CN102364701A - Preparation process of solar cell surface electrode - Google Patents
Preparation process of solar cell surface electrode Download PDFInfo
- Publication number
- CN102364701A CN102364701A CN2011103308970A CN201110330897A CN102364701A CN 102364701 A CN102364701 A CN 102364701A CN 2011103308970 A CN2011103308970 A CN 2011103308970A CN 201110330897 A CN201110330897 A CN 201110330897A CN 102364701 A CN102364701 A CN 102364701A
- Authority
- CN
- China
- Prior art keywords
- solar cell
- graphene
- cell surface
- surface electrode
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 210000004027 cell Anatomy 0.000 title claims description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000004020 conductor Substances 0.000 claims abstract description 5
- 239000000853 adhesive Substances 0.000 claims abstract description 3
- 230000001070 adhesive effect Effects 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 239000010408 film Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000005289 physical deposition Methods 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 238000005234 chemical deposition Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 239000007800 oxidant agent Substances 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 238000004299 exfoliation Methods 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 239000004530 micro-emulsion Substances 0.000 claims description 2
- 238000005240 physical vapour deposition Methods 0.000 claims description 2
- 239000012286 potassium permanganate Substances 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 1
- 239000011368 organic material Substances 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 230000004907 flux Effects 0.000 abstract 1
- 238000002834 transmittance Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种太阳能电池表面电极的制备工艺,属于太阳能电池制造领域。该工艺为:在太阳能电池采光面上覆设石墨烯薄膜,并在太阳能电池的选定区域上形成外引线黏附材料层,以及在该选定区域引出外引线。本发明利用优良导电性及透光性的石墨烯薄膜作为透明导电材料制备PN或PIN结构连接,较之目前的太阳电池电极的制作流程,免去了部分繁琐生长及工艺步骤,极大的提高了进入电池的光通能量,进而有效的增加了太阳电池的光电转换效率,具有工艺简单、成本低,利于规模化生产的特性,有望在太阳电池及其它光电器件领域被广泛应用。The invention discloses a preparation process of a surface electrode of a solar cell, which belongs to the field of solar cell manufacturing. The process is as follows: coating the graphene film on the daylighting surface of the solar cell, forming an outer lead adhesive material layer on a selected area of the solar cell, and leading out the outer lead in the selected area. The present invention uses the graphene film with excellent conductivity and light transmittance as a transparent conductive material to prepare PN or PIN structure connection. Compared with the current solar cell electrode production process, it eliminates some cumbersome growth and process steps, and greatly improves The luminous flux energy entering the battery is effectively increased, and the photoelectric conversion efficiency of the solar cell is effectively increased. It has the characteristics of simple process, low cost, and is conducive to large-scale production. It is expected to be widely used in the field of solar cells and other optoelectronic devices.
Description
技术领域 technical field
本发明涉及一种太阳能电池的制备工艺,尤其涉及一种太阳能电池表面电极的制备工艺,属于太阳能电池光伏技术领域。 The invention relates to a preparation process of a solar cell, in particular to a preparation process of a surface electrode of a solar cell, and belongs to the field of solar cell photovoltaic technology.
背景技术 Background technique
1839年法国Becqueral第一次在化学电池中观察到光伏效应。1876年,依据固态硒(Se)系统中的光伏效应,人们开发出Se/CuO光电池,这些早期器件没有足够效率,只能用于光电探测,直至1954年美国贝尔实验室研制出第一片实用的硅太阳电池,并于1958年将之首先应用在航天器上,其后工艺不断改进,电池设计逐步定型,但由于其价格昂贵,只能用于空间航天器的电源。 In 1839, French Becqueral first observed the photovoltaic effect in a chemical battery. In 1876, based on the photovoltaic effect in the solid-state selenium (Se) system, people developed Se/CuO photovoltaic cells. These early devices were not efficient enough and could only be used for photoelectric detection. It was not until 1954 that Bell Laboratories in the United States developed the first practical Silicon solar cells were first used in spacecraft in 1958. Since then, the technology has been continuously improved, and the battery design has been gradually finalized. However, due to its high price, it can only be used as a power source for space spacecraft.
