[go: up one dir, main page]

CN102241750B - Genetic engineering method for producing avermectin and special bacterial strain for the method - Google Patents

Genetic engineering method for producing avermectin and special bacterial strain for the method Download PDF

Info

Publication number
CN102241750B
CN102241750B CN201010173186.2A CN201010173186A CN102241750B CN 102241750 B CN102241750 B CN 102241750B CN 201010173186 A CN201010173186 A CN 201010173186A CN 102241750 B CN102241750 B CN 102241750B
Authority
CN
China
Prior art keywords
ala
sequence
glu
hrdb
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010173186.2A
Other languages
Chinese (zh)
Other versions
CN102241750A (en
Inventor
张立新
卓英
刘梅
高弘
周贤龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbiology of CAS
Original Assignee
Institute of Microbiology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microbiology of CAS filed Critical Institute of Microbiology of CAS
Priority to CN201010173186.2A priority Critical patent/CN102241750B/en
Publication of CN102241750A publication Critical patent/CN102241750A/en
Application granted granted Critical
Publication of CN102241750B publication Critical patent/CN102241750B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种生产阿维菌素的基因工程方法及其专用菌株。本发明提供的蛋白,是突变后的HrdB蛋白,具体是如下1)或2)的蛋白质:1)由序列表中序列4所示的氨基酸序列组成的蛋白质;2)将序列表中序列4的氨基酸残基序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与阿维链霉菌生产阿维菌素相关的由1)衍生的蛋白质。本发明提供的突变后的hrdB基因导入ZLX6003菌株中后得到的重组菌,在摇瓶培养240小时后的阿维菌素产量可达5732.05±91.26μg/ml。本发明工程菌ZLX6056,在180吨罐上的生长曲线表明该基因工程菌保持了原高产菌株的优良形状,产量达到6382ug/ml。The invention discloses a genetic engineering method for producing abamectin and a special bacterial strain thereof. The protein provided by the present invention is a mutated HrdB protein, specifically the protein of the following 1) or 2): 1) a protein consisting of the amino acid sequence shown in sequence 4 in the sequence listing; 2) combining sequence 4 in the sequence listing A protein derived from 1) that has undergone substitution and/or deletion and/or addition of one or several amino acid residues and is related to the production of abamectin by Streptomyces avermitilis. The recombinant bacterium obtained after the mutated hrdB gene is introduced into the ZLX6003 bacterial strain provided by the present invention can produce 5732.05±91.26 μg/ml of abamectin after 240 hours of shaking flask culture. The growth curve of the engineered bacterium ZLX6056 of the present invention on a 180-ton tank shows that the genetically engineered bacterium maintains the excellent shape of the original high-yield strain, and the yield reaches 6382ug/ml.

Description

一种生产阿维菌素的基因工程方法及其专用菌株A kind of genetic engineering method for producing abamectin and special bacterial strain thereof

技术领域 technical field

本发明涉及一种生产阿维菌素的基因工程方法及其专用菌株。The invention relates to a genetic engineering method for producing abamectin and a special bacterial strain thereof.

背景技术 Background technique

阿维菌素(avermectin,AVM)是一种由阿维链霉菌(Streptomyces avermitilis)发酵产生的大环内酯类抗生素,它有八个组分(A1a,A1b,A2a,A2b,B1a,B1b,B2a,B2b),其中B1a组分的杀虫活性最强,对线虫、螨虫和节肢动物具有良好的杀灭作用,杀虫活性比一般化学农药高出几十倍。阿维菌素的作用机理与常规化学杀虫剂不同,它的作用靶点是线虫及节肢动物类寄生虫的神经传导介质γ-氨基丁酸(GABA),对哺乳动物的毒性很小,选择性极高。该抗生素在植物中残留时间很短,并且在土壤中很快被微生物分解为无毒物质。由于阿维菌素的这些突出的优点,其被公认为是一种最为安全有效的微生物来源的杀虫剂,因此它在农业、林业、医药和兽用上具有非常广阔的市场前景和应用价值。同时以阿维菌素为母体,还可以开发出一系列活性更高、选择性更强、使用更加安全的衍生新品种,已商品化的品种包括伊维菌素、埃玛菌素、多拉菌素、埃珀利诺菌素和塞拉菌素等。此外,近年来又有研究者发现阿维菌素有抗肿瘤的功效,并且对肿瘤细胞的抗药性也有一定的抑制作用。Avermectin (avermectin, AVM) is a macrolide antibiotic produced by the fermentation of Streptomyces avermitilis, which has eight components (A1a, A1b, A2a, A2b, B1a, B1b, B2a, B2b), in which the B1a component has the strongest insecticidal activity, and has a good killing effect on nematodes, mites and arthropods, and its insecticidal activity is dozens of times higher than that of general chemical pesticides. The mechanism of action of abamectin is different from that of conventional chemical insecticides. Its target is the neurotransmitter γ-aminobutyric acid (GABA) of nematodes and arthropod parasites. It has very little toxicity to mammals. Sex is extremely high. The antibiotic has a very short residual time in plants and is quickly decomposed into non-toxic substances by microorganisms in the soil. Due to these outstanding advantages of Abamectin, it is recognized as the safest and most effective microbial-derived pesticide, so it has very broad market prospects and application value in agriculture, forestry, medicine and veterinary . At the same time, with abamectin as the parent, a series of new derivatives with higher activity, stronger selectivity and safer use can also be developed. The commercialized varieties include ivermectin, emamectin, dora Selamectin, epelinocetin, and selamectin. In addition, in recent years, some researchers have found that avermectin has anti-tumor effects, and it also has a certain inhibitory effect on the drug resistance of tumor cells.

目前,阿维菌素已在国内实现了产业化,取得了巨大的经济和社会效益。但我国阿维菌素的生产菌株还存在着发酵单位低,生产成本高等问题,如何提高阿维菌素的产量,降低生产成本,将为我国的农业生产发展起到促进作用。此外,不仅是阿维菌素,如何筛选和优化菌株、使产率和原料利用率实现最大化是我国微生物发酵工程面临的普遍问题。目前用于提高链霉菌的抗生素产量的方法主要包括两大类,一类是传统的诱变育种方法,通过物理化学方法对菌株进行诱变,然后在诱变后代中筛选高产菌株;另一类是通过遗传学的方法,对菌株进行直接的遗传改变,提高抗生素的产量。通过物理化学方法对菌株进行诱变虽然已经取得了一定的成绩,得到了大量的高产菌株,但它们的不足之处也很明显,主要包括耗费大量人力、物力和时间,筛选工作比较复杂,存在一定盲目性,在引入有利变异的同时可能也会产生很多有害的变异,而有害的菌种变异往往会影响发酵过程的优化和放大;这些传统的菌种选育方式由于对引起功能变化的生物学基础不了解,因此较难推广应用于其他菌种。随着细菌基因组研究的不断深入,对细菌基因功能的认识不断深刻,人们越来越倾向于用遗传学手段对菌株进行改造。用遗传学的方法可以将功能已知的基因进行改造,增强了操作的针对性,而且使工作量大大降低,筛选时间也得到缩短。因此,通过基因工程手段改造阿维链霉菌以提高阿维菌素的产量,具有重要的意义。At present, Abamectin has been industrialized in China and has achieved huge economic and social benefits. However, the production strains of abamectin in my country still have problems such as low fermentation unit and high production cost. How to increase the output of abamectin and reduce production cost will play a role in promoting the development of agricultural production in our country. In addition, not only abamectin, how to screen and optimize strains to maximize yield and raw material utilization is a common problem faced by microbial fermentation projects in my country. At present, the methods for improving the antibiotic production of Streptomyces mainly include two categories, one is the traditional mutation breeding method, the strain is mutated by physical and chemical methods, and then the high-yield strain is screened in the mutagenized progeny; the other is Through the method of genetics, direct genetic changes are made to the strains to increase the production of antibiotics. Although the mutagenesis of bacterial strains by physical and chemical methods has achieved certain results, and a large number of high-yield strains have been obtained, their shortcomings are also obvious, mainly including consuming a lot of manpower, material resources and time, and the screening work is more complicated. Certain blindness, while introducing beneficial mutations, may also produce many harmful mutations, and harmful strain variations often affect the optimization and amplification of the fermentation process; these traditional strain breeding methods are due to the biological The scientific basis is not understood, so it is difficult to popularize and apply to other strains. With the continuous deepening of bacterial genome research and the deepening understanding of bacterial gene functions, people are more and more inclined to use genetic means to modify bacterial strains. Genetic methods can be used to modify genes with known functions, which enhances the pertinence of operations, greatly reduces the workload, and shortens the screening time. Therefore, it is of great significance to improve the production of abamectin by transforming Streptomyces avermitilis by means of genetic engineering.

2001年Kitasato研究所完成了阿维链霉菌的基因组测序,对其中负责阿维菌素生物合成基因簇进行序列和功能分析,该基因簇全长82kb,共有18个开放阅读框架。基因簇内部有4个大的阅读框架(AveA1-AveA2和AveA3-AveA4),编码多功能的聚酮体合成酶;aveC和aveE基因位于aveA1-aveA2和aveA3-aveA4基因之间,与聚酮体的修饰有关;在基因簇的右侧邻近aveA4的上游,是一套涉及齐墩果二糖的合成和转移的8个基因(aveB I-aveBV III);紧邻aveA1的上游(左方)是编码C5-O-甲基转移酶的aveD,负责将甲基转给阿维菌素B的C5的OH上而形成阿维菌素A。aveF紧邻aveD的下游,二者转录方向一致,可能属于同一转录单位。aveF编码C5酮基还原酶,催化阿维菌素B的生成。aveR位于aveF的下游(但转录方向相反),属于途径特异性调控基因,是阿维菌素生物合成全基因簇的正调控基因。In 2001, the Kitasato Institute completed the genome sequencing of Streptomyces avermitilis, and performed sequence and functional analysis on the gene cluster responsible for the biosynthesis of avermectin. The gene cluster is 82kb in length and has 18 open reading frames. There are 4 large reading frames (AveA1-AveA2 and AveA3-AveA4) inside the gene cluster, encoding multifunctional polyketide synthases; aveC and aveE genes are located between aveA1-aveA2 and aveA3-aveA4 genes, and It is related to the modification; on the right side of the gene cluster, adjacent to the upstream of aveA4, is a set of 8 genes (aveB I-aveBV III) involved in the synthesis and transfer of oleanobiose; immediately upstream of aveA1 (left) is the encoding aveD of C5-O-methyltransferase is responsible for transferring the methyl group to the OH of C5 of avermectin B to form avermectin A. aveF is immediately downstream of aveD, and the transcription direction of the two is the same, which may belong to the same transcription unit. aveF encodes a C5 ketoreductase that catalyzes the production of avermectin B. aveR is located downstream of aveF (but the transcription direction is opposite), which belongs to the pathway-specific regulation gene, and is a positive regulation gene of the whole gene cluster of abamectin biosynthesis.

在抗生素产生过程中基因水平的分子调控起着至关重要的作用,通过遗传学方法对链霉菌进行改造,提高抗生素产量。主要是通过改造抗生素产生的调节基因来进行的,有既与抗生素生物合成相关又与形态分化相关的调控基因,如bldA,relC,relA等;也有参与抗生素生物合成的全局性调控基因,如absA,absB,afsR等;还有参与抗生素生物合成的特异性调控基因,如ActII-ORF4,aveR,dnrI,redD,sanG,ccaR等。对抗生素生物合成起正调节作用的基因,可以通过提高它在菌株中的拷贝数或者改变启动子提高其表达量来提高抗生素的产量,对起负调节作用的基因,则可以通过敲除该基因来提高抗生素的产量。但是,通过提高拷贝数的方法得来的菌株往往稳定性较差,因为高拷贝的遗传载体往往不稳定,容易丢失,若考虑到后期的工业生产,可能更多尝试通过同源重组整合到染色体上,更加稳定的维持高产相关基因在工程菌株的稳定存在。对能同时调控多种抗生素产量的调节基因进行改造比改造只调控单一抗生素产量的调节基因更加有效。Molecular regulation at the gene level plays a vital role in the process of antibiotic production, and Streptomyces is modified by genetic methods to increase antibiotic production. It is mainly carried out by modifying the regulatory genes of antibiotic production. There are regulatory genes related to antibiotic biosynthesis and morphological differentiation, such as bldA, relC, relA, etc.; there are also global regulatory genes involved in antibiotic biosynthesis, such as absA , absB, afsR, etc.; there are also specific regulatory genes involved in antibiotic biosynthesis, such as ActII-ORF4, aveR, dnrI, redD, sanG, ccaR, etc. For genes that positively regulate the biosynthesis of antibiotics, the production of antibiotics can be increased by increasing its copy number in the strain or changing the promoter to increase its expression; for genes that play a negative regulatory role, the gene can be knocked out to increase the production of antibiotics. However, the strains obtained by increasing the copy number are often less stable, because the high-copy genetic carrier is often unstable and easy to lose. If considering the later industrial production, more attempts may be made to integrate into the chromosome through homologous recombination On the other hand, it is more stable to maintain the stable existence of high-yielding related genes in engineering strains. It is more effective to modify the regulatory gene that can simultaneously regulate the production of multiple antibiotics than to modify the regulatory gene that only regulates the production of a single antibiotic.

在阿维链霉菌中,对aveC随机突变后能够得到多拉菌素“1”组分含量提高的突变株;对途径特异性调控基因aveR,增加拷贝数并未提高阿维菌素产量,反而使得宿主菌株不再产生阿维菌素。在aveR基因的上游存在负调控基因aveR1和aveR2,这两个基因中的任何一个基因或同时两个基因失活都会使阿维菌素产量有大幅度的提高。(美国专利US6197591,Stutzman-Engwall)。位于阿维菌素生物合成基因簇中的调控基因外,研究人员也致力于寻找其它调控基因,特别是全局性调控基因(global regulatorygene),如afsR2和orfX,从而更有效地提高阿维菌素的产量。In Streptomyces avermitilis, a mutant strain with increased doramectin "1" component content can be obtained after random mutation of aveC; for the pathway-specific regulation gene aveR, increasing the copy number did not increase the production of avermectin, but instead Make the host strain no longer produce abamectin. There are negative regulatory genes aveR1 and aveR2 upstream of the aveR gene, and the inactivation of any one or both of these two genes will greatly increase the production of abamectin. (US Patent US6197591, Stutzman-Engwall). In addition to the regulatory genes located in the abamectin biosynthetic gene cluster, researchers are also committed to finding other regulatory genes, especially global regulatory genes (global regulatory genes), such as afsR2 and orfX, so as to more effectively improve the abamectin output.

