[go: up one dir, main page]

CN102299156A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
CN102299156A
CN102299156A CN2010102206867A CN201010220686A CN102299156A CN 102299156 A CN102299156 A CN 102299156A CN 2010102206867 A CN2010102206867 A CN 2010102206867A CN 201010220686 A CN201010220686 A CN 201010220686A CN 102299156 A CN102299156 A CN 102299156A
Authority
CN
China
Prior art keywords
layer
work function
gate
region
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102206867A
Other languages
Chinese (zh)
Other versions
CN102299156B (en
Inventor
王文武
韩锴
王晓磊
马雪丽
陈大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201010220686.7A priority Critical patent/CN102299156B/en
Publication of CN102299156A publication Critical patent/CN102299156A/en
Application granted granted Critical
Publication of CN102299156B publication Critical patent/CN102299156B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

In the invention, in the process of preparing a CMOS transistor by a Gate Replacement process (Replacement Gate or Gate last), after high-k Gate dielectric layers are formed in an NMOS device region and a PMOS device region, a first work function adjusting dielectric layer belonging to the NMOS region and a second work function adjusting dielectric layer belonging to the PMOS region are respectively formed so as to respectively adjust the threshold voltages of the NMOS device and the PMOS device.

Description

一种半导体器件及其制造方法A kind of semiconductor device and its manufacturing method

技术领域 technical field

本发明通常涉及一种半导体器件及其制造方法,具体来说,涉及一种基于栅极替代工艺的高k栅介质/金属栅器件及其制造方法。The present invention generally relates to a semiconductor device and a manufacturing method thereof, in particular to a high-k gate dielectric/metal gate device based on a gate replacement process and a manufacturing method thereof.

背景技术 Background technique

随着半导体技术的发展,具有更高性能和更强功能的集成电路要求更大的元件密度,而且各个部件、元件之间或各个元件自身的尺寸、大小和空间也需要进一步缩小。22纳米及以下工艺集成电路核心技术的应用已经成为集成电路发展的必然趋势,也是国际上主要半导体公司和研究组织竞相研发的课题之一。以“高k栅介质/金属栅”技术为核心的CMOS器件栅工程研究是22纳米及以下技术中最有代表性的核心工艺,与之相关的材料、工艺及结构研究已在广泛的进行中。目前,针对高k栅介质/金属栅技术的研究可大概分为两个方向,即前栅工艺和栅极替代工艺,前栅工艺的栅极的形成在源、漏极生成之前,栅极替代工艺的栅极的形成则在源、漏极生成之后,此工艺中栅极不需要承受很高的退火温度。With the development of semiconductor technology, integrated circuits with higher performance and stronger functions require greater component density, and the size, size and space of each component, between components or each component itself also need to be further reduced. The application of 22nm and below process integrated circuit core technology has become an inevitable trend in the development of integrated circuits, and it is also one of the topics that major international semiconductor companies and research organizations are competing to research and develop. CMOS device gate engineering research centered on "high-k gate dielectric/metal gate" technology is the most representative core process in 22nm and below technologies, and related materials, processes and structures have been extensively studied . At present, the research on high-k gate dielectric/metal gate technology can be roughly divided into two directions, namely the front gate process and the gate replacement process. The gate of the front gate process is formed before the generation of the source and drain, and the gate replacement process The gate of the process is formed after the source and drain are formed, and the gate does not need to withstand a high annealing temperature in this process.

在传统栅极替代工艺中,典型的工艺包括形成多晶硅或氮化硅的假栅,并当源/漏极形成后,将假栅刻蚀掉以形成栅沟槽,之后在栅沟槽中依次沉积高k栅介质和双金属栅电极材料,对于双金属栅电极材料,需要在nMOS和pMOS器件的栅沟槽区域形成不同功函数的金属用以调节器件的阈值电压,但由于金属刻蚀工艺上的复杂性,为CMOS集成工艺集成带来了难度。In the traditional gate replacement process, the typical process includes forming a dummy gate of polysilicon or silicon nitride, and after the source/drain is formed, the dummy gate is etched away to form a gate trench, and then sequentially in the gate trench Deposit high-k gate dielectric and dual-metal gate electrode materials. For dual-metal gate electrode materials, metals with different work functions need to be formed in the gate trench regions of nMOS and pMOS devices to adjust the threshold voltage of the device. However, due to the metal etching process The complexity on the surface brings difficulty to the integration of CMOS integration process.

因此,需要提出基于后栅工艺的、能有效调节器件的阈值电压,且其工艺集成相对简单的半导体器件。Therefore, it is necessary to propose a semiconductor device based on a gate-last process that can effectively adjust the threshold voltage of the device and whose process integration is relatively simple.

发明内容 Contents of the invention

鉴于上述问题,本发明提供了一种半导体器件,所述器件包括:具有NMOS区域和PMOS区域的半导体衬底;形成于所述半导体衬底中分别属于NMOS区域和PMOS区域的源极区和漏极区;形成于所述NMOS区域上的第一栅堆叠和形成于所述PMOS区域上的第二栅堆叠;其中,所述第一栅堆叠包括:第一界面层;形成于所述第一界面层上的第一高k栅介质层;形成于所述第一高k栅介质层上的第一功函数调节介质层;形成于所述第一功函数调节介质层上的第一金属栅电极;所述第二栅堆叠包括:第二界面层;形成于所述第二界面层上的第二高k栅介质层;形成于所述第二高k栅介质层上的第二功函数调节介质层;形成于所述第二功函数调节介质层上的第二金属栅电极;其中所述第一功函数调节介质层和第二功函数调节介质层由不同材料形成,用以分别调节所述NMOS器件和PMOS器件的功函数。In view of the above problems, the present invention provides a semiconductor device comprising: a semiconductor substrate having an NMOS region and a PMOS region; a source region and a drain region respectively belonging to the NMOS region and the PMOS region formed in the semiconductor substrate An electrode region; a first gate stack formed on the NMOS region and a second gate stack formed on the PMOS region; wherein, the first gate stack includes: a first interface layer; formed on the first The first high-k gate dielectric layer on the interface layer; the first work function adjustment dielectric layer formed on the first high-k gate dielectric layer; the first metal gate formed on the first work function adjustment dielectric layer The electrode; the second gate stack includes: a second interface layer; a second high-k gate dielectric layer formed on the second interface layer; a second work function formed on the second high-k gate dielectric layer adjusting medium layer; a second metal gate electrode formed on the second work function adjusting medium layer; wherein the first work function adjusting medium layer and the second work function adjusting medium layer are formed of different materials for respectively adjusting The work function of the NMOS device and the PMOS device.

