CN102185056A - Gallium-nitride-based light emitting diode capable of improving electron injection efficiency - Google Patents
Gallium-nitride-based light emitting diode capable of improving electron injection efficiency Download PDFInfo
- Publication number
- CN102185056A CN102185056A CN2011101153231A CN201110115323A CN102185056A CN 102185056 A CN102185056 A CN 102185056A CN 2011101153231 A CN2011101153231 A CN 2011101153231A CN 201110115323 A CN201110115323 A CN 201110115323A CN 102185056 A CN102185056 A CN 102185056A
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- multicycle
- indium gallium
- gallium nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 61
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000002347 injection Methods 0.000 title claims abstract description 21
- 239000007924 injection Substances 0.000 title claims abstract description 21
- 230000004888 barrier function Effects 0.000 claims abstract description 32
- 230000005641 tunneling Effects 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 46
- 229910052738 indium Inorganic materials 0.000 claims description 37
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 36
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 26
- 229910052733 gallium Inorganic materials 0.000 claims description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 3
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 claims 3
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 230000008878 coupling Effects 0.000 abstract description 49
- 238000010168 coupling process Methods 0.000 abstract description 49
- 238000005859 coupling reaction Methods 0.000 abstract description 49
- 230000000903 blocking effect Effects 0.000 abstract description 12
- 230000006911 nucleation Effects 0.000 abstract description 8
- 238000010899 nucleation Methods 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 description 26
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 25
- 239000012159 carrier gas Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 11
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 11
- 229910021529 ammonia Inorganic materials 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 7
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000013078 crystal Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- MMAADVOQRITKKL-UHFFFAOYSA-N chromium platinum Chemical compound [Cr].[Pt] MMAADVOQRITKKL-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- -1 titanium-aluminum-titanium gold Chemical compound 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
一种提高电子注入效率的氮化镓系发光二极管,其包括:一衬底;一氮化镓成核层制作在衬底上;一缓冲层制作在氮化镓成核层上;一n型接触层制作在缓冲层上,在该n型接触层的上面的一侧形成一台面;一下多周期n型电子耦合层制作在n型接触层上台面另一侧的上面;一下隧穿势垒层制作在下多周期n型电子耦合层上;一上多周期n型电子耦合层制作在下隧穿势垒层上;一上隧穿势垒层制作在上多周期n型电子耦合层上;一多周期活性发光层制作在上隧穿势垒层上;一负电极制作在n型接触层的台面上;一p型电子阻挡层制作在多周期活性发光层上;一p型接触层制作在p型电子阻挡层上;一正电极制作在p型接触层上,形成氮化镓系发光二极管的结构。
A gallium nitride-based light-emitting diode for improving electron injection efficiency, comprising: a substrate; a gallium nitride nucleation layer fabricated on the substrate; a buffer layer fabricated on the gallium nitride nucleation layer; an n-type The contact layer is made on the buffer layer, and a table is formed on the upper side of the n-type contact layer; the next multi-period n-type electronic coupling layer is made on the other side of the upper table of the n-type contact layer; the first tunnel barrier layer is made on the lower multi-period n-type electron coupling layer; an upper multi-period n-type electron coupling layer is made on the lower tunneling barrier layer; an upper tunneling barrier layer is made on the upper multi-period n-type electron coupling layer; The multi-period active luminescent layer is fabricated on the upper tunneling barrier layer; a negative electrode is fabricated on the mesa of the n-type contact layer; a p-type electron blocking layer is fabricated on the multi-period active luminescent layer; a p-type contact layer is fabricated on the On the p-type electron blocking layer; a positive electrode is made on the p-type contact layer to form the structure of gallium nitride light emitting diode.
Description
技术领域technical field
本发明涉及一种氮化镓(GaN)系发光二极管,特别是涉及一种由两组或多组不同铟组分的n型电子耦合层的氮化镓系发光二极管。The invention relates to a gallium nitride (GaN) light-emitting diode, in particular to a gallium nitride light-emitting diode with two or more n-type electron coupling layers of different indium components.
背景技术Background technique
目前III-V族半导体光电材料被誉为第三代半导体材料。而GaN系发光二极管,由于可以通过控制材料的组成来制作出各种色光(尤其是需要高能隙的蓝光或紫光)的发光二极管(简称为“LED”),而成为业界研究的重点。At present, III-V semiconductor optoelectronic materials are known as the third generation semiconductor materials. GaN-based light-emitting diodes have become the focus of industry research because they can produce light-emitting diodes (referred to as "LEDs") of various colors (especially blue or violet light that requires a high energy gap) by controlling the composition of materials.