发明内容 Contents of the invention

本发明的目的在于提供一种与阿维链霉菌生产阿维菌素相关的蛋白。The object of the present invention is to provide a protein related to the production of abamectin by Streptomyces avermitilis.

本发明提供的蛋白,是突变后的HrdB蛋白,具体是如下1)或2)的蛋白质:The protein provided by the present invention is a mutated HrdB protein, specifically the following 1) or 2) protein:

1)由序列表中序列4所示的氨基酸序列组成的蛋白质;1) A protein consisting of the amino acid sequence shown in Sequence 4 in the sequence listing;

2)将序列表中序列4的氨基酸残基序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与阿维链霉菌生产阿维菌素相关的由1)衍生的蛋白质。2) Substitution and/or deletion and/or addition of one or several amino acid residues to the amino acid residue sequence of Sequence 4 in the sequence listing and the protein derived from 1) related to the production of abamectin by Streptomyces avermitilis .

为了使1)中的蛋白便于纯化,可在由序列表中序列4所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。In order to make the protein in 1) easy to purify, the amino-terminal or carboxy-terminal of the protein consisting of the amino acid sequence shown in Sequence 4 in the sequence listing can be linked with the tags shown in Table 1.

表1.标签的序列Table 1. Sequence of tags

  标签 Label   残基 Residues   序列 sequence   Poly-Arg Poly-Arg   5-6(通常为5个) 5-6 (usually 5)   RRRRR RRRRR   Poly-His Poly-His   2-10(通常为6个) 2-10 (usually 6)   HHHHHH HHHHHH   FLAG FLAG   8 8   DYKDDDDK DYKDDDDK   Strep-tag II Strep-tag II   8 8   WSHPQFEK WSHPQFEK   c-myc c-myc   10 10   EQKLISEEDL EQKLISEEDL

上述2)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达得到。上述2)中的蛋白的编码基因可通过将序列表中序列3所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。The protein in the above 2) can be synthesized artificially, or its coding gene can be synthesized first, and then obtained by biological expression. The gene encoding the protein in the above 2) can be deleted by deleting one or several amino acid residue codons in the DNA sequence shown in Sequence 3 in the sequence listing, and/or carrying out one or several base pairs of missense mutations , and/or connect the coding sequence of the tag shown in Table 1 at its 5' end and/or 3' end.

上述的蛋白的编码基因(突变后的hrdB基因)也属于本发明的保护范围之内。The above protein coding gene (mutated hrdB gene) also falls within the protection scope of the present invention.

上述基因可以是如下1)或2)或3):The above-mentioned gene can be the following 1) or 2) or 3):

1)编码序列如序列表中序列3所示;1) The coding sequence is shown in sequence 3 in the sequence listing;

2)在严格条件下与1)的基因杂交且编码所述蛋白的基因;2) a gene that hybridizes with the gene of 1) under stringent conditions and encodes the protein;

3)与1)的基因具有90%以上的同源性且编码所述蛋白的基因。3) A gene that has more than 90% homology with the gene in 1) and encodes the protein.

序列3是突变后的hrdB基因的序列(1539个核苷酸),可编码序列表中序列4所示的突变后的hrdB蛋白。Sequence 3 is the sequence of the mutated hrdB gene (1539 nucleotides), which can encode the mutated hrdB protein shown in Sequence 4 in the sequence list.

上述严格条件可为用0.1×SSPE(或0.1×SSC),0.1%SDS的溶液,在DNA或者RNA杂交实验中65℃下杂交并洗膜。The above-mentioned stringent conditions can be 0.1×SSPE (or 0.1×SSC), 0.1% SDS solution, hybridization at 65° C. in DNA or RNA hybridization experiments and membrane washing.

含有上述的基因的重组载体也属于本发明的保护范围之内。Recombinant vectors containing the above genes also fall within the protection scope of the present invention.

进一步,上述重组载体具体可以是将含有启动子和上述的基因的DNA片段插入质粒pSET152的多克隆位点中,得到的重组表达载体;所述含有启动子和上述的基因的DNA片段的核苷酸序列如序列表中序列5所示。Further, the above-mentioned recombinant vector can specifically be a recombinant expression vector obtained by inserting the DNA fragment containing the promoter and the above-mentioned gene into the multiple cloning site of the plasmid pSET152; the nucleoside of the DNA fragment containing the promoter and the above-mentioned gene The acid sequence is shown as sequence 5 in the sequence listing.

含有上述的基因的表达盒或转基因细胞系也属于本发明的保护范围之内。Expression cassettes or transgenic cell lines containing the above genes also fall within the protection scope of the present invention.

含有上述的基因的重组菌也属于本发明的保护范围之内。Recombinant bacteria containing the above-mentioned genes also fall within the protection scope of the present invention.

进一步,上述重组菌是将上述的重组载体导入目的阿维链霉菌中得到的重组菌。Further, the above-mentioned recombinant bacteria are recombinant bacteria obtained by introducing the above-mentioned recombinant vector into the target Streptomyces avermitilis.

上述目的阿维链霉菌可以为阿维链霉菌(Streptomyces avermitilis)ZLX6003CGMCC №.3229。ZLX6003已于2009年08月18日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:中国北京市朝阳区北辰西路1号院3号)。ZLX6003是通过传统育种方法选育获得的阿维菌素高产菌株,在工业上已应用于生产,在平板上产灰色孢子。The above-mentioned Streptomyces avermitilis can be Streptomyces avermitilis ZLX6003CGMCC №.3229. ZLX6003 was deposited on August 18, 2009 in the General Microorganism Center of China Committee for Culture Collection of Microorganisms (CGMCC for short, address: No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing, China). ZLX6003 is a high-yielding avermectin strain obtained through traditional breeding methods, which has been applied in industry and produces gray spores on plates.

更进一步,上述重组菌是阿维链霉菌(Streptomyces avermitilis)ZLX6056 CGMCC№.3796。ZLX6056已于2010年5月4日保藏于中国微生物菌种保藏管委理员会普通微生物中心(简称CGMCC,地址为:中国北京市朝阳区北辰西路1号院3号),保藏号为CGMCC No.3796。基因工程菌株ZLX6056中的突变HrdB存在6个突变氨基酸,分别为A137S,K139E,E163G,M356V,V357A,M389I。Further, the above-mentioned recombinant bacteria is Streptomyces avermitilis ZLX6056 CGMCC №.3796. ZLX6056 was deposited in the General Microorganism Center of China Committee for Culture Collection of Microorganisms (CGMCC for short, address: No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing, China) on May 4, 2010, and the preservation number is CGMCC No. 3796. The mutant HrdB in the genetically engineered strain ZLX6056 has 6 mutant amino acids, which are A137S, K139E, E163G, M356V, V357A, and M389I.

ZLX6003和ZLX6056均是好氧的革兰氏阳性嗜温放线菌,形成分枝状基生菌丝和长的紧密螺旋的气生菌丝。孢子链由15个或以上的表面光滑的圆形或卵形孢子构成。在燕麦培养基上形成灰色的气生孢子团,菌落背面黑褐色。在蛋白陈酵母提取物和铁培养基上产生黑色素。Both ZLX6003 and ZLX6056 are aerobic Gram-positive mesophilic actinomycetes that form branched basal hyphae and long, tightly spiraled aerial hyphae. The spore chain consists of 15 or more round or oval spores with a smooth surface. Gray aerial spore clusters were formed on the oat medium, and the back of the colony was dark brown. Production of melanin on protein-aged yeast extract and iron media.

上述的蛋白、上述的基因和任一上述的重组菌在生产阿维菌素中的应用也属于本发明的保护范围之内。The application of the above-mentioned protein, the above-mentioned gene and any one of the above-mentioned recombinant bacteria in the production of abamectin also falls within the protection scope of the present invention.

本发明在证实阿维链霉菌中RNA聚合酶σ因子对阿维菌素增产有直接作用的基础上,通过对其编码基因hrdB定向进化构建突变载体库,并导入到阿维链霉菌中筛选得到产量提高的重组菌株,其中增效基因hrdB为适合阿维菌素生物合成的优化状态。In the present invention, on the basis of confirming that the RNA polymerase σ factor in Streptomyces avermitilis has a direct effect on increasing the production of abamectin, a mutation carrier library is constructed by directed evolution of its coding gene hrdB, and introduced into Streptomyces avermitilis for screening to obtain The recombinant strain with improved yield, wherein the synergistic gene hrdB is in an optimized state suitable for avermectin biosynthesis.

具体采用如下方法构建工程菌,设计引物通过PCR扩增阿维菌素野生菌中带有自身启动子的hrdB基因,构建含hrdB基因的整合型表达质粒,并将构建好的重组质粒转化到阿维链霉菌菌株中得到重组菌库,通过高通量筛选的方法获得产量提高的重组菌。以上所述表达载体是整合型表达载体,能稳定应用到生产中,出发载体为大肠杆菌-链霉菌穿梭载体pSET152。Specifically adopt the following method to construct engineering bacteria, design primers to amplify the hrdB gene with its own promoter in the abamectin wild bacterium by PCR, construct an integrated expression plasmid containing the hrdB gene, and transform the constructed recombinant plasmid into Abamectin The recombinant bacteria library was obtained from the Streptomyces veinensis strain, and the recombinant bacteria with improved yield were obtained through high-throughput screening. The above-mentioned expression vector is an integrated expression vector, which can be stably applied in production, and the starting vector is the Escherichia coli-Streptomyces shuttle vector pSET152.

将hrdB基因表达载体突变库转化阿维链霉菌的方法优选为PEG介导的原生质体转化法,为提高转化效率,可在构建时直接通过电转化的方法将突变表达载体库转化到限制修饰作用缺陷的大肠杆菌ET12567中,收集抗性菌落并从中提取质粒再转化阿维链霉菌的原生质体;但也可以采用其它生物工程领域中常用的方法,例如电转化法、接合转移法等。The method of transforming the hrdB gene expression carrier mutant library into Streptomyces avermitilis is preferably PEG-mediated protoplast transformation. In order to improve the transformation efficiency, the mutant expression carrier library can be directly transformed into a restriction modification by the method of electroporation during construction. In the deficient Escherichia coli ET12567, the resistant colonies were collected and plasmids were extracted from them to transform the protoplasts of Streptomyces avermitilis; however, other commonly used methods in the field of bioengineering, such as electroporation and conjugative transfer, can also be used.

用于构建重组菌的出发菌株可为任意一种阿维链霉菌的菌株,考虑到高产菌株通过传统诱变方法更难提高产量,本发明中以现有的阿维菌素高产工业菌株(阿维链霉菌(Streptomyces avermitilis)ZLX6003 CGMCC 3229)为出发菌株。本发明提供的突变后的hrdB基因导入ZLX6003菌株中后得到的重组菌,在摇瓶培养240小时后的阿维菌素产量可达5732.05±91.26μg/ml,是出发菌株阿维菌素产量的148.23%。The starting bacterial strain that is used to construct recombinant bacterium can be the bacterial strain of any Streptomyces avermitilis, considers that high-yield bacterial strain is more difficult to improve output by traditional mutagenesis method, in the present invention with existing abamectin high-yield industrial strain (Avermectin Streptomyces avermitilis (ZLX6003 CGMCC 3229) was the starting strain. The recombinant bacterium obtained after the mutated hrdB gene provided by the present invention is introduced into the ZLX6003 bacterial strain can reach 5732.05 ± 91.26 μ g/ml of abamectin output after 240 hours of shaking flask culture, which is the peak of the abamectin output of the starting bacterial strain. 148.23%.

本发明工程菌ZLX6056,在180吨罐上的生长曲线表明该基因工程菌保持了原高产菌株的优良形状,产量达到6382ug/ml,能很好的适应大规模发酵,可直接用于阿维菌素的发酵生产,使阿维菌素的产量提高,从而降低生产成本。The growth curve of the engineering bacterium ZLX6056 of the present invention on a 180-ton tank shows that the genetically engineered bacterium maintains the excellent shape of the original high-yield strain, and the output reaches 6382ug/ml, which can be well adapted to large-scale fermentation and can be directly used for Avermella The fermentative production of abamectin increases the output of abamectin, thereby reducing production costs.

本发明的工作中用于本发明中涉及到的σhrdB为链霉菌中的主要的σ因子,主要负责初级代谢基因转录水平的调控。编码基因hrdB基因的全序列及两侧片段序列可以在公共数据库中检索得到,位于基因组上从2976855到2978393(互补链上)的碱基,它所编码的蛋白序列在Genbank数据库中的编号为NP_823620,GI号为29606091。虽然阿维链霉菌基因组序列已经测定并发表,hrdB的全序列已经可以在Genbank数据库中得到,但是,关于该基因对于链霉菌次级代谢产物的生物合成的影响并不清楚,在现有的文献中,还没有利用该基因提高链霉菌抗生素产量的报道。本发明通过实验证实了hrdB对于阿维菌素生物合成的调控作用,并利用该基因的遗传操作来提高阿维菌素的产量。The σ hrdB involved in the present invention is the main σ factor in Streptomyces, which is mainly responsible for the regulation of primary metabolic gene transcription level. The full sequence of the coding gene hrdB gene and the sequence of the fragments on both sides can be retrieved in public databases, located at bases from 2976855 to 2978393 (on the complementary strand) on the genome, and the protein sequence encoded by it is numbered NP_823620 in the Genbank database , GI number 29606091. Although the genome sequence of Streptomyces avermitilis has been determined and published, and the full sequence of hrdB is available in the Genbank database, the effect of this gene on the biosynthesis of Streptomyces secondary metabolites is not clear, and in the existing literature However, there is no report on using this gene to increase the production of Streptomyces antibiotics. The invention confirms the regulating effect of hrdB on the biosynthesis of avermectin through experiments, and utilizes the genetic manipulation of the gene to increase the output of abamectin.

附图说明 Description of drawings

图1HrdB蛋白体外表达和纯化及体外转录试验论证其对于阿维菌素生物合成的调控;1A)HrdB蛋白体外诱导表达和纯化,1B)体外转录试验证实其对于阿维菌素生物合成的调控。Figure 1 HrdB protein in vitro expression and purification and in vitro transcription test to demonstrate its regulation of abamectin biosynthesis; 1A) HrdB protein in vitro induced expression and purification, 1B) in vitro transcription test to confirm its regulation of abamectin biosynthesis.

图2含有hrdB基因及其自身启动子的重组质粒pZY126的质粒图谱。Fig. 2 Plasmid map of recombinant plasmid pZY126 containing hrdB gene and its own promoter.

图3为高产工业阿维链霉菌及其不同转化子的阿维菌素发酵单位。Fig. 3 is the abamectin fermentation unit of high-yielding industrial Streptomyces avermitilis and its different transformants.

图4为阿维链霉菌突变高产菌ZLX6056中突变σ因子的突变位点分析。Fig. 4 is an analysis of the mutation site of the mutant σ factor in the mutant high-yielding strain of Streptomyces avermitilis ZLX6056.

图5为出发工业菌株ZLX6003和突变高产菌ZLX6056的发酵单位曲线图。Fig. 5 is the fermentation unit curve of the starting industrial strain ZLX6003 and the mutant high-yielding strain ZLX6056.

具体实施方式 Detailed ways

下面结合具体实施例对本发明作进一步说明,但本发明并不限于以下实施例。The present invention will be further described below in conjunction with specific examples, but the present invention is not limited to the following examples.

下述实施例中,如无特殊说明,均为常规方法。In the following examples, unless otherwise specified, all are conventional methods.

实施例1、HrdB蛋白对阿维菌素生物合成特异性调控基因aveR转录的调控作用Embodiment 1, the regulatory effect of HrdB protein on Abamectin biosynthesis-specific regulatory gene aveR transcription

一、体外表达HrdB蛋白1. Expression of HrdB protein in vitro

1、hrdB结构基因的扩增及纯化1. Amplification and purification of hrdB structural gene

设计引物,用于扩增位于基因组DNA上的hrdB结构基因序列,上游引物HBNde01:5′-GCCATATGTCGGCCAGCACATCC-3′,位于hrdB基因起始密码子ATG位置,下游引物HBSal02:5′--GCGTCGACTAGTCGAGGTAGTCGC-3′,位于hrdB基因终止密码子TAG处,带下划线的碱基为限制性内切酶NdeI和SalI识别位点,扩增产物应为1540bp。Design primers for amplifying the hrdB structural gene sequence located on genomic DNA, the upstream primer HBNde01: 5′-GC CATATG TCGGCCAGCACATCC-3′, located at the start codon ATG position of the hrdB gene, and the downstream primer HBSal02: 5′--GCGTCGACTAGTCGAGGTAGTCGC -3', located at the stop codon TAG of the hrdB gene, the underlined bases are the recognition sites of restriction endonucleases NdeI and SalI, and the amplified product should be 1540bp.

以阿维链霉菌ZLX6003(保藏于CGMCC,NO.3229)的基因组DNA为模板,以HBNde01和HBSal02为引物,进行PCR扩增,采用TaKaRa公司的LA-Taq酶和GC buffer I进行PCR扩增,扩增条件为95℃,3min;(95℃,1min;60℃,1min;72℃,1.5min)×25个循环;72℃,10min。对扩增产物进行琼脂糖凝胶电泳检测,在约1.5kb处有一条特异性的扩增条带。Using the genomic DNA of Streptomyces avermitilis ZLX6003 (preserved in CGMCC, NO.3229) as a template, using HBNde01 and HBSal02 as primers, PCR amplification was carried out, and LA-Taq enzyme and GC buffer I from TaKaRa Company were used to perform PCR amplification. The amplification conditions were 95°C, 3min; (95°C, 1min; 60°C, 1min; 72°C, 1.5min) x 25 cycles; 72°C, 10min. The amplified product was detected by agarose gel electrophoresis, and there was a specific amplified band at about 1.5kb.

2、HrdB蛋白表达载体构建2. Construction of HrdB protein expression vector

用琼脂糖胶回收试剂盒切胶回收PCR扩增产物,与T载体pMD 18-T(TaKaRa公司)进行连接,经过测序比对表明,所扩增的片段确实为hrdB基因结构基因(编码序列如序列表中序列1所示,可编码序列表中序列2所示的蛋白)。将含有hrdB结构基因的T载体经NdeI和SalI酶切后,回收1.5kb的hrdB片段,将此片段和经NdeI和XhoI酶切的载体pET28b(Novagen)相连,连接产物转化大肠杆菌DH5a的感受态细胞。从转化子中提取质粒进行酶切验证,将正确的重组质粒分别命名为pZY165。Use the agarose gel recovery kit to cut the gel to recover the PCR amplification product, and connect it to the T carrier pMD 18-T (TaKaRa company). After sequencing and comparison, it shows that the amplified fragment is indeed the hrdB gene structural gene (coding sequence such as As shown in sequence 1 in the sequence listing, it can encode the protein shown in sequence 2 in the sequence listing). After the T vector containing the hrdB structural gene was digested with NdeI and SalI, the 1.5kb hrdB fragment was recovered, and this fragment was connected with the vector pET28b (Novagen) digested with NdeI and XhoI, and the ligation product was transformed into a competent Escherichia coli DH5a cell. Plasmids were extracted from transformants for enzyme digestion verification, and the correct recombinant plasmids were named pZY165.

二、蛋白表达纯化及HrdB蛋白对aveR的转录的影响2. Protein expression and purification and the effect of HrdB protein on the transcription of aveR

1、HrdB蛋白表达和纯化1. HrdB protein expression and purification

从平板上挑单克隆到5ml的LB液体培养基中(含相应抗生素),过夜培养至对数生长期;加IPTG至终浓度为0.4mM继续培养10h,取200ul菌液进行SDS-PAGE胶电泳检测蛋白表达情况。在非变性条件下超声破碎细胞后,用5ml的HisTrap HP亲和柱(GE Healthcare)进行初步纯化后,抽滤浓缩后进行分子筛分离。纯化后蛋白(HrdB蛋白)结果如图1A所示。Pick a single clone from the plate and put it into 5ml LB liquid medium (containing corresponding antibiotics), culture overnight to the logarithmic growth phase; add IPTG to a final concentration of 0.4mM and continue to culture for 10h, take 200ul of the bacterial liquid for SDS-PAGE gel electrophoresis Detection of protein expression. After the cells were sonicated under non-denaturing conditions, they were initially purified with a 5ml HisTrap HP affinity column (GE Healthcare), concentrated by suction, and then separated by molecular sieves. The results of the purified protein (HrdB protein) are shown in Figure 1A.

2、HrdB蛋白对aveR的特异性调控作用2. The specific regulatory effect of HrdB protein on aveR

将RNA中心酶和纯化定量的HrdB蛋白按1∶1浓度比例混合,聚合酶混合物放置在30℃水浴5min;加入3.5ul含有[a-32P]CTP(400Ci/mmol)底物混合物继续温浴15分钟;反映结束后加入上样缓冲液进行5%polyacrylamide gel(含7M尿素)电泳检测,放射自显影后结果如图1B所示。Mix the RNA central enzyme and the purified quantitative HrdB protein at a concentration ratio of 1:1, and place the polymerase mixture in a water bath at 30°C for 5 minutes; add 3.5ul of the substrate mixture containing [a-32P]CTP (400Ci/mmol) and continue to incubate for 15 minutes ; After the reaction, add loading buffer for 5% polyacrylamide gel (containing 7M urea) electrophoresis detection, and the results after autoradiography are shown in Figure 1B.

图2结果表明HrdB蛋白能够在体外特异性的识别aveR上游启动子序列,并启动HrdB蛋白对aveR的转录,且随着HrdB蛋白浓度的增加,aveR的转录产物的量呈现递增趋势,结果表明HrdB蛋白能够参与调控aveR的转录水平。The results in Figure 2 show that HrdB protein can specifically recognize the upstream promoter sequence of aveR in vitro, and initiate the transcription of aveR by HrdB protein, and with the increase of HrdB protein concentration, the amount of aveR transcripts shows an increasing trend, the results show that HrdB The protein can participate in the regulation of the transcription level of aveR.

体外转录试验方法参照文献(Hahn MY,Bae JB,Park JH,Roe JH.Isolation andcharacterization of Streptomyces coelicolor RNA polymerase,its sigma,and antisigmafactors.Methods Enzymol 2003,370:73-82)。The in vitro transcription test method refers to the literature (Hahn MY, Bae JB, Park JH, Roe JH. Isolation and characterization of Streptomyces coelicolor RNA polymerase, its sigma, and antisigmafactors. Methods Enzymol 2003, 370: 73-82).

实施例2、hrdB基因表达载体的构建Embodiment 2, the construction of hrdB gene expression vector

一、含有hrdB基因及其自身启动子的重组质粒的构建1. Construction of recombinant plasmid containing hrdB gene and its own promoter

1、含自身启动子的hrdB基因的扩增1. Amplification of the hrdB gene containing its own promoter

设计引物,用于PCR扩增位于阿维链霉菌染色体上含自身启动子的hrdB基因[NC_003155.4,complement(2976855..2978393)],上游引物PodP1:5′-CACTCTAGACCCTGAGGTGGAGCGTGTG-3′位于hrdB起始密码子上游649bp处,下游引物PodP2:5′-CTCGAATTCGGTCATGGAATACCCAGAGTGAT-3′,位于hrdB终止密码子下游120bp处,带下划线的碱基为限制性内切酶XbaI和EcoRI识别位点,扩增产物应为2352bp。Design primers for PCR amplification of the hrdB gene [NC_003155.4, complement (2976855..2978393)] located on the chromosome of Streptomyces avermitilis with its own promoter, and the upstream primer PodP1: 5′-CAC TCTAGA CCCTGAGGTGGAGCGTGTG-3′ is located in 649bp upstream of the hrdB start codon, the downstream primer PodP2: 5′-CTC GAATTC GGTCATGGAATACCCAGAGTGAT-3′, located 120bp downstream of the hrdB stop codon, the underlined bases are the recognition sites of restriction enzymes XbaI and EcoRI, The amplification product should be 2352bp.

以阿维链霉菌野生型菌株ATCC31267的总DNA为模板,以PodP1和PodP2为引物,采用TaKaRa公司的LA-Taq酶和GC buffer I进行PCR扩增,扩增条件为95℃,3min;(95℃,1min;64.6℃,1min;72℃,2.5min)×25个循环;72℃,10min。对扩增产物进行琼脂糖凝胶电泳检测,在约2.3kb处有一条特异性的扩增条带。Using the total DNA of Streptomyces avermitilis wild-type strain ATCC31267 as a template, using PodP1 and PodP2 as primers, the LA-Taq enzyme and GC buffer I of TaKaRa Company were used for PCR amplification. The amplification conditions were 95°C, 3min; (95 ℃, 1min; 64.6℃, 1min; 72℃, 2.5min)×25 cycles; 72℃, 10min. The amplified product was detected by agarose gel electrophoresis, and there was a specific amplified band at about 2.3 kb.

2、重组质粒pZY126的构建2. Construction of recombinant plasmid pZY126

用琼脂糖胶回收试剂盒切胶回收PCR扩增产物,与T载体pMD 18-T(TaKaRa公司)进行连接,经过测序比对表明,所扩增的片段确实为含自身启动子的hrdB基因。将含有hrdB基因的T载体经XbaI和EcoRI酶切后,回收2.3kb的hrdB片段,将此片段和经同样酶切的载体pSET152(Bierman M,Logan R,O′Brien K,et al.Plasmid cloningvectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.Gene,1992,116:43-49)相连,连接产物转化大肠杆菌DH5α的感受态细胞。从转化子中提取质粒进行酶切验证,将正确的重组质粒分别命名为pZY126。pZY126的质粒图谱如图2所示。The agarose gel recovery kit was used to cut the gel to recover the PCR amplified product, and connect it to the T vector pMD 18-T (TaKaRa company). The sequencing comparison showed that the amplified fragment was indeed the hrdB gene containing its own promoter. After the T vector containing the hrdB gene was digested with XbaI and EcoRI, the 2.3 kb hrdB fragment was recovered, and this fragment was digested with the vector pSET152 (Bierman M, Logan R, O'Brien K, et al. Plasmid cloning vectors For the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992, 116: 43-49), the ligation product was transformed into competent cells of Escherichia coli DH5α. Plasmids were extracted from transformants for enzyme digestion verification, and the correct recombinant plasmids were named pZY126. The plasmid map of pZY126 is shown in FIG. 2 .

二、基于pZY126质粒的hrdB基因突变库的构建2. Construction of hrdB gene mutation library based on pZY126 plasmid

1、突变hrdB结构基因的扩增及纯化1. Amplification and purification of mutant hrdB structural gene

设计引物,用于扩增位于pZY126质粒上的hrdB结构基因序列,上游引物PodP3:5′-TGTTCGTGTCGGCCAGCAC-3′,位于hrdB基因起始密码子上游5bp处,下游引物PodP4:5′-TGCGTACAGCCGAGACCTAGTC-3′,位于hrdB基因终止密码子下游14bp处,扩增产物应为1560bp。Design primers for amplifying the hrdB structural gene sequence located on the pZY126 plasmid, the upstream primer PodP3: 5'-TGTTCGTGTCGGCCAGCAC-3', located 5bp upstream of the start codon of the hrdB gene, and the downstream primer PodP4: 5'-TGCGTACAGCCGAGACCTAGTC-3 ', located 14 bp downstream of the stop codon of the hrdB gene, the amplified product should be 1560 bp.

以纯化后的pZY126质粒DNA为模板,以PodP3和PodP4为引物,进行PCR扩增,采用Stratagene公司的Mutazyme II DNA Polymerase酶进行PCR扩增,扩增条件为95℃,2min;(95℃,1min;59℃,1min;72℃,1.5min)×30个循环;72℃,10min。对扩增产物进行琼脂糖凝胶电泳检测,在约1.6kb处有一条特异性的扩增条带。Using the purified pZY126 plasmid DNA as a template, using PodP3 and PodP4 as primers, PCR amplification was carried out, and Stratagene’s Mutazyme II DNA Polymerase enzyme was used for PCR amplification. The amplification conditions were 95°C, 2min; (95°C, 1min ; 59°C, 1min; 72°C, 1.5min) × 30 cycles; 72°C, 10min. The amplified product was detected by agarose gel electrophoresis, and there was a specific amplified band at about 1.6 kb.

采用PCR产物纯化试剂盒纯化回收PCR扩增产物,取1ul纯化产物进行琼脂糖凝胶电泳并进行nanodrop检测进行纯化产物的定量。The PCR amplification product was purified and recovered using a PCR product purification kit, and 1 ul of the purified product was subjected to agarose gel electrophoresis and nanodrop detection for quantification of the purified product.

2、含有突变hrdB片段的pZY126*质粒片段库的构建2. Construction of the pZY126* plasmid fragment library containing the mutated hrdB fragment

以上述纯化后PCR产物为引物,按照GeneMorph II EZClone产品说明书中配制反应体系,扩增条件为95℃,1min;(95℃,50sec;60℃,50sec;68℃,3min)×25个循环;反应结束后冰上放置2分钟。Using the above-mentioned purified PCR products as primers, prepare a reaction system according to the GeneMorph II EZClone product manual, and the amplification conditions are 95°C, 1min; (95°C, 50sec; 60°C, 50sec; 68°C, 3min) × 25 cycles; Place on ice for 2 minutes after the reaction.

向扩增产物中加入DpnI酶,以消化扩增产物中原用于模板的质粒DNA。DpnI enzyme is added to the amplified product to digest the plasmid DNA originally used as a template in the amplified product.

至此,含有突变hrdB片段的pZY126*表达质粒载体库构建完成。So far, the pZY126* expression plasmid vector library containing the mutant hrdB fragment has been constructed.

实施例3、突变质粒库的转化Embodiment 3, transformation of mutant plasmid library

一、突变质粒库的扩增1. Amplification of mutant plasmid library

由于阿维链霉菌中存在很强的限制修饰作用,用提取来自E.coli DH5α的质粒直接转化阿维链霉菌,转化效率极低,有时甚至得不到转化子。而用来自没有限制修饰作用的受体菌E.coli ET12567的质粒,其转化效率明显提高。因此,将构建好的突变质粒库以及对照质粒先分别转化到E.coli ET12567(pUZ8002)(记载过该材料的非专利文献是MacNeil DJ,Gewain KM,Ruby CL,et al(1992)Analysis of Streptomyces avermitilisgenes required for avermectin biosynthesis utilizing a novel integration vector.Gene1992,111:61-68.,公众可从中国科学院微生物研究所获得)中以获得非甲基化的DNA,然后再用非甲基化的质粒DNA转化阿维链霉菌的原生质体。Due to the strong restriction modification in Streptomyces avermitilis, the transformation efficiency of Streptomyces avermitilis is very low when the plasmid extracted from E.coli DH5α is used to directly transform Streptomyces avermitilis, sometimes even no transformant can be obtained. However, the transformation efficiency was significantly improved by using the plasmid from the recipient strain E.coli ET12567 without restriction modification. Therefore, the constructed mutant plasmid library and the control plasmid were respectively transformed into E.coli ET12567 (pUZ8002) (the non-patent literature that recorded this material is MacNeil DJ, Gewain KM, Ruby CL, et al (1992) Analysis of Streptomyces avermitilisgenes required for avermectin biosynthesis utilizing a novel integration vector. Gene1992, 111: 61-68., the public can obtain from the Institute of Microbiology, Chinese Academy of Sciences) to obtain unmethylated DNA, and then use unmethylated plasmid DNA Transformation of protoplasts from S. avermitilis.

将通过实施例1构建含有突变hrdB片段的pZY126*表达质粒载体库和作为对照的原始质粒pZY126和pSET152电击转化E.coli ET12567的感受态细胞,涂布于含有卡纳霉素、氯霉素和安普霉素的LB平板,37度放置培养。待平板上长出可见菌落,用新鲜液体LB收集所有菌落后,加入15%甘油保存到-80℃中,或直接接入含有相应抗生素的LB中培养进一步扩增质粒,提取质粒DNA,酶切验证。The pZY126* expression plasmid vector library containing the mutated hrdB fragment constructed in Example 1 and the original plasmids pZY126 and pSET152 used as controls were electroporated to transform the competent cells of E.coli ET12567, and were coated with kanamycin, chloramphenicol and Apramycin LB plates were cultured at 37 degrees. After visible colonies grow on the plate, collect all the colonies with fresh liquid LB, add 15% glycerol and store at -80°C, or directly insert into LB containing corresponding antibiotics to further amplify the plasmid, extract the plasmid DNA, and digest verify.

二、突变质粒库转化阿维链霉菌2. Transformation of Streptomyces avermitilis by mutant plasmid library

本例选用了阿维链霉菌(Streptomyces avermitilis)ZLX6003 CGMCC 3229作为出发菌株,ZLX6003已于2009年08月18日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:中国北京市朝阳区北辰西路1号院3号)。ZLX6003是通过传统育种方法选育获得的阿维菌素高产菌株,在工业上已应用于生产,在平板上产灰色孢子。In this example, Streptomyces avermitilis (Streptomyces avermitilis) ZLX6003 CGMCC 3229 was selected as the starting strain. ZLX6003 was preserved in the General Microorganism Center of China Committee for Culture Collection of Microorganisms (CGMCC for short, address: Beijing, China) on August 18, 2009. No. 3, Courtyard No. 1, Beichen West Road, Chaoyang District). ZLX6003 is a high-yielding avermectin strain obtained through traditional breeding methods, which has been applied in industry and produces gray spores on plates.

制备阿维链霉菌菌株ZLX6003的原生质体,用步骤一中从E.coliET12567(pUZ8002)中提取的各个质粒(pZY126*、pZY126和pSET152)转化出发菌株ZLX6003的原生质体,涂于已吹干的不加抗生素的RM 14平板上,28℃培养16-20h后,在平板上覆盖1mL含1mg安普霉素的水溶液,在28℃继续培养7-10天,长出的菌落即为转化子。随机挑取菌落形态均匀的转化子,接种于含20ug/mL安普霉素的MS平板上,28℃培养7天恢复产袍。转化子经质粒提取及PCR验证正确后,进行下一步的发酵研究。Prepare the protoplasts of Streptomyces avermitilis strain ZLX6003, use each plasmid (pZY126*, pZY126 and pSET152) extracted from E.coliET12567 (pUZ8002) in step 1 to transform the protoplasts of the starting bacterial strain ZLX6003, apply to the dried Add antibiotics on the RM 14 plate, culture at 28°C for 16-20h, cover the plate with 1mL aqueous solution containing 1mg of apramycin, continue to culture at 28°C for 7-10 days, and the grown colony is the transformant. Randomly pick transformants with uniform colony morphology, inoculate on MS plates containing 20ug/mL apramycin, and culture at 28°C for 7 days to restore production. After the transformant was verified to be correct by plasmid extraction and PCR, the next step of fermentation research was carried out.

本实施例中大肠杆菌的转化、阿维链霉菌原生质体的制备及转化方法、RM 14及MS培养基的配制参见张晓琳的博士论文(张晓琳.阿维链霉菌中聚酮合酶基因的遗传改造.博士学位论文,2004,北京:中国农业大学)。In this embodiment, the transformation of Escherichia coli, the preparation and transformation method of Streptomyces avermitilis protoplasts, and the preparation of RM 14 and MS medium refer to Zhang Xiaolin's doctoral thesis (Zhang Xiaolin. Genetic modification of polyketide synthase gene in Streptomyces avermitilis) .PhD Dissertation, 2004, Beijing: China Agricultural University).

实施例4、转化子的发酵Embodiment 4, the fermentation of transformant

一、ZLX6003及其转化子的发酵及产量分析1. Fermentation and yield analysis of ZLX6003 and its transformants

1、阿维链霉菌的高通量筛选1. High-throughput screening of Streptomyces avermitilis

阿维链霉菌出发菌株ZLX6003及其不同的转化子在斜面培养基上长出丰富的孢子后,对阿维链霉菌转化子的阿维菌素产量水平进行测试,采用高通量筛选方法进行初筛(Gao H,Liu M,Zhou X et al.Identification of avermectin-high-producing strains byhigh-throughput screening methods.Appl Microbiol Biotechnol,2009,85:1219-1225.)After the original strain ZLX6003 of Streptomyces avermitilis and its different transformants grow abundant spores on the slant medium, the abamectin production level of the Streptomyces avermitilis transformants was tested, and a high-throughput screening method was used for preliminary screening. Screening (Gao H, Liu M, Zhou X et al. Identification of avermectin-high-producing strains by high-throughput screening methods. Appl Microbiol Biotechnol, 2009, 85: 1219-1225.)

初筛得到的产量提高的菌株选作摇瓶发酵进行验证,挖取斜面菌苔1cm2,将其接入装有40mL灭过菌的种子培养基的种子瓶,28℃摇床培养44-48小时,转速200rpm,旋转半径为50mm,得到种子培养液。取上述种子培养液按5%(体积百分比)的接种量接种于装有30mL灭过菌的发酵培养基的三角瓶中,28℃摇床培养10天,放瓶,用HPLC法测定阿维菌素的发酵单位,具体HPLC分析如下述的步骤2所述。The strains with improved yield obtained from the primary screening were selected as shake flask fermentation for verification, and 1 cm 2 of the slant lawn was excavated, inserted into a seed bottle containing 40 mL of sterilized seed medium, and cultured on a shaker at 28°C for 44-48 hours, the rotation speed is 200 rpm, and the rotation radius is 50 mm to obtain the seed culture solution. Get above-mentioned seed culture solution and inoculate in the Erlenmeyer flask that 30mL sterilized fermentation medium is housed by the inoculation amount of 5% (percentage by volume), 28 ℃ of shaker cultures 10 days, put bottle, measure Avermella with HPLC method The fermentation unit of element, specific HPLC analysis is as described in the following step 2.

本实施例中斜面培养基,种子培养基和发酵培养基的配制参见已有专利(No.200810227639.8,一种制备阿维菌素的方法及其专用菌株)。For the preparation of the slant medium, seed medium and fermentation medium in this example, refer to the existing patent (No. 200810227639.8, a method for preparing abamectin and its special strain).

2、发酵产物的HPLC分析2. HPLC analysis of fermentation products

1)样品处理:取1.0mL发酵液,加入9.0mL甲醇,以200rpm的速度(旋转半径为50mm)振摇6小时,以8000rpm的速度离心5min;1) Sample treatment: take 1.0 mL of fermentation broth, add 9.0 mL of methanol, shake at a speed of 200 rpm (rotation radius is 50 mm) for 6 hours, and centrifuge at a speed of 8000 rpm for 5 min;

2)取1mL上清,用0.45um的微孔滤膜过滤,获得滤液进行HPLC分析。2) Take 1 mL of the supernatant, filter it with a 0.45um microporous membrane, and obtain the filtrate for HPLC analysis.

3)取步骤1的发酵滤液,自动进样器进样,进样量10ul;3) Take the fermentation filtrate in step 1, inject it into an autosampler, and the injection volume is 10ul;

以甲醇∶水(体积比为9∶1)为流动相进行分离,流速为1mL/min,利用UV检测器在波长245nm处检测并自动形成分离图谱;在此色谱条件下,阿维菌素B1a标准品(DR,Germany)的保留时间为6分钟左右。计算发酵滤液中保留时间为6分钟左右处的洗脱峰面积,计算阿维菌素B1a的量。实验设3次重复,结果取平均数。Carry out separation with methanol: water (volume ratio is 9: 1) as mobile phase, and flow velocity is 1mL/min, utilizes UV detector to detect and form separation spectrum automatically at wavelength 245nm place; Under this chromatographic condition, Abamectin B1a The retention time of the standard (DR, Germany) is about 6 minutes. Calculate the retention time in the fermentation filtrate as the elution peak area at about 6 minutes, and calculate the amount of Abamectin B1a. The experiment was repeated 3 times, and the results were averaged.

图3的发酵结果表明,对照质粒pZY126(图中以pSET152-hrdB表示)和空白对照质粒pSET152的转化出发菌株ZLX6003后的阿维菌素产量与出发菌株ZLX6003的阿维菌素的产量没有显著性差异;而上述产量提高的菌株(含有突变hrdB基因的转化子)的阿维菌素的产量较原出发菌株ZLX6003的产量增加了52%,该高产菌株作为工程菌,是阿维链霉菌(Streptomyces avermitilis)ZLX6056 CGMCC №.3796,已于2010年5月4日保藏于中国微生物菌种保藏管委理员会普通微生物中心,保藏号为CGMCCNo.3796。The fermentation result of Fig. 3 shows, the avermectin production after the transformation of control plasmid pZY126 (represented by pSET152-hrdB among the figure) and blank control plasmid pSET152 starting strain ZLX6003 and the output of abamectin of starting bacterial strain ZLX6003 have no significance difference; and the output of the avermectin of the bacterial strain (containing the transformant of the mutant hrdB gene) that the above-mentioned output improves has increased by 52% compared with the output of the original bacterial strain ZLX6003, and this high-yielding bacterial strain is as engineering bacterium, is Streptomyces avermitilis (Streptomyces avermitilis) ZLX6056 CGMCC №.3796, has been preserved in the General Microbiology Center of China Microbiological Culture Collection Management Committee on May 4, 2010, and the preservation number is CGMCCNo.3796.

二、重组菌株中的突变hrdB基因测序及序列分析以及对阿维菌素产量影响的验证2. Sequencing and sequence analysis of the mutant hrdB gene in the recombinant strain and verification of its impact on the production of abamectin

1、突变hrdB基因的测序和序列分析1. Sequencing and sequence analysis of the mutant hrdB gene

提取工程菌ZLX6056的基因组DNA,用PstI进行完全酶切,并经乙醇沉淀纯化酶切片段后自连,将自连产物转化大肠杆菌感受态细胞,涂布到含有安普霉素抗性的LB平板,37℃培养至出现白色菌落。挑取单菌落培养后提取质粒DNA,经XbaI和EcoRI酶切后回收2.3kb的含启动子在内的突变hrdB基因片段,将该2.3kb的基因片段和经同样酶切的载体pUC18连接后转化大肠杆菌DH5α感受态细胞,涂布到含有氨苄青霉素抗性的LB平板,37℃培养至出现白色菌落。挑取单菌落培养后提取质粒DNA,经酶切验证后送北京华大公司进行测序。测序结果表明,该2.3kb的基因片段的核苷酸序列如序列表中序列5所示。其中序列5的自5’末端的第658-2197位所示的核苷酸序列与序列表中序列3一致,是突变后的hrdB基因的序列,可编码序列表中序列4所示的突变后的hrdB蛋白。The genomic DNA of engineering bacteria ZLX6056 was extracted, digested completely with PstI, purified by ethanol precipitation, and then self-ligated. The self-ligated product was transformed into E. coli competent cells, and spread to LB containing apramycin resistance. Plates were cultured at 37°C until white colonies appeared. Pick a single colony and culture it to extract the plasmid DNA, digest it with XbaI and EcoRI and recover the 2.3kb mutant hrdB gene fragment including the promoter, connect the 2.3kb gene fragment with the vector pUC18 that has been digested with the same enzyme and transform it Escherichia coli DH5α competent cells were spread onto LB plates containing ampicillin resistance and cultured at 37°C until white colonies appeared. After picking a single colony and culturing it, the plasmid DNA was extracted, and after verification by enzyme digestion, it was sent to Beijing Huada Company for sequencing. Sequencing results showed that the nucleotide sequence of the 2.3 kb gene fragment was shown as sequence 5 in the sequence listing. Wherein the nucleotide sequence shown in the 658-2197th position from the 5' end of the sequence 5 is consistent with the sequence 3 in the sequence list, which is the sequence of the mutated hrdB gene, and can encode the mutated gene shown in the sequence 4 in the sequence list hrdB protein.

针对序列4所示的突变后的HrdB蛋白与序列2所示的突变前的HrdB蛋白进行序列进行比对并对分析其保守的功能结构域。结果如图4所示,突变前后的蛋白序列,全长均为512AA。在突变位点集中在1.1和2.4区。在突变后的hrdB蛋白中存在6个点突变,分别为A137S,K139E,E163G,M356V,V357A,and M389I。文献报道2.4区主要负责基因的启动子-10区的结合,稳定性非常高,而在工程菌ZLX6056中存在2个点突变。结果进一步表明,工程菌ZLX6056中增加一个拷贝的突变hrdB基因,影响了阿维菌素生物合成相关途径的基因表达水平,从而使得阿维菌素产量得到提高。Sequence alignment was performed between the mutated HrdB protein shown in sequence 4 and the pre-mutated HrdB protein shown in sequence 2, and their conserved functional domains were analyzed. The results are shown in Figure 4, the full length of the protein sequence before and after the mutation is 512AA. The mutation sites were concentrated in regions 1.1 and 2.4. There are six point mutations in the mutated hrdB protein, namely A137S, K139E, E163G, M356V, V357A, and M389I. It is reported in the literature that the 2.4 region is mainly responsible for the combination of the promoter-10 region of the gene, and its stability is very high, while there are 2 point mutations in the engineering bacteria ZLX6056. The results further showed that the addition of a copy of the mutant hrdB gene in the engineering bacteria ZLX6056 affected the gene expression level of the biosynthesis-related pathways of abamectin, thereby increasing the production of abamectin.

2、突变hrdB片段对阿维菌素产量影响的验证2. Verification of the influence of the mutated hrdB fragment on the production of abamectin

1)重组表达载体的构建1) Construction of recombinant expression vector

将步骤1中回收的2.3kb的含启动子在内的突变hrdB基因片段和经XbaI、EcoRI双酶切后的载体pSET152(记载过该材料的非专利文献是Bierman M,Logan R,O′BrienK,et al.Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli toStreptomyces spp.Gene,1992,116:43-49),公众可从中科院微生物研究所获得)连接,得到重组表达载体。然后将该重组表达载体转化大肠杆菌E.coli ET12567(记载过该材料的非专利文献是MacNeil DJ,Gewain KM,Ruby CL,et al(1992)Analysis ofStreptomyces avermitilis genes required for avermectin biosynthesis utilizing a novelintegration vector.Gene 111:61-68.,公众可从中科院微生物研究所获得)感受态细胞,涂布到含有氯霉素、卡那霉素和安普霉素抗性的LB平板,37℃培养至出现白色菌落。挑取单菌落培养后提取质粒DNA,经酶切验证后进一步测序,表明得到的重组表达载体是序列表中序列5所述的DNA片段插入到pSET152的XbaI和EcoRI酶切位点之间构成的。The mutated hrdB gene fragment containing the promoter of 2.3kb recovered in step 1 and the carrier pSET152 after XbaI and EcoRI double digestion (the non-patent literature that has recorded this material is Bierman M, Logan R, O'Brien K , et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992, 116: 43-49), the public can obtain from the Institute of Microbiology, Chinese Academy of Sciences) to obtain a recombinant expression vector. Then transform the recombinant expression vector into Escherichia coli E.coli ET12567 (the non-patent literature that recorded this material is MacNeil DJ, Gewain KM, Ruby CL, et al (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61-68., the public can obtain from the Institute of Microbiology, Chinese Academy of Sciences) Competent cells were spread on LB plates containing chloramphenicol, kanamycin and apramycin resistance, and cultured at 37°C until white colony. The plasmid DNA was extracted after picking a single colony for culture, and further sequenced after enzyme digestion verification, indicating that the obtained recombinant expression vector was formed by inserting the DNA fragment described in Sequence 5 in the sequence listing between the XbaI and EcoRI restriction sites of pSET152 .

2)转化阿维链霉菌ZLX6003菌株并进行发酵2) transform Streptomyces avermitilis ZLX6003 bacterial strain and carry out fermentation

将步骤1)获得的重组表达载体转化到阿维链霉菌ZLX6003菌株的原生质体,涂于已吹干的不加抗生素的RM 14平板上,28℃培养16-20h后,在平板上覆盖1mL含1mg安普霉素的水溶液,在28℃继续培养7-10天,长出的菌落即为转化子。随机挑取菌落形态均匀的转化子,接种于含20ug/mL安普霉素的MS平板上,28℃培养7天恢复产袍。。PCR验证正确的转化子命名为pZY148-hrdBZLX6056,然后随机挑选5个PCR验证过的转化子,经实施例4中步骤一步骤2的方法进行发酵。Transform the recombinant expression vector obtained in step 1) into the protoplasts of Streptomyces avermitilis ZLX6003 strain, apply it on the dried RM 14 plate without antibiotics, and after culturing at 28°C for 16-20h, cover the plate with 1mL containing The aqueous solution of 1 mg of apramycin was continued to culture at 28° C. for 7-10 days, and the grown colonies were transformants. Randomly pick transformants with uniform colony morphology, inoculate on MS plates containing 20ug/mL apramycin, and culture at 28°C for 7 days to restore production. . The correct transformants verified by PCR were named pZY148-hrdB ZLX6056 , and then 5 transformants verified by PCR were randomly selected and fermented by the method of Step 1 and Step 2 in Example 4.

同时将载体pSET152转化到阿维链霉菌ZLX6003菌株的原生质体,得到空载体对照菌株。At the same time, the vector pSET152 was transformed into the protoplast of Streptomyces avermitilis ZLX6003 strain to obtain an empty vector control strain.

然后将空载体对照菌株、出发菌株ZLX6003和工程菌ZLX6056同样进行上述的发酵培养。Then, the empty vector control strain, the starting strain ZLX6003 and the engineering strain ZLX6056 were also subjected to the above-mentioned fermentation culture.

发酵实验重复3次,结果如表2(以出发菌株ZLX6003发酵240小时后的B1a产量定为100%)所示,重组菌pZY148-hrdBZLX6056发酵240小时后可达148.23%,能够恢复工程菌ZLX6056的生长和产量特性,而空载体对照菌株的产量与出发菌株ZLX6003的B1a产量没有显著性差异。The fermentation experiment was repeated 3 times, and the results are shown in Table 2 (the B1a yield of the starting strain ZLX6003 after 240 hours of fermentation is defined as 100%). After 240 hours of fermentation, the recombinant strain pZY148-hrdB ZLX6056 can reach 148.23%, which can restore the engineering strain ZLX6056 The growth and yield characteristics of the empty vector control strain and the B1a yield of the starting strain ZLX6003 had no significant difference.

由此可以确定序列表中序列3所示的突变后的hrdB基因能够提高阿维菌素产量。Therefore, it can be determined that the mutated hrdB gene shown in sequence 3 in the sequence listing can increase the production of abamectin.

表2、突变后的hrdB基因的功能验证Table 2. Functional verification of the mutated hrdB gene

Figure GSA00000123533100111
Figure GSA00000123533100111

实施例5、工程菌株遗传稳定性检测Embodiment 5, engineering strain genetic stability detection

将本发明工程菌株ZLX6056进行斜面传代,共传5代,28℃培养至生长出旺盛孢子后(约12~15天),每代培养得到的菌均按照实施例4步骤一步骤1中的摇瓶发酵方法进行发酵,按实施例4步骤一步骤2中所述方法进行发酵和提取,并计算菌株生产阿维菌素B1a的能力。实验设3次重复,结果取平均数。结果表明本发明的工程菌株ZLX6056在5次传代后,生产能力还能保持原来水平,表明本发明工程菌株ZLX6056的遗传稳定性好。The engineering bacterial strain ZLX6056 of the present invention is carried out slant passaging, passes on altogether 5 generations, after 28 ℃ cultivates to grow vigorous spore (about 12~15 days), the bacterium obtained in each generation culture all according to embodiment 4 step-step 1 shake Bottle fermentation method is fermented, carries out fermentation and extraction by the method described in embodiment 4 step-step 2, and calculates the ability of bacterial strain production Abamectin B1a. The experiment was repeated 3 times, and the results were averaged. The results show that the production capacity of the engineering strain ZLX6056 of the present invention can still maintain the original level after 5 passages, indicating that the engineering strain ZLX6056 of the present invention has good genetic stability.

实施例6、工程菌株的发酵放大Embodiment 6, the fermentation enlargement of engineering bacterial strain

本实施例比较了出发菌株ZLX6003和含有突变后的hrdB基因的工程菌株ZLX6056在180吨发酵罐上的阿维菌素产素能力,发酵过程中间歇取样对阿维菌素产量的变化情况进行分析。This embodiment compares the abamectin production capacity of the starting strain ZLX6003 and the engineering strain ZLX6056 containing the mutated hrdB gene on a 180-ton fermenter, and intermittent sampling during the fermentation process analyzes the changes in the avermectin output .

其中发酵步骤如下:Wherein the fermentation steps are as follows:

在投料池中按配方配制发酵培养基并调pH,将配制好的培养基泵入到180m3的发酵罐中,复调pH后,121℃~130℃灭菌30分钟~1小时,灭菌完毕后冷却至28度,复调pH后备用。将培养至对数期的种子,在无菌情况下将10m3(±20%)左右种子液泵入上述灭过菌的发酵罐中,启动发酵培养程序,28~29℃培养,控制DO在50%左右,pH控制在7.8左右,搅拌速度前期为0~100rpm,24h以后为100~200rpm,72小时后约为200~300rpm。定期检测菌丝生长及产素情况,发酵罐运行约312小时后放罐。Prepare the fermentation medium according to the formula in the feeding tank and adjust the pH, pump the prepared medium into the 180m 3 fermenter, after readjusting the pH, sterilize at 121℃~130℃ for 30 minutes to 1 hour, and then sterilize Cool to 28 degrees after completion, readjust the pH and set aside. For the seeds cultivated to the logarithmic phase, pump about 10m 3 (±20%) of the seed liquid into the above-mentioned sterilized fermenter under sterile conditions, start the fermentation and cultivation program, cultivate at 28-29°C, and control DO at About 50%, the pH is controlled at about 7.8, the stirring speed is 0-100rpm in the early stage, 100-200rpm after 24 hours, and about 200-300rpm after 72 hours. The growth of mycelia and the production of factors are regularly detected, and the fermenter is put into operation after about 312 hours.

本实施例中种子培养基和发酵培养基的配制参见已有专利(No.200810227639.8,一种制备阿维菌素的方法及其专用菌株)。See the existing patent (No. 200810227639.8, a method for preparing abamectin and its special strain) for the preparation of the seed medium and the fermentation medium in this example.

结果如图5所示,工程菌株ZLX6056在大规模发酵罐上在200小时后仍然能够保持产量增长的优势,在312小时的时候本发明工程菌株生产阿维菌素B1a的能力达到6382μg/ml发酵液,较出发菌株ZLX6003菌株(4167μg/ml)的产素能力提高53.1%。Result as shown in Figure 5, engineering strain ZLX6056 can still maintain the advantage of output growth after 200 hours on large-scale fermentor, and the ability of engineering strain of the present invention to produce abamectin B1a reaches 6382 μ g/ml fermentation in 312 hours solution, compared with the original strain ZLX6003 strain (4167μg/ml), the ability to produce 53.1% increased.

序列表sequence listing

<110>中国科学院微生物研究所<110>Institute of Microbiology, Chinese Academy of Sciences

<120>一种生产阿维菌素的基因工程方法及其专用菌株<120>A genetic engineering method for producing avermectin and its special strain

<130>CGGNARL102312<130>CGGNARL102312

<160>5<160>5

<210>1<210>1

<211>1539<211>1539

<212>DNA<212>DNA

<213>阿维链霉菌(Streptomyces avermitilis)<213> Streptomyces avermitilis

<400>1<400>1

gtgtcggcca gcacatcccg tacgctcccg ccggagatcg ccgagtccgt ctctgtcatg   60gtgtcggcca gcacatcccg tacgctcccg ccggagatcg ccgagtccgt ctctgtcatg 60

gcgctcatcg agcggggaaa ggctgagggg cagatcgccg gcgatgacgt gcgtcgggcc  120gcgctcatcg agcggggaaa ggctgagggg cagatcgccg gcgatgacgt gcgtcgggcc 120

ttcgaagctg accagattcc ggccactcag tggaagaacg tactgcgcag cctcaaccag  180ttcgaagctg accagattcc ggccactcag tggaagaacg tactgcgcag cctcaaccag 180

atcctcgagg aagagggtgt gacgctgatg gtcagtgccg cggagcccaa gcgcacccga  240atcctcgagg aagagggtgt gacgctgatg gtcagtgccg cggagcccaa gcgcacccga 240

aagagcgtcg cagcgaagag tccggccaag cgcaccgcca ccaagaccgt cgcggcgaag  300aagagcgtcg cagcgaagag tccggccaag cgcaccgcca ccaagaccgt cgcggcgaag 300

acggtgactg ccaagaaggc gaccgccacc gccgccccgg ctgtgcccgt cggcgacgat  360acggtgactg ccaagaaggc gaccgccacc gccgccccgg ctgtgcccgt cggcgacgat 360

ccggctgagg acgcgtccgc caagaaggca gctgccaaga agacgaccgc caagaaggcg  420ccggctgagg acgcgtccgc caagaaggca gctgccaaga agacgaccgc caagaaggcg 420

gtcgcgaaga agaccgtcgc caagaagacg gcggccaaga agaccaccgg caagaaggac  480gtcgcgaaga agaccgtcgc caagaagacg gcggccaaga agaccaccgg caagaaggac 480

gacgtcgagc tgctcgacga cgaggcggtc gaggagaccg ctgcacccgg caaggccggc  540gacgtcgagc tgctcgacga cgaggcggtc gaggagaccg ctgcacccgg caaggccggc 540

gaggagcccg agggcaccga gaacgccggc ttcgtactct ccgacgagga cgaggacgac  600gaggagcccg agggcaccga gaacgccggc ttcgtactct ccgacgagga cgaggacgac 600

gcgcccgcgc agcaggtcgc cgcggccggt gccaccgccg acccggtcaa ggactacctc  660gcgcccgcgc agcaggtcgc cgcggccggt gccaccgccg acccggtcaa ggactacctc 660

aagcagatcg gcaaggtccc cctgctcaac gccgagcagg aggtcgagct cgccaagcgc  720aagcagatcg gcaaggtccc cctgctcaac gccgagcagg aggtcgagct cgccaagcgc 720

atcgaggcgg gcctcttcgc cgaggacaag ctggccaacg ccgacaagct tgcccccaag  780atcgaggcgg gcctcttcgc cgaggacaag ctggccaacg ccgacaagct tgcccccaag 780

ctcaagcgcg agctggagat catcgccgag gacggccgcc gcgccaagaa ccacctcctg  840ctcaagcgcg agctggagat catcgccgag gacggccgcc gcgccaagaa ccacctcctg 840

gaggccaacc tccgtctggt ggtctccctg gccaagcgct acaccggccg cggcatgctc   900gaggccaacc tccgtctggt ggtctccctg gccaagcgct acaccggccg cggcatgctc 900

ttcctggacc tcatccagga gggcaacctc ggtctgatcc gcgcggtgga gaagttcgac   960ttcctggacc tcatccagga gggcaacctc ggtctgatcc gcgcggtgga gaagttcgac 960

tacaccaagg gctacaagtt ctccacgtac gccacctggt ggatccgtca ggcgatcacc  1020tacaccaagg gctacaagtt ctccacgtac gccacctggt ggatccgtca ggcgatcacc 1020

cgcgccatgg ccgaccaggc ccgcaccatc cgtatcccgg tgcacatggt cgaggtcatc  1080cgcgccatgg ccgaccaggc ccgcaccatc cgtatcccgg tgcacatggt cgaggtcatc 1080

aacaagctcg cgcgcgtgca gcgtcagatg ctccaggacc tgggccgtga gcccaccccg  1140aacaagctcg cgcgcgtgca gcgtcagatg ctccaggacc tgggccgtga gcccaccccg 1140

gaggagctgg ccaaggagct cgacatgacc cctgagaagg tcatcgaggt ccagaagtac  1200gaggagctgg ccaaggagct cgacatgacc cctgagaagg tcatcgaggt ccagaagtac 1200

ggccgtgagc ccatctcgct gcacaccccg ctgggtgagg acggtgacag cgagttcggt  1260ggccgtgagc ccatctcgct gcacaccccg ctgggtgagg acggtgacag cgagttcggt 1260

gacctcatcg aggactccga ggccgtcgtc ccggccgacg cggtcagctt cacgctcctc  1320gacctcatcg aggactccga ggccgtcgtc ccggccgacg cggtcagctt cacgctcctc 1320

caggagcagc tgcactctgt cctcgacacc ctgtcggagc gcgaggcggg cgtcgtctcg  1380caggagcagc tgcactctgt cctcgacacc ctgtcggagc gcgaggcggg cgtcgtctcg 1380

atgcgcttcg gtctcaccga cggtcagccg aagactctcg acgagatcgg caaggtgtac  1440atgcgcttcg gtctcaccga cggtcagccg aagactctcg acgagatcgg caaggtgtac 1440

ggcgtgacgc gtgagcgcat ccgccagatc gagtccaaga cgatgtcgaa gctgcgtcac  1500ggcgtgacgc gtgagcgcat ccgccagatc gagtccaaga cgatgtcgaa gctgcgtcac 1500

ccgtcgcgtt cgcaggtgct gcgcgactac ctcgactag                         1539ccgtcgcgtt cgcaggtgct gcgcgactac ctcgactag 1539

<210>2<210>2

<211>512<211>512

<212>PRT<212>PRT

<213>阿维链霉菌(Streptomyces avermitilis)<213> Streptomyces avermitilis

<400>2<400>2

Val Ser Ala Ser Thr Ser Arg Thr Leu Pro Pro Glu Ile Ala Glu SerVal Ser Ala Ser Thr Ser Arg Thr Leu Pro Pro Glu Ile Ala Glu Ser

1               5                   10                  151 5 10 15

Val Ser Val Met Ala Leu Ile Glu Arg Gly Lys Ala Glu Gly Gln IleVal Ser Val Met Ala Leu Ile Glu Arg Gly Lys Ala Glu Gly Gln Ile

            20                  25                  3020 25 30

Ala Gly Asp Asp Val Arg Arg Ala Phe Glu Ala Asp Gln Ile Pro AlaAla Gly Asp Asp Val Arg Arg Ala Phe Glu Ala Asp Gln Ile Pro Ala

        35                  40                  4535 40 45

Thr Gln Trp Lys Asn Val Leu Arg Ser Leu Asn Gln Ile Leu Glu GluThr Gln Trp Lys Asn Val Leu Arg Ser Leu Asn Gln Ile Leu Glu Glu

    50                  55                  6050 55 60

Glu Gly Val Thr Leu Met Val Ser Ala Ala Glu Pro Lys Arg Thr ArgGlu Gly Val Thr Leu Met Val Ser Ala Ala Glu Pro Lys Arg Thr Arg

65                  70                  75                  8065 70 75 80

Lys Ser Val Ala Ala Lys Ser Pro Ala Lys Arg Thr Ala Thr Lys ThrLys Ser Val Ala Ala Lys Ser Pro Ala Lys Arg Thr Ala Thr Lys Thr

                85                  90                  9585 90 95

Val Ala Ala Lys Thr Val Thr Ala Lys Lys Ala Thr Ala Thr Ala AlaVal Ala Ala Lys Thr Val Thr Ala Lys Lys Ala Thr Ala Thr Ala Ala

            100                 105                 110100 105 110

Pro Ala Val Pro Val Gly Asp Asp Pro Ala Glu Asp Ala Ser Ala LysPro Ala Val Pro Val Gly Asp Asp Pro Ala Glu Asp Ala Ser Ala Lys

        115                 120                 125115 120 125

Lys Ala Ala Ala Lys Lys Thr Thr Ala Lys Lys Ala Val Ala Lys LysLys Ala Ala Ala Lys Lys Thr Thr Ala Lys Lys Ala Val Ala Lys Lys

    130                 135                 140130 135 140

Thr Val Ala Lys Lys Thr Ala Ala Lys Lys Thr Thr Gly Lys Lys AspThr Val Ala Lys Lys Thr Ala Ala Lys Lys Thr Thr Gly Lys Lys Asp

145                 150                 155                 160145 150 155 160

Asp Val Glu Leu Leu Asp Asp Glu Ala Val Glu Glu Thr Ala Ala ProAsp Val Glu Leu Leu Asp Asp Glu Ala Val Glu Glu Thr Ala Ala Pro

                165                 170                 175165 170 175

Gly Lys Ala Gly Glu Glu Pro Glu Gly Thr Glu Asn Ala Gly Phe ValGly Lys Ala Gly Glu Glu Pro Glu Gly Thr Glu Asn Ala Gly Phe Val

            180                 185                 190180 185 190

Leu Ser Asp Glu Asp Glu Asp Asp Ala Pro Ala Gln Gln Val Ala AlaLeu Ser Asp Glu Asp Glu Asp Asp Ala Pro Ala Gln Gln Val Ala Ala

        195                 200                 205195 200 205

Ala Gly Ala Thr Ala Asp Pro Val Lys Asp Tyr Leu Lys Gln Ile GlyAla Gly Ala Thr Ala Asp Pro Val Lys Asp Tyr Leu Lys Gln Ile Gly

    210                 215                 220210 215 220

Lys Val Pro Leu Leu Asn Ala Glu Gln Glu Val Glu Leu Ala Lys ArgLys Val Pro Leu Leu Asn Ala Glu Gln Glu Val Glu Leu Ala Lys Arg

225                 230                 235                 240225 230 235 240

Ile Glu Ala Gly Leu Phe Ala Glu Asp Lys Leu Ala Asn Ala Asp LysIle Glu Ala Gly Leu Phe Ala Glu Asp Lys Leu Ala Asn Ala Asp Lys

                245                 250                 255245 250 255

Leu Ala Pro Lys Leu Lys Arg Glu Leu Glu Ile Ile Ala Glu Asp GlyLeu Ala Pro Lys Leu Lys Arg Glu Leu Glu Ile Ile Ala Glu Asp Gly

            260                 265                 270260 265 270

Arg Arg Ala Lys Asn His Leu Leu Glu Ala Asn Leu Arg Leu Val ValArg Arg Ala Lys Asn His Leu Leu Glu Ala Asn Leu Arg Leu Val Val

        275                 280                 285275 280 285

Ser Leu Ala Lys Arg Tyr Thr Gly Arg Gly Met Leu Phe Leu Asp LeuSer Leu Ala Lys Arg Tyr Thr Gly Arg Gly Met Leu Phe Leu Asp Leu

    290                 295                 300290 295 300

Ile Gln Glu Gly Asn Leu Gly Leu Ile Arg Ala Val Glu Lys Phe AspIle Gln Glu Gly Asn Leu Gly Leu Ile Arg Ala Val Glu Lys Phe Asp

305                 310                 315                 320305 310 315 320

Tyr Thr Lys Gly Tyr Lys Phe Ser Thr Tyr Ala Thr Trp Trp Ile ArgTyr Thr Lys Gly Tyr Lys Phe Ser Thr Tyr Ala Thr Trp Trp Ile Arg

                325                 330                 335325 330 335

Gln Ala Ile Thr Arg Ala Met Ala Asp Gln Ala Arg Thr Ile Arg IleGln Ala Ile Thr Arg Ala Met Ala Asp Gln Ala Arg Thr Ile Arg Ile

            340                 345                 350340 345 350

Pro Val His Met Val Glu Val Ile Asn Lys Leu Ala Arg Val Gln ArgPro Val His Met Val Glu Val Ile Asn Lys Leu Ala Arg Val Gln Arg

        355                 360                 365355 360 365

Gln Met Leu Gln Asp Leu Gly Arg Glu Pro Thr Pro Glu Glu Leu AlaGln Met Leu Gln Asp Leu Gly Arg Glu Pro Thr Pro Glu Glu Leu Ala

    370                 375                 380370 375 380

Lys Glu Leu Asp Met Thr Pro Glu Lys Val Ile Glu Val Gln Lys TyrLys Glu Leu Asp Met Thr Pro Glu Lys Val Ile Glu Val Gln Lys Tyr

385                 390                 395                 400385 390 395 400

Gly Arg Glu Pro Ile Ser Leu His Thr Pro Leu Gly Glu Asp Gly AspGly Arg Glu Pro Ile Ser Leu His Thr Pro Leu Gly Glu Asp Gly Asp

                405                 410                 415405 410 415

Ser Glu Phe Gly Asp Leu Ile Glu Asp Ser Glu Ala Val Val Pro AlaSer Glu Phe Gly Asp Leu Ile Glu Asp Ser Glu Ala Val Val Pro Ala

            420                 425                 430420 425 430

Asp Ala Val Ser Phe Thr Leu Leu Gln Glu Gln Leu His Ser Val LeuAsp Ala Val Ser Phe Thr Leu Leu Gln Glu Gln Leu His Ser Val Leu

        435                 440                 445435 440 445

Asp Thr Leu Ser Glu Arg Glu Ala Gly Val Val Ser Met Arg Phe GlyAsp Thr Leu Ser Glu Arg Glu Ala Gly Val Val Ser Met Arg Phe Gly

    450                 455                 460450 455 460

Leu Thr Asp Gly Gln Pro Lys Thr Leu Asp Glu Ile Gly Lys Val TyrLeu Thr Asp Gly Gln Pro Lys Thr Leu Asp Glu Ile Gly Lys Val Tyr

465                 470                 475                 480465 470 475 480

Gly Val Thr Arg Glu Arg Ile Arg Gln Ile Glu Ser Lys Thr Met SerGly Val Thr Arg Glu Arg Ile Arg Gln Ile Glu Ser Lys Thr Met Ser

                485                 490                 495485 490 495

Lys Leu Arg His Pro Ser Arg Ser Gln Val Leu Arg Asp Tyr Leu AspLys Leu Arg His Pro Ser Arg Ser Gln Val Leu Arg Asp Tyr Leu Asp

            500                 505                 510500 505 510

<210>3<210>3

<211>1539<211>1539

<212>DNA<212> DNA

<213>阿维链霉菌(Streptomyces avermitilis)<213> Streptomyces avermitilis

<400>3<400>3

gtgtcggcca gcacatcccg tacgctcccg ccggagatcg ccgagtccgt ctctgtcatg     60gtgtcggcca gcacatcccg tacgctcccg ccggagatcg ccgagtccgt ctctgtcatg 60

gcgctcatcg agcggggaaa ggctgagggg cagatcgccg gcgatgacgt gcgtcgggcc    120gcgctcatcg agcggggaaa ggctgagggg cagatcgccg gcgatgacgt gcgtcgggcc 120

ttcgaagctg accagattcc ggccactcag tggaagaacg tactgcgcag cctcaaccag    180ttcgaagctg accagattcc ggccactcag tggaagaacg tactgcgcag cctcaaccag 180

atcctcgagg aagagggtgt gacgctgatg gtcagtgccg cggagcccaa gcgcacccga    240atcctcgagg aagagggtgt gacgctgatg gtcagtgccg cggagcccaa gcgcacccga 240

aagagcgtcg cagcgaagag tccggccaag cgcaccgcca ccaagaccgt cgcggcgaag    300aagagcgtcg cagcgaagag tccggccaag cgcaccgcca ccaagaccgt cgcggcgaag 300

acggtgactg ccaagaaggc gaccgccacc gccgccccgg ctgtgcccgt cggcgacgat    360acggtgactg ccaagaaggc gaccgccacc gccgccccgg ctgtgcccgt cggcgacgat 360

ccggctgagg acgcgtccgc caagaaggca gctgccaaga agacgacctc caaggaggcg    420ccggctgagg acgcgtccgc caagaaggca gctgccaaga agacgacctc caaggaggcg 420

gtcgcgaaga agaccgtcgc caagaagacg gcggccaaga agaccaccgg caagaaggac    480gtcgcgaaga agaccgtcgc caagaagacg gcggccaaga agaccaccgg caagaaggac 480

gacgtcgggc tgctcgacga cgaggcggtc gaggagaccg ctgcacccgg caaggccggc    540gacgtcgggc tgctcgacga cgaggcggtc gaggagaccg ctgcacccgg caaggccggc 540

gaggagcccg agggcaccga gaacgccggc ttcgtactct ccgacgagga cgaggacgac    600gaggagcccg agggcaccga gaacgccggc ttcgtactct ccgacgagga cgaggacgac 600

gcgcccgcgc agcaggtcgc cgcggccggt gccaccgccg acccggtcaa ggactacctc    660gcgcccgcgc agcaggtcgc cgcggccggt gccaccgccg acccggtcaa ggactacctc 660

aagcagatcg gcaaggtccc cctgctcaac gccgagcagg aggtcgagct cgccaagcgc    720aagcagatcg gcaaggtccc cctgctcaac gccgagcagg aggtcgagct cgccaagcgc 720

atcgaggcgg gcctcttcgc cgaggacaag ctggccaacg ccgacaagct tgcccccaag    780atcgaggcgg gcctcttcgc cgaggacaag ctggccaacg ccgacaagct tgcccccaag 780

ctcaagcgcg agctggagat catcgccgag gacggccgcc gcgccaagaa ccacctcctg    840ctcaagcgcg agctggagat catcgccgag gacggccgcc gcgccaagaa ccacctcctg 840

gaggccaacc tccgtctggt ggtctccctg gccaagcgct acaccggccg cggcatgctc    900gaggccaacc tccgtctggt ggtctccctg gccaagcgct acaccggccg cggcatgctc 900

ttcctggacc tcatccagga gggcaacctc ggtctgatcc gcgcggtgga gaagttcgac    960ttcctggacc tcatccagga gggcaacctc ggtctgatcc gcgcggtgga gaagttcgac 960

tacaccaagg gctacaagtt ctccacgtac gccacctggt ggatccgtca ggcgatcacc   1020tacaccaagg gctacaagtt ctccacgtac gccacctggt ggatccgtca ggcgatcacc 1020

cgcgccatgg ccgaccaggc ccgcaccatc cgtatcccgg tgcacgtggc cgaggtcatc   1080cgcgccatgg ccgaccaggc ccgcaccatc cgtatcccgg tgcacgtggc cgaggtcatc 1080

aacaagctcg cgcgcgtgca gcgtcagatg ctccaggacc tgggccgcga gcccaccccg   1140aacaagctcg cgcgcgtgca gcgtcagatg ctccaggacc tgggccgcga gcccaccccg 1140

gaggagctgg ccaaggagct cgacattacc cctgagaagg tcatcgaggt ccagaagtac   1200gaggagctgg ccaaggagct cgacattacc cctgagaagg tcatcgaggt ccagaagtac 1200

ggccgtgagc ccatctcgct gcacaccccg ctgggtgagg acggtgacag cgagttcggt   1260ggccgtgagc ccatctcgct gcacaccccg ctgggtgagg acggtgacag cgagttcggt 1260

gacctcatcg aggactccga ggccgtcgtc ccggccgacg cggtcagctt cacgctcctc   1320gacctcatcg aggactccga ggccgtcgtc ccggccgacg cggtcagctt cacgctcctc 1320

caggagcagc tgcactctgt cctcgacacc ctgtcggagc gcgaggcggg cgtcgtctcg   1380caggagcagc tgcactctgt cctcgacacc ctgtcggagc gcgaggcggg cgtcgtctcg 1380

atgcgcttcg gtctcaccga cggtcagccg aagactctcg acgagatcgg caaggtgtac   1440atgcgcttcg gtctcaccga cggtcagccg aagactctcg acgagatcgg caaggtgtac 1440

ggcgtgacgc gtgagcgcat ccgccagatc gagtccaaga cgatgtcgaa gctgcgtcac   1500ggcgtgacgc gtgagcgcat ccgccagatc gagtccaaga cgatgtcgaa gctgcgtcac 1500

ccgtcgcgtt cgcaggtgct gcgcgactac ctcgactag                          1539ccgtcgcgtt cgcaggtgct gcgcgactac ctcgactag 1539

<210>4<210>4

<211>512<211>512

<212>PRT<212>PRT

<213>阿维链霉菌(Streptomyces avermitilis)<213> Streptomyces avermitilis

<400>4<400>4

Val Ser Ala Ser Thr Ser Arg Thr Leu Pro Pro Glu Ile Ala Glu SerVal Ser Ala Ser Thr Ser Arg Thr Leu Pro Pro Glu Ile Ala Glu Ser

1               5                   10                  151 5 10 15

Val Ser Val Met Ala Leu Ile Glu Arg Gly Lys Ala Glu Gly Gln IleVal Ser Val Met Ala Leu Ile Glu Arg Gly Lys Ala Glu Gly Gln Ile

            20                  25                  3020 25 30

Ala Gly Asp Asp Val Arg Arg Ala Phe Glu Ala Asp Gln Ile Pro AlaAla Gly Asp Asp Val Arg Arg Ala Phe Glu Ala Asp Gln Ile Pro Ala

        35                  40                  4535 40 45

Thr Gln Trp Lys Asn Val Leu Arg Ser Leu Asn Gln Ile Leu Glu GluThr Gln Trp Lys Asn Val Leu Arg Ser Leu Asn Gln Ile Leu Glu Glu

    50                  55                  6050 55 60

Glu Gly Val Thr Leu Met Val Ser Ala Ala Glu Pro Lys Arg Thr ArgGlu Gly Val Thr Leu Met Val Ser Ala Ala Glu Pro Lys Arg Thr Arg

65                  70                  75                  8065 70 75 80

Lys Ser Val Ala Ala Lys Ser Pro Ala Lys Arg Thr Ala Thr Lys ThrLys Ser Val Ala Ala Lys Ser Pro Ala Lys Arg Thr Ala Thr Lys Thr

                85                  90                  9585 90 95

Val Ala Ala Lys Thr Val Thr Ala Lys Lys Ala Thr Ala Thr Ala AlaVal Ala Ala Lys Thr Val Thr Ala Lys Lys Ala Thr Ala Thr Ala Ala

            100                 105                 110100 105 110

Pro Ala Val Pro Val Gly Asp Asp Pro Ala Glu Asp Ala Ser Ala LysPro Ala Val Pro Val Gly Asp Asp Pro Ala Glu Asp Ala Ser Ala Lys

        115                 120                 125115 120 125

Lys Ala Ala Ala Lys Lys Thr Thr Ser Lys Glu Ala Val Ala Lys LysLys Ala Ala Ala Lys Lys Thr Thr Ser Lys Glu Ala Val Ala Lys Lys

    130                 135                 140130 135 140

Thr Val Ala Lys Lys Thr Ala Ala Lys Lys Thr Thr Gly Lys Lys AspThr Val Ala Lys Lys Thr Ala Ala Lys Lys Thr Thr Gly Lys Lys Asp

145                 150                 155                 160145 150 155 160

Asp Val Gly Leu Leu Asp Asp Glu Ala Val Glu Glu Thr Ala Ala ProAsp Val Gly Leu Leu Asp Asp Glu Ala Val Glu Glu Thr Ala Ala Pro

                165                 170                 175165 170 175

Gly Lys Ala Gly Glu Glu Pro Glu Gly Thr Glu Asn Ala Gly Phe ValGly Lys Ala Gly Glu Glu Pro Glu Gly Thr Glu Asn Ala Gly Phe Val

            180                 185                 190180 185 190

Leu Ser Asp Glu Asp Glu Asp Asp Ala Pro Ala Gln Gln Val Ala AlaLeu Ser Asp Glu Asp Glu Asp Asp Ala Pro Ala Gln Gln Val Ala Ala

        195                 200                 205195 200 205

Ala Gly Ala Thr Ala Asp Pro Val Lys Asp Tyr Leu Lys Gln Ile GlyAla Gly Ala Thr Ala Asp Pro Val Lys Asp Tyr Leu Lys Gln Ile Gly

    210                 215                 220210 215 220

Lys Val Pro Leu Leu Asn Ala Glu Gln Glu Val Glu Leu Ala Lys ArgLys Val Pro Leu Leu Asn Ala Glu Gln Glu Val Glu Leu Ala Lys Arg

225                 230                 235                 240225 230 235 240

Ile Glu Ala Gly Leu Phe Ala Glu Asp Lys Leu Ala Asn Ala Asp LysIle Glu Ala Gly Leu Phe Ala Glu Asp Lys Leu Ala Asn Ala Asp Lys

                245                 250                 255245 250 255

Leu Ala Pro Lys Leu Lys Arg Glu Leu Glu Ile Ile Ala Glu Asp GlyLeu Ala Pro Lys Leu Lys Arg Glu Leu Glu Ile Ile Ala Glu Asp Gly

            260                 265                 270260 265 270

Arg Arg Ala Lys Asn His Leu Leu Glu Ala Asn Leu Arg Leu Val ValArg Arg Ala Lys Asn His Leu Leu Glu Ala Asn Leu Arg Leu Val Val

        275                 280                 285275 280 285

Ser Leu Ala Lys Arg Tyr Thr Gly Arg Gly Met Leu Phe Leu Asp LeuSer Leu Ala Lys Arg Tyr Thr Gly Arg Gly Met Leu Phe Leu Asp Leu

    290                 295                 300290 295 300

Ile Gln Glu Gly Asn Leu Gly Leu Ile Arg Ala Val Glu Lys Phe AspIle Gln Glu Gly Asn Leu Gly Leu Ile Arg Ala Val Glu Lys Phe Asp

305                 310                 315                 320305 310 315 320

Tyr Thr Lys Gly Tyr Lys Phe Ser Thr Tyr Ala Thr Trp Trp Ile ArgTyr Thr Lys Gly Tyr Lys Phe Ser Thr Tyr Ala Thr Trp Trp Ile Arg

                325                 330                 335325 330 335

Gln Ala Ile Thr Arg Ala Met Ala Asp Gln Ala Arg Thr Ile Arg IleGln Ala Ile Thr Arg Ala Met Ala Asp Gln Ala Arg Thr Ile Arg Ile

            340                 345                 350340 345 350

Pro Val His Val Ala Glu Val Ile Asn Lys Leu Ala Arg Val Gln ArgPro Val His Val Ala Glu Val Ile Asn Lys Leu Ala Arg Val Gln Arg

        355                 360                 365355 360 365

Gln Met Leu Gln Asp Leu Gly Arg Glu Pro Thr Pro Glu Glu Leu AlaGln Met Leu Gln Asp Leu Gly Arg Glu Pro Thr Pro Glu Glu Leu Ala

    370                 375                 380370 375 380

Lys Glu Leu Asp Ile Thr Pro Glu Lys Val Ile Glu Val Gln Lys TyrLys Glu Leu Asp Ile Thr Pro Glu Lys Val Ile Glu Val Gln Lys Tyr

385                 390                 395                 400385 390 395 400

Gly Arg Glu Pro Ile Ser Leu His Thr Pro Leu Gly Glu Asp Gly AspGly Arg Glu Pro Ile Ser Leu His Thr Pro Leu Gly Glu Asp Gly Asp

                405                 410                 415405 410 415

Ser Glu Phe Gly Asp Leu Ile Glu Asp Ser Glu Ala Val Val Pro AlaSer Glu Phe Gly Asp Leu Ile Glu Asp Ser Glu Ala Val Val Pro Ala

            420                 425                 430420 425 430

Asp Ala Val Ser Phe Thr Leu Leu Gln Glu Gln Leu His Ser Val LeuAsp Ala Val Ser Phe Thr Leu Leu Gln Glu Gln Leu His Ser Val Leu

        435                 440                 445435 440 445

Asp Thr Leu Ser Glu Arg Glu Ala Gly Val Val Ser Met Arg Phe GlyAsp Thr Leu Ser Glu Arg Glu Ala Gly Val Val Ser Met Arg Phe Gly

    450                 455                 460450 455 460

Leu Thr Asp Gly Gln Pro Lys Thr Leu Asp Glu Ile Gly Lys Val TyrLeu Thr Asp Gly Gln Pro Lys Thr Leu Asp Glu Ile Gly Lys Val Tyr

465                 470                 475                 480465 470 475 480

Gly Val Thr Arg Glu Arg Ile Arg Gln Ile Glu Ser Lys Thr Met SerGly Val Thr Arg Glu Arg Ile Arg Gln Ile Glu Ser Lys Thr Met Ser

                485                 490                 495485 490 495

Lys Leu Arg His Pro Ser Arg Ser Gln Val Leu Arg Asp Tyr Leu AspLys Leu Arg His Pro Ser Arg Ser Gln Val Leu Arg Asp Tyr Leu Asp

            500                 505                 510500 505 510

<210>5<210>5

<211>2352<211>2352

<212>DNA<212>DNA

<213>阿维链霉菌(Streptomyces avermitilis)<213> Streptomyces avermitilis

<400>5<400>5

cactctagac cctgaggtgg agcgtgtggt gcccgcgccg cgcgagcact gacggtgcgc   60cactctagac cctgaggtgg agcgtgtggt gcccgcgccg cgcgagcact gacggtgcgc 60

cgtgggcggc gcggtcgggg gccgaccgcc ctcgcccgct ctcgcccggc cggtgggccc  120cgtgggcggc gcggtcgggg gccgaccgcc ctcgcccgct ctcgcccggc cggtgggccc 120

gacagcgccc gcacggcgaa ccgtctgtca ccggaccccg tgcacgtgtc gccgggctcc  180gacagcgccc gcacggcgaa ccgtctgtca ccggaccccg tgcacgtgtc gccgggctcc 180

gtcggaccct cctgggaccg acggggttcg acggcacgtc ttccgggacc ggcgcggttc  240gtcggaccct cctgggaccg acggggttcg acggcacgtc ttccgggacc ggcgcggttc 240

gacggcatgc ggagtccggg aatcggcatg gctcggcggc gtacggagcc cgggagccgc  300gacggcatgc ggagtccggg aatcggcatg gctcggcggc gtacggagcc cgggagccgc 300

tgaggtccga cggcgagcga cccggcggcc aaccgctgat tcggcggccc ggaagtccac  360tgaggtccga cggcgagcga cccggcggcc aaccgctgat tcggcggccc ggaagtccac 360

cgaccctcgg atcgtgcggc cgcagcggcc atcgttgacc acctatgacc gcatctagtc  420cgaccctcgg atcgtgcggc cgcagcggcc atcgttgacc acctatgacc gcatctagtc 420

gtttttgagt ggttacgggg tgtgactcgg gccacgcgga ttgggcgtaa cgctcctcgg  480gtttttgagt ggttacgggg tgtgactcgg gccacgcgga ttgggcgtaa cgctcctcgg 480

cactgcgcga tgacctaaga ggtgacagcc gaggagggaa tacggacgcc gtttacggcg     540cactgcgcga tgacctaaga ggtgacagcc gaggagggaa tacggacgcc gtttacggcg 540

ctgtgcatct tcccggcccc acccgcgccg tcggcccatc cccaagtcgg cggtcgtcgg     600ctgtgcatct tcccggcccc acccgcgccg tcggcccatc cccaagtcgg cggtcgtcgg 600

ttcctgtccg ttacggacgg ggccggaagc cgttttccaa cgttccgaga ggttgttcgt     660ttcctgtccg ttacggacgg ggccggaagc cgttttccaa cgttccgaga ggttgttcgt 660

gtcggccagc acatcccgta cgctcccgcc ggagatcgcc gagtccgtct ctgtcatggc     720gtcggccagc acatcccgta cgctcccgcc ggagatcgcc gagtccgtct ctgtcatggc 720

gctcatcgag cggggaaagg ctgaggggca gatcgccggc gatgacgtgc gtcgggcctt     780gctcatcgag cggggaaagg ctgaggggca gatcgccggc gatgacgtgc gtcgggcctt 780

cgaagctgac cagattccgg ccactcagtg gaagaacgta ctgcgcagcc tcaaccagat     840cgaagctgac cagattccgg ccactcagtg gaagaacgta ctgcgcagcc tcaaccagat 840

cctcgaggaa gagggtgtga cgctgatggt cagtgccgcg gagcccaagc gcacccgaaa     900cctcgaggaa gagggtgtga cgctgatggt cagtgccgcg gagcccaagc gcacccgaaa 900

gagcgtcgca gcgaagagtc cggccaagcg caccgccacc aagaccgtcg cggcgaagac     960gagcgtcgca gcgaagagtc cggccaagcg caccgccacc aagaccgtcg cggcgaagac 960

ggtgactgcc aagaaggcga ccgccaccgc cgccccggct gtgcccgtcg gcgacgatcc    1020ggtgactgcc aagaaggcga ccgccaccgc cgccccggct gtgcccgtcg gcgacgatcc 1020

ggctgaggac gcgtccgcca agaaggcagc tgccaagaag acgacctcca aggaggcggt    1080ggctgaggac gcgtccgcca agaaggcagc tgccaagaag acgacctcca aggaggcggt 1080

cgcgaagaag accgtcgcca agaagacggc ggccaagaag accaccggca agaaggacga    1140cgcgaagaag accgtcgcca agaagacggc ggccaagaag accacccggca agaaggacga 1140

cgtcgggctg ctcgacgacg aggcggtcga ggagaccgct gcacccggca aggccggcga    1200cgtcgggctg ctcgacgacg aggcggtcga ggagaccgct gcacccggca aggccggcga 1200

ggagcccgag ggcaccgaga acgccggctt cgtactctcc gacgaggacg aggacgacgc    1260ggagcccgag ggcaccgaga acgccggctt cgtactctcc gacgaggacg aggacgacgc 1260

gcccgcgcag caggtcgccg cggccggtgc caccgccgac ccggtcaagg actacctcaa    1320gcccgcgcag caggtcgccg cggccggtgc caccgccgac ccggtcaagg actacctcaa 1320

gcagatcggc aaggtccccc tgctcaacgc cgagcaggag gtcgagctcg ccaagcgcat    1380gcagatcggc aaggtccccc tgctcaacgc cgagcaggag gtcgagctcg ccaagcgcat 1380

cgaggcgggc ctcttcgccg aggacaagct ggccaacgcc gacaagcttg cccccaagct    1440cgaggcgggc ctcttcgccg aggacaagct ggccaacgcc gacaagcttg cccccaagct 1440

caagcgcgag ctggagatca tcgccgagga cggccgccgc gccaagaacc acctcctgga    1500caagcgcgag ctggagatca tcgccgagga cggccgccgc gccaagaacc acctcctgga 1500

ggccaacctc cgtctggtgg tctccctggc caagcgctac accggccgcg gcatgctctt    1560ggccaacctc cgtctggtgg tctccctggc caagcgctac accggccgcg gcatgctctt 1560

cctggacctc atccaggagg gcaacctcgg tctgatccgc gcggtggaga agttcgacta    1620cctggacctc atccaggagg gcaacctcgg tctgatccgc gcggtggaga agttcgacta 1620

caccaagggc tacaagttct ccacgtacgc cacctggtgg atccgtcagg cgatcacccg    1680caccaagggc tacaagttct ccacgtacgc cacctggtgg atccgtcagg cgatcacccg 1680

cgccatggcc gaccaggccc gcaccatccg tatcccggtg cacgtggccg aggtcatcaa    1740cgccatggcc gaccaggccc gcaccatccg tatcccggtg cacgtggccg aggtcatcaa 1740

caagctcgcg cgcgtgcagc gtcagatgct ccaggacctg ggccgcgagc ccaccccgga    1800caagctcgcg cgcgtgcagc gtcagatgct ccaggacctg ggccgcgagc ccaccccgga 1800

ggagctggcc aaggagctcg acattacccc tgagaaggtc atcgaggtcc agaagtacgg    1860ggagctggcc aaggagctcg attacccc tgagaaggtc atcgaggtcc agaagtacgg 1860

ccgtgagccc atctcgctgc acaccccgct gggtgaggac ggtgacagcg agttcggtga    1920ccgtgagccc atctcgctgc acaccccgct gggtgaggac ggtgacagcg agttcggtga 1920

cctcatcgag gactccgagg ccgtcgtccc ggccgacgcg gtcagcttca cgctcctcca    1980cctcatcgag gactccgagg ccgtcgtccc ggccgacgcg gtcagcttca cgctcctcca 1980

ggagcagctg cactctgtcc tcgacaccct gtcggagcgc gaggcgggcg tcgtctcgat    2040ggagcagctg cactctgtcc tcgacaccct gtcggagcgc gaggcgggcg tcgtctcgat 2040

gcgcttcggt ctcaccgacg gtcagccgaa gactctcgac gagatcggca aggtgtacgg    2100gcgcttcggt ctcaccgacg gtcagccgaa gactctcgac gagatcggca aggtgtacgg 2100

cgtgacgcgt gagcgcatcc gccagatcga gtccaagacg atgtcgaagc tgcgtcaccc    2160cgtgacgcgt gagcgcatcc gccagatcga gtccaagacg atgtcgaagc tgcgtcaccc 2160

gtcgcgttcg caggtgctgc gcgactacct cgactaggtc tcggctgtac gcacctgagg    2220gtcgcgttcg caggtgctgc gcgactacct cgactaggtc tcggctgtac gcacctgagg 2220

gcccggcttc cgtggggagc cgggccctca gcatgtgcgc gccgtccacc gagcatgtgg    2280gcccggcttc cgtggggagc cgggccctca gcatgtgcgc gccgtccacc gagcatgtgg 2280

aggccgtcgg ctgctgcgta tgcgcgacgt gatgagctgg atcactctgg gtattccatg    2340aggccgtcgg ctgctgcgta tgcgcgacgt gatgagctgg atcactctgg gtattccatg 2340

accgaattcg ag                                                        2352accgaattcg ag 2352

Claims (12)

1. an albumen, the protein being formed by the aminoacid sequence shown in sequence in sequence table 4.
2. the encoding gene of albumen claimed in claim 1.
3. encoding gene as claimed in claim 2, is characterized in that: the nucleotide sequence of described encoding gene is as shown in sequence in sequence table 3.
4. contain the recombinant vectors of encoding gene described in claim 2 or 3.
5. recombinant vectors as claimed in claim 4, is characterized in that: described recombinant vectors is that the DNA fragmentation that contains encoding gene described in promotor and claim 2 or 3 is inserted in the multiple clone site of plasmid pSET152, the recombinant expression vector obtaining; The described nucleotide sequence that contains the DNA fragmentation of encoding gene described in promotor and claim 2 or 3 is as shown in sequence in sequence table 5.
6. contain the expression cassette of encoding gene described in claim 2 or 3.
7. contain the transgenic cell line of encoding gene described in claim 2 or 3.
8. contain the recombinant bacterium of the encoding gene described in claim 2 or 3.
9. recombinant bacterium as claimed in claim 8, is characterized in that: described recombinant bacterium is that the recombinant vectors described in claim 4 or 5 is imported to the recombinant bacterium obtaining in object Avid kyowamycin.
10. recombinant bacterium as claimed in claim 9, is characterized in that: described object Avid kyowamycin be Avid kyowamycin ( streptomyces avermitilis) ZLX6003, being preserved in China Committee for Culture Collection of Microorganisms's common micro-organisms center, preserving number is CGMCC № .3229.
11. recombinant bacteriums as claimed in claim 8 or 9, is characterized in that: described recombinant bacterium be Avid kyowamycin ( streptomyces avermitilis) ZLX6056, being preserved in China Committee for Culture Collection of Microorganisms's common micro-organisms center, preserving number is CGMCC № .3796.
Described in 12. claims 1 described in albumen, claim 2 or 3 in encoding gene or claim 8-11 arbitrary described recombinant bacterium in the application of producing in Avrmectin.
CN201010173186.2A 2010-05-14 2010-05-14 Genetic engineering method for producing avermectin and special bacterial strain for the method Active CN102241750B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010173186.2A CN102241750B (en) 2010-05-14 2010-05-14 Genetic engineering method for producing avermectin and special bacterial strain for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010173186.2A CN102241750B (en) 2010-05-14 2010-05-14 Genetic engineering method for producing avermectin and special bacterial strain for the method

Publications (2)

Publication Number Publication Date
CN102241750A CN102241750A (en) 2011-11-16
CN102241750B true CN102241750B (en) 2014-05-28

Family

ID=44960015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010173186.2A Active CN102241750B (en) 2010-05-14 2010-05-14 Genetic engineering method for producing avermectin and special bacterial strain for the method

Country Status (1)

Country Link
CN (1) CN102241750B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068955A2 (en) * 2002-02-12 2003-08-21 Pfizer Products Inc. Streptomyces avermitilis gene directing the ratio of b2:b1 avermectins
CN101407775A (en) * 2008-11-27 2009-04-15 中国科学院微生物研究所 Method for preparing avermectin and special bacterial strain thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068955A2 (en) * 2002-02-12 2003-08-21 Pfizer Products Inc. Streptomyces avermitilis gene directing the ratio of b2:b1 avermectins
CN101407775A (en) * 2008-11-27 2009-04-15 中国科学院微生物研究所 Method for preparing avermectin and special bacterial strain thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
利用前体物质定向选育阿维菌素高产菌株;陈中兵等;《农药》;20081031;第47卷(第10期);731-733 *
阿维链霉菌种内原生质体融合选育仅产阿维菌素B的高产菌株;陈芝等;《科学通报》;20070228;第52卷(第3期);297-302 *
陈中兵等.利用前体物质定向选育阿维菌素高产菌株.《农药》.2008,第47卷(第10期),731-733.
陈芝等.阿维链霉菌种内原生质体融合选育仅产阿维菌素B的高产菌株.《科学通报》.2007,第52卷(第3期),297-302.

Also Published As

Publication number Publication date
CN102241750A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN101613712B (en) Method for improving abamectin and/or ivermectin output and bacterial strain production thereof
CN101386829B (en) A kind of Streptomyces avermitilis genetically engineered bacteria and its application
CN104531598B (en) It is a kind of to recombinate streptomycete, its construction method and the method for improving antibiotic yield
CN104946552B (en) The engineering strain of safe and efficient production shenqinmycin and its application
CN108753674A (en) A kind of gene cluster of regulation and control mibemycin synthesis, recombination streptomycete and its preparation method and application
CN103215281B (en) Biosynthetic gene cluster of grincamycin and P-1894B and application thereof
CN103834605B (en) A kind of Abamectin producing bacterium and its preparation method and application
CN111057672B (en) Recombinant strain and application thereof
CN112410353B (en) A kind of fkbS gene, genetically engineered bacteria containing it and its preparation method and application
CN110564718B (en) High-throughput mutagenesis screening method and strain of high-yielding amphotericin B Streptomyces tuberculosis
US20210324391A1 (en) Recombinant microorganism, preparation method therefor and application thereof in producing coenzyme q10
CN103626855B (en) A kind of albumen relevant to Wuyiencin biosynthesizing and encoding gene thereof and application
CN102241750B (en) Genetic engineering method for producing avermectin and special bacterial strain for the method
CN115197957B (en) Gene segment for improving decomposition of trichoderma guizhou NJAU4742 into crop straws under adverse conditions and application thereof
CN114426983B (en) Method for producing 5-aminolevulinic acid by knocking out transcription regulatory factor Ncgl0580 in corynebacterium glutamicum
CN105907778B (en) Streptomyces chrysosporium recombinant expression plasmid and engineering bacteria and application
CN110343650B (en) A recombinant Streptomyces tuberculosis producing amphotericin B and its application
CN108998460B (en) A kind of biological production method of salidroside
CN102174531B (en) Biosynthetic gene cluster of Yatakemycin
CN102443561A (en) Gene engineering bacterium for efficiently converting Echinocandin B and preparation method thereof
CN102277366A (en) New gene participating in regulation on biosynthesis of antibiotic and application thereof
CN1548526A (en) High-yield engineering bacteria of Nicomycin X component and its application
CN104928313A (en) Application of rex gene of streptomyces avermitilis to improvement of avermectins yield
CN105367637B (en) The regulation and control Wuyiencin producing strains growth albumen of phenotype and encoding gene thereof and application
CN103540603B (en) The biological synthesis gene cluster of gold alloy hydride and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant