油、25冷风入口
32气体、33醋酸
34焦油、35空气
36热风、37空气
38废气、311分离机
312部分燃烧机、313燃烧机
411冷却机、523冷风
[实施方式2]
实施方式2中,通过使生物质干馏时产生的干馏生成物(气体、焦油)与通过生物质干馏而得到的干馏生物质以高温接触,可以得到使干馏生成物中的炭在干馏生物质上析出的生物质炭。由此,可以使生物质干馏时产生的焦油及气体量为最小,可以提高生物质炭的产率。就实施方式2中得到的生物质炭而言,由于与焦油等直接附着不同,焦化并作为炭的状态附着,所以含氧率低,发热量升高,挥发分少,反应性低且发火性也降低,安全性提高,为高品质,可以对钢铁工艺特别是炼铁、炼钢工序作为烧结炉的炭材优选使用。
生物质是指集聚了某一定量的动植物资源和以其为起源的废弃物的总称。但是,化石资源不属于生物质。实施方式2中使用的生物质可以使用农业系、林业系、畜牧系、水产系、废弃物系等的进行热分解而生成炭化物的一切生物质。优选使用有效发热量高的生物质,且优选使用木质系生物质。作为木质系生物质,可列举:纸浆黑液、木屑等制纸副产物、树皮、锯末等木材加工副产物、树枝、树叶、树梢、短尺寸材料等林地残留材料、柳杉、柏树、松树类等采伐材料、来自食用菌类的废香菇木等的特用林产的材料、米槠、枹栎、松树等薪炭林材、柳树、白杨、桉树、松树等短伐期林业等林业系生物质、市、镇、村的街道树木、个人房屋的庭园的树木等修剪树枝条等一般废弃物、国、县的街道树木、企业的庭园的树木等修剪树枝条、建设/建筑废料等工业废弃物等。按农业系生物质分类的、以废弃物/副产物为发生源的稻壳、麦杆、稻杆、甘蔗气、棕榈等、以能量作物为发生源的米糠、油菜籽、大豆等农业系生物质的一部分也可以作为木质系生物质适合使用。
另外,生物质的干馏是指生物质的热分解,切断或限制空气(氧)的供给并进行加热而得到气体(也称作木煤气)、液体(焦油)、固体(炭)的生成物的技术。也有时将如下物质称作焦油,即将热分解生物质得到的液体通过静置或蒸馏而分离除去了褐色透明的液体(醋酸)的黑褐色的高粘性的液状物,但在实施方式2中将混合了焦油和醋酸的状态的液体称作焦油。
使用图7说明实施方式2的一实施方式。110表示干馏炉,120表示焦化炉,130表示由焦化炉产生的产生气体的燃烧炉。生物质101通过未图示的供给装置向干馏炉110供给,生成干馏生物质(炭)102和干馏生成物(气体、焦油)103。干馏生物质102通过未图示的供给装置向焦化炉120供给,同时,将干馏生成物103也向焦化炉120供给。在焦化炉120内,干馏生成物103与干馏生物质102接触,在干馏生物质102上析出干馏生成物103中的炭。炭析出后的生物质炭105被从焦化炉120排出,利用于钢铁工艺等。另一方面,干馏生成物103由于焦化炉120内的炭的析出而轻质化,从焦化炉120作为轻质气体106排出。轻质气体106由于以低级烃及氢为主体,所以通过燃烧装置130进行燃烧,作为干馏炉110及焦化炉120的热源被加以利用。108表示轻质气体以外的从外部供给的燃料气体,109表示燃烧用空气。
生物质通过加热而被热分解,生物质中的水分蒸发,碳、氢和氧作为挥发分被排出。通过水分的蒸发或/及挥发分的挥发,在生物质中发现细孔。在产生的细孔内表面生成可物理/化学地吸附烃等焦油的位置。焦油侵入该细孔,物理/化学地吸附于生物质。在将该焦油吸附的生物质进一步加热的情况下,焦油产生脱氢反应,重质化,最终成为炭化物。另外,通过加热而在生物质表面也生成可吸附焦油的位置,在生物质表面也产生同样的现象。
如上述所记载,炭向干馏生物质的析出首先是焦油吸附于干馏生物质,接着所吸附的焦油脱氢,炭析出。因此,干馏生物质的比表面积、细孔容积、平均细孔径变得重要。即使比表面积及细孔容积充分大,在平均细孔径小的情况下,焦油也不会侵入细孔内,吸附量少。因此,优选平均细孔径为1纳米以上,因此,优选干馏生物质的比表面积为10m2/g以上。干馏生物质的比表面积越大,则细孔容积越增加,且平均细孔径变得越大,由生物质的干馏而产生的气体和焦油的接触面积变大,可有效地使大量的碳成分在干馏生物质上附着析出。如果比表面积小于10m2/g,则细孔容积小,且细孔径小于1纳米,焦油的吸附量少,炭析出减少。
生物质的干馏温度只要在生物质的脱水及干馏生成物生成的温度范围即可,只要在干馏生物质102的比表面积为10m2/g以上的450~800℃的范围即可。考虑到生物质炭105的产率时,更优选以450~700℃进行干馏。
焦化炉120的温度为在焦化炉120中生物质101不干馏的条件,优选为与干馏炉110同等的温度范围。另外,在焦化炉120内的干馏生物质102的滞留时间优选为到干馏生物质102的细孔由于析出炭而闭塞为止的时间。在细孔完全闭塞后,进一步析出炭时,干馏生成物103中的炭在干馏生物质102的表面析出,干馏生物质102彼此产生粘着、块状化,因此,在焦化炉120内有时带来炉料下落不良。滞留时间根据干馏生物质的比表面积而适宜决定。
干馏炉110只要可以干馏生物质101即可,可使用通常的分批式、回转式、竖炉等。优选使用可作为连续工艺采用的回转式。
由于干馏生物质102与干馏生成物103均一地接触,且需要将干馏生成物103分解并在干馏生物质102上析出炭,所以焦化炉120优选为充填层或移动层方式。