本发明还提供了上述半导体器件的制造方法,所述方法包括:提供具有NMOS区域和PMOS区域的半导体衬底;在所述半导体衬底上,形成属于NMOS区域的第一界面层、假栅及其侧墙,形成属于PMOS区域的第二界面层、假栅及其侧墙,以及在所述半导体衬底中分别形成属于NMOS区域和PMOS区域的源极区和漏极区,并覆盖所述NMOS和PMOS区域的源极区、漏极区形成层间介质层;去除所述NMOS区域和PMOS区域的假栅,以形成第一开口和第二开口;在所述第一开口中形成覆盖所述第一界面层的第一高k栅介质层,并在所述第二开口中形成覆盖所述第二界面层的第二高k栅介质层;在所述第一高k栅介质层上形成第一功函数调节介质层,在第二高k栅介质层上形成第二功函数调节介质层;在所述第一功函数调节介质层上形成填满所述第一开口的第一金属栅电极,在所述第二功函数调节介质层上形成填满所述第二开口的第二金属栅电极;对所述器件进行加工,以分别形成属于NMOS区域的第一栅堆叠和属于PMOS区域的第二栅堆叠,其中所述第一和第二功函数调节介质层由不同材料形成,用以分别调节所述NMOS器件和PMOS器件的功函数。The present invention also provides a method for manufacturing the above-mentioned semiconductor device, the method comprising: providing a semiconductor substrate having an NMOS region and a PMOS region; forming a first interface layer belonging to the NMOS region, a dummy gate and a Its sidewalls form a second interface layer belonging to the PMOS region, a dummy gate and its sidewalls, and respectively form a source region and a drain region belonging to the NMOS region and the PMOS region in the semiconductor substrate, and cover the The source region and the drain region of the NMOS and PMOS regions form an interlayer dielectric layer; the dummy gates of the NMOS region and the PMOS region are removed to form a first opening and a second opening; the first high-k gate dielectric layer of the first interface layer, and form a second high-k gate dielectric layer covering the second interface layer in the second opening; on the first high-k gate dielectric layer Forming a first work function adjusting medium layer, forming a second work function adjusting medium layer on the second high-k gate dielectric layer; forming a first metal layer filling the first opening on the first work function adjusting medium layer A gate electrode, forming a second metal gate electrode filling the second opening on the second work function adjusting dielectric layer; processing the device to form a first gate stack belonging to the NMOS region and a gate stack belonging to the PMOS region, respectively. The second gate stack in the region, wherein the first and second work function adjusting dielectric layers are formed of different materials, so as to adjust the work function of the NMOS device and the PMOS device respectively.

通过采用本发明所述器件,所述器件分别在NMOS器件区域和PMOS器件区域上形成高k介质层,并在其上引入不同材料的功函数调节介质层,这样不仅有效调节了NMOS器件和PMOS器件的阈值电压,而且功函数调节介质层由不同的介质材料形成,其更容易选择性刻蚀,有利于进行工艺控制,而且也缓解了对双金属栅材料研究的压力,此外,由于高k栅介质层选择高温下较稳定的介质材料,因此其材料中金属原子在一定的退火温度下不会因扩散问题对器件的沟道载流子迁移率产生明显的退化效应。By adopting the device of the present invention, the device forms a high-k dielectric layer on the NMOS device region and the PMOS device region respectively, and introduces work function adjustment dielectric layers of different materials thereon, which not only effectively adjusts the NMOS device and PMOS The threshold voltage of the device, and the work function adjustment dielectric layer is formed of different dielectric materials, which is easier to selectively etch, which is conducive to process control, and also relieves the pressure on the research of double metal gate materials. In addition, due to the high k For the gate dielectric layer, a relatively stable dielectric material at high temperature is selected, so the metal atoms in the material will not have a significant degradation effect on the channel carrier mobility of the device due to diffusion problems at a certain annealing temperature.

附图说明 Description of drawings

图1-11示出了根据本发明的实施例的半导体器件各个制造阶段的示意图。1-11 illustrate schematic diagrams of various manufacturing stages of a semiconductor device according to an embodiment of the present invention.

具体实施方式 Detailed ways

本发明通常涉及一种半导体器件及其制造方法。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。The present invention generally relates to a semiconductor device and a method of manufacturing the same. The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. To simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for the purpose of simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various specific process and material examples are provided herein, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, configurations described below in which a first feature is "on" a second feature may include embodiments where the first and second features are formed in direct contact, and may include additional features formed between the first and second features. For example, such that the first and second features may not be in direct contact.

参考图11,图11示出了根据本发明实施例的半导体器件的结构示意图。如图11所示,所述器件包括:具有NMOS区域204和PMOS区域206的半导体衬底202;形成于所述半导体衬底202中分别属于NMOS区域204和PMOS区域206的源极区和漏极区214、216;形成于所述NMOS区域204上的第一栅堆叠300和形成于所述PMOS区域206上的第二栅堆叠400;其中,所述第一栅堆叠300包括:第一界面层208;在所述第一界面层208上的第一高k栅介质层224;在所述第一高k栅介质层224上的第一功函数调节介质层226;形成于所述第一功函数调节介质层226上的第一金属栅电极230;所述第二栅堆叠400包括:第二界面层208;在所述第二界面层208上的第二高k栅介质层224;在所述第二高k栅介质层224上的第二功函数调节介质层228;形成于所述第二功函数调节介质层228上的第二金属栅电极230;其中所述第一226和第二功函数调节介质层228采用不同材料形成,用以分别调节NMOS器件和PMOS器件的功函数。Referring to FIG. 11 , FIG. 11 shows a schematic structural diagram of a semiconductor device according to an embodiment of the present invention. As shown in FIG. 11 , the device includes: a semiconductor substrate 202 having an NMOS region 204 and a PMOS region 206; a source region and a drain formed in the semiconductor substrate 202 and respectively belonging to the NMOS region 204 and the PMOS region 206 Regions 214, 216; the first gate stack 300 formed on the NMOS region 204 and the second gate stack 400 formed on the PMOS region 206; wherein, the first gate stack 300 includes: a first interface layer 208: the first high-k gate dielectric layer 224 on the first interface layer 208; the first work function adjusting dielectric layer 226 on the first high-k gate dielectric layer 224; formed on the first work The first metal gate electrode 230 on the function adjustment dielectric layer 226; the second gate stack 400 includes: the second interface layer 208; the second high-k gate dielectric layer 224 on the second interface layer 208; The second work function adjusting dielectric layer 228 on the second high-k gate dielectric layer 224; the second metal gate electrode 230 formed on the second work function adjusting dielectric layer 228; the first 226 and the second The work function adjusting medium layer 228 is formed by using different materials to adjust the work functions of the NMOS device and the PMOS device respectively.

优选地,所述第一和第二高k栅介质层224选择高温下较稳定的高k介质材料,其材料中的金属原子在一定的退火温度下不会因扩散问题对器件的沟道载流子迁移率产生明显的退化效应,可以从包含下列元素的组中选择元素来形成:HfO2、HfSiOx、HfONx、HfZrOx、HfSiONx、HfLaOx、LaAlOx或其组合,这仅是示例,本发明不局限于此。所述第一和第二高k栅介质层224的厚度为大约1-3nm。Preferably, the first and second high-k gate dielectric layers 224 are selected from high-k dielectric materials that are relatively stable at high temperatures, and the metal atoms in the material will not be loaded on the channel of the device due to diffusion problems at a certain annealing temperature. The flow carrier mobility produces a significant degradation effect, which can be formed by selecting elements from the group consisting of: HfO 2 , HfSiO x , HfON x , HfZrO x , HfSiON x , HfLaO x , LaAlO x , or combinations thereof, which are only example, the present invention is not limited thereto. The thickness of the first and second high-k gate dielectric layers 224 is about 1-3 nm.