同时,随着人们意识到石化能源是不可再生的、有限的,并且伴随着全球性环境污染与生态破环,世界各国开始加强清洁能源的开发,从而推动了太阳能电池的发展,效率不断提高,单晶体硅电池的效率已经从20世纪50年代的6%提高到目前的24.7%,多晶体硅电池的效率达到了20.3%,在薄膜电池的研究工作中,非晶硅薄膜电池效率达到了13%,碲化镉(CdTe) 效率达到了16.4%,铜铟硒(CIS)的效率达到19.5%。而多结叠层光电池的研究更是取得了长足的进步,聚光条件下GaInP/Ga(In)As/Ge多结光电池的转化效率已经突破了40%。 At the same time, as people realize that petrochemical energy is non-renewable and limited, and accompanied by global environmental pollution and ecological damage, countries around the world have begun to strengthen the development of clean energy, thereby promoting the development of solar cells, and their efficiency has continued to increase. The efficiency of monocrystalline silicon cells has increased from 6% in the 1950s to the current 24.7%, and the efficiency of polycrystalline silicon cells has reached 20.3%. In the research work of thin-film cells, the efficiency of amorphous silicon thin-film cells has reached 13%. , the efficiency of cadmium telluride (CdTe) reached 16.4%, and the efficiency of copper indium selenide (CIS) reached 19.5%. The research on multi-junction stacked photovoltaic cells has made great progress, and the conversion efficiency of GaInP/Ga(In)As/Ge multi-junction photovoltaic cells under concentrating conditions has exceeded 40%.
在制约太阳电池效率提升因素中,采光面电极设计一直是一个倍受关注的问题。合理的设计直接影响电池各项性能指标,主要由采光量和串联电阻这两个矛盾方面的影响。当表面金属电极间距减小时,表面金属电极面积增大,也就是遮光区域的面积增大,进入电池的总的光能量是必减少了,此时横向电流流动距离较短,串联电阻将降低。反之,当表面金属电极间距加大,表面金属电极面积减小时,也就是遮光区域的面积减小,进入电池的总的光能量是必增加,而横向电流要经过较长距离进入电极导出,串联电阻增大。长期以来,人们均是通过计算优化来设计栅电极的布局,其需要兼顾进光量与串联电阻,因此一直没有使两者同时做到最优。 Among the factors restricting the improvement of solar cell efficiency, the design of electrodes on the lighting surface has always been an issue that has attracted much attention. Reasonable design directly affects various performance indicators of the battery, mainly affected by the two contradictory aspects of lighting and series resistance. When the distance between the surface metal electrodes decreases, the area of the surface metal electrodes increases, that is, the area of the shading area increases, and the total light energy entering the battery must decrease. At this time, the lateral current flow distance is shorter and the series resistance will decrease. Conversely, when the distance between the surface metal electrodes increases and the area of the surface metal electrodes decreases, that is, the area of the light-shielding area decreases, the total light energy entering the battery must increase, and the lateral current must enter the electrodes through a long distance and be exported in series. The resistance increases. For a long time, people have designed the layout of the gate electrode through computational optimization, which needs to take into account the amount of light entering and the series resistance, so the two have not been optimized at the same time.
发明内容 Contents of the invention
本发明的目的在于提出一种太阳能电池表面电极的制备工艺,其利用具有优良光电性能的石墨烯薄膜替代传统的栅线电极,可实现进光量与串联电阻的同步优化,从而克服了现有技术中的不足。 The purpose of the present invention is to propose a preparation process for the surface electrode of a solar cell, which uses a graphene film with excellent photoelectric properties to replace the traditional grid electrode, and can realize the simultaneous optimization of the amount of light entering and the series resistance, thereby overcoming the existing technology. deficiencies in.