对于干馏炉110乃至焦化炉120的加热方法,可以使从焦化炉120产生的轻质气体106燃烧并加热而进行,且也可以另外使重油、丙烷等燃料气体8燃烧且作为加热气体使用。另外,除了使燃料气体燃烧的方法以外,也可以通过电加热来进行加热。如果为电加热的情况,则可以将干馏炉110及焦化炉120分别分割而进行温度控制。
在干馏炉110内干馏生物质101时,考虑干馏生物质102粉化的情况。这种情况下,为了减轻焦化炉120内的压力损失,也可以除去所得到的干馏生物质102中的粉末,并供给至焦化炉120。粉末的除去方法只要使用目前已知的筛或风力分级等方法即可。筛粒度根据焦化炉120的操作条件决定。
向焦化炉120供给的材料为将生物质干馏而成的干馏生物质102,但具有与干馏生物质相同的比表面积的物质也可以追加到干馏生物质102中而使用。例如是另外进行干馏处理后的生物质炭、活性炭等在钢铁工艺中代替煤的物质。
使用图8说明实施方式2的另一实施方式。图7是干馏炉110为回转炉150、焦化炉120为竖炉160的情况的发明例。140为生物质定量供给装置即螺旋加料器,150为间接加热方式回转炉,160为竖炉,111为焦化部,112为生物质炭的冷却部。由回转炉150干馏的干馏生物质102从上部向竖炉160供给,干馏生成物103的碳成分已析出的生物质炭105在冷却部112通过氮113冷却后,从下部排出。
冷却气体113只要为惰性气体即可。另外,从冷却部112排出的生物质炭105只要在不发火的温度范围即可,只要在200℃以下即可。更优选为100℃以下。
[实施例1]
使用与图8所示相同的设备,进行生物质的干馏以及产生气体的焦化试验。其中,回转炉150及竖炉(焦化炉)160的加热方法为3分割的电加热,从竖炉160产生的轻质气体排出到系统外。回转炉150的内径为15cm,长度为1.0m,倾斜角为1度,对于干馏时间,将回转转速设为1.5rpm,则为约50分钟。竖炉160的内径为6.6cm、长度为40.0cm,利用设于炉上部的回转阀供给干馏生物质102,从设于下部的回转阀排出生物质炭105。竖炉160的炉内充填物的滞留时间的调整是通过调整初始充填量来进行的。作为生物质使用粉碎分级为3mm~10mm的杉。表1表示所使用的生物质的组成。
表1是
向回转炉的生物质供给速度为1.0kg/h,从回转炉150回收干馏生物质,并充填于竖炉160。使试验条件如表2所示变化,进行本发明例1~8的试验,测定所制造的生物质炭、气体、焦油、水分的产率、干馏生物质的比表面积、所制造的气体组成。将结果一并显示于表2。
表2
[表2]
其次,根据上述,除不使用竖炉160以外,与上述同样地进行试验,得到比较例1~6。除了干馏生物质的比表面积外,也测定细孔容积、平均细孔径。将试验条件及结果一并显示于表2。
根据表2可知,通过使利用竖炉160通过回转炉而产生的焦油、气体附着于干馏生物质,进行加热而炭化,由此生物质炭的产率提高。另外,焦油成分进行使用GC-MS(将气相色谱仪直接连结的质量分析仪)的分析,其结果可知为轻质化。在回转炉干馏温度和竖炉焦化温度为400~700℃的本发明例1~5、7、8中得到23质量%以上的高的产率,但回转炉干馏温度和竖炉焦化温度为800℃的本发明例6中产率稍低。
另外,回转炉干馏温度为400℃的比较例6中,干馏生物质的比表面积小于10m2/g,平均细孔径小于1纳米,回转炉干馏温度和竖炉焦化温度为400℃的本发明例8中,与比较例6相比,生物质炭的产率几乎没有增加。
[标号说明]
101生物质、102干馏生物质
103干馏生成物(气体、焦油)、104燃烧废气
105生物质炭、106轻质气体
107燃烧废气、108轻质气体以外的从外部供给的燃料气体
109燃烧用空气、110干馏炉
111焦化部、112冷却部
113冷却气体、120焦化炉
130燃烧炉、140生物质定量供给装置
150间接加热回转炉、160竖炉
[实施方式3]
实施方式3中,在将生物质干馏而制造生物质炭时,使用双塔式的充填移动层方式的炉。双塔式的充填移动层方式的炉为井式炉的一种,也称作马尔兹(Maerz)炉。马尔兹(Maerz)炉通过在彼此连接的两个竖型井交互重复燃烧和蓄热,从而削减热原单位,并且可生产稳定且高品质的产品,可知与回转炉等相比,热效率好。目前,马尔兹(Maerz)炉作为石灰烧成炉等使用,在各竖型井内利用从上方供给的空气使从插入充填层内的燃烧器喷枪吹入的燃料气体燃烧,通过该燃烧热烧成石灰石(CaCO3)等。在石灰石的情况下烧成为生石灰(CaO)。燃烧气体向竖炉的下方移动,对另一个竖炉内的石灰石等进行预热。一个竖炉为烧成用,另一个为预热用。周期性地经由燃烧器喷枪向一个竖型井交互进行燃料的供给。
使用这种具有彼此连接的两座干馏炉的双塔式的充填移动层方式的炉对生物质进行干馏,由此,使通过在一个干馏炉的生物质的干馏而产生的气体和焦油与另一个干馏炉内的生物质接触,在进行另一个干馏炉内的生物质的干馏时,可以使气体及焦油中的碳成分在另一个干馏炉内的生物质上附着析出。即,可以使在生物质干馏时产生的干馏生成物(气体、焦油)与另一个干馏炉内的生物质、通过生物质干馏而得到的干馏生物质以高温接触,可以有效地得到使干馏生成物中的炭析出的生物质炭。由此,可以使生物质干馏时的产生的焦油及气体量为最小,可以提高生物质炭的产率。为了促进干馏生成物的炭化,也优选另行仅加热干馏炉的下部。就实施方式3中得到的生物质炭而言,由于与焦油等直接附着不同,作为焦化了的炭的状态附着,所以挥发分少,为高品质,可以对钢铁工艺特别是炼铁、炼钢工序作为烧结炉的炭材适合使用。
另外,生物质的干馏是指生物质的热分解,切断或限制空气(氧)的供给并进行加热,得到气体(也称作木煤气)、液体(焦油)、固体(炭)的生成物的技术。也有时将如下物质称作焦油,即将热分解生物质得到的液体通过静置或蒸馏而分离除去褐色透明的液体(醋酸)的黑褐色的高粘性的液状物,但在实施方式3中将混合了焦油和醋酸的状态的液体称作焦油。
使用图9对实施方式3的一实施方式进行说明。
图9是使用双塔式的充填移动层方式的炉的生物质炭制造装置。利用未图示的破碎装置破碎成可装入干馏炉主体201的尺寸的生物质202通过未图示的供给装置供给至干馏炉主体201。干馏炉主体201为干馏炉A(图9中左侧)203和干馏炉B(图9中右侧)204在下部连接的构造,装入干馏炉主体201的生物质202首先通过原料切换阀205充填至干馏炉B204。在充填于干馏炉B204的生物质的水平达到规定值的时刻,原料切换阀205切换向干馏炉A203,向干馏炉A203供给生物质202。在充填于干馏炉A203的生物质的水平为规定量的时刻,暂时停止生物质202的装入,开始干馏。
首先,为了在干馏炉A203供给干馏所需的热,而向所配置的喷枪A206供给燃料208并且从干馏炉A203的上部送出空气209,使从喷枪A206排出的燃料208燃烧。喷枪A206以如图10所示的干馏炉A203的X-X’剖面(图9)那样的方式配置。后述的喷枪B207也同样配置。燃烧气体和干馏气体/焦油221一边向生物质供给热一边在充填层210内向下方移动,进入干馏炉B204内,一边预热干馏炉B204内的生物质一边朝向上方在生物质充填层211内移动。此时,因干馏而产生的干馏气体/焦油的一部分与干馏炉A203及干馏炉B204内的生物质炭或生物质接触,进行吸附及/或吸收而附着析出碳成分。除去了向生物质供给热的燃烧气体及焦油的干馏气体212从干馏炉B204排出,通过1次集尘机213除去气体中的灰尘成分。从1次集尘机213排出的干馏气体214为CO及甲烷等轻质烃,作为干馏所需的热源被供给至干馏炉A203。此时,首先使用的燃料208被削减所供给的干馏气体214的热量的量。在设于干馏炉A203及干馏炉B204之间的温度计的温度为规定温度的时刻,充填层210内的生物质炭223从排出阀A215排出,由排出阀216排出到系统外。在此,暂时停止向干馏炉A203的燃料供给、干馏气体的供给。原料切换阀205切换至干馏炉A203侧,在干馏炉A203内装入生物质202。接着,向配置于干馏炉B204内的喷枪B207供给燃料208,并且送入空气209,使从喷枪B207排出的燃料208燃烧。燃烧气体如上所述将干馏炉B204内的已被预热的生物质干馏,并产生生物质炭和干馏气体/焦油。燃烧气体和干馏气体/焦油一边向生物质供给热一边在生物质充填层211内向下方移动,进入干馏炉A203内,一边预热干馏炉A203内的生物质一边朝向上方在生物质充填层210内移动。此时,因干馏而产生的焦油被干馏炉B204及干馏炉A201内的生物质炭或生物质吸附及/或吸收。除去了向生物质供给热的燃烧气体及焦油的干馏气体212从干馏炉A203排出,通过1次集尘机213除去气体中的灰尘成分。从1次集尘机213排出的干馏气体214为CO及甲烷等轻质烃,作为干馏所需的热源被向干馏炉B204供给。此时,首先使用的燃料208仅削减所供给的干馏气体214的热量的量。在设于干馏炉B204及干馏炉A203之间的温度计的温度为规定温度的时刻,干馏炉B204内的生物质炭通过排出阀B217排出,利用排出阀216排出到系统外。
通过重复以上的操作,制造将生物质干馏并且在干馏的生物质上析出生物质干馏时产生的干馏生成物中的炭的生物质炭。
在干馏炉内的生物质的干馏温度的下限优选为从生物质产生干馏气体/焦油的温度以上。通常的生物质优选为400℃以上。另一方面,在生物质的干馏气体/焦油中除了含有生物质附着水分外,还含有通过分解而产生的水分。实施方式3中,以提高生物质中炭的回收率为目的,优选加热/干馏温度的上限为不显著产生水分发生反应的温度以下。通常的生物质优选为800℃以下。更优选为450~750℃。
为了从生物质高产率地制造生物质炭,优选以前述的温度条件进行,但特别是优选在低温下以低升温速度进行实施,并且使干馏炉内的滞留时间较长地进行实施。通过增长滞留时间,产生的焦油成分等容易利用干馏炉下部的生物质炭而附着。具体而言,如图11所示,不将在干馏炉内通过1次处理而制造的生物质炭全部排出,而能够排出干馏炉内的生物质的50体积%,并通过在残留的50体积%的生物质炭的上部充填新的生物质提高生物质炭的产率。如图11(a)~(f)所示来制造生物质炭。
(a):将干馏炉A203的生物质干馏。
(b):排出在干馏炉A203制造的生物质炭的一部分。
(c):向干馏炉A203新装入生物质202a。
(d):将干馏炉B204的生物质干馏。
(e):将在干馏炉B204制造的生物质炭的一部分排出。
(f):向干馏炉B204新装入生物质202b。
优选从生物质装入到排出为止的在干馏炉内的滞留时间为30分钟以上。在小于30分钟的情况下,炭化不充分,有时可能产生生物质炭的低位发热量降低。另外,对于超过60分钟的滞留时间,生物质炭的产率降低,并且需要增大干馏炉的容积,所以是不经济的。例如在每上述50体积%排出的情况中设在干馏炉内的滞留时间为30分钟的情况下,一次干馏时间为7.5分钟,成为干馏7.5分钟→碳成分的附着析出(放置时间)7.5分钟→干馏7.5分钟→碳成分的附着析出(放置时间)7.5分钟。在使滞留时间以30分钟成为一定,每1/3(33体积%)排出时,成为干馏5分钟→放置时间5分钟→干馏5分钟→放置时间5分钟→干馏5分钟→放置时间5分钟,每1/4(25体积%)排出时,成为干馏3.75分钟→放置时间3.75分钟→干馏3.75分钟→放置时间3.75分钟→干馏3.75分钟→放置时间3.75分钟→干馏3.75分钟→放置时间3.75分钟。在产率提高这一点上,优选在设备上可实现的范围内使一次干馏时间短。
设于干馏炉内的喷枪也可以为1个,但考虑到向充填层内的热供给的情况下,优选配置多个。
虽然得到的生物质炭可以直接在制钢工艺中使用,但优选根据需要进行成形或微粉化来使用。成形只要使用利用倾斜的旋转盘进行的滚动造粒、从圆筒状的模进行挤压的挤压成形、向旋转辊表面的模供给粉体的压块辊的压缩成形机等、通常使用的成形机进行即可。微粉化只要使用通常使用的辊磨机、棒磨机等进行即可。
用于生物质的干馏的热源的、在干馏炉中从喷枪供给的燃料只要使用重油、天然气、液化石油气等即可,只要可从喷枪供给即可。
从干馏炉回收的生物质炭在高温处理后被排出,因此,考虑到发火等的安全性,优选由惰性气体等进行冷却。冷却温度只要为200℃程度即可,更优选为100℃以下。
图12表示本发明另一实施方式。是使干馏气体214另行在燃烧炉218燃烧而向干馏炉203、204供给的情况。
[实施例1]
使用图13所示的设备进行生物质的干馏试验。干馏炉A203、干馏炉B204为内径100mm、长度400mm,在热风发送装置225将氮226加热至规定温度,通过供给而进行加热。
表3表示所使用的生物质的组成。
表3
预先将表3所示的生物质粉碎,充填于干馏炉A203及干馏炉B204。将加热至规定温度的氮226向干馏炉A203吹送,实施7.5分钟的干馏,停止加热氮的供给,从干馏炉A203下部测定干馏炉A203的内容物的上表面的水平,并排出1/2体积量,向干馏炉A203新供给生物质202。其次,将加热氮向干馏炉B204供给,同样进行7.5分钟的干馏,从干馏炉B204排出1/2体积量。重复进行该操作。生物质的干馏分两次进行,从生物质装入到排出为止的在干馏炉内的滞留时间为30分钟。生物质的供给速度为2.0kg/h。使氮226的加热温度(热风温度)如表4所示变化,进行本发明例1~6的试验。
表4
[表4]
各试验中,将从干馏炉A203、B204排出的氮+干馏气体的温度作为干馏气体出口温度一并显示于表4。进行6小时的本操作,测定排出的生物质炭223的性状(组成),根据所含有的灰分浓度算出生物质炭产率。另外,测定回收的气体、焦油、水分的产率。结果一并显示于表4。
其次,从干馏炉每1/3体积量排出,将生物质在干馏炉内的一次的干馏时间设为5分钟,除此之外,以与上述本发明例5相同的条件进行本发明例7的试验。生物质的干馏分三次进行,从生物质装入到排出为止的在干馏炉内的滞留时间为30分钟。结果一并显示于表4。
进而,将仅使用干馏炉A203进行生物质的干馏的情况的结果作为比较例1一并显示于表4。
根据表4可知,通过根据使用了连接两座干馏炉而成的装置的本发明方法制造生物质炭,可以使产生的焦油、气体附着于干馏生物质,加热而炭化,干馏温度低的一方生物质炭的产率提高。另外,在从生物质装入至排出为止的在干馏炉内的滞留时间相同的情况下,1次的干馏时间短的一方产率提高。进而可知,对于焦油成分,使用GC-MS(直接连结气相色谱仪的质量分析仪)的分析的结果是轻质化。
标号说明
201干馏炉主体、202(202a、202b)生物质
203干馏炉A、204干馏炉B
205原料切换阀、206喷枪A
207喷枪B、208燃料
209空气、210生物质充填层
211生物质充填层、212干馏气体
2131次集尘机、214干馏气体
215排出阀A、216排出阀
217排出阀B、218燃烧炉
221干馏气体/焦油、222供给阀
223生物质炭、225热风发生装置
226氮
Claims (13)
1.一种生物质炭的制造方法,其中,
从竖炉的顶部或侧方上部投入生物质,
从所述竖炉的底部或侧方下部吹入热风,在所述竖炉内使所述生物质炭化而形成生物质炭,
将含有在所述炭化时产生的焦油的废气从所述竖炉的顶部或侧方上部排出,
使所述废气中的所述焦油的至少一部分从竖炉的底部或侧方下部与热风一起吹入至竖炉而与所述生物质炭接触并附着于所述生物质炭上,
使附着于所述生物质炭上的所述焦油的至少一部分转化成炭化物并使所述炭化物在所述生物质炭上析出。
2.如权利要求1所述的生物质炭的制造方法,其中,
从所述竖炉的底部或侧方下部供给冷却用气体。
3.如权利要求2所述的生物质炭的制造方法,其中,