所述第一功函数调节介质层226与其下面的层224间形成负偶极子或大量带正电的电荷,以起到调节有效功函数的作用,所述第一功函数调节介质层包括:MgOx,稀土和类稀土金属元素的氧化物或其硅化物、氮化物,或其他们的组合,所述第一功函数调节介质层的例子包括:La2O3,Sc2O3,Gd2O3,MgOx,或他们的硅化物、氮化物,或其他稀土氧化物或其硅化物、氮化物等,这仅是示例,本发明不局限于此。Negative dipoles or a large number of positively charged charges are formed between the first work function adjusting medium layer 226 and the underlying layer 224 to adjust the effective work function. The first work function adjusting medium layer includes: MgO x , oxides of rare earth and rare earth-like metal elements or their silicides, nitrides, or their combinations, examples of the first work function adjusting dielectric layer include: La 2 O 3 , Sc 2 O 3 , Gd 2 O 3 , MgO x , or their silicides, nitrides, or other rare earth oxides or their silicides, nitrides, etc., are just examples, and the present invention is not limited thereto.

所述第二功函数调节介质层228与其下面的层224间形成一个正偶极子或大量带负电的电荷,以起到调节有效功函数的作用,所述第二功函数调节介质层包括:除稀土和类稀土金属元素以外的其他活性金属元素的氧化物或其硅化物、氮化物,所述第二功函数调节介质层228的例子包括:Al2O3,TiO2,ZrO2,HfAlOx,HfTiOx,TaOx,HfTaOx,或他们的硅化物、氮化物,或其组合,这仅是示例,本发明不局限于此。所述第一226和第二功函数调节介质层228的厚度为大约0.1-2nm。所述第一和第二金属栅电极230为一层或多层结构。A positive dipole or a large amount of negatively charged charges are formed between the second work function adjusting medium layer 228 and the underlying layer 224 to adjust the effective work function. The second work function adjusting medium layer includes: Oxides of other active metal elements other than rare earth and rare earth-like metal elements or their silicides and nitrides. Examples of the second work function adjustment medium layer 228 include: Al 2 O 3 , TiO 2 , ZrO 2 , HfAlO x , HfTiO x , TaO x , HfTaO x , or their silicides, nitrides, or combinations thereof are just examples, and the present invention is not limited thereto. The thickness of the first 226 and the second work function adjustment medium layer 228 is about 0.1-2 nm. The first and second metal gate electrodes 230 have a one-layer or multi-layer structure.

以下将参考图1-11详细描述所述实施例的制造和实现。The manufacture and implementation of the embodiment will be described in detail below with reference to FIGS. 1-11.

参考图1,提供具有NMOS区域204和PMOS区域206半导体衬底202,并在其上形成界面层208。Referring to FIG. 1, a semiconductor substrate 202 is provided having an NMOS region 204 and a PMOS region 206, and an interfacial layer 208 is formed thereon.

具体来说,首先提供半导体衬底202。所述衬底202已做好前期处理操作,所述处理操作包括预清洗、形成阱区及形成浅沟槽隔离区,在本实施例中,所述衬底202为硅衬底,在其他实施例中,所述衬底202还可以包括其他化合物半导体,如碳化硅、砷化镓、砷化铟或磷化铟。根据现有技术公知的设计要求(例如p型衬底或者n型衬底),衬底202可以包括各种掺杂配置。此外,优选地,所述衬底202包括外延层,所述衬底202也可以包括绝缘体上硅(SOI)结构。Specifically, firstly, a semiconductor substrate 202 is provided. The substrate 202 has been pre-processed, and the processing operations include pre-cleaning, forming a well region and forming a shallow trench isolation region. In this embodiment, the substrate 202 is a silicon substrate. In other implementations In an example, the substrate 202 may also include other compound semiconductors, such as silicon carbide, gallium arsenide, indium arsenide or indium phosphide. The substrate 202 may include various doping configurations according to design requirements known in the art (eg, p-type substrate or n-type substrate). In addition, preferably, the substrate 202 includes an epitaxial layer, and the substrate 202 may also include a silicon-on-insulator (SOI) structure.

而后,在其上形成界面层208。界面层208可直接形成在衬底202上。在本实施例中,界面层208可以为SiO2、SiON或者Si3N4。界面层208的厚度为大约0.5-2nm,可使用原子层沉积、化学气相沉积(CVD)、高密度等离子体CVD、溅射或其他合适的方法。以上仅仅是作为示例,不局限于此。Then, an interface layer 208 is formed thereon. The interfacial layer 208 may be formed directly on the substrate 202 . In this embodiment, the interface layer 208 may be SiO 2 , SiON or Si 3 N 4 . The thickness of the interface layer 208 is about 0.5-2 nm, and atomic layer deposition, chemical vapor deposition (CVD), high density plasma CVD, sputtering or other suitable methods can be used. The above is merely an example and not limited thereto.

参考图2,在所述界面层208上形成假栅210。假栅210为牺牲层,可以通过在所述界面层208上沉积多晶硅来形成假栅210,其厚度为大约30-200nm。所述假栅210还可以通过沉积其他材料来形成,例如非晶硅等。Referring to FIG. 2 , a dummy gate 210 is formed on the interface layer 208 . The dummy gate 210 is a sacrificial layer, which can be formed by depositing polysilicon on the interface layer 208 , and its thickness is about 30-200 nm. The dummy gate 210 can also be formed by depositing other materials, such as amorphous silicon.

参考图3,将所述界面层208及假栅210图形化。通过在所述假栅210上形成掩膜层(图中未示出),而后利用干法或湿法刻蚀技术将所述界面层208及假栅210图形化,以形成分别属于第一区域204的第一界面层208及假栅210,属于第二区域206的第二界面层208和假栅210。Referring to FIG. 3 , the interface layer 208 and the dummy gate 210 are patterned. By forming a mask layer (not shown in the figure) on the dummy gate 210, and then patterning the interface layer 208 and the dummy gate 210 using a dry or wet etching technique, to form The first interface layer 208 and dummy gate 210 of 204 belong to the second interface layer 208 and dummy gate 210 of the second region 206 .

参考图4,形成属于NMOS区域204的假栅的侧墙212,形成属于PMOS区域206的假栅的侧墙212,以及在所述半导体衬底202中分别形成属于NMOS区域204和PMOS区域206的源极区和漏极区214、216。Referring to FIG. 4, the sidewall 212 of the dummy gate belonging to the NMOS region 204 is formed, the sidewall 212 of the dummy gate belonging to the PMOS region 206 is formed, and the dummy gate sidewall 212 belonging to the NMOS region 204 and the PMOS region 206 are respectively formed in the semiconductor substrate 202. Source and drain regions 214,216.