为实现上述发明目的,本发明采用了如下技术方案: In order to realize the above-mentioned purpose of the invention, the present invention has adopted following technical scheme:
一种太阳能电池表面电极的制备工艺,其特征在于,该工艺为:在太阳能电池采光面上覆盖石墨烯薄膜,并在靠近太阳能电池边缘的选定区域上形成外引线黏附材料层,而后在该选定区域引出外引线。 A preparation process for a surface electrode of a solar cell, characterized in that the process comprises: covering the light-emitting surface of the solar cell with a graphene film, and forming an outer lead adhesion material layer on a selected area close to the edge of the solar cell; The selected area leads to the outer leader.
作为一种可选的方式,所述石墨烯薄膜是直接覆盖于太阳能电池采光面上。 As an optional manner, the graphene film is directly covered on the light-emitting surface of the solar cell.
作为一种优选方式,所述石墨烯薄膜是由生长形成或外部转移至太阳能电池采光面上的石墨烯材料制成的。 As a preferred manner, the graphene film is made of graphene material that is grown or transferred externally to the daylighting surface of the solar cell.
具体而言,所述石墨烯材料的转移方法可为直接转移或间接转移。转移方式可选通过将太阳能电池衬底浸润到石墨烯悬浊液中,使用浸润黏附的方式或采用超声辅助的方式来加强太阳电池表面覆盖石墨烯膜层的效果,取出后烘干;也可选择将石墨烯利用黏附转移的方法制备在太阳电池采光面上。 Specifically, the transfer method of the graphene material may be direct transfer or indirect transfer. The transfer method can be selected by soaking the solar cell substrate into the graphene suspension, using the method of wetting and adhesion or ultrasonic-assisted method to strengthen the effect of the graphene film layer on the surface of the solar cell, taking it out and drying it; Choose to prepare graphene on the solar cell lighting surface by means of adhesion transfer.
所述石墨烯材料的制备工艺为:首先在强氧化剂与强酸形成的胶体体系中加入天然石墨或人造石墨反应后得到氧化石墨,利用溶剂热还原法或热膨胀还原得到石墨烯材料;所述强氧化剂可选用氯酸钾和高锰酸钾,所述强酸可选用浓硫酸、浓硝酸和浓盐酸等; The preparation process of the graphene material is as follows: first, add natural graphite or artificial graphite to the colloid system formed by a strong oxidant and a strong acid to react to obtain graphite oxide, and then obtain a graphene material by solvothermal reduction or thermal expansion reduction; the strong oxidant Potassium chlorate and potassium permanganate can be selected, and the strong acid can be selected from concentrated sulfuric acid, concentrated nitric acid and concentrated hydrochloric acid, etc.;
所述溶剂热还原法中采用乙醇作为溶剂,反应温度为20℃-900℃; In the solvothermal reduction method, ethanol is used as a solvent, and the reaction temperature is 20°C-900°C;
所述热膨胀还原法是在温度为100℃-1200℃的条件下进行,且其中快速热膨胀剥离石墨的操作是在1-30min内完成。 The thermal expansion reduction method is carried out at a temperature of 100° C.-1200° C., and the rapid thermal expansion exfoliation of graphite is completed within 1-30 minutes.
所述太阳能电池是由Si、Ge、Cu、In、Ti、III族、V族、II族、VI族中的一种或一种以上元素的组合构成。 The solar cell is composed of one or more elements of Si, Ge, Cu, In, Ti, Group III, Group V, Group II, and Group VI.
所述太阳能电池的结构形式选自一个或一个以上的PN结、PIN单结、PIN结叠层多端连接结构以及双结级联和多结级联的复合结构。 The structural form of the solar cell is selected from one or more than one PN junction, PIN single junction, PIN junction stacked multi-terminal connection structure, double-junction cascaded and multi-junction cascaded composite structure.
所述外引线黏附材料层是所述外引线黏附材料层由1nm~5mm厚的无机导电材料和/或有机导电材料形成,采用物理或化学沉积方法制备的,所述物理或化学沉积的方法可选自蒸发、溅射、激光沉积、旋涂、印刷、喷涂、CVD、PVD、VPD、化学水热、化学微乳胶、化学溶胶凝胶、化学液相沉积中的任意一种或两种以上的组合。 The outer lead adhesive material layer is formed of an inorganic conductive material and/or an organic conductive material with a thickness of 1 nm to 5 mm, and is prepared by a physical or chemical deposition method. The physical or chemical deposition method can be Any one or two or more of evaporation, sputtering, laser deposition, spin coating, printing, spray coating, CVD, PVD, VPD, chemical hydrothermal, chemical microemulsion, chemical sol-gel, chemical liquid phase deposition combination.
与现有技术相比,本发明的优点至少在于:大大简化了太阳能电池表面电极的制备工艺,极大的提高了进入电池的光能量,同时降低了电池的串联电阻,进而有效的增加了太阳电池的光电转换效率,具有工艺简单、成本低,利于规模化生产的特性,可广泛应用于太阳电池及其它光电器件领域。 Compared with the prior art, the present invention has at least the advantages of greatly simplifying the preparation process of the surface electrodes of the solar cell, greatly increasing the light energy entering the cell, and reducing the series resistance of the cell at the same time, thereby effectively increasing the solar energy. The photoelectric conversion efficiency of the battery has the characteristics of simple process, low cost, and favorable large-scale production, and can be widely used in the field of solar cells and other optoelectronic devices.
具体实施方式 Detailed ways
下面结合一较佳实施例对本发明的技术方案进行详细说明,但本发明并不局限于此。 The technical solution of the present invention will be described in detail below in conjunction with a preferred embodiment, but the present invention is not limited thereto.
需要指出的,下述实施例中所述实验方法,如无特殊说明,均为常规方法;所用试剂和材料,如无特殊说明,均可从商业途径获得。 It should be pointed out that the experimental methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials used can be obtained from commercial sources unless otherwise specified.
该太阳能电池表面电极的制备工艺包括如下步骤: The preparation process of the surface electrode of the solar cell comprises the following steps:
(1)将太阳能电池的样片使用无机溶液和有机溶液清洗后,备用; (1) After cleaning the sample sheet of the solar cell with an inorganic solution and an organic solution, it is for subsequent use;
(2)石墨烯溶液的制备: (2) preparation of graphene solution:
(i)将浓硫酸与浓硝酸以3:1的方式混合,放入天然石墨,搅拌15分钟,然后加入10g氯酸钾,反应12-72小时,之后加入大量去离子水稀释,离心机5000rpm,离心3分钟,得到沉淀物,真空烘干得到氧化石墨; (i) Mix concentrated sulfuric acid and concentrated nitric acid at a ratio of 3:1, put in natural graphite, stir for 15 minutes, then add 10g of potassium chlorate, react for 12-72 hours, then add a large amount of deionized water to dilute, centrifuge at 5000rpm, centrifuge 3 minutes, obtain precipitate, vacuum drying obtains graphite oxide;
(ii)将氧化石墨放入到1000℃的石英管中,热膨胀5-60s,得到可剥离石墨,放入无水乙醇超声处理2小时,得到石墨烯悬浮液; (ii) Put graphite oxide into a quartz tube at 1000°C, thermally expand for 5-60s to obtain exfoliatable graphite, put it into absolute ethanol for ultrasonic treatment for 2 hours, and obtain a graphene suspension;
(3)将备用的电池样片浸润到石墨烯悬浊液中并超声1分钟,然后在70℃~120℃温度烘干; (3) Soak the spare battery sample in the graphene suspension and sonicate for 1 minute, and then dry it at 70°C to 120°C;
(4)遮挡样片表面特定的区域,通过物理沉积的方式在靠近样片表面边缘的选定区域上沉积金属黏附材料,制备选定区域外引线黏附层; (4) Block a specific area on the surface of the sample, and deposit a metal adhesion material on a selected area close to the edge of the surface of the sample by physical deposition to prepare a lead adhesion layer outside the selected area;
(5)将制备完成的电池样片分割、固定、引出外引线后封装。 (5) Divide the prepared battery sample, fix it, lead out the outer leads, and package it.