所述冷却用气体循环使用所述废气。
4.如权利要求2或3所述的生物质炭的制造方法,其中,
将所述焦油的一部分与所述冷却用气体一同向炉内供给。
5.如权利要求1~3中任一项所述的生物质炭的制造方法,其中,
从所述废气分离所述焦油,并将分离后的所述焦油吹入至竖炉。
6.如权利要求1~3中任一项所述的生物质炭的制造方法,其中,
使所述废气以空气比小于1燃烧,作为热风吹入至竖炉。
7.如权利要求1~3中任一项所述的生物质炭的制造方法,其中,
所述生物质炭的炭化温度为300~700℃。
8.如权利要求1~3中任一项所述的生物质炭的制造方法,其中,
所述废气的温度为50~300℃。
9.如权利要求1~3中任一项所述的生物质炭的制造方法,其中,
所述热风为无氧或低氧,温度为400~1200℃。
10.一种生物质炭的制造方法,
使用具有彼此连接的两座干馏炉的双塔式的充填移动层方式的炉将生物质干馏来制造生物质炭,其中,
使通过在一个干馏炉中的生物质的干馏而产生的气体和焦油与另一个干馏炉内的生物质接触,
在所述另一个干馏炉内的生物质的干馏时使所述气体及所述焦油中的碳成分在所述另一个干馏炉内的生物质上附着析出。
11.如权利要求10所述的生物质炭的制造方法,其中,
将干馏炉内的生物质的干馏温度设为400℃~800℃。
12.如权利要求10所述的生物质炭的制造方法,其中,
将干馏炉内的生物质的滞留时间设为30分钟以上。
13.如权利要求1所述的生物质炭的制造方法,其中,
所述生物质的炭化包括在第一干馏炉内将生物质干馏,产生气体和焦油,
所述焦油的至少一部分的接触,包括使在第一干馏炉内产生的气体和焦油与第二干馏炉内的生物质接触,在第二干馏炉内的生物质的干馏时使所述气体及所述焦油在第二干馏炉内的生物质上附着析出。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009071480 | 2009-03-24 | ||
JP2009-071488 | 2009-03-24 | ||
JP2009-071480 | 2009-03-24 | ||
JP2009-071486 | 2009-03-24 | ||
JP2009071488 | 2009-03-24 | ||
JP2009071486 | 2009-03-24 | ||
PCT/JP2010/055492 WO2010110470A1 (ja) | 2009-03-24 | 2010-03-23 | バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102388119A CN102388119A (zh) | 2012-03-21 |
CN102388119B true CN102388119B (zh) | 2015-11-25 |
Family
ID=42781160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080013726.9A Expired - Fee Related CN102388119B (zh) | 2009-03-24 | 2010-03-23 | 生物质炭的制造方法及用于其中的生物质炭的制造装置 |
Country Status (5)
Country | Link |
---|---|
JP (4) | JP5653640B2 (zh) |
KR (1) | KR101319737B1 (zh) |
CN (1) | CN102388119B (zh) |
MY (1) | MY155415A (zh) |
WO (1) | WO2010110470A1 (zh) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102092706B (zh) * | 2010-12-13 | 2013-03-20 | 淮北市协力重型机器有限责任公司 | 外加热节能环保型回转炭化炉 |
CA3084690C (en) | 2011-04-15 | 2023-09-19 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
KR101189588B1 (ko) | 2011-04-20 | 2012-10-10 | 전남대학교산학협력단 | 바이오매스 고형체 제조시스템 및 제조방법 |
JP5998763B2 (ja) * | 2011-09-28 | 2016-09-28 | Jfeスチール株式会社 | 転炉製鋼方法 |
JPWO2013094749A1 (ja) * | 2011-12-21 | 2015-04-27 | Jfeエンジニアリング株式会社 | バイオマス炭化方法及びバイオマス炭化装置 |
JP2013216780A (ja) * | 2012-04-09 | 2013-10-24 | Jfe Engineering Corp | バイオマス炭化装置及びバイオマス炭化方法 |
CA3225246A1 (en) | 2012-05-07 | 2013-11-14 | Carbon Technology Holdings, LLC | Biogenic activated carbon and methods of making and using same |