所述侧墙212可以为一层或多层结构,在本发明实施例中为一个三层结构的侧墙。首先在所述第一区域204和第二区域206内,通过化学沉积的方法,例如原子层沉积方法或等离子增强化学气象沉积,沉积氮化物层,例如氮化硅或氮氧化硅,并利用干法刻蚀技术,例如RIE的方法,进行图形化以形成第一侧墙212-1,而后,优选地,可以进行源/漏延伸区和/或halo区的离子注入,可以通过根据期望的晶体管结构,注入p型或n型掺杂物或杂质到第一区域204和第二区域206的衬底202中而形成。而后,在所述器件上沉积氧化物材料,如二氧化硅,并利用干法刻蚀技术,例如RIE的方法,进行图形化以形成第二侧墙212-2。之后,在所述器件上沉积另一氮化物材料层,如氮化硅或氮氧化硅,并利用干法刻蚀技术,例如RIE的方法,进行图形化以形成第三侧墙212-3。以上侧墙结构及其形成材料、方法仅为示例,仅仅是作为示例,不局限于此。为了简化描述,在此后的描述及图例中,包括所述第一侧墙212-1、第二侧墙212-2、第三侧墙212-3的三层结构侧墙均描述为侧墙212。The side wall 212 may be a one-layer or multi-layer structure, and in the embodiment of the present invention, it is a three-layer structure side wall. First, in the first region 204 and the second region 206, a nitride layer, such as silicon nitride or silicon oxynitride, is deposited by chemical deposition, such as atomic layer deposition or plasma enhanced chemical vapor deposition, and dry Etching technology, such as RIE method, is patterned to form the first spacer 212-1, and then, preferably, ion implantation of the source/drain extension region and/or the halo region can be performed, which can be performed according to the desired transistor The structure is formed by implanting p-type or n-type dopants or impurities into the substrate 202 in the first region 204 and the second region 206 . Then, an oxide material, such as silicon dioxide, is deposited on the device, and is patterned by using a dry etching technique, such as RIE, to form the second sidewall 212-2. Afterwards, another nitride material layer, such as silicon nitride or silicon oxynitride, is deposited on the device, and patterned by dry etching technology, such as RIE, to form the third side wall 212-3. The above side wall structure and its forming materials and methods are just examples, and are only examples, not limited thereto. In order to simplify the description, in the following descriptions and illustrations, the three-layer structure side walls including the first side wall 212-1, the second side wall 212-2, and the third side wall 212-3 are all described as side walls 212 .

在形成侧墙212后,进行源极区和漏极区的离子注入,可以通过根据期望的晶体管结构,注入p型或n型掺杂物或杂质到第一区域204和第二区域206的衬底202中而形成,可以由包括光刻、离子注入、扩散和/或其他合适工艺的方法形成。After forming the spacers 212, ion implantation of the source region and the drain region may be performed by implanting p-type or n-type dopants or impurities into the substrates of the first region 204 and the second region 206 according to the desired transistor structure. The bottom 202 may be formed by methods including photolithography, ion implantation, diffusion and/or other suitable processes.

参考图5,在所述第一区域204的侧墙212与第二区域206的侧墙212之间的衬底202上形成内层介质层(ILD)218。首先,在所述器件上沉积介质材料,例如SiO2,而后将其平坦化,例如CMP(化学机械抛光)的方法,去除假栅210之上的介质材料,直至暴露出假栅210的上表面。所述内层介质层218可以是但不限于例如未掺杂的氧化硅(SiO2)、掺杂的氧化硅(如硼硅玻璃、硼磷硅玻璃等)和氮化硅(Si3N4)。所述内层介质层218可以使用例如化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)及/或其他合适的工艺等方法形成。Referring to FIG. 5 , an inner dielectric layer (ILD) 218 is formed on the substrate 202 between the sidewall 212 of the first region 204 and the sidewall 212 of the second region 206 . First, deposit a dielectric material on the device, such as SiO 2 , and then planarize it, such as CMP (Chemical Mechanical Polishing), to remove the dielectric material on the dummy gate 210 until the upper surface of the dummy gate 210 is exposed . The inner dielectric layer 218 may be, but not limited to, undoped silicon oxide (SiO 2 ), doped silicon oxide (such as borosilicate glass, borophosphosilicate glass, etc.) and silicon nitride (Si 3 N 4 ). The inner dielectric layer 218 can be formed by methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD) and/or other suitable techniques.

参考图6,去除所述NMOS区域和PMOS区域的假栅210,以形成第一开口220和第二开口222。在一个实施例中,利用干法,如RIE,或湿法刻蚀技术,如包括四甲基氢氧化铵(TMAH)、KOH或者其他合适蚀刻剂溶液,将所述假栅210刻蚀去除,从而形成暴露界面层208的第一开口220和第二开口222。在另一个实施例中,可以利用干法或湿法刻蚀技术进一步将界面层208去除,形成暴露第一区域204和第二区域206的衬底的第一开口220和第二开口222(图中未示出),而后重新沉积介质材料,在第一开口内形成第一界面层、第二开口内形成第二界面层,所述介质材料可以为SiO2、SiON或者Si3N4,以提高界面层的质量,此实施例中第一和第二界面层形成于开口的内壁。Referring to FIG. 6 , the dummy gates 210 of the NMOS region and the PMOS region are removed to form a first opening 220 and a second opening 222 . In one embodiment, the dummy gate 210 is etched and removed using a dry method, such as RIE, or a wet etching technique, such as tetramethylammonium hydroxide (TMAH), KOH or other suitable etchant solutions, Thus, a first opening 220 and a second opening 222 exposing the interface layer 208 are formed. In another embodiment, the interface layer 208 can be further removed by dry or wet etching techniques to form the first opening 220 and the second opening 222 of the substrate exposing the first region 204 and the second region 206 (Fig. not shown), and then redeposit the dielectric material to form a first interface layer in the first opening and a second interface layer in the second opening. The dielectric material can be SiO 2 , SiON or Si 3 N 4 , to To improve the quality of the interface layer, the first and second interface layers are formed on the inner wall of the opening in this embodiment.

参考图7,在所述器件上形成高k栅介质层224,可以通过在所述器件上沉积高k介质材料(例如,和氧化硅相比,具有高介电常数的材料)来形成,优选地,高k介质材料选择高温下性能稳定的介质材料,其材料中的金属原子在一定的退火温度下不会因扩散问题对器件的沟道载流子迁移率产生明显的退化效应,如HfO2、HfSiOx、HfONx、HfZrOx、HfSiONx、HfLaOx、LaAlOx其组合和/或者其它适当的材料,可以通过化学气相沉积、原子层沉积(ALD)或其他合适的方法形成,其厚度为大约1-3nm。这仅是示例,本发明不局限于此。Referring to FIG. 7, a high-k gate dielectric layer 224 is formed on the device, which can be formed by depositing a high-k dielectric material (for example, a material with a high dielectric constant compared with silicon oxide) on the device, preferably Therefore, the high-k dielectric material is a dielectric material with stable performance at high temperature, and the metal atoms in the material will not have a significant degradation effect on the channel carrier mobility of the device due to diffusion problems at a certain annealing temperature, such as HfO 2. HfSiO x , HfON x , HfZrO x , HfSiON x , HfLaO x , LaAlO x and their combinations and/or other suitable materials can be formed by chemical vapor deposition, atomic layer deposition (ALD) or other suitable methods, and the thickness is about 1-3nm. This is just an example, and the present invention is not limited thereto.