以GaN为基础的半导体材料或器件的外延生长目前主要采用MOCVD技术。在利用MOCVD技术生长氮化物半导体(GaN、AlN、InN及它们的合金氮化物)的工艺中,由于没有与GaN晶格匹配的衬底材料,故通常采用蓝宝石作为衬底进行异质外延。然而,在蓝宝石与氮化物半导体之间存在较大的晶格失配(-13.8%)和热膨胀系数的差异,于是生长没有龟裂、表面平整的高质量氮化物半导体非常困难。目前最有效的外延生长方法通常采用两步外延生长法(参见H.Amano,N.Sawaki和Y.Toyoda等,“使用AlN缓冲层的高质量GaN薄膜的金属有机气相外延生长”,Appl.Phys.Lett.48,1986,353),虽然晶体质量在一定程度上得到改善,但由于蓝宝石与氮化物之间的晶格失配,外延层中存在很大的应力。同时,活性发光层中铟镓氮和氮化镓之间也同样存在着较大的热失配,即在温度发生变化时,活性层中也会产生一定的应变。由于III族氮化物具有压应变特性,这些应变会在InGaN/GaN多量子阱有源区内产生很大的压应力。从而在多量子阱有源区内形成较大的压应变电场(即压电场效应(piezo-electrical field effect)),而压电场效应的存在一方面使得电子与空穴的波函数在空间上分离,从而引起辐射复合强度的减弱;另一方面由于压电场的存在,使得LED的n区费米能级抬高,甚至高于p区费米能级(Appl.Phys.Lett.,94,2009,231123),造成电子从n区越过有源区直接到达p区发生非辐射复合。为了减少电子的过冲,早期的方法是在活性发光层前生长一层厚的低铟组分的铟镓氮插入层作为电子储蓄层,但是由于铟镓氮层的质量随着厚度的增加迅速降低,在后来的研究中将该层铟镓氮换成铟镓氮与氮化镓的量子阱或超晶格结构(参看专利CN1552104A及专利CN101174662A)。这两种结构在小电流注入的条件下对减少电子的过冲,增加电子的注入效率,起到了很好的作用。但是,随着注入电流密度的增加,由于外加电场与活性层中的压应变电场方向一致,导致n区费米能级的进一步提高,电子的过冲行为加重,仍然有大量的电子越过活性层直接到达p区。The epitaxial growth of GaN-based semiconductor materials or devices currently mainly adopts MOCVD technology. In the process of growing nitride semiconductors (GaN, AlN, InN and their alloy nitrides) using MOCVD technology, sapphire is usually used as the substrate for heteroepitaxy because there is no substrate material that matches the GaN lattice. However, there is a large lattice mismatch (-13.8%) and a difference in thermal expansion coefficient between sapphire and nitride semiconductors, so it is very difficult to grow high-quality nitride semiconductors with no cracks and flat surfaces. Currently the most effective epitaxial growth method usually adopts a two-step epitaxial growth method (see H.Amano, N.Sawaki and Y.Toyoda et al., "Metal Organic Vapor Phase Epitaxy Growth of High Quality GaN Thin Film Using AlN Buffer Layer", Appl.Phys . Lett.48, 1986, 353), although the crystal quality has been improved to a certain extent, there is a lot of stress in the epitaxial layer due to the lattice mismatch between sapphire and nitride. At the same time, there is also a large thermal mismatch between InGaN and GaN in the active light-emitting layer, that is, when the temperature changes, a certain strain will also be generated in the active layer. Due to the compressive strain properties of III-nitrides, these strains can generate large compressive stresses in the active regions of InGaN/GaN MQWs. Thus, a large compressive strain electric field (ie, piezoelectric field effect (piezo-electrical field effect)) is formed in the multi-quantum well active region, and the existence of the piezoelectric field effect makes the wave functions of electrons and holes in the space On the other hand, due to the existence of the piezoelectric field, the Fermi level of the n-region of the LED is raised, even higher than the Fermi level of the p-region (Appl.Phys.Lett., 94, 2009, 231123), resulting in non-radiative recombination of electrons from the n region across the active region directly to the p region. In order to reduce the overshoot of electrons, the early method is to grow a thick InGaN insertion layer with low indium composition as the electron storage layer in front of the active light-emitting layer, but because the quality of the InGaN layer increases rapidly with the thickness In subsequent studies, this layer of InGaN was replaced by a quantum well or superlattice structure of InGaN and GaN (see patent CN1552104A and patent CN101174662A). These two structures play a very good role in reducing the overshoot of electrons and increasing the injection efficiency of electrons under the condition of small current injection. However, with the increase of the injected current density, since the applied electric field is in the same direction as the compressive strain electric field in the active layer, the Fermi energy level of the n-region is further increased, and the overshoot behavior of electrons is aggravated, and a large number of electrons still cross the active layer. directly to the p zone.