JP5786795B2 (ja) * | 2012-05-11 | 2015-09-30 | 新日鐵住金株式会社 | アブラ椰子核殻炭による焼結鉱製造方法 |
JP6167777B2 (ja) * | 2013-09-09 | 2017-07-26 | 新日鐵住金株式会社 | バイオマス炭の製造方法 |
WO2015061701A1 (en) | 2013-10-24 | 2015-04-30 | Biogenic Reagent Ventures, Llc | Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates |
EP3094593B1 (en) | 2014-01-16 | 2022-01-26 | Carbon Technology Holdings, LLC | Carbon micro-plant |
CA2977092C (en) | 2014-02-24 | 2022-12-13 | Biogenic Reagents Ventures, Llc | Highly mesoporous activated carbon |
US11413601B2 (en) | 2014-10-24 | 2022-08-16 | Carbon Technology Holdings, LLC | Halogenated activated carbon compositions and methods of making and using same |
CN106085476A (zh) * | 2016-06-16 | 2016-11-09 | 安徽新生力生物科技有限公司 | 一种生物质炭的制造方法 |
CN106479541A (zh) * | 2016-12-06 | 2017-03-08 | 神雾环保技术股份有限公司 | 一种处理煤粉与生物质的系统和方法 |
KR102063708B1 (ko) | 2017-11-29 | 2020-01-09 | 한국생산기술연구원 | 타르 회수를 통한 바이오촤 펠릿 생산 시스템 |
KR102039075B1 (ko) * | 2018-04-06 | 2019-11-01 | 바이오지이티(주) | 재사용 가능한 높은 거대 다공성 바이오차 벌킹 에이전트 성형물 및 이의 제조방법 |
BR112020025445A2 (pt) | 2018-06-14 | 2021-03-16 | Carbon Technology Holdings, LLC | Composições de dióxido de silício de carbono poroso biogênico e métodos de produção e uso das mesmas |
KR102213062B1 (ko) * | 2019-04-12 | 2021-02-08 | 한국생산기술연구원 | 타르 재흡착을 통한 고품위 반탄화 바이오매스 생산장치 |
CN109864002B (zh) * | 2019-04-25 | 2022-03-15 | 南京三聚生物质新材料科技有限公司 | 一种禽畜养殖用垫料及其制备方法与垫床 |
CN110387445B (zh) * | 2019-08-16 | 2021-08-10 | 东北大学 | 一种采用木质素为还原剂生产直接还原铁的方法 |
CN110387250A (zh) * | 2019-08-20 | 2019-10-29 | 赫普能源环境科技有限公司 | 一种利用电站锅炉烟气生产生物质炭的系统及方法 |
CN115210503A (zh) * | 2019-11-29 | 2022-10-18 | 皇家墨尔本理工大学 | 用于热解的系统和方法 |
EP4065510A4 (en) * | 2019-11-29 | 2023-12-27 | Royal Melbourne Institute of Technology | PROCESS AND SYSTEM FOR PYROLYSIS AND CARBON DEPOSITION |
KR20230087510A (ko) | 2020-09-25 | 2023-06-16 | 카본 테크놀로지 홀딩스, 엘엘씨 | 바이오매스 열분해와 통합된 금속 광석의 바이오-환원 |
BR112023016141A2 (pt) | 2021-02-18 | 2023-11-21 | Carbon Tech Holdings Llc | Produtos metalúrgicos com carbono negativo |
MX2023012635A (es) | 2021-04-27 | 2024-01-12 | Carbon Tech Holdings Llc | Composiciones de biocarbón con carbono fijado optimizado y procesos para producir las mismas. |
EP4367070A1 (en) | 2021-07-09 | 2024-05-15 | Carbon Technology Holdings, LLC | Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom |
CN116064061A (zh) * | 2021-10-30 | 2023-05-05 | 中国石油化工股份有限公司 | 一种生物质组合工艺生产氢气的方法和系统 |
US20230150872A1 (en) | 2021-11-12 | 2023-05-18 | Carbon Technology Holdings, LLC | Biocarbon compositions with optimized compositional parameters, and processes for producing the same |
CN114231306A (zh) * | 2021-12-15 | 2022-03-25 | 黄容 | 一种炼焦工业用可对燃烧原料进行热风干的防尘式干馏炉 |
CN114456819B (zh) * | 2022-02-09 | 2023-07-21 | 安徽上元绿能科技有限公司 | 一种生物质正压气炭联产发生器 |
CN114517099A (zh) * | 2022-02-25 | 2022-05-20 | 北京丰润铭科贸有限责任公司 | 一种通过炭化生物质来生产生物质煤的方法 |
CN115367730A (zh) * | 2022-08-16 | 2022-11-22 | 武汉市人越热工技术产品有限公司 | 一种辐射管竖炉生物质粉末炭加工工艺 |
CN115735829B (zh) * | 2022-11-09 | 2024-06-07 | 大连理工大学 | 一种基于物质循环的水生生物培养装置 |
JP7456560B1 (ja) | 2022-11-14 | 2024-03-27 | Jfeスチール株式会社 | 焼結用炭材、焼結鉱及び焼結用炭材の製造方法 |
CN116462534A (zh) * | 2023-05-05 | 2023-07-21 | 哈尔滨工业大学 | 利用秸秆压片后原位焦油吸附再炭化的高强度炭基肥高得炭率制备方法 |
CN117903825B (zh) * | 2024-01-23 | 2024-07-19 | 中国农业科学院农业环境与可持续发展研究所 | 一种秸秆热解焦油原位聚合成炭方法 |
CN118754105B (zh) * | 2024-09-06 | 2024-11-29 | 河北省科学院能源研究所 | 一种表面褶皱生物质炭及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0167516A2 (de) * | 1984-06-01 | 1986-01-08 | Waagner-Biro Aktiengesellschaft | Vergaser für feste teerhaltige Brennstoffe |
CN2661693Y (zh) * | 2003-12-08 | 2004-12-08 | 何润良 | 流化床炭化装置 |
CN2698791Y (zh) * | 2004-05-26 | 2005-05-11 | 河南省焦作市秸秆燃气有限公司 | 生物质干馏炭化气化装置 |
CN1664065A (zh) * | 2005-02-28 | 2005-09-07 | 昆明理工大学 | 一种利用农林废弃物制造机制木炭的方法 |
CN101113340A (zh) * | 2006-07-24 | 2008-01-30 | 万天骥 | 一种高挥发分煤的干馏工艺 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63139987A (ja) * | 1986-12-02 | 1988-06-11 | Agency Of Ind Science & Technol | オイルシエ−ル乾留方法及びその装置 |
JP4078771B2 (ja) * | 1999-11-05 | 2008-04-23 | 株式会社Ihi | 廃棄物の熱分解処理装置 |
JP3616762B2 (ja) * | 2001-12-27 | 2005-02-02 | 株式会社御池鐵工所 | 廃棄物炭化炉 |
JP4547244B2 (ja) * | 2004-12-14 | 2010-09-22 | 有限会社 八太環境技術事務所 | 有機物のガス化装置 |
JP3781379B1 (ja) * | 2005-09-30 | 2006-05-31 | プラント機工株式会社 | 有機物の処理方法、熱分解炉、発電システム、及び可燃性ガスの製造方法 |
JP4493609B2 (ja) * | 2006-03-09 | 2010-06-30 | 新日本製鐵株式会社 | 炭素質原料の熱分解方法 |
JP2009057497A (ja) * | 2007-08-31 | 2009-03-19 | Bio Coke Lab Co Ltd | ガス化方法、ガス生成装置及びガス化装置 |
-
2010
- 2010-03-23 CN CN201080013726.9A patent/CN102388119B/zh not_active Expired - Fee Related
- 2010-03-23 WO PCT/JP2010/055492 patent/WO2010110470A1/ja active Application Filing
- 2010-03-23 MY MYPI2011004480A patent/MY155415A/en unknown
- 2010-03-23 KR KR1020117023260A patent/KR101319737B1/ko not_active Expired - Fee Related
- 2010-03-24 JP JP2010067803A patent/JP5653640B2/ja active Active
-
2013
- 2013-03-29 JP JP2013074237A patent/JP5647286B2/ja active Active
- 2013-03-29 JP JP2013074236A patent/JP5810122B2/ja active Active
- 2013-03-29 JP JP2013074238A patent/JP5529995B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0167516A2 (de) * | 1984-06-01 | 1986-01-08 | Waagner-Biro Aktiengesellschaft | Vergaser für feste teerhaltige Brennstoffe |
CN2661693Y (zh) * | 2003-12-08 | 2004-12-08 | 何润良 | 流化床炭化装置 |
CN2698791Y (zh) * | 2004-05-26 | 2005-05-11 | 河南省焦作市秸秆燃气有限公司 | 生物质干馏炭化气化装置 |
CN1664065A (zh) * | 2005-02-28 | 2005-09-07 | 昆明理工大学 | 一种利用农林废弃物制造机制木炭的方法 |
CN101113340A (zh) * | 2006-07-24 | 2008-01-30 | 万天骥 | 一种高挥发分煤的干馏工艺 |
Also Published As
Publication number | Publication date |
---|---|
KR101319737B1 (ko) | 2013-10-17 |
JP2010248061A (ja) | 2010-11-04 |
MY155415A (en) | 2015-10-15 |
CN102388119A (zh) | 2012-03-21 |
JP2013129850A (ja) | 2013-07-04 |
JP2013177593A (ja) | 2013-09-09 |
KR20120004437A (ko) | 2012-01-12 |
JP2013129849A (ja) | 2013-07-04 |
JP5653640B2 (ja) | 2015-01-14 |
JP5529995B2 (ja) | 2014-06-25 |
WO2010110470A1 (ja) | 2010-09-30 |
JP5810122B2 (ja) | 2015-11-11 |
JP5647286B2 (ja) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102388119B (zh) | 生物质炭的制造方法及用于其中的生物质炭的制造装置 | |
JP7539540B2 (ja) | 高炭素生体試薬の生成のためのシステムおよび装置 | |
JP5501644B2 (ja) | バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 | |
JP2010242035A (ja) | バイオマス炭の製造方法 | |
JP5417925B2 (ja) | バイオマスの利用方法 | |
JP5501643B2 (ja) | バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 | |
JP2010254749A (ja) | バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 | |
JP5761314B2 (ja) | バイオマスの利用方法 | |
JP5566620B2 (ja) | バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151125 Termination date: 20200323 |
|
CF01 | Termination of patent right due to non-payment of annual fee |