参考图8,在所述NMOS区域204的高k栅介质层224上形成第一功函数调节介质层226,以及在所述PMOS区域206的高k栅介质层226上形成第二功函数调节介质层228。在形成高k栅介质层224之后可以在其上沉积属于NMOS区域204的第一功函数调节介质层226,所述第一功函数调节介质层226与其下面的层224间形成一个负偶极子或大量带正电的电荷,所述负偶极子或正电荷将起到调节有效功函数的作用,所述第一功函数调节介质层可以包括:MgOx,稀土和类稀土金属元素的氧化物或其硅化物、氮化物,或他们的组合,所述第一功函数调节介质层的例子包括:La2O3,Sc2O3,Gd2O3,MgOx,或他们的硅化物、氮化物,或其他稀土氧化物及其硅化物和氮化物等,这仅是示例,本发明不局限于此。并在高k栅介质层224上形成属于PMOS区域206的第二功函数调节介质层228,所述第二功函数调节介质层228与其下面的层224间形成一个正偶极子或大量带负电的电荷,所述正偶极子或负电荷将起到调节有效功函数的作用,所述第二功函数调节介质层包括:包含除稀土和类稀土金属元素以外的其他活性金属元素的氧化物或其硅化物、氮化物,所述第二功函数调节介质层228的例子包括:Al2O3,TiO2,ZrO2,HfAlOx,HfTiOx,TaOx,HfTaOx,或他们的硅化物、氮化物,或其组合,这仅是示例,本发明不局限于此。所述第一和第二功函数调节介质层的厚度为大约0.1-2nm。功函数调节介质层226、228可以采用溅射、PLD、MOCVD、ALD、PEALD或其他合适的方法。Referring to FIG. 8, a first work function adjusting medium layer 226 is formed on the high-k gate dielectric layer 224 of the NMOS region 204, and a second work function adjusting medium is formed on the high-k gate dielectric layer 226 of the PMOS region 206. Layer 228. After the high-k gate dielectric layer 224 is formed, the first work function adjustment dielectric layer 226 belonging to the NMOS region 204 can be deposited thereon, and a negative dipole is formed between the first work function adjustment dielectric layer 226 and the underlying layer 224 Or a large number of positively charged charges, the negative dipole or positive charge will play a role in adjusting the effective work function, and the first work function adjusting dielectric layer can include: MgO x , oxidation of rare earth and rare earth-like metal elements or their silicides, nitrides, or their combinations, examples of the first work function adjusting dielectric layer include: La 2 O 3 , Sc 2 O 3 , Gd 2 O 3 , MgO x , or their silicides , nitride, or other rare earth oxides and their silicides and nitrides, etc., these are just examples, and the present invention is not limited thereto. And on the high-k gate dielectric layer 224, a second work function adjustment dielectric layer 228 belonging to the PMOS region 206 is formed, and a positive dipole or a large number of negatively charged The charge of the positive dipole or negative charge will play a role in adjusting the effective work function, and the second work function adjustment medium layer includes: oxides containing other active metal elements except rare earth and rare earth metal elements Or its silicide, nitride, the example of the second work function adjusting dielectric layer 228 includes: Al 2 O 3 , TiO 2 , ZrO 2 , HfAlO x , HfTiO x , TaO x , HfTaO x , or their silicides , nitride, or a combination thereof, which are just examples, and the present invention is not limited thereto. The thickness of the first and second work function adjusting medium layers is about 0.1-2 nm. The work function adjusting medium layers 226 and 228 can be sputtered, PLD, MOCVD, ALD, PEALD or other suitable methods.

参考图9-10,在所述器件上形成分别属于NMOS区域204和PMOS区域206金属栅电极230。所述金属栅电极230可以为一层或多层结构,NMOS区域204和PMOS区域206上的金属栅电极可以具有相同或不同的材料,优选相同的材料,在本发明实施例中金属栅电极为一个二层结构,且NMOS区域204和PMOS区域206上的金属栅电极具有相同材料,首先在所述器件上沉积一个金属材料层230-1,例如TiN等,而后在金属材料层230-1之上形成填满所述开口220、222的另一个金属材料层230-2,例如低电阻金属Al、Ti、TiAl、W等,这仅是示例,本发明不局限于此。所述金属栅电极可以从包含下列元素的组中选择元素来形成:TiN、TaN、MoN、HfN、HfC、TaC、TiC、MoC、TiAlN、TaAlN、HfAlN、HfTbN、TaTbN、TaErN、TaYbN、TaSiN、TaHfN、TiHfN、HfSiN、MoSiN、MoAlN、RuTax、NiTax、多晶硅、金属硅化物或其组合。Referring to FIGS. 9-10 , metal gate electrodes 230 belonging to the NMOS region 204 and the PMOS region 206 are formed on the device. The metal gate electrode 230 can be a one-layer or multi-layer structure. The metal gate electrodes on the NMOS region 204 and the PMOS region 206 can have the same or different materials, preferably the same material. In the embodiment of the present invention, the metal gate electrodes are A two-layer structure, and the metal gate electrodes on the NMOS region 204 and the PMOS region 206 have the same material, first deposit a metal material layer 230-1 on the device, such as TiN, etc., and then deposit on the metal material layer 230-1 Another metal material layer 230 - 2 filling the openings 220 , 222 is formed thereon, such as low-resistance metal Al, Ti, TiAl, W, etc. This is just an example, and the present invention is not limited thereto. The metal gate electrode may be formed by selecting an element from the group consisting of TiN, TaN, MoN, HfN, HfC, TaC, TiC, MoC, TiAlN, TaAlN, HfAlN, HfTbN, TaTbN, TaErN, TaYbN, TaSiN, TaHfN, TiHfN, HfSiN, MoSiN, MoAlN, RuTax , NiTax , polysilicon, metal silicide, or combinations thereof.

参考图11,分别形成属于NMOS区域的第一栅堆叠和属于PMOS区域的第二栅堆叠。对先前形成的层叠层图案化,以形成NMOS区域器件的栅堆叠300,和PMOS区域器件的栅堆叠400。栅堆叠300和栅堆叠400的形成可以对先前的层叠层进行一次或多次刻蚀来完成。进而形成了根据本发明实施例的半导体器件。Referring to FIG. 11 , a first gate stack belonging to the NMOS region and a second gate stack belonging to the PMOS region are respectively formed. The previously formed layer stack is patterned to form a gate stack 300 for devices in the NMOS region, and a gate stack 400 for devices in the PMOS region. The formation of the gate stack 300 and the gate stack 400 can be accomplished by performing one or more etchings on the previous layer stack. Further, a semiconductor device according to an embodiment of the present invention is formed.

本发明是在栅极替代工艺(Replacement gate或Gate last)制备CMOS晶体管过程中,在形成栅NMOS器件区域和PMOS器件区域形成高k栅介质层后,分别形成属于NMOS区域的第一功函数调节介质层和属于PMOS区域的第二功函数调节介质层,其中高k栅介质层选择在一定的退火温度下不会因扩散问题对器件的沟道载流子迁移率产生明显的退化效应的介质材料,而第一功函数调节介质层中包含可以调节NMOS器件阈值电压的元素,如La、Sc、Gd等,第二功函数调节介质层中包含可以调节PMOS器件阈值电压的元素,如Al、Ti等,以分别调节NMOS器件、PMOS器件的阈值电压,而且由于采用介质材料形成,其更容易选择刻蚀,有利于进行工艺控制,而且也缓解了对双金属栅材料研究的压力。In the present invention, in the process of preparing a CMOS transistor by a gate replacement process (Replacement gate or Gate last), after forming a high-k gate dielectric layer in the gate NMOS device region and the PMOS device region, respectively form the first work function adjustment belonging to the NMOS region The dielectric layer and the second work function adjustment dielectric layer belonging to the PMOS region, where the high-k gate dielectric layer is selected to be a dielectric that will not have a significant degradation effect on the channel carrier mobility of the device due to diffusion problems at a certain annealing temperature materials, and the first work function adjusting medium layer contains elements that can adjust the threshold voltage of NMOS devices, such as La, Sc, Gd, etc., and the second work function adjusting medium layer contains elements that can adjust the threshold voltage of PMOS devices, such as Al, Ti, etc., to adjust the threshold voltage of NMOS devices and PMOS devices respectively, and because of the use of dielectric materials, it is easier to selectively etch, which is conducive to process control, and also relieves the pressure on the research of double metal gate materials.

虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。Although the example embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made to these embodiments without departing from the spirit and scope of the invention as defined by the appended claims. For other examples, those of ordinary skill in the art will readily understand that the order of process steps may be varied while remaining within the scope of the present invention.

此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。In addition, the scope of application of the present invention is not limited to the process, mechanism, manufacture, material composition, means, method and steps of the specific embodiments described in the specification. From the disclosure of the present invention, those of ordinary skill in the art will easily understand that for the processes, mechanisms, manufacturing, material compositions, means, methods or steps that currently exist or will be developed in the future, they are implemented in accordance with the present invention Corresponding embodiments described which function substantially the same or achieve substantially the same results may be applied in accordance with the present invention. Therefore, the appended claims of the present invention are intended to include these processes, mechanisms, manufacture, material compositions, means, methods or steps within their protection scope.

Claims (17)

1.一种半导体器件,包括:1. A semiconductor device, comprising: 具有NMOS区域和PMOS区域的半导体衬底;a semiconductor substrate having an NMOS region and a PMOS region; 形成于所述半导体衬底中分别属于NMOS区域和PMOS区域的源极区和漏极区;A source region and a drain region respectively belonging to an NMOS region and a PMOS region are formed in the semiconductor substrate; 形成于所述NMOS区域衬底上的第一栅堆叠和形成于所述PMOS区域衬底上的第二栅堆叠;a first gate stack formed on the NMOS region substrate and a second gate stack formed on the PMOS region substrate; 其中,所述第一栅堆叠包括:第一界面层;形成于所述第一界面层上的第一高k栅介质层;形成于所述第一高k栅介质层上的第一功函数调节介质层;形成于所述第一功函数调节介质层上的第一金属栅电极;Wherein, the first gate stack includes: a first interface layer; a first high-k gate dielectric layer formed on the first interface layer; a first work function layer formed on the first high-k gate dielectric layer adjusting dielectric layer; a first metal gate electrode formed on the first work function adjusting dielectric layer; 所述第二栅堆叠包括:第二界面层;形成于所述第二界面层上的第二高k栅介质层;形成于所述第二高k栅介质层上的第二功函数调节介质层;形成于所述第二功函数调节介质层上的第二金属栅电极;The second gate stack includes: a second interface layer; a second high-k gate dielectric layer formed on the second interface layer; a second work function adjustment medium formed on the second high-k gate dielectric layer layer; a second metal gate electrode formed on the second work function adjusting dielectric layer; 其中所述第一和第二功函数调节介质层由不同材料形成,用以分别调节所述NMOS器件和PMOS器件的功函数。Wherein the first and second work function adjusting dielectric layers are formed of different materials to adjust the work functions of the NMOS device and the PMOS device respectively. 2.根据权利要求1所述的器件,其中所述第一和第二高k栅介质层其材料中的金属原子在一定的退火温度下不会因扩散问题对器件的沟道载流子迁移率产生明显的退化效应。2. The device according to claim 1, wherein the metal atoms in the material of the first and second high-k gate dielectric layers will not migrate to the channel carriers of the device due to diffusion problems at a certain annealing temperature rate has a noticeable degradation effect. 3.根据权利要求2所述的器件,其中所述第一和第二高k栅介质层可从包含下列元素的组中选择元素来形成:HfO2、HfSiOx、HfONx、HfZrOx、HfSiONx、HfLaOx、LaAlOx或其组合。3. The device according to claim 2, wherein the first and second high-k gate dielectric layers can be formed by selecting elements from the group comprising: HfO 2 , HfSiO x , HfON x , HfZrO x , HfSiON x , HfLaOx , LaAlOx , or combinations thereof. 4.根据权利要求1所述的器件,其中所述第一功函数调节介质层与其下面的层间形成负偶极子或大量带正电的电荷,以起到调节有效功函数的作用。4. The device according to claim 1, wherein a negative dipole or a large number of positive charges are formed between the first work function adjusting dielectric layer and the layer below, so as to adjust the effective work function. 5.根据权利要求4所述的器件,其中所述第一功函数调节介质层包括:MgOx,稀土或类稀土金属元素的氧化物或其硅化物、氮化物,或其组合。5 . The device according to claim 4 , wherein the first work function adjusting medium layer comprises: MgO x , oxides of rare earth or rare earth-like metal elements or their silicides, nitrides, or combinations thereof. 6.根据权利要求1所述的器件,其中所述第二功函数调节介质层与其下面的层间形成正偶极子或大量带负电的电荷,以起到调节有效功函数的作用。6 . The device according to claim 1 , wherein a positive dipole or a large amount of negatively charged charges are formed between the second work function adjusting dielectric layer and the layer below, so as to adjust the effective work function. 7.根据权利要求6所述的器件,其中所述第二功函数调节介质层包括:除稀土和类稀土金属元素以外的其他活性金属元素的氧化物或其硅化物、氮化物,所述第二功函数调节介质层从包含下列元素的组中选择元素来形成:Al2O3,TiO2,ZrO2,HfAlOx,HfTiOx,TaOx,HfTaOx,或其硅化物、氮化物,或其组合。7. The device according to claim 6, wherein the second work function adjusting medium layer comprises: oxides or silicides and nitrides of active metal elements other than rare earth and rare earth-like metal elements, the second The second work function adjustment medium layer is formed by selecting elements from the group consisting of the following elements: Al 2 O 3 , TiO 2 , ZrO 2 , HfAlO x , HfTiO x , TaO x , HfTaO x , or their silicides, nitrides, or its combination. 8.根据权利要求1所述的器件,其中所述第一和第二金属栅电极为一层或多层结构。8. The device of claim 1, wherein the first and second metal gate electrodes are a one-layer or multi-layer structure. 9.一种制造半导体器件的方法,所述方法包括:9. A method of manufacturing a semiconductor device, the method comprising: 提供具有NMOS区域和PMOS区域的半导体衬底;providing a semiconductor substrate having an NMOS region and a PMOS region; 在所述半导体衬底上,形成属于NMOS区域的第一界面层、假栅及其侧墙,形成属于PMOS区域的第二界面层、假栅及其侧墙,以及在所述半导体衬底中分别形成属于NMOS区域和PMOS区域的源极区和漏极区,并覆盖所述NMOS和PMOS区域的源极区、漏极区形成层间介质层;On the semiconductor substrate, a first interface layer, a dummy gate and its sidewalls belonging to the NMOS region are formed, a second interface layer, a dummy gate and its sidewalls belonging to the PMOS region are formed, and in the semiconductor substrate Forming a source region and a drain region belonging to the NMOS region and the PMOS region respectively, and covering the source region and the drain region of the NMOS and PMOS regions to form an interlayer dielectric layer; 去除所述NMOS区域和PMOS区域的假栅,以形成第一开口和第二开口;removing the dummy gates of the NMOS region and the PMOS region to form a first opening and a second opening; 在所述第一开口中形成覆盖所述第一界面层的第一高k栅介质层,并在所述第二开口中形成覆盖所述第二界面层的第二高k栅介质层;forming a first high-k gate dielectric layer covering the first interface layer in the first opening, and forming a second high-k gate dielectric layer covering the second interface layer in the second opening; 在所述第一高k栅介质层上形成第一功函数调节介质层,在第二高k栅介质层上形成第二功函数调节介质层;forming a first work function adjusting dielectric layer on the first high-k gate dielectric layer, and forming a second work function adjusting dielectric layer on the second high-k gate dielectric layer; 在所述第一功函数调节介质层上形成填满所述第一开口的第一金属栅电极,在所述第二功函数调节介质层上形成填满所述第二开口的第二金属栅电极;Forming a first metal gate electrode filling the first opening on the first work function adjusting medium layer, forming a second metal gate electrode filling the second opening on the second work function adjusting medium layer electrode; 对所述器件进行加工,以分别形成属于NMOS区域的第一栅堆叠和属于PMOS区域的第二栅堆叠;processing the device to respectively form a first gate stack belonging to the NMOS region and a second gate stack belonging to the PMOS region; 其中所述第一和第二功函数调节介质层由不同材料形成,用以分别调节所述NMOS器件和PMOS器件的功函数。Wherein the first and second work function adjusting dielectric layers are formed of different materials to adjust the work functions of the NMOS device and the PMOS device respectively. 10.根据权利要求9所述的方法,还包括进一步去除所述第一和第二界面层以形成第一开口和第二开口,并重新在第一开口内形成第一界面层、第二开口内形成第二界面层。10. The method according to claim 9, further comprising further removing the first and second interface layers to form the first opening and the second opening, and re-forming the first interface layer, the second opening in the first opening A second interfacial layer is formed inside. 11.根据权利要求9所述的方法,其中所述第一和第二高k栅介质层其材料中的金属原子在一定的退火温度下不会因扩散问题对器件的沟道载流子迁移率产生明显的退化效应。11. The method according to claim 9, wherein the metal atoms in the materials of the first and second high-k gate dielectric layers will not migrate to the channel carriers of the device due to diffusion problems at a certain annealing temperature rate has a noticeable degradation effect. 12.根据权利要求11所述的方法,其中所述第一和第二高k栅介质层可从包含下列元素的组中选择元素来形成:HfO2、HfSiOx、HfONx、HfZrOx、HfSiONx、HfLaOx、LaAlOx或其组合。12. The method according to claim 11, wherein the first and second high-k gate dielectric layers can be formed by selecting elements from the group consisting of: HfO 2 , HfSiO x , HfON x , HfZrO x , HfSiON x , HfLaOx , LaAlOx , or combinations thereof. 13.根据权利要求9所述的方法,其中所述第一功函数调节介质层与其下面的层间形成负偶极子或大量带正电的电荷,以起到调节有效功函数的作用。13. The method according to claim 9, wherein a negative dipole or a large number of positive charges are formed between the first work function adjusting dielectric layer and the layer below, so as to adjust the effective work function. 14.根据权利要求13所述的方法,其中所述第一功函数调节介质层包括:MgOx,稀土或类稀土金属元素的氧化物或其硅化物、氮化物,或其组合。14. The method according to claim 13, wherein the first work function adjusting medium layer comprises: MgO x , oxides of rare earth or rare earth-like metal elements or their silicides, nitrides, or combinations thereof. 15.根据权利要求9所述的方法,其中所述第二功函数调节介质层与其下面的层间形成正偶极子或大量带负电的电荷,以起到调节有效功函数的作用。15 . The method according to claim 9 , wherein a positive dipole or a large amount of negatively charged charges are formed between the second work function adjusting dielectric layer and the underlying layer, so as to adjust the effective work function. 16.根据权利要求15所述的方法,其中所述第二功函数调节介质层包括:除稀土和类稀土金属元素以外的其他活性金属元素的氧化物或其硅化物、氮化物,所述第二功函数调节介质层从包含下列元素的组中选择元素来形成:Al2O3,TiO2,ZrO2,HfAlOx,HfTiOx,TaOx,HfTaOx,或其硅化物、氮化物,或其组合。16. The method according to claim 15, wherein the second work function adjusting medium layer comprises: oxides or silicides and nitrides of active metal elements other than rare earth and rare earth metal elements, the second The second work function adjustment medium layer is formed by selecting elements from the group consisting of the following elements: Al 2 O 3 , TiO 2 , ZrO 2 , HfAlO x , HfTiO x , TaO x , HfTaO x , or their silicides, nitrides, or its combination. 17.根据权利要求9所述的方法,其中所述第一和第二金属栅电极为一层或多层结构。17. The method of claim 9, wherein the first and second metal gate electrodes are a one-layer or multi-layer structure.
CN201010220686.7A 2010-06-28 2010-06-28 A kind of semiconductor device and its manufacturing method Active CN102299156B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010220686.7A CN102299156B (en) 2010-06-28 2010-06-28 A kind of semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010220686.7A CN102299156B (en) 2010-06-28 2010-06-28 A kind of semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
CN102299156A true CN102299156A (en) 2011-12-28
CN102299156B CN102299156B (en) 2014-02-12

Family

ID=45359459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010220686.7A Active CN102299156B (en) 2010-06-28 2010-06-28 A kind of semiconductor device and its manufacturing method

Country Status (1)

Country Link
CN (1) CN102299156B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456735A (en) * 2012-06-05 2013-12-18 中芯国际集成电路制造(上海)有限公司 Cmos device and manufacturing method thereof
CN103531540A (en) * 2012-07-02 2014-01-22 中国科学院微电子研究所 Semiconductor device manufacturing method
WO2014012265A1 (en) * 2012-07-16 2014-01-23 中国科学院微电子研究所 Method for forming gate structure, method for forming semiconductor component, and semiconductor component
CN103677042A (en) * 2012-09-06 2014-03-26 英飞凌科技奥地利有限公司 Voltage regulator
CN103681344A (en) * 2012-09-26 2014-03-26 中芯国际集成电路制造(上海)有限公司 Formation method of transistor
CN103871890A (en) * 2012-12-18 2014-06-18 中芯国际集成电路制造(上海)有限公司 MOS (metal oxide semiconductor) transistor and forming method thereof
CN104008973A (en) * 2013-02-26 2014-08-27 中国科学院微电子研究所 Method for manufacturing semiconductor device
CN104124143A (en) * 2013-04-23 2014-10-29 中芯国际集成电路制造(上海)有限公司 Formation method for grid-electrode side-wall layers
CN104124144A (en) * 2013-04-23 2014-10-29 中芯国际集成电路制造(上海)有限公司 Manufacturing method of semiconductor device
CN104425351A (en) * 2013-09-11 2015-03-18 中国科学院微电子研究所 Trench forming method and semiconductor device manufacturing method
CN104952798A (en) * 2014-03-26 2015-09-30 中芯国际集成电路制造(上海)有限公司 Method for preparing semiconductor device
CN106067482A (en) * 2015-04-22 2016-11-02 爱思开海力士有限公司 There is the semiconductor device of buried grid structure and manufacture its method
CN106941120A (en) * 2015-12-23 2017-07-11 爱思开海力士有限公司 Semiconductor devices and its manufacture method and memory cell with buried gate structure
CN111293118A (en) * 2018-12-10 2020-06-16 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
US11735593B2 (en) 2021-11-04 2023-08-22 International Business Machines Corporation Gate stack dipole compensation for threshold voltage definition in transistors
CN118073188A (en) * 2024-04-18 2024-05-24 上海陛通半导体能源科技股份有限公司 Multifunctional gate dielectric layer structure, semiconductor device having the same and preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027770A (en) * 2004-09-27 2007-08-29 英特尔公司 A metal gate electrode semiconductor device
US20080160736A1 (en) * 2006-12-28 2008-07-03 Texas Instruments Inc. Lanthanide series metal implant to control work function of metal gate electrodes
CN101425479A (en) * 2007-10-29 2009-05-06 台湾积体电路制造股份有限公司 High-k dielectric metal gate device structure and method for forming the same
US20090170346A1 (en) * 2007-04-09 2009-07-02 Texas Instruments Incorporated Low temperature polysilicon oxide process for high-k dielectric/metal gate stack
CN101533842A (en) * 2008-03-12 2009-09-16 台湾积体电路制造股份有限公司 Hybrid method of forming metal gate of MOS device
US20100102395A1 (en) * 2008-10-27 2010-04-29 Renesas Technology Corp. Semiconductor device and manufacturing method thereof
CN101714526A (en) * 2008-10-06 2010-05-26 台湾积体电路制造股份有限公司 Method for manufacturing semiconductor element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027770A (en) * 2004-09-27 2007-08-29 英特尔公司 A metal gate electrode semiconductor device
US20080160736A1 (en) * 2006-12-28 2008-07-03 Texas Instruments Inc. Lanthanide series metal implant to control work function of metal gate electrodes
US20090170346A1 (en) * 2007-04-09 2009-07-02 Texas Instruments Incorporated Low temperature polysilicon oxide process for high-k dielectric/metal gate stack
CN101425479A (en) * 2007-10-29 2009-05-06 台湾积体电路制造股份有限公司 High-k dielectric metal gate device structure and method for forming the same
CN101533842A (en) * 2008-03-12 2009-09-16 台湾积体电路制造股份有限公司 Hybrid method of forming metal gate of MOS device
CN101714526A (en) * 2008-10-06 2010-05-26 台湾积体电路制造股份有限公司 Method for manufacturing semiconductor element
US20100102395A1 (en) * 2008-10-27 2010-04-29 Renesas Technology Corp. Semiconductor device and manufacturing method thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456735A (en) * 2012-06-05 2013-12-18 中芯国际集成电路制造(上海)有限公司 Cmos device and manufacturing method thereof
CN103531540A (en) * 2012-07-02 2014-01-22 中国科学院微电子研究所 Semiconductor device manufacturing method
CN103531540B (en) * 2012-07-02 2016-06-08 中国科学院微电子研究所 Semiconductor device manufacturing method
WO2014012265A1 (en) * 2012-07-16 2014-01-23 中国科学院微电子研究所 Method for forming gate structure, method for forming semiconductor component, and semiconductor component
US9064713B2 (en) 2012-09-06 2015-06-23 Infineon Technologies Austria Ag Voltage regulator using N-type substrate
CN103677042A (en) * 2012-09-06 2014-03-26 英飞凌科技奥地利有限公司 Voltage regulator
CN103677042B (en) * 2012-09-06 2015-09-09 英飞凌科技奥地利有限公司 Voltage Regulator
CN103681344A (en) * 2012-09-26 2014-03-26 中芯国际集成电路制造(上海)有限公司 Formation method of transistor
CN103871890A (en) * 2012-12-18 2014-06-18 中芯国际集成电路制造(上海)有限公司 MOS (metal oxide semiconductor) transistor and forming method thereof
CN103871890B (en) * 2012-12-18 2016-06-29 中芯国际集成电路制造(上海)有限公司 Mos transistor and forming method thereof
CN104008973A (en) * 2013-02-26 2014-08-27 中国科学院微电子研究所 Method for manufacturing semiconductor device
CN104124144A (en) * 2013-04-23 2014-10-29 中芯国际集成电路制造(上海)有限公司 Manufacturing method of semiconductor device
CN104124143A (en) * 2013-04-23 2014-10-29 中芯国际集成电路制造(上海)有限公司 Formation method for grid-electrode side-wall layers
CN104124143B (en) * 2013-04-23 2017-11-14 中芯国际集成电路制造(上海)有限公司 The forming method of gate lateral wall layer
CN104425351A (en) * 2013-09-11 2015-03-18 中国科学院微电子研究所 Trench forming method and semiconductor device manufacturing method
CN104952798A (en) * 2014-03-26 2015-09-30 中芯国际集成电路制造(上海)有限公司 Method for preparing semiconductor device
CN104952798B (en) * 2014-03-26 2018-07-20 中芯国际集成电路制造(上海)有限公司 A kind of manufacturing method of semiconductor devices
CN106067482A (en) * 2015-04-22 2016-11-02 爱思开海力士有限公司 There is the semiconductor device of buried grid structure and manufacture its method
CN106067482B (en) * 2015-04-22 2020-10-13 爱思开海力士有限公司 Semiconductor device having buried gate structure and method of manufacturing the same
CN106941120A (en) * 2015-12-23 2017-07-11 爱思开海力士有限公司 Semiconductor devices and its manufacture method and memory cell with buried gate structure
CN106941120B (en) * 2015-12-23 2020-12-25 爱思开海力士有限公司 Semiconductor device having buried gate structure, method of manufacturing the same, and memory cell
US11276761B2 (en) 2015-12-23 2022-03-15 SK Hynix Inc. Semiconductor device having buried gate structure, method for manufacturing the same, and memory cell having the same
CN111293118A (en) * 2018-12-10 2020-06-16 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN111293118B (en) * 2018-12-10 2023-07-04 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
US11735593B2 (en) 2021-11-04 2023-08-22 International Business Machines Corporation Gate stack dipole compensation for threshold voltage definition in transistors
CN118073188A (en) * 2024-04-18 2024-05-24 上海陛通半导体能源科技股份有限公司 Multifunctional gate dielectric layer structure, semiconductor device having the same and preparation method
CN118073188B (en) * 2024-04-18 2024-07-02 上海陛通半导体能源科技股份有限公司 Multifunctional gate dielectric layer structure, semiconductor device with multifunctional gate dielectric layer structure and preparation method of semiconductor device

Also Published As

Publication number Publication date
CN102299156B (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN102299156B (en) A kind of semiconductor device and its manufacturing method
US8222099B2 (en) Semiconductor device and method of manufacturing the same
US8329566B2 (en) Method of manufacturing a high-performance semiconductor device
CN103107091B (en) Semiconductor structure and manufacturing method thereof
CN105470200B (en) Semiconductor device with metal gate and method of making the same
CN103311281B (en) Semiconductor device and method for manufacturing the same
US8420490B2 (en) High-performance semiconductor device and method of manufacturing the same
US20110223728A1 (en) Transistor Device and Method of Manufacture Thereof
US20130105906A1 (en) CMOS Device Having Dual Metal Gates and Method of Manufacturing the Same
CN104821296A (en) Semiconductor device and forming method thereof
CN101233611A (en) Metal-gate MOSFETs transitioned through an all-semiconducting metal alloy
CN102437118B (en) Method for making a transistor with a metal gate
WO2011113271A1 (en) Semiconductor device and fabrication method thereof
CN102339752A (en) Method for manufacturing semiconductor device based on gate replacement process
WO2013000268A1 (en) Semiconductor structure and manufacturing method thereof
CN103426821A (en) Method of semiconductor integrated circuit fabrication
CN102142373B (en) Method for manufacturing semiconductor device
CN102569076B (en) Semiconductor device and manufacturing method thereof
CN103489779A (en) Semiconductor structure and manufacturing method thereof
CN102237277B (en) Semiconductor device and method of forming the same
US8420489B2 (en) High-performance semiconductor device and method of manufacturing the same
CN102254824B (en) Semiconductor device and method of forming the same
CN102148158B (en) Body contact device structure and manufacturing method thereof
US20150084137A1 (en) Mechanism for forming metal gate structure
CN203134802U (en) Semiconductor structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant