CN102299155A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN102299155A CN102299155A CN2010102158488A CN201010215848A CN102299155A CN 102299155 A CN102299155 A CN 102299155A CN 2010102158488 A CN2010102158488 A CN 2010102158488A CN 201010215848 A CN201010215848 A CN 201010215848A CN 102299155 A CN102299155 A CN 102299155A
- Authority
- CN
- China
- Prior art keywords
- gate dielectric
- dielectric layer
- layer
- gate
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明通常涉及一种半导体器件结构及其制造方法,具体来说,涉及一种减少栅极等效氧化层厚度的半导体器件结构及其制造方法。The present invention generally relates to a semiconductor device structure and a manufacturing method thereof, in particular to a semiconductor device structure and a manufacturing method thereof which reduce the thickness of the gate equivalent oxide layer.
背景技术 Background technique
作为微电子技术核心的CMOS技术已经成为现代电子产品中的支撑力量。随着CMOS器件特征尺寸的不断减小,作为CMOS器件栅介质材料的SiO2的物理厚度已逐渐临近极限。采用高k栅介质材料和金属栅电极材料,标志着从推出多晶硅栅MOS晶体管以来,晶体管技术的一个突破,具有里程碑作用。高k栅介质材料的引入可以保证在同等等效氧化层厚度(EOT)的情况下,有效地增加栅介质的物理厚度,使得隧穿电流得到有效的抑制;金属栅电极材料的引入不仅消除了多晶硅栅电极的耗尽效应和掺杂原子扩散问题,而且还有效地降低了栅电极的电阻,并解决了高k栅介质材料与多晶硅栅之间的不兼容问题。As the core of microelectronic technology, CMOS technology has become the supporting force in modern electronic products. With the continuous reduction of the feature size of CMOS devices, the physical thickness of SiO 2 as the gate dielectric material of CMOS devices has gradually approached the limit. The use of high-k gate dielectric materials and metal gate electrode materials marks a breakthrough in transistor technology since the introduction of polysilicon gate MOS transistors, which is a milestone. The introduction of high-k gate dielectric material can ensure that the physical thickness of the gate dielectric can be effectively increased under the same equivalent oxide thickness (EOT), so that the tunneling current can be effectively suppressed; the introduction of metal gate electrode material not only eliminates the The depletion effect of the polysilicon gate electrode and the diffusion of dopant atoms can effectively reduce the resistance of the gate electrode and solve the incompatibility between the high-k gate dielectric material and the polysilicon gate.
目前,有关高k栅介质材料的研究已取得了一定的进展。通过界面控制和成膜工艺优化,可以获得超薄(EOT:0.5nm,物理厚度:2.4nm)、低漏电流(Jg:10A/cm2)的HfO2高k栅介质绝缘膜。然而通过器件性能测试发现,随着EOT的极度减小(~0.5nm),平带电压(Vfb)非常明显地向硅的带隙中间值附近偏移。这主要是由于高k栅介质和金属栅电极的兼容性问题和热稳定性问题造成的,并且会极大的增加器件的功耗。此外,Vfb的异常偏移现象是由于栅电极与高k栅介质间的特殊界面特性造成的,例如,多晶硅栅与HfO2界面处Si-Hf键的形成引起的费米能级钉扎效应、金属栅与高k栅介质界面及高k栅介质与SiO2界面处偶极子的形成引起的费米能级钉扎效应等。显然,金属栅与高k栅介质结构CMOS器件的阈值电压控制技术研究并不只是和金属栅材料本身的功函数有关,而是要把金属栅与高k栅介质结构作为一个整体来研究。要求NMOS和PMOS器件的阈值电压在保持绝对值大致相等的前提下,还要尽可能的降低阈值电压的数值。利用合适的材料和结构来调节有效功函数,进而降低器件阈值电压是目前最直接、可行和有效的方法。At present, research on high-k gate dielectric materials has made some progress. Through interface control and film formation process optimization, ultra-thin (EOT: 0.5nm, physical thickness: 2.4nm), low leakage current (J g : 10A/cm 2 ) HfO 2 high-k gate dielectric insulating film can be obtained. However, through device performance tests, it is found that with the extreme reduction of EOT (~0.5nm), the flat-band voltage (V fb ) shifts very obviously to the vicinity of the middle value of the band gap of silicon. This is mainly caused by the compatibility and thermal stability of the high-k gate dielectric and the metal gate electrode, and will greatly increase the power consumption of the device. In addition, the abnormal shifting phenomenon of V fb is caused by the special interface characteristics between the gate electrode and the high-k gate dielectric, for example, the Fermi level pinning effect caused by the formation of Si-Hf bonds at the interface of polysilicon gate and HfO2 , the Fermi level pinning effect caused by the formation of dipoles at the interface between the metal gate and the high-k gate dielectric and the interface between the high-k gate dielectric and SiO 2 , etc. Obviously, the research on the threshold voltage control technology of CMOS devices with metal gate and high-k gate dielectric structure is not only related to the work function of the metal gate material itself, but to study the metal gate and high-k gate dielectric structure as a whole. It is required that the threshold voltages of the NMOS and PMOS devices should be reduced as much as possible on the premise of keeping the absolute values approximately equal. It is the most direct, feasible and effective method to adjust the effective work function by using suitable materials and structures to reduce the threshold voltage of devices.
发明内容 Contents of the invention
本发明的目的是提供一种通过利用偶极子相消的方法,有效调节阈值电压和减小等效氧化层厚度(EOT)的半导体器件结构及其制造方法。本发明的半导体器件结构包括:半导体衬底;形成于所述半导体衬底上的栅极结构,其中,所述栅极结构包括:在所述半导体衬底上的界面层、在所述界面层上的第一高k栅介质层、在所述第一高k栅介质层上的第二高k栅介质层、在所述第二高k栅介质层上的第三高k栅介质层、在所述第三高k栅介质层上的金属栅层,其中所述第二高k栅介质层的介电常数高于所述第一和第三高k栅介质层的介电常数。The object of the present invention is to provide a semiconductor device structure and its manufacturing method which can effectively adjust the threshold voltage and reduce the equivalent oxide thickness (EOT) by utilizing the method of dipole cancellation. The semiconductor device structure of the present invention comprises: a semiconductor substrate; a gate structure formed on the semiconductor substrate, wherein the gate structure comprises: an interface layer on the semiconductor substrate, an interface layer on the interface layer the first high-k gate dielectric layer on the first high-k gate dielectric layer, the second high-k gate dielectric layer on the first high-k gate dielectric layer, the third high-k gate dielectric layer on the second high-k gate dielectric layer, The metal gate layer on the third high-k gate dielectric layer, wherein the dielectric constant of the second high-k gate dielectric layer is higher than the dielectric constants of the first and third high-k gate dielectric layers.
本发明还提供了一种半导体器件的制造方法,该方法包括:提供半导体衬底;在所述半导体衬底上形成界面层;在所述界面层上形成第一高k栅介质层;在所述第一高k栅介质层上形成第二高k栅介质层;在所述第二高k栅介质层上形成第三高k栅介质层;在所述第三高k栅介质层上形成金属栅层;对所述器件进行加工,以形成栅极结构;其中,所述第二高k栅介质层的介电常数高于所述第一和第三高k栅介质层的介电常数。The present invention also provides a method for manufacturing a semiconductor device, the method comprising: providing a semiconductor substrate; forming an interface layer on the semiconductor substrate; forming a first high-k gate dielectric layer on the interface layer; Forming a second high-k gate dielectric layer on the first high-k gate dielectric layer; forming a third high-k gate dielectric layer on the second high-k gate dielectric layer; forming a third high-k gate dielectric layer on the third high-k gate dielectric layer Metal gate layer; processing the device to form a gate structure; wherein the dielectric constant of the second high-k gate dielectric layer is higher than the dielectric constant of the first and third high-k gate dielectric layers .
本发明还提供了另外一种半导体器件,包括:具有第一区域和第二区域的半导体衬底,其中所述第一区域为NMOS器件区域,所述第二区域为PMOS器件区域;形成于所述第一区域上的第一栅极结构和形成于所述第二区域上的第二栅极结构,其中,所述第一栅极结构包括:在所述半导体衬底上的界面层、在所述界面层上的第一高k栅介质层、在所述第一高k栅介质层上的第二高k栅介质层、在所述第二高k栅介质层上的第三高k栅介质层、在所述第三高k栅介质层上的金属栅层,其中所述第二高k栅介质层的介电常数高于所述第一和第三高k栅介质层的介电常数;所述第二栅极结构包括:在所述半导体衬底上的界面层、在所述界面层上的第四高k栅介质层、在所述第四高k栅介质层上的第五高k栅介质层、在所述第五高k栅介质层上的第六高k栅介质层、在所述第六高k栅介质层上的金属栅层,其中所述第五高k栅介质层的介电常数高于第四和第六高k栅介质层的介电常数。The present invention also provides another semiconductor device, comprising: a semiconductor substrate having a first region and a second region, wherein the first region is an NMOS device region, and the second region is a PMOS device region; formed on the A first gate structure on the first region and a second gate structure formed on the second region, wherein the first gate structure includes: an interface layer on the semiconductor substrate, an The first high-k gate dielectric layer on the interface layer, the second high-k gate dielectric layer on the first high-k gate dielectric layer, and the third high-k gate dielectric layer on the second high-k gate dielectric layer A gate dielectric layer, a metal gate layer on the third high-k gate dielectric layer, wherein the dielectric constant of the second high-k gate dielectric layer is higher than that of the first and third high-k gate dielectric layers electrical constant; the second gate structure includes: an interface layer on the semiconductor substrate, a fourth high-k gate dielectric layer on the interface layer, and a fourth high-k gate dielectric layer on the fourth high-k gate dielectric layer The fifth high-k gate dielectric layer, the sixth high-k gate dielectric layer on the fifth high-k gate dielectric layer, and the metal gate layer on the sixth high-k gate dielectric layer, wherein the fifth high-k gate dielectric layer The dielectric constant of the k-gate dielectric layer is higher than that of the fourth and sixth high-k gate dielectric layers.
本发明还提供了另外一种半导体器件的制造方法,该方法包括:提供具有第一区域和第二区域的半导体衬底,其中所述第一区域为NMOS器件区域,所述第二区域为PMOS器件区域;在所述半导体衬底上形成界面层;在所述界面层上先后形成第一高k栅介质层、第二高k栅介质层和第三高k栅介质层,其中,所述第二高k栅介质层的介电常数高于所述第一和第三高k栅介质层的介电常数;分别去除所述半导体衬底第二区域上的第三高k栅介质层、第二高k栅介质层、第一高k栅介质层;在所述器件上先后形成第四高k栅介质层、第五高k栅介质层和第六高k栅介质层,其中,所述第五高k栅介质层的介电常数高于所述第四和第六高k栅介质层的介电常数;分别去除所述半导体衬底第一区域上的第六高k栅介质层、第五高k栅介质层、第四高k栅介质层;在所述器件上形成金属栅层;对所述器件进行加工,以分别形成属于第一区域的第一栅极结构和属于第二区域的第二栅极结构。The present invention also provides another method for manufacturing a semiconductor device, the method comprising: providing a semiconductor substrate having a first region and a second region, wherein the first region is an NMOS device region, and the second region is a PMOS device region; forming an interface layer on the semiconductor substrate; forming a first high-k gate dielectric layer, a second high-k gate dielectric layer and a third high-k gate dielectric layer successively on the interface layer, wherein the The dielectric constant of the second high-k gate dielectric layer is higher than the dielectric constant of the first and third high-k gate dielectric layers; respectively removing the third high-k gate dielectric layer, the third high-k gate dielectric layer on the second region of the semiconductor substrate, The second high-k gate dielectric layer, the first high-k gate dielectric layer; the fourth high-k gate dielectric layer, the fifth high-k gate dielectric layer and the sixth high-k gate dielectric layer are successively formed on the device, wherein the The dielectric constant of the fifth high-k gate dielectric layer is higher than the dielectric constant of the fourth and sixth high-k gate dielectric layers; respectively remove the sixth high-k gate dielectric layer on the first region of the semiconductor substrate , the fifth high-k gate dielectric layer, and the fourth high-k gate dielectric layer; forming a metal gate layer on the device; processing the device to respectively form a first gate structure belonging to the first region and a gate structure belonging to the first region The second gate structure of the two regions.
本发明是在MOS器件的高k栅介质层内部插入一层更高k介质,该更高k值电介质作为主高k介质,有效降低等效氧化层厚度;利用该更高k介质与上下高k栅介质层形成反向偶极子,相互抵消,在有效调节阈值电压的情况下,获得更小的等效氧化层厚度(EOT)。The present invention inserts a layer of higher-k dielectric inside the high-k gate dielectric layer of the MOS device, and the higher-k dielectric serves as the main high-k dielectric to effectively reduce the thickness of the equivalent oxide layer; using the higher-k dielectric and the upper and lower high The k-gate dielectric layer forms reverse dipoles, which cancel each other out, and obtain a smaller equivalent oxide thickness (EOT) under the condition of effectively adjusting the threshold voltage.
附图说明 Description of drawings
图1示出了根据本发明的第一实施例的半导体器件的制造方法的流程图;1 shows a flowchart of a method for manufacturing a semiconductor device according to a first embodiment of the present invention;
图2-7示出了根据本发明的第一实施例的半导体器件的各个制造阶段的示意图;2-7 show schematic diagrams of various manufacturing stages of a semiconductor device according to a first embodiment of the present invention;
图8示出了根据本发明的第二实施例的半导体器件的制造方法的流程图;以及8 shows a flowchart of a method of manufacturing a semiconductor device according to a second embodiment of the present invention; and
图9-19示出了根据本发明的第二实施例的半导体器件的各个制造阶段的示意图。9-19 show schematic diagrams of various manufacturing stages of a semiconductor device according to a second embodiment of the present invention.
具体实施方式 Detailed ways
本发明通常涉及一种半导体器件的制造方法,尤其涉及一种调节阈值电压特性的方法。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。The present invention generally relates to a manufacturing method of a semiconductor device, in particular to a method for adjusting threshold voltage characteristics. The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. To simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Of course, they are merely examples and are not intended to limit the invention. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various specific process and material examples are provided herein, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, configurations described below in which a first feature is "on" a second feature may include embodiments where the first and second features are formed in direct contact, and may include additional features formed between the first and second features. For example, such that the first and second features may not be in direct contact.
第一实施例first embodiment
参考图1,图1示出了根据本发明实施例的半导体器件的制造方法的流程图。该方法可能包含在集成电路的形成过程或其部分中,可能包括静态随机存取存储器(SRAM)和/或者其它逻辑电路,无源元件例如电阻、电容器和电感,和有源元件例如P沟道场效应晶体管(PFET),N沟道场效应晶体管(NFET),金属氧化物半导体场效应晶体管(MOSFET),互补金属氧化物半导体(CMOS)晶体管,双极晶体管,高压晶体管,高频晶体管,其它记忆单元,其组合和/或者其它半导体器件。Referring to FIG. 1 , FIG. 1 shows a flowchart of a method for manufacturing a semiconductor device according to an embodiment of the present invention. The method may be involved in the formation of integrated circuits or portions thereof, which may include static random access memory (SRAM) and/or other logic circuits, passive components such as resistors, capacitors and inductors, and active components such as P-channel field Effect Transistor (PFET), N-Channel Field Effect Transistor (NFET), Metal Oxide Semiconductor Field Effect Transistor (MOSFET), Complementary Metal Oxide Semiconductor (CMOS) Transistor, Bipolar Transistor, High Voltage Transistor, High Frequency Transistor, Other Memory Units , combinations thereof and/or other semiconductor devices.
步骤301,提供半导体衬底402(例如,晶片)。参考图2。在实施例中,衬底402包括晶体结构中的硅衬底。如本领域所知晓的,根据设计要求衬底可包括各种不同的掺杂配置(例如,p型衬底或者n型衬底)。衬底的其它例子包括其它元素半导体,例如锗和金刚石。或者,衬底可包括化合物半导体,例如,碳化硅,砷化镓,砷化铟,或者磷化铟。进一步,为了提高性能,衬底可选择性地包括一个外延层(epi层),和/或者硅绝缘体(SOI)结构。更进一步,衬底可包括形成在其上的多种特征,包括有源区域,有源区域中的源极和漏极区域,隔离区域(例如,浅沟槽隔离(STI)),和/或者本领域已知的其它特征,所述半导体衬底可以是经过前期工艺处理而提供的,例如经过清洗工艺,清洗药液包括H2SO4酸、HCl酸、H2O2、NH4OH、HF酸等。In step 301, a semiconductor substrate 402 (eg, a wafer) is provided. Refer to Figure 2. In an embodiment,
步骤302,在半导体衬底402上形成界面层408。如图2所示,在半导体衬底402上生长一层绝缘界面层408。在本实施例中,绝缘界面层408为SiO2,也可以使用其他材料来形成,例如氮化硅或者氮氧化硅材料。Step 302 , forming an
步骤303,在界面层408上形成第一高k栅介质层410。如图3所示,在绝缘界面层408上沉积第一高k栅介质层410。其中,第一高k栅介质层410可包括高-k材料。对于NMOS器件,第一高k栅介质层410的介电常数范围为12-25,高-k材料的例子包括例如HfLaOx、HfLaON、HfSiOx、HfSiON、La2O3、Y2O3、MgO、Dy2O3、Gd2O3或其组合或者其它适当的材料;对于PMOS器件,第一高k栅介质层410的介电常数范围为8-25,高-k材料的例子包括例如HfAlOx、HfAlON、Al2O3、TiO2、ZrO2或其组合或者其它适当的材料。第一高k栅介质层410可通过热氧化、化学气相沉积、原子层沉积(ALD)形成。这仅是示例,不局限于此。Step 303 , forming a first high-k gate
步骤304,在第一高k栅介质层410上形成第二高k栅介质层412。如图4所示,在第一高k栅介质层410上沉积第二高k栅介质层412。其中,第二高k栅介质层412可包括介电常数比第一高k栅介质层410更高的高-k材料。材料可能为HfO2、La2O3、HfTiOx、HfLaOx、TiO2、Ta2O5、硅化物或其组合等。对于NMOS和PMOS器件,第二高k栅介质层412的介电常数范围为16-80,高于第一高k栅介质层410的介电常数。第二高k栅介质层412可通过热氧化、化学气相沉积、原子层沉积(ALD)形成。这仅是示例,不局限于此。Step 304 , forming a second high-k gate
步骤305,在第二高k栅介质层412上形成第三高k栅介质层414。如图5所示,在第二高k栅介质层412上沉积第三高k栅介质层414。其中,第三高k栅介质层414可包括高-k材料,例如,和氧化硅相比具有高介电常数的材料。对于NMOS器件,第三高k栅介质层414的介电常数范围为12-25,高-k材料的例子包括例如HfLaOx、HfLaON、HfSiOx、HfSiON、La2O3、Y2O3、MgO、Dy2O3、Gd2O3或其组合或者其它适当的材料;对于PMOS器件,第三高k栅介质层414的介电常数范围为8-25,高-k材料的例子包括例如HfAlOx、HfAlON、Al2O3、TiO2、ZrO2或其组合或者其它适当的材料。其中,第三高k栅介质层414的介电常数低于第二高k栅介质层412。特别地,第三高k栅介质层214和第一高k栅介质层210可以是同种材料也可以是不同种材料。第三高k栅介质层414可通过热氧化、化学气相沉积、原子层沉积(ALD)形成。这仅是示例,不局限于此。Step 305 , forming a third high-k
步骤306,在第三高k栅介质层414上形成金属栅层422。如图6所示,在第三高k栅介质层414上沉积金属栅层422,其中金属栅层422从包含下列元素的组中选择元素来形成:TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅、金属硅化物或上述材料的组合。在本实施例中,金属栅层422可使用原子层沉积、化学气相沉积(CVD)、高密度等离子体CVD、溅射或其他合适的方法。以上仅仅是作为示例,不局限于此。Step 306 , forming a
步骤307,对所述器件进行加工,以形成栅极结构。如图7所示,对所述器件进行图形化,以形成栅极结构。可以利用干法刻蚀或者湿法刻蚀技术对所述器件进行图形化。这仅是示例,本发明不局限于此。Step 307, processing the device to form a gate structure. As shown in FIG. 7, the device is patterned to form gate structures. The device can be patterned using dry etching or wet etching techniques. This is just an example, and the present invention is not limited thereto.
本实施例的MOS器件在第一和第三高k栅介质层内插入一层更高k介质,即第二高k栅介质层。该第二高k栅介质层作为主高k介质层,能够有效降低等效氧化层厚度;利用该更高k栅介质层与第一和第三高k栅介质层形成反向偶极子,相互抵消,在有效调节阈值电压的情况下,获得更小的等效氧化层厚度。In the MOS device of this embodiment, a layer of higher-k dielectric, that is, a second high-k gate dielectric layer is inserted in the first and third high-k gate dielectric layers. The second high-k gate dielectric layer is used as the main high-k dielectric layer, which can effectively reduce the thickness of the equivalent oxide layer; using the higher-k gate dielectric layer to form a reverse dipole with the first and third high-k gate dielectric layers, cancel each other out, and obtain a smaller equivalent oxide layer thickness under the condition of effectively adjusting the threshold voltage.
第二实施例second embodiment
下面将仅就第二实施例区别于第一实施例的方面进行阐述。未描述的部分应当认为与第一实施例采用了相同的步骤、方法或者工艺来进行,因此再次不再赘述。Only the aspects of the second embodiment that differs from the first embodiment will be described below. Parts not described should be considered to be performed by the same steps, methods or processes as those in the first embodiment, and thus will not be described again.
参考图8,图8示出了根据本发明实施例的半导体器件的制造方法的流程图。Referring to FIG. 8 , FIG. 8 shows a flowchart of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
步骤101,提供具有第一区域204和第二区域206的半导体衬底202(例如,晶片)。参考图8。在实施例中,衬底202包括晶体结构中的硅衬底。如本领域所知晓的,根据设计要求衬底可包括各种不同的掺杂配置(例如,p型衬底或者n型衬底),其中第一区域204具有与第二区域206不同的掺杂类型;例如,第一区域204为NMOS器件的区域;第二区域为PMOS器件的区域,或者反之。衬底的其它例子包括其它元素半导体,例如锗和金刚石。或者,衬底可包括化合物半导体,例如,碳化硅,砷化镓,砷化铟,或者磷化铟。进一步,为了提高性能,衬底可选择性地包括一个外延层(epi层),和/或者硅绝缘体(SOI)结构。更进一步,衬底可包括形成在其上的多种特征,包括有源区域,有源区域中的源极和漏极区域,隔离区域(例如,浅沟槽隔离(STI)),和/或者本领域已知的其它特征,所述半导体衬底可以是经过前期工艺处理而提供的,例如经过清洗工艺,清洗药液包括H2SO4酸、HCl酸、H2O2、NH4OH、HF酸等。参考图8的例子,提供了一个包含第一区域204和第二区域206的半导体衬底202。Step 101 , providing a semiconductor substrate 202 (eg, a wafer) having a
步骤102,在半导体衬底202上形成界面层208。如图9所示,在半导体衬底202上生长一层绝缘界面层208。在本实施例中,绝缘界面层208为SiO2,也可以使用其他材料来形成,例如氮化硅或者氮氧化硅材料。Step 102 , forming an
步骤103,形成第一区域的NMOS器件的栅堆叠,具体来说:在界面层208上先后形成第一高k栅介质层210、第二高k栅介质层212和第三高k栅介质层214。如图10所示,首先,在绝缘界面层208上沉积第一高k栅介质层210。然后,如图11所示,在第一高k栅介质层210上沉积第二高k栅介质层212。之后,如图12所示,在第二高k栅介质层212上沉积第三高k栅介质层214。其中,第一高k栅介质层210和第三高k栅介质层214可包括高-k材料,例如和氧化硅相比具有高介电常数的材料。对于作为NMOS器件的第一区域,第一高k栅介质层210与第三高k栅介质层214的介电常数范围为12-25,高-k材料的例子包括例如HfLaOx、HfLaON、HfSiOx、HfSiON、La2O3、Y2O3、MgO、Dy2O3、Gd2O3或其组合或者其它适当的材料。特别地,第一高k栅介质层210和第三高k栅介质层214可以是同种材料也可以是不同种材料。第二高k栅介质层212的介电常数高于第一高k栅介质层210和第三高k栅介质层214的介电常数。例如,第二高k栅介质层212的介电常数范围可以为16-80。材料可以为HfO2、La2O3、HfTiOx、HfLaOx、TiO2、Ta2O5、硅化物或其组合等。第一高k栅介质层210、第二高k栅介质层212和第三高k栅介质层214可通过热氧化、化学气相沉积、原子层沉积(ALD)形成。这仅是示例,不局限于此。Step 103, forming the gate stack of the NMOS device in the first region, specifically: forming the first high-k
步骤104,分别去除半导体衬底202第二区域206上的第三高k栅介质层214、第二高k栅介质层212、第一高k栅介质层210。首先,在第一区域204上的第三高k栅介质层214上覆盖一层掩模层,然后对未覆盖掩模层的第二区域206上的第三高k栅介质层214进行刻蚀,接着,对第二高k栅介质层212进行刻蚀,之后,对第一高k栅介质层210进行刻蚀。然后,去除掉第一区域204上的第三高k栅介质层214上的掩模层,以形成如图13所示的器件结构。Step 104 , respectively removing the third high-k
步骤105,形成第二区域的PMOS器件的栅堆叠,具体来说:在所述器件上先后形成第四高k栅介质层216、第五高k栅介质层218和第六高k栅介质层220。如图14所示,首先,在如图13所述的器件上沉积第四高k栅介质层216。然后,如图15所示,在第四高k栅介质层216上沉积第五高k栅介质层218。之后,如图16所示,在第五高k栅介质层218上沉积第六高k栅介质层220。其中,第四高k栅介质层216和第六高k栅介质层220可包括高-k材料,例如和氧化硅相比具有高介电常数的材料。对于作为PMOS器件的第二区域,第四高k栅介质层216与第六高k栅介质层220的介电常数范围为8-25,高-k材料的例子包括例如HfAlOx、HfAlON、Al2O3、TiO2、ZrO2或其组合或者其它适当的材料。特别地,第四高k栅介质层216和第六高k栅介质层220可以是同种材料也可以是不同种材料。第五高k栅介质层218的介电常数高于第四高k栅介质层216和第六高k栅介质层220的介电常数。例如:第五高k栅介质层218的介电常数范围为16-80。材料可能为HfO2、La2O3、HfTiOx、HfLaOx、TiO2、Ta2O5、硅化物或其组合等。第四高k栅介质层216、第五高k栅介质层218和第六高k栅介质层220可通过热氧化、化学气相沉积、原子层沉积(ALD)形成。这仅是示例,不局限于此。Step 105, forming the gate stack of the PMOS device in the second region, specifically: successively forming the fourth high-k
步骤106,分别去除所述半导体衬底202第一区域204上的第六高k栅介质层220、第五高k栅介质层218、第四高k栅介质层216。对第一区域204上的第六高k栅介质层220、第五高k栅介质层218以及第四高k栅介质层216进行化学机械研磨抛光,以形成如图17所示的器件结构。Step 106 , respectively removing the sixth high-k
步骤107,在所述器件上形成金属栅层222。如图18所示,在如图17所示的器件上沉积金属栅层222,其中金属栅层222从包含下列金属的组中选择来形成:TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅、金属硅化物或上述材料的组合。在本实施例中,金属栅层222可使用原子层沉积、化学气相沉积(CVD)、高密度等离子体CVD、溅射或其他合适的方法。以上仅仅是作为示例,不局限于此。Step 107, forming a
步骤108,对所述器件进行加工,以分别形成属于第一区域204的第一栅极结构和属于第二区域206的第二栅极结构,从而形成NMOS器件和PMOS器件。如图19所示,对所述第一区域204和第二区域206进行图形化,以形成第一栅极结构和第二栅极结构。可以利用干法刻蚀或者湿法刻蚀技术对所述第一区域和第二区域进行图形化。这仅是示例,本发明不局限于此。Step 108 , processing the device to form a first gate structure belonging to the
本发明是在MOS器件的高k栅介质层内部插入一层更高k介质,该更高k值电介质作为主高k介质,有效降低等效氧化层厚度;利用该更高k介质与上下高k栅介质层形成反向偶极子,相互抵消,在有效调节阈值电压的情况下,获得更小的等效氧化层厚度(EOT)。The present invention inserts a layer of higher-k dielectric inside the high-k gate dielectric layer of the MOS device, and the higher-k dielectric serves as the main high-k dielectric to effectively reduce the thickness of the equivalent oxide layer; using the higher-k dielectric and the upper and lower high The k-gate dielectric layer forms reverse dipoles, which cancel each other out, and obtain a smaller equivalent oxide thickness (EOT) under the condition of effectively adjusting the threshold voltage.
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。Although the example embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made to these embodiments without departing from the spirit of the invention and the scope of protection as defined by the appended claims. For other examples, those of ordinary skill in the art will readily understand that the order of process steps may be varied while remaining within the scope of the present invention.
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。In addition, the scope of application of the present invention is not limited to the process, mechanism, manufacture, material composition, means, method and steps of the specific embodiments described in the specification. From the disclosure of the present invention, those of ordinary skill in the art will easily understand that for the processes, mechanisms, manufacturing, material compositions, means, methods or steps that currently exist or will be developed in the future, they are implemented in accordance with the present invention Corresponding embodiments described which function substantially the same or achieve substantially the same results may be applied in accordance with the present invention. Therefore, the appended claims of the present invention are intended to include these processes, mechanisms, manufacture, material compositions, means, methods or steps within their protection scope.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102158488A CN102299155A (en) | 2010-06-22 | 2010-06-22 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102158488A CN102299155A (en) | 2010-06-22 | 2010-06-22 | Semiconductor device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102299155A true CN102299155A (en) | 2011-12-28 |
Family
ID=45359458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102158488A Pending CN102299155A (en) | 2010-06-22 | 2010-06-22 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102299155A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103545355A (en) * | 2012-07-12 | 2014-01-29 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacturing method thereof |
CN103681269A (en) * | 2012-09-03 | 2014-03-26 | 中芯国际集成电路制造(上海)有限公司 | Method for selectively forming high-K dielectric layer |
CN106653591A (en) * | 2016-12-12 | 2017-05-10 | 东莞市广信知识产权服务有限公司 | A method of growing high-K dielectric on the surface of GaN |
CN106783976A (en) * | 2016-12-12 | 2017-05-31 | 东莞市广信知识产权服务有限公司 | A GaN channel MOS interface structure |
CN106847918A (en) * | 2015-12-04 | 2017-06-13 | Imec 非营利协会 | Ge field-effect transistors(FET)And manufacture method |
CN110993567A (en) * | 2019-12-09 | 2020-04-10 | 中国科学院微电子研究所 | A semiconductor structure and method of forming the same |
CN113809012A (en) * | 2020-06-12 | 2021-12-17 | 长鑫存储技术有限公司 | Semiconductor device and method for manufacturing the same |
CN116314259A (en) * | 2023-02-08 | 2023-06-23 | 厦门大学 | Super-junction SiC MOSFET containing rare earth gate dielectric layer and manufacturing method thereof |
WO2023133972A1 (en) * | 2022-01-12 | 2023-07-20 | 长鑫存储技术有限公司 | Semiconductor device and fabrication method therefor |
US11978643B2 (en) | 2022-01-12 | 2024-05-07 | Changxin Memory Technologies, Inc. | Method for manufacturing semiconductor device including performing thermal treatment on substrate and semiconductor device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1511349A (en) * | 2001-06-21 | 2004-07-07 | ���µ�����ҵ��ʽ���� | Semiconductor device and manufacturing method thereof |
CN1619817A (en) * | 2003-11-12 | 2005-05-25 | 三星电子株式会社 | Semiconductor device with different gate dielectrics and manufacturing method thereof |
US20070178681A1 (en) * | 2006-02-02 | 2007-08-02 | Samsung Electronics Co., Ltd., | Semiconductor device having a plurality of metal layers deposited thereon |
CN101027770A (en) * | 2004-09-27 | 2007-08-29 | 英特尔公司 | A metal gate electrode semiconductor device |
US20080087890A1 (en) * | 2006-10-16 | 2008-04-17 | Micron Technology, Inc. | Methods to form dielectric structures in semiconductor devices and resulting devices |
US20090085175A1 (en) * | 2007-09-28 | 2009-04-02 | Tokyo Electron Limited | Semiconductor device containing a buried threshold voltage adjustment layer and method of forming |
US20090152636A1 (en) * | 2007-12-12 | 2009-06-18 | International Business Machines Corporation | High-k/metal gate stack using capping layer methods, ic and related transistors |
CN101533842A (en) * | 2008-03-12 | 2009-09-16 | 台湾积体电路制造股份有限公司 | Hybrid method of forming metal gate of MOS device |
CN101661882A (en) * | 2008-08-27 | 2010-03-03 | 台湾积体电路制造股份有限公司 | Semiconductor device and method for manufacturing the same |
US20100102395A1 (en) * | 2008-10-27 | 2010-04-29 | Renesas Technology Corp. | Semiconductor device and manufacturing method thereof |
-
2010
- 2010-06-22 CN CN2010102158488A patent/CN102299155A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1511349A (en) * | 2001-06-21 | 2004-07-07 | ���µ�����ҵ��ʽ���� | Semiconductor device and manufacturing method thereof |
CN1619817A (en) * | 2003-11-12 | 2005-05-25 | 三星电子株式会社 | Semiconductor device with different gate dielectrics and manufacturing method thereof |
CN101027770A (en) * | 2004-09-27 | 2007-08-29 | 英特尔公司 | A metal gate electrode semiconductor device |
US20070178681A1 (en) * | 2006-02-02 | 2007-08-02 | Samsung Electronics Co., Ltd., | Semiconductor device having a plurality of metal layers deposited thereon |
US20080087890A1 (en) * | 2006-10-16 | 2008-04-17 | Micron Technology, Inc. | Methods to form dielectric structures in semiconductor devices and resulting devices |
US20090085175A1 (en) * | 2007-09-28 | 2009-04-02 | Tokyo Electron Limited | Semiconductor device containing a buried threshold voltage adjustment layer and method of forming |
US20090152636A1 (en) * | 2007-12-12 | 2009-06-18 | International Business Machines Corporation | High-k/metal gate stack using capping layer methods, ic and related transistors |
CN101533842A (en) * | 2008-03-12 | 2009-09-16 | 台湾积体电路制造股份有限公司 | Hybrid method of forming metal gate of MOS device |
CN101661882A (en) * | 2008-08-27 | 2010-03-03 | 台湾积体电路制造股份有限公司 | Semiconductor device and method for manufacturing the same |
US20100102395A1 (en) * | 2008-10-27 | 2010-04-29 | Renesas Technology Corp. | Semiconductor device and manufacturing method thereof |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103545355A (en) * | 2012-07-12 | 2014-01-29 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacturing method thereof |
CN103681269A (en) * | 2012-09-03 | 2014-03-26 | 中芯国际集成电路制造(上海)有限公司 | Method for selectively forming high-K dielectric layer |
CN103681269B (en) * | 2012-09-03 | 2016-06-29 | 中芯国际集成电路制造(上海)有限公司 | The method of selectively formed high-K dielectric layer |
CN106847918B (en) * | 2015-12-04 | 2022-01-07 | Imec 非营利协会 | Ge Field Effect Transistor (FET) and method of manufacture |
CN106847918A (en) * | 2015-12-04 | 2017-06-13 | Imec 非营利协会 | Ge field-effect transistors(FET)And manufacture method |
CN106653591A (en) * | 2016-12-12 | 2017-05-10 | 东莞市广信知识产权服务有限公司 | A method of growing high-K dielectric on the surface of GaN |
CN106783976A (en) * | 2016-12-12 | 2017-05-31 | 东莞市广信知识产权服务有限公司 | A GaN channel MOS interface structure |
CN110993567A (en) * | 2019-12-09 | 2020-04-10 | 中国科学院微电子研究所 | A semiconductor structure and method of forming the same |
CN110993567B (en) * | 2019-12-09 | 2022-08-30 | 中国科学院微电子研究所 | Semiconductor structure and forming method thereof |
CN113809012A (en) * | 2020-06-12 | 2021-12-17 | 长鑫存储技术有限公司 | Semiconductor device and method for manufacturing the same |
CN113809012B (en) * | 2020-06-12 | 2024-02-09 | 长鑫存储技术有限公司 | Semiconductor device and method for manufacturing the same |
WO2023133972A1 (en) * | 2022-01-12 | 2023-07-20 | 长鑫存储技术有限公司 | Semiconductor device and fabrication method therefor |
US11978643B2 (en) | 2022-01-12 | 2024-05-07 | Changxin Memory Technologies, Inc. | Method for manufacturing semiconductor device including performing thermal treatment on substrate and semiconductor device |
CN116314259A (en) * | 2023-02-08 | 2023-06-23 | 厦门大学 | Super-junction SiC MOSFET containing rare earth gate dielectric layer and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101928147B1 (en) | Atomic layer deposition methods and structures thereof | |
US7344934B2 (en) | CMOS transistor and method of manufacture thereof | |
CN1710718B (en) | Semiconductor device and method of manufacture thereof | |
US7592678B2 (en) | CMOS transistors with dual high-k gate dielectric and methods of manufacture thereof | |
US7462538B2 (en) | Methods of manufacturing multiple gate CMOS transistors having different gate dielectric materials | |
US8269289B2 (en) | Transistor device and methods of manufacture thereof | |
CN102299155A (en) | Semiconductor device and manufacturing method thereof | |
CN101661883B (en) | Manufacturing method of semiconductor element | |
US8143676B2 (en) | Semiconductor device having a high-dielectric-constant gate insulating film | |
CN102148252B (en) | Device and method for manufacturing semiconductor element | |
US8624325B2 (en) | Semiconductor device and method of manufacturing the same | |
US20110256682A1 (en) | Multiple Deposition, Multiple Treatment Dielectric Layer For A Semiconductor Device | |
US9478637B2 (en) | Scaling EOT by eliminating interfacial layers from high-K/metal gates of MOS devices | |
JP2007110091A (en) | Transistor and manufacturing method thereof | |
CN102110651B (en) | A kind of semiconductor device and its manufacturing method | |
CN107017157A (en) | Atomic layer deposition method and its structure | |
CN101673676A (en) | Method for manufacturing semiconductor element | |
US20100109098A1 (en) | Gate structure including modified high-k gate dielectric and metal gate interface | |
US20130119405A1 (en) | Semiconductor device with enhanced strain | |
US20070278590A1 (en) | Cmos with dual metal gate | |
US20100052077A1 (en) | High-k metal gate structure including buffer layer | |
CN101740570B (en) | Complementary metal oxide semiconductor transistor device and manufacturing method thereof | |
CN102157378A (en) | A method of manufacturing a semiconductor device | |
CN102299110A (en) | Method for forming a semiconductor device and semiconductor device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20111228 |