本发明工艺制法及选材上具有多样性,以上仅是本发明众多具体应用范例中的颇具代表性的几个实施例,对本发明的保护范围不构成任何限制。凡采用等同变换或是材料的简单替换而形成的技术方案,只要是采用本发明具减反射效果的薄膜结构制备太阳能电池,均落在本发明权利保护范围之内。 The process, manufacturing method and material selection of the present invention are diverse. The above are only a few representative examples among the many specific application examples of the present invention, and do not constitute any limitation to the protection scope of the present invention. Any technical solution formed by equivalent transformation or simple replacement of materials, as long as the thin film structure with anti-reflection effect of the present invention is used to prepare solar cells, falls within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103308970A CN102364701A (en) | 2011-10-27 | 2011-10-27 | Preparation process of solar cell surface electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103308970A CN102364701A (en) | 2011-10-27 | 2011-10-27 | Preparation process of solar cell surface electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102364701A true CN102364701A (en) | 2012-02-29 |
Family
ID=45691259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103308970A Pending CN102364701A (en) | 2011-10-27 | 2011-10-27 | Preparation process of solar cell surface electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102364701A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103721972A (en) * | 2013-12-20 | 2014-04-16 | 天津力神电池股份有限公司 | Method for wetting polymer lithium ion batteries |
CN104461101A (en) * | 2013-09-25 | 2015-03-25 | 宸鸿科技(厦门)有限公司 | Touch panel with conductive protection layer and manufacturing method thereof |
CN104810411A (en) * | 2014-01-24 | 2015-07-29 | 中国科学院上海微系统与信息技术研究所 | Photoconductive ultraviolet detector and manufacturing method thereof |
CN104995332A (en) * | 2012-11-19 | 2015-10-21 | 加利福尼亚大学董事会 | Graphene based electrodes and applications |
CN106449791A (en) * | 2016-12-09 | 2017-02-22 | 中国科学院微电子研究所 | Preparation method of graphene/gallium arsenide solar cell |
CN110903515A (en) * | 2018-09-17 | 2020-03-24 | 湖北大学 | Solar steam-induced electricity-generating film conversion device and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419923A (en) * | 2007-10-25 | 2009-04-29 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for lead wire welding mat |
CN101771092A (en) * | 2009-12-16 | 2010-07-07 | 清华大学 | Photovoltaic cell based on graphene/silicon Schottky junction and preparation method thereof |
CN101859858A (en) * | 2010-05-07 | 2010-10-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | Graphene-based transparent conductive electrode and its preparation method and application |
CN101966453A (en) * | 2010-10-28 | 2011-02-09 | 南昌大学 | Method for preparing graphene-loaded platinum nano catalyst |
CN102040217A (en) * | 2009-10-26 | 2011-05-04 | 国家纳米科学中心 | Method for preparing graphene |
CN102167311A (en) * | 2011-03-09 | 2011-08-31 | 华侨大学 | Method for preparing graphene on large scale |
CN102173414A (en) * | 2011-03-18 | 2011-09-07 | 中国地质大学(武汉) | Method for preparing graphene oxide by chemical peeling |
-
2011
- 2011-10-27 CN CN2011103308970A patent/CN102364701A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419923A (en) * | 2007-10-25 | 2009-04-29 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for lead wire welding mat |
CN102040217A (en) * | 2009-10-26 | 2011-05-04 | 国家纳米科学中心 | Method for preparing graphene |
CN101771092A (en) * | 2009-12-16 | 2010-07-07 | 清华大学 | Photovoltaic cell based on graphene/silicon Schottky junction and preparation method thereof |
CN101859858A (en) * | 2010-05-07 | 2010-10-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | Graphene-based transparent conductive electrode and its preparation method and application |
CN101966453A (en) * | 2010-10-28 | 2011-02-09 | 南昌大学 | Method for preparing graphene-loaded platinum nano catalyst |
CN102167311A (en) * | 2011-03-09 | 2011-08-31 | 华侨大学 | Method for preparing graphene on large scale |
CN102173414A (en) * | 2011-03-18 | 2011-09-07 | 中国地质大学(武汉) | Method for preparing graphene oxide by chemical peeling |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104995332A (en) * | 2012-11-19 | 2015-10-21 | 加利福尼亚大学董事会 | Graphene based electrodes and applications |
CN104995332B (en) * | 2012-11-19 | 2017-08-08 | 加利福尼亚大学董事会 | Electrode and application based on graphene |
US10287677B2 (en) | 2012-11-19 | 2019-05-14 | The Regents Of The University Of California | Methods of fabricating pillared graphene nanostructures |
CN104461101A (en) * | 2013-09-25 | 2015-03-25 | 宸鸿科技(厦门)有限公司 | Touch panel with conductive protection layer and manufacturing method thereof |
CN103721972A (en) * | 2013-12-20 | 2014-04-16 | 天津力神电池股份有限公司 | Method for wetting polymer lithium ion batteries |
CN104810411A (en) * | 2014-01-24 | 2015-07-29 | 中国科学院上海微系统与信息技术研究所 | Photoconductive ultraviolet detector and manufacturing method thereof |
CN104810411B (en) * | 2014-01-24 | 2018-07-06 | 中国科学院上海微系统与信息技术研究所 | A kind of photoconductive UV detector and preparation method thereof |
CN106449791A (en) * | 2016-12-09 | 2017-02-22 | 中国科学院微电子研究所 | Preparation method of graphene/gallium arsenide solar cell |
CN106449791B (en) * | 2016-12-09 | 2018-02-02 | 中国科学院微电子研究所 | Preparation method of graphene/gallium arsenide solar cell |
CN110903515A (en) * | 2018-09-17 | 2020-03-24 | 湖北大学 | Solar steam-induced electricity-generating film conversion device and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104993059B (en) | A kind of silicon substrate perovskite heterojunction solar battery and preparation method thereof | |
CN1996620A (en) | Carbon nano tube film-based solar energy battery and its preparing method | |
CN101777593B (en) | A kind of amorphous/microcrystalline silicon laminated solar cell with doped interlayer structure and its manufacturing method | |
CN102364701A (en) | Preparation process of solar cell surface electrode | |
CN103746013B (en) | A kind of Graphene solar cell and preparation method thereof | |
CN102299206A (en) | Heterojunction solar cell and manufacturing method thereof | |
CN105632903A (en) | Sodium-potassium co-doping technology for preparing high-efficiency copper indium gallium selenide solar cell | |
CN103219427A (en) | Method for realizing single-sided texturing of high-light-trapping nano structure | |
CN102222728B (en) | Preparation method for zinc oxide nanoarray antireflection layer on surface of silicone-based solar battery | |
CN102280500B (en) | Silicon quantum dot solar energy cell based on a heterojunction structure and preparation method thereof | |
CN105742402B (en) | The preparation method and its structure of a kind of lamination solar cell | |
CN103311323B (en) | A kind of graphene/silicon solar cell and manufacture method thereof | |
CN103107242B (en) | Prepare the method for pucherite solar cell on the glass substrate | |
CN103000738A (en) | Mechanical laminated cadmium telluride/polycrystalline silicon solar cell combination | |
CN102315288A (en) | Thin film solar cell and preparation method thereof | |
CN101728459A (en) | Preparation method of crystal silicon solar cell | |
CN101820003B (en) | Double layer zinc oxide transparent conductive film for thin film solar cell and preparation method thereof | |
CN106449849A (en) | Graphene/copper zinc tin sulfur (CZTS) thin-film solar battery and production method thereof | |
CN103681932B (en) | A kind of cadmium telluride diaphragm solar battery and preparation method thereof | |
CN108963021A (en) | A kind of black phosphorus materials for solar cells and preparation method based on chemical modification | |
CN104485367A (en) | Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure | |
CN203733813U (en) | Graphene solar cell | |
CN102522453B (en) | Manufacturing method of field effect crystalline silicon solar cell | |
CN101814554A (en) | Structural design method of film solar cell | |
CN204741023U (en) | Novel flexible solar panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120229 |