CN102270984B - Positive high voltage level conversion circuit - Google Patents
Positive high voltage level conversion circuit Download PDFInfo
- Publication number
- CN102270984B CN102270984B CN 201110185191 CN201110185191A CN102270984B CN 102270984 B CN102270984 B CN 102270984B CN 201110185191 CN201110185191 CN 201110185191 CN 201110185191 A CN201110185191 A CN 201110185191A CN 102270984 B CN102270984 B CN 102270984B
- Authority
- CN
- China
- Prior art keywords
- voltage
- pmos transistor
- nmos transistor
- gate
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Logic Circuits (AREA)
Abstract
本发明公开了属于集成电路设计技术领域的一种正高压电平转换电路。本发明的连接关系如下:VIN输入电压连接INV1反相器和第一自举电路的公共节点,INV1反相器还与第二自举电路连接,电压转换电路分别与第一自举电路、第二自举电路和VOUT输出电压连接。本发明的有益效果为:电路结构简单、转换速度快、功耗小。两个自举电路将低压控制信号的摆幅增大一倍,增强了电压转换电路中两个高压NMOS晶体管的驱动能力,从而减小了电压转换电路在电压转换过程中下拉NMOS晶体管与上拉PMOS晶体管间严重的竞争,降低了高压转换的功耗,本发明在很低的电源电压下仍然能够正常工作。
The invention discloses a positive high-voltage level conversion circuit belonging to the technical field of integrated circuit design. The connection relationship of the present invention is as follows: the VIN input voltage is connected to the common node of the INV1 inverter and the first bootstrap circuit, the INV1 inverter is also connected to the second bootstrap circuit, and the voltage conversion circuit is connected to the first bootstrap circuit and the first bootstrap circuit respectively. Two bootstrap circuits and VOUT output voltage connections. The invention has the beneficial effects of simple circuit structure, fast switching speed and low power consumption. The two bootstrap circuits double the swing of the low-voltage control signal, which enhances the driving capability of the two high-voltage NMOS transistors in the voltage conversion circuit, thereby reducing the pull-down and pull-up of the NMOS transistor in the voltage conversion process of the voltage conversion circuit. Serious competition between PMOS transistors reduces the power consumption of high-voltage conversion, and the invention can still work normally under very low power supply voltage.
Description
技术领域 technical field
本发明属于集成电路设计技术领域,特别涉及一种正高压电平转换电路。The invention belongs to the technical field of integrated circuit design, and in particular relates to a positive high-voltage level conversion circuit.
背景技术 Background technique
目前,闪存(Flash memory)广泛应用在手机、相机、掌上电脑等便携式设备中,它具有掉电数据不丢失、高编程速度、高集成度等优点。图1是一个传统闪存单元的剖面图,它是由多晶硅控制栅10和浮栅12组成的叠栅结构。在p型衬底16上,通过注入形成n+结构的源极14和漏极15。另外,浮栅12和p型衬底16间用第二绝缘层13隔离,多晶硅控制栅10与浮栅12之间用第一绝缘层11隔离。这种叠栅结构,使得从多晶硅控制栅10看到的存储单元的阈值电压,取决于浮栅12中电子的数量。At present, flash memory (Flash memory) is widely used in portable devices such as mobile phones, cameras, and handheld computers. It has the advantages of not losing data when power is turned off, high programming speed, and high integration. FIG. 1 is a cross-sectional view of a conventional flash memory unit, which is a stacked gate structure composed of a
闪存单元采用Fowler-Nordheim(简称F-N)隧穿效应进行编程、擦除操作。表1是闪存单元进行各种操作时控制栅极、漏极、源极上的典型电压。The flash memory unit adopts Fowler-Nordheim (abbreviated as F-N) tunneling effect to perform programming and erasing operations. Table 1 shows typical voltages on the control gate, drain, and source of the flash memory cell during various operations.
表1Table 1
从上表可以看出,当存储器进行不同操作时,均需要施加正高压,这就需要一个能够将输入的数据转化为相应的正高压的正高压电平转换电路。It can be seen from the above table that when the memory performs different operations, a positive high voltage needs to be applied, which requires a positive high voltage level conversion circuit that can convert the input data into a corresponding positive high voltage.
图2是一个传统的正高压电平转换电路。当IN输入电压为0V时,通过INV反相器输出为高电平电压,因此NMOS晶体管204导通,使得PMOS晶体管201也导通。因此N节点电压被上拉到VPH正高压,这使得PMOS晶体管203关断,因此OUT输出电压为VSS地电位。Figure 2 is a traditional positive high voltage level shifting circuit. When the IN input voltage is 0V, the INV inverter outputs a high-level voltage, so the
当VIN输入电压为VDD电源电压时,NMOS晶体管202导通,使得PMOS晶体管203导通。因此OUT输出电压拉至VPH正高压。另外NMOS晶体管204关断,切断了从VPH正高压到VSS地电位的直流通路,OUT输出电压保持为VPH正高压。可见,OUT输出电压可以在VPH正高压与VSS地电位之间切换,从而完成了IN输入电压对VPH正高压的控制和切换。When the VIN input voltage is the VDD supply voltage, the
然而,对于图2所示的传统正高压电平切换电路,当VDD电源电压降低时,NMOS晶体管202和NMOS晶体管204的栅极驱动电压下降,因此其导通能力将下降,导致电平转换过程中PMOS晶体管与NMOS晶体管间的竞争加剧,出现较大的电平转换延迟和转换功耗。当VDD电源电压进一步下降时,甚至会出现电路不能正常切换高压的问题。简单增大NMOS晶体管尺寸的方法将导致切换电路的面积急剧增大,提高了工艺成本。另外,由于闪存系统中字线和位线数目众多,高压切换电路的性能退化将严重影响整个闪存系统的性能。However, for the conventional positive high-voltage level switching circuit shown in FIG. 2, when the VDD power supply voltage decreases, the gate drive voltages of the
发明内容Contents of the invention
本发明的目的针对上述缺陷公开一种正高压电平转换电路。它的连接关系如下:VIN输入电压连接INV1反相器和第一自举电路的公共节点,INV1反相器还与第二自举电路连接,电压转换电路分别与第一自举电路、第二自举电路和VOUT输出电压连接。The object of the present invention is to disclose a positive high-voltage level conversion circuit for the above defects. Its connection relationship is as follows: the VIN input voltage is connected to the common node of the INV1 inverter and the first bootstrap circuit, the INV1 inverter is also connected to the second bootstrap circuit, and the voltage conversion circuit is connected to the first bootstrap circuit and the second bootstrap circuit respectively. Bootstrap circuit and VOUT output voltage connection.
所述第一自举电路的连接关系如下:VIN输入电压分别连接第一反相器的输入端、第二PMOS晶体管的栅极和第一NMOS晶体管的栅极,第一反相器与第一电容串联,N1节点分别连接第一电容、第一PMOS晶体管的漏极和第二PMOS晶体管的源极,N2节点分别连接第一PMOS晶体管的栅极、第三NMOS晶体管的栅极、第二PMOS晶体管的漏极和第一NMOS晶体管的漏极,VDD电源电压分别连接第二PMOS晶体管的衬底以及第一PMOS晶体管的源极和衬底,第一NMOS晶体管的源极和衬底均连接VSS地电位。The connection relationship of the first bootstrap circuit is as follows: the VIN input voltage is respectively connected to the input terminal of the first inverter, the gate of the second PMOS transistor and the gate of the first NMOS transistor, the first inverter and the first The capacitors are connected in series, the N1 node is respectively connected to the first capacitor, the drain of the first PMOS transistor, and the source of the second PMOS transistor, and the N2 node is respectively connected to the gate of the first PMOS transistor, the gate of the third NMOS transistor, and the second PMOS transistor. The drain of the transistor and the drain of the first NMOS transistor, the VDD supply voltage are respectively connected to the substrate of the second PMOS transistor and the source and substrate of the first PMOS transistor, and the source and substrate of the first NMOS transistor are connected to VSS ground potential.
所述第二自举电路的连接关系如下:N0节点分别连接INV1反相器的输出端、第二反相器的输入端、第四PMOS晶体管的栅极和第二NMOS晶体管的栅极,第二反相器与第二电容串联,N3节点分别连接第二电容、第三PMOS晶体管的漏极和第四PMOS晶体管的源极,N4节点分别连接第三PMOS晶体管的栅极、第四NMOS晶体管的栅极、第四PMOS晶体管的漏极和第二NMOS晶体管的漏极,VDD电源电压分别连接第四PMOS晶体管的衬底以及第三PMOS晶体管的源极和衬底,第二NMOS晶体管的源极和衬底均连接VSS地电位。The connection relationship of the second bootstrap circuit is as follows: the N0 node is respectively connected to the output terminal of the INV1 inverter, the input terminal of the second inverter, the gate of the fourth PMOS transistor and the gate of the second NMOS transistor. Two inverters are connected in series with the second capacitor, the N3 node is respectively connected to the second capacitor, the drain of the third PMOS transistor and the source of the fourth PMOS transistor, and the N4 node is respectively connected to the gate of the third PMOS transistor and the fourth NMOS transistor The gate of the gate, the drain of the fourth PMOS transistor and the drain of the second NMOS transistor, the VDD power supply voltage is respectively connected to the substrate of the fourth PMOS transistor and the source and substrate of the third PMOS transistor, the source of the second NMOS transistor Both pole and substrate are connected to VSS ground potential.
所述电压转换电路的连接关系如下:VPH正高压分别连接第五PMOS晶体管的源极和衬底以及第六PMOS晶体管的源极和衬底,VSS地电位分别连接第三NMOS晶体管的源极和衬底以及第六PMOS晶体管的源极和衬底,第五PMOS晶体管的栅极连接第六PMOS晶体管的漏极、第四NMOS晶体管的漏极和VOUT输出电压的公共节点,第六PMOS晶体管的栅极连接五PMOS晶体管的漏极和第三NMOS晶体管的漏极的公共节点。The connection relationship of the voltage conversion circuit is as follows: the VPH positive high voltage is respectively connected to the source and substrate of the fifth PMOS transistor and the source and substrate of the sixth PMOS transistor, and the VSS ground potential is respectively connected to the source and substrate of the third NMOS transistor. Substrate and the source of the sixth PMOS transistor and the substrate, the gate of the fifth PMOS transistor is connected to the drain of the sixth PMOS transistor, the drain of the fourth NMOS transistor and the common node of the VOUT output voltage, the sixth PMOS transistor The gate is connected to a common node of the drains of the fifth PMOS transistor and the drain of the third NMOS transistor.
本发明的有益效果为:电路结构简单、转换速度快、功耗小。两个自举电路将低压控制信号的摆幅增大一倍,增强了电压转换电路中两个高压NMOS晶体管的驱动能力,从而减小了电压转换电路在电压转换过程中下拉NMOS晶体管与上拉PMOS晶体管间严重的竞争,降低了高压转换的功耗,本发明在很低的电源电压下仍然能够正常工作。The invention has the beneficial effects of simple circuit structure, fast switching speed and low power consumption. The two bootstrap circuits double the swing of the low-voltage control signal, which enhances the driving capability of the two high-voltage NMOS transistors in the voltage conversion circuit, thereby reducing the pull-down and pull-up of the NMOS transistor in the voltage conversion process of the voltage conversion circuit. Serious competition between PMOS transistors reduces the power consumption of high-voltage conversion, and the invention can still work normally under very low power supply voltage.
附图说明 Description of drawings
图1,是一个传统的快闪存储器存储单元的剖面图;FIG. 1 is a cross-sectional view of a conventional flash memory storage unit;
图2,传统的正高压电平转换电路结构示意图;Figure 2, a schematic structural diagram of a traditional positive high-voltage level conversion circuit;
图3,本发明提出的正电压电平转换电路的一个实施例;Fig. 3, an embodiment of the positive voltage level conversion circuit that the present invention proposes;
图4,本发明提出的正电压电平转换电路的另一个实施例。Fig. 4 shows another embodiment of the positive voltage level conversion circuit proposed by the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
如图3所示,一种正高压电平转换电路的连接关系如下:VIN输入电压连接INV1反相器40和第一自举电路41的公共节点,INV1反相器40还与第二自举电路42连接,电压转换电路43分别与第一自举电路41、第二自举电路42和VOUT输出电压连接。As shown in Figure 3, the connection relationship of a positive high-voltage level conversion circuit is as follows: the VIN input voltage is connected to the common node of the
第一自举电路41的连接关系如下:VIN输入电压分别连接第一反相器4101的输入端、第二PMOS晶体管4104的栅极和第一NMOS晶体管4105的栅极,第一反相器4101与第一电容4102串联,N1节点分别连接第一电容4102、第一PMOS晶体管4103的漏极和第二PMOS晶体管4104的源极,N2节点分别连接第一PMOS晶体管4103的栅极、第三NMOS晶体管4302的栅极、第二PMOS晶体管4104的漏极和第一NMOS晶体管4105的漏极,VDD电源电压分别连接第二PMOS晶体管4104的衬底以及第一PMOS晶体管4103的源极和衬底,第一NMOS晶体管4105的源极和衬底均连接VSS地电位。The connection relationship of the
第二自举电路42的连接关系如下:N0节点分别连接INV1反相器40的输出端、第二反相器4201的输入端、第四PMOS晶体管4204的栅极和第二NMOS晶体管4205的栅极,第二反相器4201与第二电容4202串联,N3节点分别连接第二电容4202、第三PMOS晶体管4203的漏极和第四PMOS晶体管4204的源极,N4节点分别连接第三PMOS晶体管4203的栅极、第四NMOS晶体管4304的栅极、第四PMOS晶体管4204的漏极和第二NMOS晶体管4205的漏极,VDD电源电压分别连接第四PMOS晶体管4204的衬底以及第三PMOS晶体管4203的源极和衬底,第二NMOS晶体管4205的源极和衬底均连接VSS地电位。The connection relationship of the
电压转换电路43的连接关系如下:VPH正高压分别连接第五PMOS晶体管4301的源极和衬底以及第六PMOS晶体管4303的源极和衬底,VSS地电位分别连接第三NMOS晶体管4302的源极和衬底以及第六PMOS晶体管4303的源极和衬底,第五PMOS晶体管4301和第六PMOS晶体管4303交叉耦合连接,第五PMOS晶体管4301的栅极连接第六PMOS晶体管4303的漏极、第四NMOS晶体管4304的漏极和VOUT输出电压的公共节点,第六PMOS晶体管4303的栅极连接五PMOS晶体管4301的漏极和第三NMOS晶体管4302的漏极的公共节点。The connection relationship of the
如图3所示为一种正高压电平转换电路的一个实施例,其工作原理如下:As shown in Figure 3, it is an embodiment of a positive high-voltage level conversion circuit, and its working principle is as follows:
设定VDD电源电压为1.5V,VSS地电位为0V,VPH正高压为7.5V。第一自举电路41和第二自举电路42是一种正高压电平转换电路的重要组成部分,两者的工作原理相同,以第一自举电路41为例,VIN输入电压为1.5V时,第一反相器4101输出端电压为0V,第一NMOS晶体管4105的源极接VSS地电位,第一NMOS晶体管4105导通,第二PMOS晶体管4104关断,此时,N2节点电压为0V,第一PMOS晶体管4103由于N2节点的电压反馈而导通,因此N1节点电压为1.5V。Set the VDD power supply voltage to 1.5V, the VSS ground potential to 0V, and the VPH positive high voltage to 7.5V. The
当VIN输入电压由1.5V翻转为0V时,第一反相器4101输出端电压翻转为1.5V,由于第一电容4102的电荷保持特性,N1节点电压将为3V。此时,第二PMOS晶体管4104导通,第一NMOS晶体管4105由于栅极连接VIN输入电压而关断,因此N2节点电压为3V。另外,第一PMOS晶体管4103由于N2节点的电压反馈而关断,从而N1节点电压保持为3V。When the VIN input voltage is reversed from 1.5V to 0V, the voltage at the output terminal of the
从上面的分析可以看出,第一自举电路41和第二自举电路42利用了电容的电荷保持特性,当输入信号的摆幅为0V至1.5V时,输出信号的摆幅为0V至3V,从而低压信号的电压自举功能。It can be seen from the above analysis that the
1)当VIN输入电压为1.5V时,N0节点电压为0V,根据上述自举电路的工作原理分析可知,N2节点电压为3V,由于第二电容4202具有电荷保持特性,N3节点的电压跳变为3V,N4节点(输出节点)电压为3V,此时,由于N2节点和N4节点分别连接第三NMOS晶体管4302和第四NMOS晶体管4304的栅极,第三NMOS晶体管4302关断,第四NMOS晶体管4304导通,并且驱动电压为3V,因而VOUT输出电压为0V,第五PMOS晶体管4301由于VOUT输出电压的反馈而导通,N5节点电压为7.5V,因此,第六PMOS晶体管4303关断,VOUT输出电压从而保持为0V。1) When the VIN input voltage is 1.5V, the N0 node voltage is 0V. According to the above analysis of the working principle of the bootstrap circuit, the N2 node voltage is 3V. Since the
2)当VIN输入电压从为1.5V跳变到0V时,N0节点电压为1.5V。据上述自举电路的工作原理分析可知,由于第一电容4102具有电荷保持特性,N1节点电压跳变为3V,经过第二PMOS晶体管4104的传输,N2节点电压为3V,N4节点(输出节点)电压为0V。此时,由于N2节点和N4节点分别连接第三NMOS晶体管4302和第四NMOS晶体管4304的栅极,第四NMOS晶体管4304关断,第三NMOS晶体管4302导通,N5节点电压为0V,第六PMOS晶体管4303由于N5节点电压反馈而导通,因而VOUT输出电压为7.5V。同时,第五PMOS晶体管4301由于VOUT输出电压的反馈而关断,VOUT输出电压从而保持为7.5V。2) When the VIN input voltage jumps from 1.5V to 0V, the N0 node voltage is 1.5V. According to the analysis of the working principle of the bootstrap circuit above, since the
由上面分析可知,正高压电平转换电路通过采用电路自举技术,使得电压转换电路43中NMOS晶体管的驱动电压提高2倍,减少了高压转换时NMOS晶体管与PMOS晶体管的竞争,从而提高了电平转换速度,减少电平转换的瞬态电流和动态功耗。第三NMOS晶体管4302和第四NMOS晶体管4304起选择作用。当系统电源电压的不断下降时,正高压电平转换电路仍然能够正常工作。From the above analysis, it can be seen that the positive high voltage level conversion circuit adopts the circuit bootstrap technology to increase the driving voltage of the NMOS transistor in the
如图4所示为本发明的另一个实施例,与图3相比,增加了第五NMOS晶体管4106和第六NMOS晶体管4206,第五NMOS晶体管4106的栅极接VDD电源电压,漏极接N2节点,源极接第一NMOS晶体管4105的漏极,衬底接VSS地电位;第六NMOS晶体管4206的栅极接VDD电源电压,漏极接N4节点,源极接第二NMOS晶体管4205的漏极,衬底接VSS地电位;第五NMOS晶体管4106和第六NMOS晶体管4206分别起到降低第一NMOS晶体管4105和第二NMOS晶体管4205工作中漏源电压的作用,从而第一NMOS晶体管4105和第二NMOS晶体管4205可以采用耐压低的晶体管。As shown in FIG. 4, it is another embodiment of the present invention. Compared with FIG. 3, a
尽管结合图3和图4对本发明进行了详细说明和解释,所应理解的是,对本发明的形式和细节进行变化而不脱离本发明的精神和范围,其均应包含在本发明的权利要求范围之中。Although the present invention has been described and explained in detail in conjunction with FIG. 3 and FIG. 4, it should be understood that any changes to the form and details of the present invention without departing from the spirit and scope of the present invention shall be included in the claims of the present invention. within range.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110185191 CN102270984B (en) | 2011-07-01 | 2011-07-01 | Positive high voltage level conversion circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110185191 CN102270984B (en) | 2011-07-01 | 2011-07-01 | Positive high voltage level conversion circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102270984A CN102270984A (en) | 2011-12-07 |
CN102270984B true CN102270984B (en) | 2013-04-03 |
Family
ID=45053164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110185191 Expired - Fee Related CN102270984B (en) | 2011-07-01 | 2011-07-01 | Positive high voltage level conversion circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102270984B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8907712B2 (en) * | 2012-03-27 | 2014-12-09 | Mediatek Inc. | Level shifter circuits capable of dealing with extreme input signal level voltage drops and compensating for device PVT variation |
JP2014160981A (en) * | 2013-02-20 | 2014-09-04 | Seiko Instruments Inc | Level shift circuit |
CN103795401A (en) * | 2014-02-18 | 2014-05-14 | 南通大学 | Output unit circuit with controllable output level |
CN104639151A (en) * | 2014-12-23 | 2015-05-20 | 苏州宽温电子科技有限公司 | Positive-high-voltage level conversion circuit |
CN106130536B (en) * | 2016-06-20 | 2019-06-14 | 华为技术有限公司 | Level conversion circuit and electronic equipment |
CN107124177A (en) * | 2017-06-30 | 2017-09-01 | 深圳贝特莱电子科技股份有限公司 | A kind of capacitance coupling type level shifting circuit for fingerprint recognition driving chip |
CN109309493B (en) * | 2017-07-27 | 2022-05-13 | 中芯国际集成电路制造(上海)有限公司 | High-voltage level shift circuit and semiconductor device |
CN108494388B (en) * | 2018-03-22 | 2020-10-09 | 中国电子科技集团公司第二十四研究所 | High-speed low-noise dynamic comparator |
CN109245730B (en) * | 2018-08-21 | 2022-08-02 | 中国科学院微电子研究所 | Switching power amplifier and digital transmitter |
CN109672439A (en) * | 2019-01-17 | 2019-04-23 | 南京观海微电子有限公司 | Pressure-resistant level shifting circuit |
CN110739960A (en) * | 2019-10-18 | 2020-01-31 | 四川中微芯成科技有限公司 | level conversion circuit for increasing conversion speed and electronic equipment |
CN113285706B (en) * | 2020-02-19 | 2023-08-01 | 圣邦微电子(北京)股份有限公司 | Voltage level conversion circuit |
CN111277261B (en) * | 2020-04-03 | 2023-10-20 | 上海集成电路研发中心有限公司 | Level conversion circuit |
CN112671393A (en) * | 2020-12-29 | 2021-04-16 | 成都锐成芯微科技股份有限公司 | Level conversion circuit |
CN112929020B (en) * | 2021-01-22 | 2023-09-26 | 珠海零边界集成电路有限公司 | Electronic device and level conversion circuit thereof |
CN114785099B (en) * | 2022-06-17 | 2022-09-13 | 深圳芯能半导体技术有限公司 | Grid driving circuit |
WO2025076674A1 (en) * | 2023-10-10 | 2025-04-17 | 中国科学院微电子研究所 | Switch structure for reducing leakage current of parasitic body diode of mos transistor |
CN118984154B (en) * | 2024-10-21 | 2025-03-11 | 芯联先锋集成电路制造(绍兴)有限公司 | Level conversion circuit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065678A (en) * | 1976-07-02 | 1977-12-27 | Motorola, Inc. | Clamped push-pull driver circuit with output feedback |
US7397284B1 (en) * | 2007-04-03 | 2008-07-08 | Xilinx, Inc. | Bootstrapped circuit |
CN101753000A (en) * | 2009-12-17 | 2010-06-23 | 东南大学 | Power MOS pipe grid drive circuit and method for grid floating and level switching |
CN101976940A (en) * | 2010-10-12 | 2011-02-16 | 上海交通大学 | Drive bootstrap circuit for switching tube of switching power supply converter |
-
2011
- 2011-07-01 CN CN 201110185191 patent/CN102270984B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102270984A (en) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102270984B (en) | Positive high voltage level conversion circuit | |
CN102340305B (en) | Positive high-voltage level-shifting circuit suitable for low power supply voltage | |
TWI430579B (en) | Level shifters, methods for shifting level and integrated circuit | |
CN106158018B (en) | Non-volatile memory cell structure and device thereof | |
US8184489B2 (en) | Level shifting circuit | |
CN102904565A (en) | A Level Shift Circuit for Ultra-low Quiescent Current Driven by DC-DC | |
JPWO2011043402A1 (en) | Semiconductor device | |
JP3647434B2 (en) | Charge pump circuit | |
CN101573869B (en) | Voltage switching circuit | |
CN102130668A (en) | Time-delay circuit | |
TWI416870B (en) | Power switch circuit for tracing a higher supply voltage without a voltage drop | |
US9064552B2 (en) | Word line driver and related method | |
JP5308721B2 (en) | Level shift circuit | |
CN102332303B (en) | Negative voltage level conversion circuit for flash memories | |
CN106158022B (en) | Word line driving circuit and method for common source architecture embedded flash memory | |
CN102456395A (en) | Electronic pump for low supply voltage | |
CN104766631B (en) | A kind of positive or negative high voltage level shifting circuit | |
CN103117740A (en) | Low-power-consumption level shift circuit | |
KR20090104362A (en) | Inverter circuit | |
CN103312311B (en) | An integrated circuit for level shifting and its method | |
US11831309B2 (en) | Stress reduction on stacked transistor circuits | |
US11114937B2 (en) | Charge pump circuit | |
CN103106921A (en) | Level shifter for row decoding circuit | |
Liu et al. | A novel high-speed and low-power negative voltage level shifter for low voltage applications | |
US9768778B2 (en) | High voltage level shifter in ultra low power supply memory application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130403 Termination date: 20170701 |
|
CF01 | Termination of patent right due to non-payment of annual fee |