[go: up one dir, main page]

CN102214609A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
CN102214609A
CN102214609A CN201010142037XA CN201010142037A CN102214609A CN 102214609 A CN102214609 A CN 102214609A CN 201010142037X A CN201010142037X A CN 201010142037XA CN 201010142037 A CN201010142037 A CN 201010142037A CN 102214609 A CN102214609 A CN 102214609A
Authority
CN
China
Prior art keywords
sidewall
gate stack
gate
buffer layer
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010142037XA
Other languages
Chinese (zh)
Inventor
骆志炯
朱慧珑
尹海洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201010142037XA priority Critical patent/CN102214609A/en
Publication of CN102214609A publication Critical patent/CN102214609A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device and a method of manufacturing the same, the method includes forming a first sidewall buffer layer on a first gate stack of an NMOS region after forming the gate stack; then forming a second side wall on the second gate stack in the PMOS region; the first side wall buffer layer is made of nitride or oxide materials, and the second side wall is made of low-k dielectric materials; and then carrying out high-temperature annealing in an oxygen environment, so that oxygen atoms in the oxygen environment are diffused into the high-k gate dielectric layer of the second gate stack through the second side wall, and the first side wall buffer layer blocks the oxygen atoms from being diffused into the first gate stack. Embodiments of the present invention may be used in CMOS device processes or related art semiconductor processes.

Description

一种半导体器件及其制造方法A kind of semiconductor device and its manufacturing method

技术领域technical field

本发明通常涉及一种半导体器件及其制造方法,具体来说,涉及一种可以降低高k栅介质/金属栅器件的PMOS阈值电压的器件及其制造方法。The present invention generally relates to a semiconductor device and a manufacturing method thereof, in particular to a device capable of reducing the PMOS threshold voltage of a high-k gate dielectric/metal gate device and a manufacturing method thereof.

背景技术Background technique

随着半导体技术的发展,具有更高性能和更强功能的集成电路要求更大的元件密度,而且各个部件、元件之间或各个元件自身的尺寸、大小和空间也需要进一步缩小。32/22纳米工艺集成电路核心技术的应用已经成为集成电路发展的必然趋势,也是国际上主要半导体公司和研究组织竞相研发的课题之一。以“高k栅介质/金属栅”技术为核心的CMOS器件栅工程研究是32/22纳米技术中最有代表性的核心工艺,与之相关的材料、工艺及结构研究已在广泛的进行中。With the development of semiconductor technology, integrated circuits with higher performance and stronger functions require greater component density, and the size, size and space of each component, between components or each component itself also need to be further reduced. The application of the core technology of 32/22 nanometer process integrated circuits has become an inevitable trend in the development of integrated circuits, and it is also one of the topics that major international semiconductor companies and research organizations are competing to research and develop. CMOS device gate engineering research centered on "high-k gate dielectric/metal gate" technology is the most representative core process in 32/22 nanometer technology, and related materials, processes and structures have been extensively studied .

对于将高k栅介质材料和金属栅集成在一起的器件,实现了具有高迁移率沟道的晶体管,但是由于在集成中的高温处理,使金属和高k绝缘材料交界面的性质发生改变,引起了高k栅介质材料中的氧空位,这使PMOS的阈值电压升高,进而降低了器件的可靠性,如何有效控制PMOS阈值电压是“高k栅介质/金属栅”器件的首要问题。目前降低“高k栅介质/金属栅”器件PMOS阈值电压的一种方法是氧扩散的方法(Symposium on VLSItechnology Digest of Technical Papers,2009,P42-43),该方法是将侧墙去除后,从高k/金属栅的侧壁扩散氧到高k栅介质材料中,但这种方法需要将侧墙去除,去除侧墙在工艺上比较难控制,会对栅介质层、栅电极以及源/漏区衬底等造成损伤,进而影响器件的性能。For devices that integrate high-k gate dielectric materials and metal gates, transistors with high-mobility channels are realized, but due to high-temperature processing in the integration, the properties of the interface between metal and high-k insulating materials change, Oxygen vacancies in high-k gate dielectric materials are caused, which increases the threshold voltage of PMOS and reduces the reliability of the device. How to effectively control the PMOS threshold voltage is the primary problem of "high-k gate dielectric/metal gate" devices. At present, one method to reduce the PMOS threshold voltage of "high-k gate dielectric/metal gate" devices is the method of oxygen diffusion (Symposium on VLSItechnology Digest of Technical Papers, 2009, P 42-43 ), which is to remove the sidewall, Oxygen is diffused from the sidewall of the high-k/metal gate into the high-k gate dielectric material, but this method needs to remove the sidewall, which is difficult to control in the process, and will affect the gate dielectric layer, gate electrode and source/ The substrate of the drain region will cause damage, which will affect the performance of the device.

因此,需要提出一种能够降低PMOS器件的阈值电压,且不会对器件造成损伤的制造半导体器件的方法及其器件结构。Therefore, it is necessary to propose a method for manufacturing a semiconductor device and a device structure thereof that can reduce the threshold voltage of a PMOS device without causing damage to the device.

发明内容Contents of the invention

鉴于上述问题,本发明提供了一种制造所述半导体器件的方法,所述方法包括:提供具有相互隔离的NMOS区域和PMOS区域的半导体衬底;在所述NMOS区域上形成第一栅堆叠,以及在所述PMOS区域上形成第二栅堆叠,其中所述第一栅堆叠和第二栅堆叠包括高k栅介质层和金属栅电极;在所述第一栅堆叠侧壁形成第一侧墙缓冲层,并在所述第一侧墙缓冲层的侧壁形成第一侧墙,以及在所述第二栅堆叠的侧壁形成第二侧墙,其中所述第二侧墙采用低k介质材料形成;在所述NMOS区域和PMOS区域上分别形成相应的源/漏区后,对所述器件在氧气环境进行退火,以使氧气环境中的氧原子通过所述第二侧墙扩散到所述第二栅堆叠的高k栅介质层中。In view of the above problems, the present invention provides a method of manufacturing the semiconductor device, the method comprising: providing a semiconductor substrate having an NMOS region and a PMOS region isolated from each other; forming a first gate stack on the NMOS region, And forming a second gate stack on the PMOS region, wherein the first gate stack and the second gate stack include a high-k gate dielectric layer and a metal gate electrode; forming a first spacer on the sidewall of the first gate stack buffer layer, and form a first spacer on the sidewall of the first sidewall buffer layer, and form a second spacer on the sidewall of the second gate stack, wherein the second sidewall uses a low-k dielectric Material formation; after corresponding source/drain regions are respectively formed on the NMOS region and the PMOS region, the device is annealed in an oxygen environment, so that oxygen atoms in the oxygen environment diffuse to the In the high-k gate dielectric layer of the second gate stack.

在上述方案的基础上,优选地其中所述第一侧墙缓冲层由氮化物或氧化物形成,形成所述第二侧墙的低k介质材料可以包括:SiCOH、SiO或SiCO。On the basis of the above solution, preferably, the first spacer buffer layer is formed of nitride or oxide, and the low-k dielectric material forming the second spacer may include: SiCOH, SiO or SiCO.

本发明还提供了由以上方法制造的器件,所述器件包括:具有相互隔离的NMOS区域和PMOS区域的半导体衬底;形成于所述NMOS区域和PMOS区域的源/漏区;形成于所述NMOS区域的源/漏区之间的第一栅堆叠,以及形成于所述PMOS区域的源/漏区之间的第二栅堆叠,其中所述第一栅堆叠和第二栅堆叠包括高k栅介质层和金属栅电极;以及形成于所述第一栅堆叠的侧壁的第一侧墙缓冲层,形成于所述第一侧墙缓冲层的侧壁的第一侧墙,形成于所述第二栅堆叠的侧壁的第二侧墙,其中所述第二侧墙采用低k介质材料形成,所述第二侧墙充当氧原子扩散至第二栅堆叠的高k栅介质层中的通道。The present invention also provides a device fabricated by the above method, the device comprising: a semiconductor substrate having an NMOS region and a PMOS region isolated from each other; a source/drain region formed in the NMOS region and the PMOS region; a source/drain region formed in the A first gate stack between the source/drain regions of the NMOS region, and a second gate stack formed between the source/drain regions of the PMOS region, wherein the first gate stack and the second gate stack comprise high-k a gate dielectric layer and a metal gate electrode; and a first sidewall buffer layer formed on the sidewall of the first gate stack, a first sidewall formed on the sidewall of the first sidewall buffer layer, formed on the The second sidewall of the sidewall of the second gate stack, wherein the second spacer is formed of a low-k dielectric material, and the second spacer serves as oxygen atoms diffused into the high-k gate dielectric layer of the second gate stack channel.

在上述方案的基础上,优选地其中所述第一侧墙缓冲层由氮化物或氧化物形成,形成所述第二侧墙的低k介质材料可以包括:SiCOH、SiO或SiCO。On the basis of the above solution, preferably, the first spacer buffer layer is formed of nitride or oxide, and the low-k dielectric material forming the second spacer may include: SiCOH, SiO or SiCO.

通过采用本发明所述的器件结构及制造方法,不仅可以使氧原子扩散至PMOS所在的高k栅介质层中,进而降低PMOS器件的阈值电压,且不影响NMOS器件的阈值电压,而且还可以避免传统工艺去除PMOS侧墙时对栅极及衬底的损伤,从而有效提高器件的整体性能。By adopting the device structure and manufacturing method described in the present invention, not only oxygen atoms can be diffused into the high-k gate dielectric layer where the PMOS is located, thereby reducing the threshold voltage of the PMOS device without affecting the threshold voltage of the NMOS device, but also Avoid damage to the gate and substrate when the traditional process removes the PMOS sidewall, thereby effectively improving the overall performance of the device.

附图说明Description of drawings

图1示出了根据本发明的第一实施例的半导体器件的制造方法的流程图;1 shows a flowchart of a method for manufacturing a semiconductor device according to a first embodiment of the present invention;

图2-7示出了根据本发明的第一实施例的半导体器件各个制造阶段的结构示意图;2-7 show schematic structural diagrams of various manufacturing stages of a semiconductor device according to the first embodiment of the present invention;

具体实施方式Detailed ways

本发明通常涉及半导体器件及其制造方法。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。The present invention generally relates to semiconductor devices and methods of manufacturing the same. The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. To simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Of course, they are merely examples and are not intended to limit the invention. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various specific process and material examples are provided herein, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, configurations described below in which a first feature is "on" a second feature may include embodiments where the first and second features are formed in direct contact, and may include additional features formed between the first and second features. For example, such that the first and second features may not be in direct contact.

根据本发明的第一实施例,参考图1,图1示出了根据本发明的实施例的半导体器件的制造方法的流程图。在步骤101,提供具有NMOS区域201和PMOS区域202的半导体衬底200,其中所述NMOS区域201与PMOS区域202相互隔离,参考图2。在本实施例中,衬底200包括位于晶体结构中的硅衬底(例如晶片),还可以包括其他基本半导体或化合物半导体,例如Ge、GeSi、GaAs、InP、SiC或金刚石等。根据现有技术公知的设计要求(例如p型衬底或者n型衬底),衬底200可以包括各种掺杂配置。此外,衬底200可以可选地包括外延层,可以被应力改变以增强性能,以及可以包括绝缘体上硅(SOI)结构。According to a first embodiment of the present invention, refer to FIG. 1 , which shows a flowchart of a method for manufacturing a semiconductor device according to an embodiment of the present invention. In step 101 , a semiconductor substrate 200 having an NMOS region 201 and a PMOS region 202 is provided, wherein the NMOS region 201 and the PMOS region 202 are isolated from each other, refer to FIG. 2 . In this embodiment, the substrate 200 includes a silicon substrate (such as a wafer) in a crystal structure, and may also include other basic semiconductors or compound semiconductors, such as Ge, GeSi, GaAs, InP, SiC, or diamond. The substrate 200 may include various doping configurations according to design requirements known in the art (eg, p-type substrate or n-type substrate). Furthermore, the substrate 200 may optionally include epitaxial layers, may be altered by stress to enhance performance, and may include a silicon-on-insulator (SOI) structure.

在步骤102,在所述NMOS区域201上形成第一栅堆叠300,在所述PMOS区域上形成第二栅堆叠400,如图2所示。其中所述第一栅堆叠300和第二栅堆叠400可以为包括高k栅介质层和金属栅电极的任一多层栅堆叠结构。在本实施例中,在半导体衬底200上依次沉积HfO2作为高k栅介质层、TiN作为金属栅电极以及多晶硅层,而后利用干法或湿法刻蚀技术将其图形化,分别形成属于NMOS区域201的包括高k栅介质层204、金属栅电极208和多晶硅层212的第一栅堆叠300,属于PMOS区域202的包括高k栅介质层206、金属栅电极210和多晶硅层214的第二栅堆叠400,如图2所示,这仅仅是作为示例,不局限于此,所述第一栅堆叠300和第二栅堆叠400还可以是包括高k栅介质层和金属栅电极的其他多层栅堆叠结构。所述高k栅介质层204、206为高k介质材料(例如,和氧化硅相比,具有高介电常数的材料),高k介质材料例子包括例如铪基材料,如HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO,其组合或者其它适当的材料。所述金属栅电极的材料可以是但不限于TiN、TaN、Ta2C、HfN、HfC、TiC、Mo、Ru及其组合。所述栅堆叠的沉积可以使用例如化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)及/或其他合适的工艺等方法形成。In step 102 , a first gate stack 300 is formed on the NMOS region 201 , and a second gate stack 400 is formed on the PMOS region, as shown in FIG. 2 . The first gate stack 300 and the second gate stack 400 may be any multi-layer gate stack structure including a high-k gate dielectric layer and a metal gate electrode. In this embodiment, HfO 2 is sequentially deposited on the semiconductor substrate 200 as a high-k gate dielectric layer, TiN as a metal gate electrode, and a polysilicon layer, and then patterned by dry or wet etching techniques to form The first gate stack 300 of the NMOS region 201 including the high-k gate dielectric layer 204, the metal gate electrode 208 and the polysilicon layer 212, and the first gate stack 300 of the PMOS region 202 including the high-k gate dielectric layer 206, the metal gate electrode 210 and the polysilicon layer 214 The second gate stack 400, as shown in FIG. 2, is merely an example and is not limited thereto. The first gate stack 300 and the second gate stack 400 may also be other gate stacks including a high-k gate dielectric layer and a metal gate electrode. Multilayer gate stack structure. The high-k gate dielectric layers 204, 206 are high-k dielectric materials (for example, materials with a high dielectric constant compared with silicon oxide), examples of high-k dielectric materials include, for example, hafnium-based materials, such as HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, combinations thereof or other suitable materials. The material of the metal gate electrode may be, but not limited to, TiN, TaN, Ta 2 C, HfN, HfC, TiC, Mo, Ru and combinations thereof. The gate stack may be deposited using methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and/or other suitable processes.

在步骤103,在所述第一栅堆叠300的侧壁形成第一侧墙缓冲层216,如图6所示。In step 103 , a first sidewall buffer layer 216 is formed on the sidewall of the first gate stack 300 , as shown in FIG. 6 .

具体来说,首先在所述器件上沉积氮化物或氧化物材料215,例如Si3N4、SiO2等,如图3所示,然后使用RIE的方法图形化所述氮化物或氧化物材料215,形成属于NMOS区域201的第一侧墙缓冲层216和属于PMOS区域202的第二侧墙缓冲层218,如图4所示。特别地,在形成第一216和第二侧墙缓冲层218后,还可以根据期望的晶体管结构,通过注入p型或n型掺杂物或杂质到NMOS区域201和PMOS区域202的衬底200中,而形成源/漏延伸区和/或halo区220、224,如图5所示。而后将NMOS区域201掩膜,使用干法或湿法刻蚀去除PMOS区域202的第二侧墙缓冲层218,再将NMOS区域201上的掩膜去除,从而形成第一栅堆叠300的第一侧墙缓冲层216,如图6所示。其中所述第一侧墙缓冲层216的厚度为大约2至10纳米。由氮化物或氧化物材料形成的第一侧墙缓冲层216有相对致密的结构,因此可以阻挡之后步骤中的氧原子扩散至NMOS区域201的第一栅堆叠300中。Specifically, first deposit a nitride or oxide material 215 on the device, such as Si 3 N 4 , SiO 2 , etc., as shown in FIG. 3 , and then use the method of RIE to pattern the nitride or oxide material 215 , forming a first sidewall buffer layer 216 belonging to the NMOS region 201 and a second sidewall buffer layer 218 belonging to the PMOS region 202 , as shown in FIG. 4 . In particular, after forming the first 216 and the second sidewall buffer layer 218, according to the desired transistor structure, the substrate 200 of the NMOS region 201 and the PMOS region 202 may also be implanted with p-type or n-type dopants or impurities. , and form source/drain extension regions and/or halo regions 220, 224, as shown in FIG. 5 . Then mask the NMOS region 201, remove the second sidewall buffer layer 218 of the PMOS region 202 by dry or wet etching, and then remove the mask on the NMOS region 201, thereby forming the first gate stack 300. The side wall buffer layer 216 is shown in FIG. 6 . Wherein the thickness of the first sidewall buffer layer 216 is about 2 to 10 nanometers. The first sidewall buffer layer 216 formed of nitride or oxide material has a relatively dense structure, so it can prevent oxygen atoms from diffusing into the first gate stack 300 of the NMOS region 201 in subsequent steps.

在步骤104,在所述第一侧墙缓冲层216的侧壁形成第一侧墙228,以及在所述第二栅堆叠400的侧壁形成第二侧墙230。在所述器件上沉积低k介质材料,例如SiCOH,而后使用RIE的方法图形化所述低k介质材料,以形成所述第一侧墙228和第二侧墙230,如图7所示。所述低k介质材料的相对介电常数小于3.5,所述低k介质材料可以是SiCOH、SiO或SiCO等。所述第一侧墙228和第二侧墙230的厚度可以为2至100纳米,优选地也可以为5至100纳米。所述低k材料的沉积可以使用例如化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)及/或其他合适的工艺等方法形成。由低k介质材料形成的所述第二侧墙230具有疏松的结构,因此可以成为之后氧原子扩散至第二栅堆叠400的高k栅介质层206中的通道。In step 104 , a first spacer 228 is formed on the sidewall of the first spacer buffer layer 216 , and a second spacer 230 is formed on the sidewall of the second gate stack 400 . A low-k dielectric material, such as SiCOH, is deposited on the device, and then the low-k dielectric material is patterned by RIE to form the first sidewall 228 and the second sidewall 230 , as shown in FIG. 7 . The relative permittivity of the low-k dielectric material is less than 3.5, and the low-k dielectric material may be SiCOH, SiO or SiCO, etc. The thickness of the first sidewall 228 and the second sidewall 230 may be 2 to 100 nanometers, preferably 5 to 100 nanometers. Deposition of the low-k material may be formed using methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and/or other suitable processes. The second spacer 230 formed of a low-k dielectric material has a loose structure, so it can become a channel for oxygen atoms to diffuse into the high-k gate dielectric layer 206 of the second gate stack 400 later.

在步骤105,在所述NMOS区域201和PMOS区域202上分别形成相应的源/漏区222、226。所述源/漏区222、226可以通过根据期望的晶体管结构,注入p型或n型掺杂物或杂质到NMOS区域201和PMOS区域202的衬底200中而形成,如图7所示。源/漏区222、226可以由包括光刻、离子注入、扩散和/或其他合适工艺的方法形成,而后对源/漏极222、226进行退火,以激活掺杂。In step 105 , corresponding source/drain regions 222 and 226 are respectively formed on the NMOS region 201 and the PMOS region 202 . The source/drain regions 222 and 226 can be formed by implanting p-type or n-type dopants or impurities into the substrate 200 of the NMOS region 201 and the PMOS region 202 according to the desired transistor structure, as shown in FIG. 7 . The source/drain regions 222, 226 may be formed by methods including photolithography, ion implantation, diffusion and/or other suitable processes, and then the source/drain regions 222, 226 are annealed to activate doping.

在通常的源/漏区222、226形成后,在步骤106,对所述器件在氧气环境进行退火,以使氧气环境中的氧原子通过所述第二侧墙230扩散到所述第二栅堆叠400的高k栅介质层206中。退火温度可以为300℃至800℃,退火时间可以为1至3000秒,退火保护气体为O2,由于第二侧墙230由疏松结构的低k介质材料形成,氧原子可以沿着所述第二侧墙230的通道,如图7中箭头所示方向,扩散至第二栅堆叠400的高k栅介质层206中,以补充由于工艺集成过程中引起的高k栅介质材料的氧空位,进而达到降低PMOS阈值电压的作用,而对于NMOS区域的第一栅堆叠300,由于相对致密的氮化物形成的第一侧墙缓冲层216保护,氧原子不会扩散至第一栅堆叠300。After the usual source/drain regions 222, 226 are formed, in step 106, the device is annealed in an oxygen environment, so that oxygen atoms in the oxygen environment diffuse to the second gate through the second spacer 230 In the high-k gate dielectric layer 206 of the stack 400 . The annealing temperature can be 300°C to 800°C, the annealing time can be 1 to 3000 seconds, and the annealing protective gas is O 2 , since the second sidewall 230 is formed of a low-k dielectric material with a loose structure, oxygen atoms can be The channels of the two sidewalls 230 are diffused into the high-k gate dielectric layer 206 of the second gate stack 400 in the direction indicated by the arrow in FIG. Furthermore, the effect of lowering the threshold voltage of PMOS is achieved, and for the first gate stack 300 in the NMOS region, due to the protection of the first sidewall buffer layer 216 formed of relatively dense nitride, oxygen atoms will not diffuse into the first gate stack 300 .

参照以上的方法所述,本发明还提供了一种半导体器件,如图7所示,所述器件包括:具有NMOS区域201和PMOS区域202的半导体衬底200,其中所述NMOS区域201与所述PMOS区域202相互隔离;形成于所述NMOS区域201和PMOS区域202的源/漏区222、224;形成于所述NMOS区域201的源/漏区222之间的第一栅堆叠300,以及形成于所述PMOS区域202的源/漏区226之间的第二栅堆叠400,其中所述第一栅堆叠300和第二栅堆叠400可以为包括高k栅介质层204、206和金属栅电极208、210的任一多层栅堆叠结构;以及形成于所述第一栅堆叠300的侧壁的第一侧墙缓冲层216,形成于所述第一侧墙缓冲216层的侧壁的第一侧墙228,形成于所述第二栅堆叠400的侧壁的第二侧墙230,其中所述第二侧墙230采用低k介质材料形成,所述第二侧墙230充当氧原子扩散至第二栅堆叠400的高k栅介质层206中的通道。其中所述第一侧墙缓冲层216由氮化物或氧化物形成,所述第一侧墙缓冲层216的厚度为大约2至10纳米。所述第一侧墙228优选与第二侧墙230同时由低k介质材料形成,形成所述第一228和第二侧墙230的低k介质材料的相对介电常数小于3.5,形成所述第一228和第二侧墙230的低k介质材料包括:SiCOH、SiO或SiCO,所述第一228和第二侧墙230的厚度为大约2至100纳米,优选地可以为5至100纳米。Referring to the description of the above method, the present invention also provides a semiconductor device, as shown in FIG. The PMOS regions 202 are isolated from each other; the source/drain regions 222, 224 formed in the NMOS region 201 and the PMOS region 202; the first gate stack 300 formed between the source/drain regions 222 of the NMOS region 201, and The second gate stack 400 formed between the source/drain regions 226 of the PMOS region 202, wherein the first gate stack 300 and the second gate stack 400 may include high-k gate dielectric layers 204, 206 and metal gate Any multilayer gate stack structure of the electrodes 208, 210; and the first sidewall buffer layer 216 formed on the sidewall of the first gate stack 300, and the first sidewall buffer layer 216 formed on the sidewall of the first sidewall buffer layer 216 The first spacer 228, the second sidewall 230 formed on the sidewall of the second gate stack 400, wherein the second spacer 230 is formed of a low-k dielectric material, and the second sidewall 230 acts as an oxygen atom Diffused to the channel in the high-k gate dielectric layer 206 of the second gate stack 400 . Wherein the first sidewall buffer layer 216 is formed of nitride or oxide, and the thickness of the first sidewall buffer layer 216 is about 2 to 10 nanometers. The first sidewall 228 is preferably formed of a low-k dielectric material at the same time as the second sidewall 230, and the relative permittivity of the low-k dielectric material forming the first 228 and the second sidewall 230 is less than 3.5, forming the The low-k dielectric material of the first 228 and the second spacer 230 includes: SiCOH, SiO or SiCO, the thickness of the first 228 and the second sidewall 230 is about 2 to 100 nanometers, preferably 5 to 100 nanometers .

本发明对在NMOS区域201上形成第一侧墙缓冲层216,并在PMOS区域低k介质材料的侧墙形成后进行退火补充氧空位的方法和器件进行了描述。根据本发明的方法,只在NMOS区域201的第一栅堆叠300侧壁形成第一侧壁缓冲层216,且第一侧墙缓冲层216为相对致密的氮化物或氧化物材料,如Si3N4等,PMOS区域202的第二栅堆叠400的侧壁直接由第二侧墙230覆盖,而且第二侧墙230为疏松的低k材料,如SiCOH、SiO、SiCO。具有这种结构的器件,在氧环境高温退火后,氧原子沿着第二侧墙230扩散至第二栅堆叠400的高k栅介质层206中,进而降低其PMOS器件的阈值电压,而受Si3N4第一侧墙缓冲层216的保护,氧原子不会扩散至NMOS器件,NMOS器件的阈值电压将不受影响,有效实现了对PMOS器件的阈值电压的调节并且提高了器件的整体性能,此外,采用低k材料形成侧墙结构,还有效的降低了器件的寄生电容。The present invention describes the method and device for forming the first spacer buffer layer 216 on the NMOS region 201 and performing annealing to replenish oxygen vacancies after the formation of the sidewall of the low-k dielectric material in the PMOS region. According to the method of the present invention, the first sidewall buffer layer 216 is only formed on the sidewall of the first gate stack 300 in the NMOS region 201, and the first sidewall buffer layer 216 is a relatively dense nitride or oxide material, such as Si3 N 4 etc., the sidewall of the second gate stack 400 in the PMOS region 202 is directly covered by the second spacer 230 , and the second sidewall 230 is a loose low-k material, such as SiCOH, SiO, SiCO. For a device with such a structure, after high-temperature annealing in an oxygen environment, oxygen atoms diffuse into the high-k gate dielectric layer 206 of the second gate stack 400 along the second spacer 230, thereby reducing the threshold voltage of the PMOS device and being affected by With the protection of the Si 3 N 4 first sidewall buffer layer 216, oxygen atoms will not diffuse to the NMOS device, and the threshold voltage of the NMOS device will not be affected, which effectively realizes the adjustment of the threshold voltage of the PMOS device and improves the overall performance of the device. In addition, the use of low-k materials to form sidewall structures also effectively reduces the parasitic capacitance of devices.

虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。Although the example embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made to these embodiments without departing from the spirit and scope of the invention as defined by the appended claims. For other examples, those of ordinary skill in the art will readily understand that the order of process steps may be varied while remaining within the scope of the present invention.

此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。In addition, the scope of application of the present invention is not limited to the process, mechanism, manufacture, material composition, means, method and steps of the specific embodiments described in the specification. From the disclosure of the present invention, those of ordinary skill in the art will easily understand that for the processes, mechanisms, manufacturing, material compositions, means, methods or steps that currently exist or will be developed in the future, they are implemented in accordance with the present invention Corresponding embodiments described which function substantially the same or achieve substantially the same results may be applied in accordance with the present invention. Therefore, the appended claims of the present invention are intended to include these processes, mechanisms, manufacture, material compositions, means, methods or steps within their protection scope.

Claims (14)

1.一种制造半导体器件的方法,所述方法包括:1. A method of manufacturing a semiconductor device, the method comprising: 提供具有相互隔离的NMOS区域和PMOS区域的半导体衬底;providing a semiconductor substrate having mutually isolated NMOS regions and PMOS regions; 在所述NMOS区域上形成第一栅堆叠,以及在所述PMOS区域上形成第二栅堆叠,其中所述第一栅堆叠和第二栅堆叠包括高k栅介质层和金属栅电极;forming a first gate stack on the NMOS region, and forming a second gate stack on the PMOS region, wherein the first gate stack and the second gate stack include a high-k gate dielectric layer and a metal gate electrode; 在所述第一栅堆叠侧壁形成第一侧墙缓冲层,并在所述第一侧墙缓冲层的侧壁形成第一侧墙,以及在所述第二栅堆叠的侧壁形成第二侧墙,其中所述第二侧墙采用低k介质材料形成;A first spacer buffer layer is formed on the sidewall of the first gate stack, a first spacer is formed on the sidewall of the first sidewall buffer layer, and a second sidewall is formed on the sidewall of the second gate stack. a sidewall, wherein the second sidewall is formed of a low-k dielectric material; 在所述NMOS区域和PMOS区域上分别形成相应的源/漏区后,对所述器件在氧气环境进行退火,以使氧气环境中的氧原子通过所述第二侧墙扩散到所述第二栅堆叠的高k栅介质层中。After corresponding source/drain regions are respectively formed on the NMOS region and the PMOS region, the device is annealed in an oxygen environment, so that oxygen atoms in the oxygen environment diffuse to the second side wall through the second sidewall. In the high-k gate dielectric layer of the gate stack. 2.根据权利要求1所述的方法,其中所述第一侧墙缓冲层由氮化物或氧化物形成。2. The method of claim 1, wherein the first sidewall buffer layer is formed of nitride or oxide. 3.根据权利要求1所述的方法,其中所述第一侧墙缓冲层的厚度为2至10纳米。3. The method according to claim 1, wherein the first sidewall buffer layer has a thickness of 2 to 10 nanometers. 4.根据权利要求1所述的方法,其中所述第一侧墙采用低k介质材料形成。4. The method according to claim 1, wherein the first spacer is formed of a low-k dielectric material. 5.根据权利要求1或4所述的方法,其中形成所述第一和第二侧墙的低k介质材料的相对介电常数小于3.5。5. The method according to claim 1 or 4, wherein the relative permittivity of the low-k dielectric material forming the first and second spacers is less than 3.5. 6.根据权利要求1或4所述的方法,其中形成所述第一和第二侧墙的低k介质材料包括:SiCOH、SiO或SiCO。6. The method according to claim 1 or 4, wherein the low-k dielectric material forming the first and second spacers comprises: SiCOH, SiO or SiCO. 7.根据权利要求1至4中任一项所述的方法,其中所述第一和第二侧墙的厚度为2至100纳米。7. The method of any one of claims 1 to 4, wherein the first and second sidewalls have a thickness of 2 to 100 nanometers. 8.一种半导体器件,所述器件包括:8. A semiconductor device, said device comprising: 具有相互隔离的NMOS区域和PMOS区域的半导体衬底;a semiconductor substrate having mutually isolated NMOS regions and PMOS regions; 形成于所述NMOS区域和PMOS区域的源/漏区;source/drain regions formed in the NMOS region and the PMOS region; 形成于所述NMOS区域的源/漏区之间的第一栅堆叠,以及形成于所述PMOS区域的源/漏区之间的第二栅堆叠,其中所述第一栅堆叠和第二栅堆叠包括高k栅介质层和金属栅电极;以及A first gate stack formed between the source/drain regions of the NMOS region, and a second gate stack formed between the source/drain regions of the PMOS region, wherein the first gate stack and the second gate stack the stack includes a high-k gate dielectric layer and a metal gate electrode; and 形成于所述第一栅堆叠的侧壁的第一侧墙缓冲层,形成于所述第一侧墙缓冲层的侧壁的第一侧墙,形成于所述第二栅堆叠的侧壁的第二侧墙,其中所述第二侧墙采用低k介质材料形成,所述第二侧墙充当氧原子扩散至第二栅堆叠的高k栅介质层中的通道。The first sidewall buffer layer formed on the sidewall of the first gate stack, the first sidewall formed on the sidewall of the first sidewall buffer layer, the first sidewall formed on the sidewall of the second gate stack The second sidewall, wherein the second sidewall is formed of a low-k dielectric material, and the second sidewall serves as a channel for oxygen atoms to diffuse into the high-k gate dielectric layer of the second gate stack. 9.根据权利要求8所述的器件,其中所述第一侧墙缓冲层由氮化物或氧化物形成。9. The device of claim 8, wherein the first sidewall buffer layer is formed of nitride or oxide. 10.根据权利要求8所述的器件,其中所述第一侧墙缓冲层的厚度为2至10纳米。10. The device according to claim 8, wherein the first sidewall buffer layer has a thickness of 2 to 10 nanometers. 11.根据权利要求8所述的器件,其中所述第一侧墙采用低k介质材料形成。11. The device according to claim 8, wherein the first spacer is formed of a low-k dielectric material. 12.根据权利要求8或11所述的器件,其中形成所述第一和第二侧墙的低k介质材料的相对介电常数小于3.5。12. The device according to claim 8 or 11, wherein the relative permittivity of the low-k dielectric material forming the first and second spacers is less than 3.5. 13.根据权利要求8或11所述的器件,其中形成所述第一和第二侧墙的低k介质材料包括:SiCOH、SiO或SiCO。13. The device according to claim 8 or 11, wherein the low-k dielectric material forming the first and second spacers comprises: SiCOH, SiO or SiCO. 14.根据权利要求8至11中任一项所述的器件,其中所述第一和第二侧墙的厚度为大约2至100纳米。14. The device of any one of claims 8 to 11, wherein the first and second sidewalls have a thickness of about 2 to 100 nanometers.
CN201010142037XA 2010-04-07 2010-04-07 Semiconductor device and manufacturing method thereof Pending CN102214609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010142037XA CN102214609A (en) 2010-04-07 2010-04-07 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010142037XA CN102214609A (en) 2010-04-07 2010-04-07 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN102214609A true CN102214609A (en) 2011-10-12

Family

ID=44745864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010142037XA Pending CN102214609A (en) 2010-04-07 2010-04-07 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102214609A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282540A (en) * 2013-07-03 2015-01-14 中芯国际集成电路制造(上海)有限公司 Transistor and method for forming transistor
CN104752176A (en) * 2013-12-27 2015-07-01 中芯国际集成电路制造(上海)有限公司 Method for forming metal gate
CN109119339A (en) * 2018-08-26 2019-01-01 合肥安德科铭半导体科技有限公司 A kind of SiCO material spacer layer of low-k and its preparation method and application
CN109494191A (en) * 2018-11-19 2019-03-19 武汉新芯集成电路制造有限公司 Semiconductor devices and preparation method thereof
CN109904112A (en) * 2017-12-11 2019-06-18 中芯国际集成电路制造(北京)有限公司 Semiconductor device and its manufacturing method
CN111095524A (en) * 2017-09-12 2020-05-01 应用材料公司 Apparatus and method for fabricating semiconductor structures using a protective barrier layer
CN111627908A (en) * 2020-05-29 2020-09-04 宁波铼微半导体有限公司 GaN-based CMOS device and preparation method thereof
CN113053751A (en) * 2019-12-27 2021-06-29 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008544A1 (en) * 2002-07-16 2004-01-22 Nec Corporation Semiconductor device, production method and production device thereof
CN1855541A (en) * 2005-02-28 2006-11-01 英飞凌科技股份公司 Field effect transistor with gate spacer structure and low-resistance channel coupling
KR20070073149A (en) * 2006-01-03 2007-07-10 삼성전자주식회사 Semiconductor device and method of manufacturing the same
CN101325203A (en) * 2007-06-14 2008-12-17 国际商业机器公司 Semiconductor structures and methods of forming them
CN101663755A (en) * 2007-05-02 2010-03-03 国际商业机器公司 CMOS circuits with high-k gate dielectric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008544A1 (en) * 2002-07-16 2004-01-22 Nec Corporation Semiconductor device, production method and production device thereof
CN1855541A (en) * 2005-02-28 2006-11-01 英飞凌科技股份公司 Field effect transistor with gate spacer structure and low-resistance channel coupling
KR20070073149A (en) * 2006-01-03 2007-07-10 삼성전자주식회사 Semiconductor device and method of manufacturing the same
CN101663755A (en) * 2007-05-02 2010-03-03 国际商业机器公司 CMOS circuits with high-k gate dielectric
CN101325203A (en) * 2007-06-14 2008-12-17 国际商业机器公司 Semiconductor structures and methods of forming them

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282540A (en) * 2013-07-03 2015-01-14 中芯国际集成电路制造(上海)有限公司 Transistor and method for forming transistor
CN104282540B (en) * 2013-07-03 2017-09-22 中芯国际集成电路制造(上海)有限公司 Transistor and forming method thereof
CN104752176A (en) * 2013-12-27 2015-07-01 中芯国际集成电路制造(上海)有限公司 Method for forming metal gate
CN104752176B (en) * 2013-12-27 2017-12-29 中芯国际集成电路制造(上海)有限公司 The forming method of metal gates
CN111095524B (en) * 2017-09-12 2023-10-03 应用材料公司 Apparatus and method for fabricating semiconductor structures using protective barrier layers
CN111095524A (en) * 2017-09-12 2020-05-01 应用材料公司 Apparatus and method for fabricating semiconductor structures using a protective barrier layer
CN109904112A (en) * 2017-12-11 2019-06-18 中芯国际集成电路制造(北京)有限公司 Semiconductor device and its manufacturing method
CN109904112B (en) * 2017-12-11 2021-01-12 中芯国际集成电路制造(北京)有限公司 Semiconductor device and method for manufacturing the same
CN109119339A (en) * 2018-08-26 2019-01-01 合肥安德科铭半导体科技有限公司 A kind of SiCO material spacer layer of low-k and its preparation method and application
CN109494191A (en) * 2018-11-19 2019-03-19 武汉新芯集成电路制造有限公司 Semiconductor devices and preparation method thereof
CN113053751A (en) * 2019-12-27 2021-06-29 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN113053751B (en) * 2019-12-27 2023-05-05 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN111627908A (en) * 2020-05-29 2020-09-04 宁波铼微半导体有限公司 GaN-based CMOS device and preparation method thereof
CN111627908B (en) * 2020-05-29 2023-08-29 宁波铼微半导体有限公司 A GaN-based CMOS device and its preparation method

Similar Documents

Publication Publication Date Title
CN102110651B (en) A kind of semiconductor device and its manufacturing method
US8222099B2 (en) Semiconductor device and method of manufacturing the same
US8329566B2 (en) Method of manufacturing a high-performance semiconductor device
US8193586B2 (en) Sealing structure for high-K metal gate
CN102299156B (en) A kind of semiconductor device and its manufacturing method
US9059315B2 (en) Concurrently forming nFET and pFET gate dielectric layers
CN102214609A (en) Semiconductor device and manufacturing method thereof
CN101661883A (en) Method for manufacturing semiconductor element
CN101174587A (en) Metal oxide semiconductor field effect transistor device and manufacturing method thereof
CN102064176A (en) Semiconductor device and manufacturing method thereof
WO2013000268A1 (en) Semiconductor structure and manufacturing method thereof
CN102299155A (en) Semiconductor device and manufacturing method thereof
CN102569076B (en) Semiconductor device and manufacturing method thereof
CN103137475B (en) Semiconductor structure and manufacturing method thereof
CN102299077B (en) Semiconductor device and manufacturing method thereof
CN103811349A (en) Semiconductor structure and manufacturing method thereof
CN103377930B (en) Semiconductor structure and manufacturing method thereof
CN102148158A (en) A body contact device structure and its manufacturing method
CN102299177A (en) Method for manufacturing contact and semiconductor device with contact
CN203134802U (en) Semiconductor structure
CN102194692A (en) A method of manufacturing a semiconductor device
CN106328529A (en) MOS (Metal-Oxide-Semiconductor) transistor and formation method thereof
CN101325158B (en) Semiconductor device and method of forming gate thereof
CN102820329B (en) With the height-K dielectric of N doping and the polysilicon gate of silicon-dioxide
CN102157378A (en) A method of manufacturing a semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111012