为了减少电子在大电流注入条件下的过冲行为,提高电子的注入效率,我们在有源区活性层下方加入两组或多组由不同铟组分的铟镓氮和铝铟镓氮构成的多量子阱结构,以此作为电子耦合层。每一组量子阱结构中的铟组分是不等的,越靠近活性发光层,铟镓氮中的铟组分越高。随着铟组分的增加,铟镓氮量子阱对电子的限制作用增强,更多的电子将被束缚在电子耦合层内部,以此来减少电子的过冲。电子耦合层之间通过铝铟镓氮薄层作为隧穿势垒层。通过调节各个电子耦合层中铟镓氮量子阱层的宽度来调节量子阱中的能级,并最终达到电子在不同耦合层之间以及耦合层和活性发光层之间的能级共振;通过调节铝铟镓氮隧穿势垒层的厚度,提高电子在共振能级间的隧穿几率。In order to reduce the overshoot behavior of electrons under high current injection conditions and improve the injection efficiency of electrons, we add two or more groups of indium gallium nitrogen and aluminum indium gallium nitrogen with different indium components under the active layer of the active region. The multi-quantum well structure is used as the electron coupling layer. The indium composition in each group of quantum well structures is different, and the closer to the active light-emitting layer, the higher the indium composition in the indium gallium nitride. With the increase of the indium composition, the confinement effect of the indium gallium nitrogen quantum well on electrons is enhanced, and more electrons will be bound inside the electron coupling layer, so as to reduce the overshoot of electrons. A thin AlInGaN layer is used as a tunneling barrier layer between the electron coupling layers. Adjust the energy level in the quantum well by adjusting the width of the indium gallium nitrogen quantum well layer in each electron coupling layer, and finally achieve the energy level resonance of electrons between different coupling layers and between the coupling layer and the active light-emitting layer; by adjusting The thickness of the AlInGaN tunneling barrier layer improves the tunneling probability of electrons between resonance energy levels.
发明内容Contents of the invention
本发明的目的在于提供一种氮化镓系发光二极管,通过该结构设计可以增加大电流注入下对电子的限制,减少电子的过冲,从而提高电子的注入效率,以此提高发光二极管的发光效率。The purpose of the present invention is to provide a gallium nitride-based light-emitting diode. Through this structural design, the limitation of electrons under high current injection can be increased, the overshoot of electrons can be reduced, and the injection efficiency of electrons can be improved, thereby improving the light emission of the light-emitting diode. efficiency.
本发明提供一种提高电子注入效率的氮化镓系发光二极管,其包括:The invention provides a gallium nitride-based light-emitting diode with improved electron injection efficiency, which includes:
一衬底;a substrate;
一氮化镓成核层,该氮化镓成核层制作在衬底上;a gallium nitride nucleation layer, the gallium nitride nucleation layer is fabricated on the substrate;
一缓冲层,该缓冲层制作在氮化镓成核层上;a buffer layer fabricated on the gallium nitride nucleation layer;
一n型接触层,该n型接触层制作在缓冲层上,在该n型接触层的上面的一侧形成一台面,该n型接触层由n型氮化镓构成;An n-type contact layer, the n-type contact layer is fabricated on the buffer layer, and a mesa is formed on the upper side of the n-type contact layer, and the n-type contact layer is composed of n-type gallium nitride;
一下多周期n型电子耦合层,该下多周期n型电子耦合层制作在n型接触层上台面另一侧的上面;A multi-period n-type electronic coupling layer, the lower multi-period n-type electronic coupling layer is fabricated on the other side of the upper mesa of the n-type contact layer;
一下隧穿势垒层,该下隧穿势垒层制作在下多周期n型电子耦合层上;A lower tunneling barrier layer, which is fabricated on the lower multi-period n-type electron coupling layer;
一上多周期n型电子耦合层,该上多周期n型电子耦合层制作在下隧穿势垒层上;An upper multi-period n-type electron coupling layer, the upper multi-period n-type electron coupling layer is fabricated on the lower tunneling barrier layer;
一上隧穿势垒层,该上隧穿势垒层制作在上多周期n型电子耦合层上;An upper tunneling barrier layer, the upper tunneling barrier layer is fabricated on the upper multi-period n-type electron coupling layer;
一多周期活性发光层,该活性发光层制作在上隧穿势垒层上;A multi-period active light-emitting layer, the active light-emitting layer is fabricated on the upper tunneling barrier layer;
一负电极,该负电极制作在n型接触层的台面上;a negative electrode, which is fabricated on the mesa of the n-type contact layer;
一p型电子阻挡层,该p型电子阻挡层制作在多周期活性发光层上;A p-type electron blocking layer, the p-type electron blocking layer is fabricated on the multi-period active light-emitting layer;
一p型接触层,该p型接触层制作在p型电子阻挡层上,该p型接触层由p型氮化镓构成;A p-type contact layer, the p-type contact layer is fabricated on the p-type electron blocking layer, and the p-type contact layer is composed of p-type gallium nitride;
一正电极,该正电极制作在p型接触层上,形成氮化镓系发光二极管的结构。A positive electrode is fabricated on the p-type contact layer to form a gallium nitride light emitting diode structure.
附图说明Description of drawings
为进一步说明本发明的技术内容,以下结合附图和具体实施方式对本发明进行更详细的说明,其中:In order to further illustrate the technical content of the present invention, the present invention will be described in more detail below in conjunction with the accompanying drawings and specific embodiments, wherein:
图1是根据本发明的具有n型电子耦合层的GaN系发光二极管。FIG. 1 is a GaN-based light emitting diode having an n-type electron coupling layer according to the present invention.
图2是现有的以及根据本发明的氮化镓系发光二极管的PL发光强度曲线,其中三角线条为本发明的具有n型电子耦合层结构的氮化镓系LED;圆形线条为传统结构的氮化镓系LED。Fig. 2 is the PL luminous intensity curve of the existing GaN-based light-emitting diodes and according to the present invention, wherein the triangular line is the GaN-based LED with n-type electronic coupling layer structure of the present invention; the circular line is the traditional structure GaN-based LEDs.
具体实施方式Detailed ways
请参阅图1所示,本发明提供一种氮化镓系发光二极管,其包括:Please refer to FIG. 1, the present invention provides a gallium nitride-based light-emitting diode, which includes:
一衬底11,以(0001)向蓝宝石(Al2O3)为衬底11,其他可用于衬底11的材质还包括R-面或A-面的氧化铝单晶、6H-SiC、4H-SiC、或晶格常数接近于氮化物半导体的单晶氧化物。制备中采用高纯NH3作N源,高纯H2和N2的混合气体作载气;三甲基镓或三乙基镓作Ga源,三甲基铟作In源,三甲基铝作Al源;n型掺杂剂为硅烷,p型掺杂剂为二茂镁。A
一氮化镓成核层12,该氮化镓成核层12制作在衬底11上。生长参数包括:反应温度500℃至800℃,反应腔压力200至500Torr,载气流量10-30升/分钟,三甲基镓流量20-250微摩尔/分钟,氨气流量20-80摩尔/分钟,生长时间1-10分钟;A gallium
一缓冲层13,该缓冲层13制作在成核层12上。生长参数包括:反应温度950-1180℃,反应腔压力76-250Torr,载气流量5-20升/分钟,三甲基镓流量为80-400微摩尔/分钟,氨气流量为200-800摩尔/分钟,生长时间20-60分钟;A
一n型接触层14,该n型接触层14制作在缓冲层13上,该n型接触层14由n型氮化镓构成。生长参数包括:反应温度950-1150℃,反应腔压力76-250Torr,载气流量5-20升/分钟,三甲基镓流量80-400微摩尔/分钟,氨气流量200-800摩尔/分钟,硅烷流量0.2-2.0纳摩尔/分钟,生长时间10-40分钟;An n-
一下多周期n型电子耦合层15,该下多周期n型电子耦合层15制作在n型接触层14上台面141另一侧的上面。所述下多周期电子耦合层15是由铟镓氮(InGaN)薄层151和铝铟镓氮(AlInGaN)薄层152交互层叠形成的多周期的量子阱结构构成。生长参数包括:AlInGaN薄层(即垒层152):反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;InGaN薄层(即阱层151):反应温度700-850℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,时间0.1-5分钟;结构周期数为3至20;The lower multi-period n-type
一下隧穿势垒层16,该下隧穿势垒层16制作在下多周期n型电子耦合层15上,由铝铟镓氮(AlInGaN)薄层构成。其下接触面为下多周期n型电子耦合层15的铟镓氮薄层151。生长参数包括:反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;The lower
一上多周期n型电子耦合层17,该上多周期n型电子耦合层17制作在下隧穿势垒层16上,所述上多周期n型电子耦合层17是由铟镓氮(InGaN)薄层171和铝铟镓氮(AlInGaN)薄层172交互层叠形成的多周期的量子阱结构构成。生长参数包括:AlInGaN薄层(即垒层172):反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;InGaN薄层(即阱层171):反应温度700-850℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,时间0.1-5分钟;结构周期数为3至20;An upper multi-period n-type electron coupling layer 17, the upper multi-period n-type electron coupling layer 17 is made on the lower
一上隧穿势垒层18,该上隧穿势垒层18制作在上多周期n型电子耦合层17上,由铝铟镓氮(AlInGaN)薄层构成。其下层接触面为上多周期n型电子耦合层17的铟镓氮薄层171。生长参数包括:反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;An upper
一活性发光层19,该活性发光层19制作在上隧穿势垒层18上,所述活性发光层19是由铟镓氮(InGaN)薄层191和铝铟镓氮(AlInGaN)薄层192交互层叠形成的多周期的量子阱结构构成。生长参数包括:AlInGaN薄层(即垒层192):反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;InGaN薄层(即阱层191):反应温度700-850℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,时间0.1-5分钟;多量子阱周期数为4至15;An active
本发明中的下多周期n型电子耦合层15中铟镓氮薄层151的生长温度优选为600-900℃,低于上多周期n型电子耦合层17中铟镓氮薄层171的生长温度,且这两层铟镓氮薄层151、171的生长温度都低于活性发光层19中铟镓氮薄层191的生长温度。The growth temperature of the
本发明中的n型电子耦合层中铟镓氮薄层的铟组分应当在0<x<0.3。且由下多周期n型电子耦合层15中铟镓氮薄层151到上多周期n型电子耦合层17中铟镓氮薄层171再到活性发光层19中铟镓氮薄层191,其铟组分是逐渐增加的。The indium composition of the thin InGaN layer in the n-type electron coupling layer in the present invention should be 0<x<0.3. And from the
本发明中的铝铟镓氮隧穿势垒层16/18的厚度优选为2-20纳米。The thickness of the AlInGaN
本发明通过在活性发光层19下方生长具有多组n型电子耦合层15/17,获得了发光强度得到较大提高的GaN系发光二极管。主要原因在于如下:In the present invention, a GaN-based light-emitting diode with greatly improved luminous intensity is obtained by growing multiple sets of n-type electron coupling layers 15/17 under the active light-emitting
在活性发光层19下方生长多组电子耦合层15、17,且电子耦合层中铟镓氮薄层的铟组分由下多周期n型电子耦合层15中铟镓氮薄层151到上多周期n型电子耦合层17中铟镓氮薄层171再到活性发光层19中铟镓氮薄层191,其铟组分是逐渐增加的。由于电子耦合层中具有较高的铟组分,对电子的束缚能力增强,这样更多的电子将被束缚在电子耦合层内部,减少大电流注入条件下电子的过冲。通过调节铟镓氮薄层151、171中的铟组分及阱宽,实现下多周期n型电子耦合层15与上多周期n型电子耦合层17之间能级共振,并最终实现上多周期n型电子耦合层17与活性发光层19中的铟镓氮薄层191之间的能级共振;通过调节隧穿势垒层铝铟镓氮层16、18的厚度,实现下多周期n型电子耦合层15与上多周期n型电子耦合层17以及活性发光层19之间的能级共振隧穿。从而达到提高载流子注入效率的目的。Multiple groups of electron coupling layers 15, 17 are grown under the active light-emitting
一负电极22,该负电极22制作在n型接触层14的台面141上,由铬铂金或钛铝钛金组成。A
一p型电子阻挡层20,该p型电子阻挡层20制作在活性发光层19上,该p型电子阻挡层20由铝铟镓氮构成。所述p型电子阻挡层20的厚度为10-50nm,并且所述p型电子阻挡层的下表面与所述活性发光层中的铝铟镓氮薄层192接触。生长参数包括:反应温度700-1000℃,反应腔压力50-200Torr,载气流量5-20升/分钟,氨气流量100-400摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,三甲基镓流量80-200微摩尔/分钟,二茂镁流量为150-400纳摩尔/分钟,时间1-10分钟。A p-type
其中所述p型电子阻挡层20以二茂镁为p型掺杂剂,并且二茂镁的掺杂浓度为1019-1021cm-3。Wherein the p-type
一p型接触层21,该p型接触层21制作在p型电子阻挡层20上,该p型接触层21由p型氮化镓构成。生长参数包括:反应温度950-1100℃,反应腔压力200-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量80-400微摩尔/分钟,二茂镁流量为0.5-5微摩尔/分钟,时间10-50分钟。A p-
一正电极23,该正电极23制作在p型接触层21上,由铬铂金组成。完成氮化镓系发光二极管的制作。A
图2所示为根据本发明的具有n型电子耦合层的氮化镓系发光二极管与传统工艺没有n型电子耦合层的氮化镓系发光二极管的光致发光特性对比。其中三角线条为本发明的具有n型电子耦合层结构的氮化镓系LED;圆形线条为传统结构的氮化镓系LED。由图2中可以看出,与传统结构的LED相比,在同样的注入电流条件下,本发明的LED结构的发光强度增大,说明发光二极管的内量子效率得到了有效的提高。FIG. 2 shows a comparison of photoluminescence characteristics between a GaN-based light-emitting diode with an n-type electronic coupling layer according to the present invention and a GaN-based light-emitting diode without an n-type electronic coupling layer in a conventional process. The triangular lines are GaN-based LEDs with an n-type electronic coupling layer structure according to the present invention; the circular lines are GaN-based LEDs with a traditional structure. It can be seen from FIG. 2 that, compared with the LED with the traditional structure, under the same injection current condition, the luminous intensity of the LED structure of the present invention increases, indicating that the internal quantum efficiency of the light-emitting diode is effectively improved.
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can easily think of changes or replacements within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110115323A CN102185056B (en) | 2011-05-05 | 2011-05-05 | Gallium-nitride-based light emitting diode capable of improving electron injection efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110115323A CN102185056B (en) | 2011-05-05 | 2011-05-05 | Gallium-nitride-based light emitting diode capable of improving electron injection efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102185056A true CN102185056A (en) | 2011-09-14 |
CN102185056B CN102185056B (en) | 2012-10-03 |
Family
ID=44571190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110115323A Active CN102185056B (en) | 2011-05-05 | 2011-05-05 | Gallium-nitride-based light emitting diode capable of improving electron injection efficiency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102185056B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103972340A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972339A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN104465913A (en) * | 2014-11-26 | 2015-03-25 | 西安电子科技大学 | Resonance tunneling diode with double InGaN sub quantum wells and manufacturing method thereof |
CN104795476A (en) * | 2015-04-24 | 2015-07-22 | 广西盛和电子科技股份有限公司 | Epitaxial structure of gallium nitride LED |
CN106025023A (en) * | 2016-06-22 | 2016-10-12 | 华灿光电(苏州)有限公司 | Yellow-green-light light emitting diode and preparation method therefor |
CN106410001A (en) * | 2016-06-23 | 2017-02-15 | 孙月静 | Novel AlGaN-based ultraviolet light emitting diode |
US9640712B2 (en) | 2012-11-19 | 2017-05-02 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9685586B2 (en) | 2012-11-19 | 2017-06-20 | Genesis Photonics Inc. | Semiconductor structure |
CN107316924A (en) * | 2013-01-25 | 2017-11-03 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN107452843A (en) * | 2017-06-30 | 2017-12-08 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN107924966A (en) * | 2014-09-22 | 2018-04-17 | 夏普株式会社 | Nitride semiconductor luminescent element |
CN108447952A (en) * | 2018-03-26 | 2018-08-24 | 华灿光电(浙江)有限公司 | A light-emitting diode epitaxial wafer and its preparation method |
US10153394B2 (en) | 2012-11-19 | 2018-12-11 | Genesis Photonics Inc. | Semiconductor structure |
US10319879B2 (en) | 2016-03-08 | 2019-06-11 | Genesis Photonics Inc. | Semiconductor structure |
US10381511B2 (en) | 2012-11-19 | 2019-08-13 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
CN110335904A (en) * | 2019-07-10 | 2019-10-15 | 陕西科技大学 | A kind of InGaN/GaN multi-quantum well solar cell with AlInGaN barrier structure inserted |
US10468549B2 (en) | 2016-09-19 | 2019-11-05 | Genesis Photonics Inc. | Semiconductor device containing nitrogen |
CN110729394A (en) * | 2019-10-12 | 2020-01-24 | 深圳第三代半导体研究院 | A kind of negative resistance GaN pressure sensor and preparation method thereof |
CN116705942A (en) * | 2023-08-08 | 2023-09-05 | 江西兆驰半导体有限公司 | Light-emitting diode and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1552104A (en) * | 2001-05-30 | 2004-12-01 | ���﹫˾ | Group III nitride based light emitting diode structures with a quantum well and superlattice |
CN1921157A (en) * | 2005-08-26 | 2007-02-28 | 中国科学院半导体研究所 | High efficiency deep ultraviolet light-emitting diode |
CN101174662A (en) * | 2006-10-30 | 2008-05-07 | 璨圆光电股份有限公司 | Multiple quantum well nitride light emitting diode with carrier providing layer |
CN101540364A (en) * | 2009-04-23 | 2009-09-23 | 厦门大学 | Nitride luminescent device and production method thereof |
CN101931036A (en) * | 2010-07-21 | 2010-12-29 | 中国科学院半导体研究所 | A gallium nitride-based light-emitting diode |
WO2011007637A1 (en) * | 2009-07-15 | 2011-01-20 | 住友電気工業株式会社 | Nitride-based semiconductor light-emitting element |
-
2011
- 2011-05-05 CN CN201110115323A patent/CN102185056B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1552104A (en) * | 2001-05-30 | 2004-12-01 | ���﹫˾ | Group III nitride based light emitting diode structures with a quantum well and superlattice |
CN1921157A (en) * | 2005-08-26 | 2007-02-28 | 中国科学院半导体研究所 | High efficiency deep ultraviolet light-emitting diode |
CN101174662A (en) * | 2006-10-30 | 2008-05-07 | 璨圆光电股份有限公司 | Multiple quantum well nitride light emitting diode with carrier providing layer |
CN101540364A (en) * | 2009-04-23 | 2009-09-23 | 厦门大学 | Nitride luminescent device and production method thereof |
WO2011007637A1 (en) * | 2009-07-15 | 2011-01-20 | 住友電気工業株式会社 | Nitride-based semiconductor light-emitting element |
CN101931036A (en) * | 2010-07-21 | 2010-12-29 | 中国科学院半导体研究所 | A gallium nitride-based light-emitting diode |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10381511B2 (en) | 2012-11-19 | 2019-08-13 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9640712B2 (en) | 2012-11-19 | 2017-05-02 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US10153394B2 (en) | 2012-11-19 | 2018-12-11 | Genesis Photonics Inc. | Semiconductor structure |
US9685586B2 (en) | 2012-11-19 | 2017-06-20 | Genesis Photonics Inc. | Semiconductor structure |
US10147845B2 (en) | 2012-11-19 | 2018-12-04 | Genesis Photonics Inc. | Semiconductor structure |
CN107316924A (en) * | 2013-01-25 | 2017-11-03 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN107833956A (en) * | 2013-01-25 | 2018-03-23 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972340A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972340B (en) * | 2013-01-25 | 2018-06-08 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN107833956B (en) * | 2013-01-25 | 2020-04-07 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972339A (en) * | 2013-01-25 | 2014-08-06 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN103972339B (en) * | 2013-01-25 | 2017-12-12 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN107819059A (en) * | 2013-01-25 | 2018-03-20 | 新世纪光电股份有限公司 | Nitride semiconductor structure and semiconductor light emitting element |
CN107924966A (en) * | 2014-09-22 | 2018-04-17 | 夏普株式会社 | Nitride semiconductor luminescent element |
CN104465913B (en) * | 2014-11-26 | 2017-06-16 | 西安电子科技大学 | Resonance tunnel-through diode with the sub- SQWs of double InGaN and preparation method thereof |
CN104465913A (en) * | 2014-11-26 | 2015-03-25 | 西安电子科技大学 | Resonance tunneling diode with double InGaN sub quantum wells and manufacturing method thereof |
CN104795476B (en) * | 2015-04-24 | 2018-01-30 | 广西钦州市易通浩光电科技有限公司 | A kind of epitaxial structure of gallium nitride light-emitting diode |
CN104795476A (en) * | 2015-04-24 | 2015-07-22 | 广西盛和电子科技股份有限公司 | Epitaxial structure of gallium nitride LED |
US10319879B2 (en) | 2016-03-08 | 2019-06-11 | Genesis Photonics Inc. | Semiconductor structure |
CN106025023B (en) * | 2016-06-22 | 2019-04-12 | 华灿光电(苏州)有限公司 | A yellow-green light-emitting diode and preparation method thereof |
CN106025023A (en) * | 2016-06-22 | 2016-10-12 | 华灿光电(苏州)有限公司 | Yellow-green-light light emitting diode and preparation method therefor |
CN106410001B (en) * | 2016-06-23 | 2018-10-19 | 孙月静 | A kind of AlGaN bases UV LED |
CN106410001A (en) * | 2016-06-23 | 2017-02-15 | 孙月静 | Novel AlGaN-based ultraviolet light emitting diode |
US10468549B2 (en) | 2016-09-19 | 2019-11-05 | Genesis Photonics Inc. | Semiconductor device containing nitrogen |
CN107452843B (en) * | 2017-06-30 | 2019-03-01 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN107452843A (en) * | 2017-06-30 | 2017-12-08 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN108447952A (en) * | 2018-03-26 | 2018-08-24 | 华灿光电(浙江)有限公司 | A light-emitting diode epitaxial wafer and its preparation method |
CN108447952B (en) * | 2018-03-26 | 2020-04-14 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN110335904A (en) * | 2019-07-10 | 2019-10-15 | 陕西科技大学 | A kind of InGaN/GaN multi-quantum well solar cell with AlInGaN barrier structure inserted |
CN110729394A (en) * | 2019-10-12 | 2020-01-24 | 深圳第三代半导体研究院 | A kind of negative resistance GaN pressure sensor and preparation method thereof |
CN116705942A (en) * | 2023-08-08 | 2023-09-05 | 江西兆驰半导体有限公司 | Light-emitting diode and its manufacturing method |
CN116705942B (en) * | 2023-08-08 | 2023-10-17 | 江西兆驰半导体有限公司 | Light emitting diode and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102185056B (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102185056B (en) | Gallium-nitride-based light emitting diode capable of improving electron injection efficiency | |
CN101834248B (en) | Gallium Nitride-based Light Emitting Diodes | |
CN101488550B (en) | Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure | |
CN103730557B (en) | A kind of growing method of the light emitting diode with novel P-type electron barrier layer structure | |
CN103730552B (en) | A kind of epitaxial growth method improving LED luminous efficiency | |
CN106229390B (en) | Growth method of GaN-based light emitting diode chip | |
CN101452980B (en) | Production method of group III nitride compound semiconductor LED | |
CN105449051B (en) | One kind is using MOCVD technologies in GaN substrate or GaN/Al2O3The method that high brightness homogeneity LED is prepared in compound substrate | |
CN103811601B (en) | A kind of GaN base LED multi-level buffer layer growth method with Sapphire Substrate as substrate | |
CN104051586A (en) | A GaN-based light-emitting diode epitaxial structure and its preparation method | |
CN107180899B (en) | A deep ultraviolet LED | |
CN102306691A (en) | Method for raising light emitting diode luminescence efficiency | |
CN105206726A (en) | LED structure and growth method thereof | |
CN102185052A (en) | Manufacturing method of modulation-doped gallium nitride series light-emitting diode | |
CN101931036B (en) | Gallium nitride luminous diode | |
CN104576852A (en) | Stress regulation method for luminous quantum wells of GaN-based LED epitaxial structure | |
CN105047776A (en) | Light-emitting diode epitaxial structure containing AlGaN conducting layer, and manufacturing method thereof | |
CN103996765A (en) | A LED epitaxial structure and growth method for improving internal quantum efficiency | |
CN103985797B (en) | Multi-quantum pit structure and growing method thereof and there is the LED chip of this structure | |
CN101359711A (en) | A green light emitting diode | |
CN104253181A (en) | LED (Light Emitting Diode) epitaxy structure with multiple barrier layers | |
CN110473940B (en) | Epitaxial structure of UV LED | |
CN108538973A (en) | A kind of LED epitaxial slice and preparation method thereof | |
CN108281520A (en) | A kind of GaN base LED epitaxial structure and preparation method thereof | |
CN103633218A (en) | Gallium-nitride-based light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |