[go: up one dir, main page]

CN102185056A - Gallium-nitride-based light emitting diode capable of improving electron injection efficiency - Google Patents

Gallium-nitride-based light emitting diode capable of improving electron injection efficiency Download PDF

Info

Publication number
CN102185056A
CN102185056A CN2011101153231A CN201110115323A CN102185056A CN 102185056 A CN102185056 A CN 102185056A CN 2011101153231 A CN2011101153231 A CN 2011101153231A CN 201110115323 A CN201110115323 A CN 201110115323A CN 102185056 A CN102185056 A CN 102185056A
Authority
CN
China
Prior art keywords
layer
type
multicycle
indium gallium
gallium nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101153231A
Other languages
Chinese (zh)
Other versions
CN102185056B (en
Inventor
马平
王军喜
魏学成
曾一平
李晋闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201110115323A priority Critical patent/CN102185056B/en
Publication of CN102185056A publication Critical patent/CN102185056A/en
Application granted granted Critical
Publication of CN102185056B publication Critical patent/CN102185056B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

一种提高电子注入效率的氮化镓系发光二极管,其包括:一衬底;一氮化镓成核层制作在衬底上;一缓冲层制作在氮化镓成核层上;一n型接触层制作在缓冲层上,在该n型接触层的上面的一侧形成一台面;一下多周期n型电子耦合层制作在n型接触层上台面另一侧的上面;一下隧穿势垒层制作在下多周期n型电子耦合层上;一上多周期n型电子耦合层制作在下隧穿势垒层上;一上隧穿势垒层制作在上多周期n型电子耦合层上;一多周期活性发光层制作在上隧穿势垒层上;一负电极制作在n型接触层的台面上;一p型电子阻挡层制作在多周期活性发光层上;一p型接触层制作在p型电子阻挡层上;一正电极制作在p型接触层上,形成氮化镓系发光二极管的结构。

A gallium nitride-based light-emitting diode for improving electron injection efficiency, comprising: a substrate; a gallium nitride nucleation layer fabricated on the substrate; a buffer layer fabricated on the gallium nitride nucleation layer; an n-type The contact layer is made on the buffer layer, and a table is formed on the upper side of the n-type contact layer; the next multi-period n-type electronic coupling layer is made on the other side of the upper table of the n-type contact layer; the first tunnel barrier layer is made on the lower multi-period n-type electron coupling layer; an upper multi-period n-type electron coupling layer is made on the lower tunneling barrier layer; an upper tunneling barrier layer is made on the upper multi-period n-type electron coupling layer; The multi-period active luminescent layer is fabricated on the upper tunneling barrier layer; a negative electrode is fabricated on the mesa of the n-type contact layer; a p-type electron blocking layer is fabricated on the multi-period active luminescent layer; a p-type contact layer is fabricated on the On the p-type electron blocking layer; a positive electrode is made on the p-type contact layer to form the structure of gallium nitride light emitting diode.

Description

提高电子注入效率的氮化镓基发光二极管GaN-based light-emitting diodes with improved electron injection efficiency

技术领域technical field

本发明涉及一种氮化镓(GaN)系发光二极管,特别是涉及一种由两组或多组不同铟组分的n型电子耦合层的氮化镓系发光二极管。The invention relates to a gallium nitride (GaN) light-emitting diode, in particular to a gallium nitride light-emitting diode with two or more n-type electron coupling layers of different indium components.

背景技术Background technique

目前III-V族半导体光电材料被誉为第三代半导体材料。而GaN系发光二极管,由于可以通过控制材料的组成来制作出各种色光(尤其是需要高能隙的蓝光或紫光)的发光二极管(简称为“LED”),而成为业界研究的重点。At present, III-V semiconductor optoelectronic materials are known as the third generation semiconductor materials. GaN-based light-emitting diodes have become the focus of industry research because they can produce light-emitting diodes (referred to as "LEDs") of various colors (especially blue or violet light that requires a high energy gap) by controlling the composition of materials.

以GaN为基础的半导体材料或器件的外延生长目前主要采用MOCVD技术。在利用MOCVD技术生长氮化物半导体(GaN、AlN、InN及它们的合金氮化物)的工艺中,由于没有与GaN晶格匹配的衬底材料,故通常采用蓝宝石作为衬底进行异质外延。然而,在蓝宝石与氮化物半导体之间存在较大的晶格失配(-13.8%)和热膨胀系数的差异,于是生长没有龟裂、表面平整的高质量氮化物半导体非常困难。目前最有效的外延生长方法通常采用两步外延生长法(参见H.Amano,N.Sawaki和Y.Toyoda等,“使用AlN缓冲层的高质量GaN薄膜的金属有机气相外延生长”,Appl.Phys.Lett.48,1986,353),虽然晶体质量在一定程度上得到改善,但由于蓝宝石与氮化物之间的晶格失配,外延层中存在很大的应力。同时,活性发光层中铟镓氮和氮化镓之间也同样存在着较大的热失配,即在温度发生变化时,活性层中也会产生一定的应变。由于III族氮化物具有压应变特性,这些应变会在InGaN/GaN多量子阱有源区内产生很大的压应力。从而在多量子阱有源区内形成较大的压应变电场(即压电场效应(piezo-electrical field effect)),而压电场效应的存在一方面使得电子与空穴的波函数在空间上分离,从而引起辐射复合强度的减弱;另一方面由于压电场的存在,使得LED的n区费米能级抬高,甚至高于p区费米能级(Appl.Phys.Lett.,94,2009,231123),造成电子从n区越过有源区直接到达p区发生非辐射复合。为了减少电子的过冲,早期的方法是在活性发光层前生长一层厚的低铟组分的铟镓氮插入层作为电子储蓄层,但是由于铟镓氮层的质量随着厚度的增加迅速降低,在后来的研究中将该层铟镓氮换成铟镓氮与氮化镓的量子阱或超晶格结构(参看专利CN1552104A及专利CN101174662A)。这两种结构在小电流注入的条件下对减少电子的过冲,增加电子的注入效率,起到了很好的作用。但是,随着注入电流密度的增加,由于外加电场与活性层中的压应变电场方向一致,导致n区费米能级的进一步提高,电子的过冲行为加重,仍然有大量的电子越过活性层直接到达p区。The epitaxial growth of GaN-based semiconductor materials or devices currently mainly adopts MOCVD technology. In the process of growing nitride semiconductors (GaN, AlN, InN and their alloy nitrides) using MOCVD technology, sapphire is usually used as the substrate for heteroepitaxy because there is no substrate material that matches the GaN lattice. However, there is a large lattice mismatch (-13.8%) and a difference in thermal expansion coefficient between sapphire and nitride semiconductors, so it is very difficult to grow high-quality nitride semiconductors with no cracks and flat surfaces. Currently the most effective epitaxial growth method usually adopts a two-step epitaxial growth method (see H.Amano, N.Sawaki and Y.Toyoda et al., "Metal Organic Vapor Phase Epitaxy Growth of High Quality GaN Thin Film Using AlN Buffer Layer", Appl.Phys . Lett.48, 1986, 353), although the crystal quality has been improved to a certain extent, there is a lot of stress in the epitaxial layer due to the lattice mismatch between sapphire and nitride. At the same time, there is also a large thermal mismatch between InGaN and GaN in the active light-emitting layer, that is, when the temperature changes, a certain strain will also be generated in the active layer. Due to the compressive strain properties of III-nitrides, these strains can generate large compressive stresses in the active regions of InGaN/GaN MQWs. Thus, a large compressive strain electric field (ie, piezoelectric field effect (piezo-electrical field effect)) is formed in the multi-quantum well active region, and the existence of the piezoelectric field effect makes the wave functions of electrons and holes in the space On the other hand, due to the existence of the piezoelectric field, the Fermi level of the n-region of the LED is raised, even higher than the Fermi level of the p-region (Appl.Phys.Lett., 94, 2009, 231123), resulting in non-radiative recombination of electrons from the n region across the active region directly to the p region. In order to reduce the overshoot of electrons, the early method is to grow a thick InGaN insertion layer with low indium composition as the electron storage layer in front of the active light-emitting layer, but because the quality of the InGaN layer increases rapidly with the thickness In subsequent studies, this layer of InGaN was replaced by a quantum well or superlattice structure of InGaN and GaN (see patent CN1552104A and patent CN101174662A). These two structures play a very good role in reducing the overshoot of electrons and increasing the injection efficiency of electrons under the condition of small current injection. However, with the increase of the injected current density, since the applied electric field is in the same direction as the compressive strain electric field in the active layer, the Fermi energy level of the n-region is further increased, and the overshoot behavior of electrons is aggravated, and a large number of electrons still cross the active layer. directly to the p zone.

为了减少电子在大电流注入条件下的过冲行为,提高电子的注入效率,我们在有源区活性层下方加入两组或多组由不同铟组分的铟镓氮和铝铟镓氮构成的多量子阱结构,以此作为电子耦合层。每一组量子阱结构中的铟组分是不等的,越靠近活性发光层,铟镓氮中的铟组分越高。随着铟组分的增加,铟镓氮量子阱对电子的限制作用增强,更多的电子将被束缚在电子耦合层内部,以此来减少电子的过冲。电子耦合层之间通过铝铟镓氮薄层作为隧穿势垒层。通过调节各个电子耦合层中铟镓氮量子阱层的宽度来调节量子阱中的能级,并最终达到电子在不同耦合层之间以及耦合层和活性发光层之间的能级共振;通过调节铝铟镓氮隧穿势垒层的厚度,提高电子在共振能级间的隧穿几率。In order to reduce the overshoot behavior of electrons under high current injection conditions and improve the injection efficiency of electrons, we add two or more groups of indium gallium nitrogen and aluminum indium gallium nitrogen with different indium components under the active layer of the active region. The multi-quantum well structure is used as the electron coupling layer. The indium composition in each group of quantum well structures is different, and the closer to the active light-emitting layer, the higher the indium composition in the indium gallium nitride. With the increase of the indium composition, the confinement effect of the indium gallium nitrogen quantum well on electrons is enhanced, and more electrons will be bound inside the electron coupling layer, so as to reduce the overshoot of electrons. A thin AlInGaN layer is used as a tunneling barrier layer between the electron coupling layers. Adjust the energy level in the quantum well by adjusting the width of the indium gallium nitrogen quantum well layer in each electron coupling layer, and finally achieve the energy level resonance of electrons between different coupling layers and between the coupling layer and the active light-emitting layer; by adjusting The thickness of the AlInGaN tunneling barrier layer improves the tunneling probability of electrons between resonance energy levels.

发明内容Contents of the invention

本发明的目的在于提供一种氮化镓系发光二极管,通过该结构设计可以增加大电流注入下对电子的限制,减少电子的过冲,从而提高电子的注入效率,以此提高发光二极管的发光效率。The purpose of the present invention is to provide a gallium nitride-based light-emitting diode. Through this structural design, the limitation of electrons under high current injection can be increased, the overshoot of electrons can be reduced, and the injection efficiency of electrons can be improved, thereby improving the light emission of the light-emitting diode. efficiency.

本发明提供一种提高电子注入效率的氮化镓系发光二极管,其包括:The invention provides a gallium nitride-based light-emitting diode with improved electron injection efficiency, which includes:

一衬底;a substrate;

一氮化镓成核层,该氮化镓成核层制作在衬底上;a gallium nitride nucleation layer, the gallium nitride nucleation layer is fabricated on the substrate;

一缓冲层,该缓冲层制作在氮化镓成核层上;a buffer layer fabricated on the gallium nitride nucleation layer;

一n型接触层,该n型接触层制作在缓冲层上,在该n型接触层的上面的一侧形成一台面,该n型接触层由n型氮化镓构成;An n-type contact layer, the n-type contact layer is fabricated on the buffer layer, and a mesa is formed on the upper side of the n-type contact layer, and the n-type contact layer is composed of n-type gallium nitride;

一下多周期n型电子耦合层,该下多周期n型电子耦合层制作在n型接触层上台面另一侧的上面;A multi-period n-type electronic coupling layer, the lower multi-period n-type electronic coupling layer is fabricated on the other side of the upper mesa of the n-type contact layer;

一下隧穿势垒层,该下隧穿势垒层制作在下多周期n型电子耦合层上;A lower tunneling barrier layer, which is fabricated on the lower multi-period n-type electron coupling layer;

一上多周期n型电子耦合层,该上多周期n型电子耦合层制作在下隧穿势垒层上;An upper multi-period n-type electron coupling layer, the upper multi-period n-type electron coupling layer is fabricated on the lower tunneling barrier layer;

一上隧穿势垒层,该上隧穿势垒层制作在上多周期n型电子耦合层上;An upper tunneling barrier layer, the upper tunneling barrier layer is fabricated on the upper multi-period n-type electron coupling layer;

一多周期活性发光层,该活性发光层制作在上隧穿势垒层上;A multi-period active light-emitting layer, the active light-emitting layer is fabricated on the upper tunneling barrier layer;

一负电极,该负电极制作在n型接触层的台面上;a negative electrode, which is fabricated on the mesa of the n-type contact layer;

一p型电子阻挡层,该p型电子阻挡层制作在多周期活性发光层上;A p-type electron blocking layer, the p-type electron blocking layer is fabricated on the multi-period active light-emitting layer;

一p型接触层,该p型接触层制作在p型电子阻挡层上,该p型接触层由p型氮化镓构成;A p-type contact layer, the p-type contact layer is fabricated on the p-type electron blocking layer, and the p-type contact layer is composed of p-type gallium nitride;

一正电极,该正电极制作在p型接触层上,形成氮化镓系发光二极管的结构。A positive electrode is fabricated on the p-type contact layer to form a gallium nitride light emitting diode structure.

附图说明Description of drawings

为进一步说明本发明的技术内容,以下结合附图和具体实施方式对本发明进行更详细的说明,其中:In order to further illustrate the technical content of the present invention, the present invention will be described in more detail below in conjunction with the accompanying drawings and specific embodiments, wherein:

图1是根据本发明的具有n型电子耦合层的GaN系发光二极管。FIG. 1 is a GaN-based light emitting diode having an n-type electron coupling layer according to the present invention.

图2是现有的以及根据本发明的氮化镓系发光二极管的PL发光强度曲线,其中三角线条为本发明的具有n型电子耦合层结构的氮化镓系LED;圆形线条为传统结构的氮化镓系LED。Fig. 2 is the PL luminous intensity curve of the existing GaN-based light-emitting diodes and according to the present invention, wherein the triangular line is the GaN-based LED with n-type electronic coupling layer structure of the present invention; the circular line is the traditional structure GaN-based LEDs.

具体实施方式Detailed ways

请参阅图1所示,本发明提供一种氮化镓系发光二极管,其包括:Please refer to FIG. 1, the present invention provides a gallium nitride-based light-emitting diode, which includes:

一衬底11,以(0001)向蓝宝石(Al2O3)为衬底11,其他可用于衬底11的材质还包括R-面或A-面的氧化铝单晶、6H-SiC、4H-SiC、或晶格常数接近于氮化物半导体的单晶氧化物。制备中采用高纯NH3作N源,高纯H2和N2的混合气体作载气;三甲基镓或三乙基镓作Ga源,三甲基铟作In源,三甲基铝作Al源;n型掺杂剂为硅烷,p型掺杂剂为二茂镁。A substrate 11, with (0001) sapphire (Al 2 O 3 ) as the substrate 11, other materials that can be used for the substrate 11 include R-plane or A-plane alumina single crystal, 6H-SiC, 4H -SiC, or a single crystal oxide having a lattice constant close to that of a nitride semiconductor. In the preparation, high-purity NH3 is used as N source, the mixed gas of high-purity H2 and N2 is used as carrier gas; trimethylgallium or triethylgallium is used as Ga source, trimethylindium is used as In source, trimethylaluminum As an Al source; the n-type dopant is silane, and the p-type dopant is magnesocene.

一氮化镓成核层12,该氮化镓成核层12制作在衬底11上。生长参数包括:反应温度500℃至800℃,反应腔压力200至500Torr,载气流量10-30升/分钟,三甲基镓流量20-250微摩尔/分钟,氨气流量20-80摩尔/分钟,生长时间1-10分钟;A gallium nitride nucleation layer 12 , the gallium nitride nucleation layer 12 is fabricated on the substrate 11 . Growth parameters include: reaction temperature 500°C to 800°C, reaction chamber pressure 200 to 500 Torr, carrier gas flow rate 10-30 L/min, trimethylgallium flow rate 20-250 micromol/min, ammonia gas flow rate 20-80 mol/min Minutes, growth time 1-10 minutes;

一缓冲层13,该缓冲层13制作在成核层12上。生长参数包括:反应温度950-1180℃,反应腔压力76-250Torr,载气流量5-20升/分钟,三甲基镓流量为80-400微摩尔/分钟,氨气流量为200-800摩尔/分钟,生长时间20-60分钟;A buffer layer 13, the buffer layer 13 is fabricated on the nucleation layer 12. Growth parameters include: reaction temperature 950-1180°C, reaction chamber pressure 76-250 Torr, carrier gas flow 5-20 liters/min, trimethylgallium flow 80-400 micromol/min, ammonia flow 200-800 mol /min, growth time 20-60 minutes;

一n型接触层14,该n型接触层14制作在缓冲层13上,该n型接触层14由n型氮化镓构成。生长参数包括:反应温度950-1150℃,反应腔压力76-250Torr,载气流量5-20升/分钟,三甲基镓流量80-400微摩尔/分钟,氨气流量200-800摩尔/分钟,硅烷流量0.2-2.0纳摩尔/分钟,生长时间10-40分钟;An n-type contact layer 14, the n-type contact layer 14 is fabricated on the buffer layer 13, and the n-type contact layer 14 is made of n-type gallium nitride. Growth parameters include: reaction temperature 950-1150°C, reaction chamber pressure 76-250 Torr, carrier gas flow 5-20 liters/min, trimethylgallium flow 80-400 micromol/min, ammonia flow 200-800 mol/min , the silane flow rate is 0.2-2.0 nmol/min, and the growth time is 10-40 minutes;

一下多周期n型电子耦合层15,该下多周期n型电子耦合层15制作在n型接触层14上台面141另一侧的上面。所述下多周期电子耦合层15是由铟镓氮(InGaN)薄层151和铝铟镓氮(AlInGaN)薄层152交互层叠形成的多周期的量子阱结构构成。生长参数包括:AlInGaN薄层(即垒层152):反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;InGaN薄层(即阱层151):反应温度700-850℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,时间0.1-5分钟;结构周期数为3至20;The lower multi-period n-type electron coupling layer 15 is formed on the other side of the mesa 141 on the n-type contact layer 14 . The lower multi-period electron coupling layer 15 is composed of a multi-period quantum well structure formed by alternating lamination of indium gallium nitride (InGaN) thin layers 151 and aluminum indium gallium nitride (AlInGaN) thin layers 152 . The growth parameters include: AlInGaN thin layer (ie barrier layer 152): reaction temperature 700-900°C, reaction chamber pressure 100-500Torr, carrier gas flow rate 5-20 liters/minute, ammonia gas flow rate 200-800 mol/minute, trimethyl The base indium flow rate is 10-50 micromol/min, the trimethylgallium flow rate is 0.1-1.0 micromol/min, the trimethylaluminum flow rate is 20-100 micromol/min, the silane flow rate is 0-2.0 nanomol/min, and the time is 0.1- 5 minutes; InGaN thin layer (i.e. well layer 151): reaction temperature 700-850°C, reaction chamber pressure 100-500 Torr, carrier gas flow 5-20 liters/minute, ammonia flow 200-800 mol/minute, trimethyl The gallium flow rate is 0.1-1.0 micromol/min, the trimethylindium flow rate is 10-50 micromol/min, and the time is 0.1-5 minutes; the number of structural periods is 3 to 20;

一下隧穿势垒层16,该下隧穿势垒层16制作在下多周期n型电子耦合层15上,由铝铟镓氮(AlInGaN)薄层构成。其下接触面为下多周期n型电子耦合层15的铟镓氮薄层151。生长参数包括:反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;The lower tunneling barrier layer 16 is fabricated on the lower multi-period n-type electron coupling layer 15 and is composed of a thin layer of aluminum indium gallium nitride (AlInGaN). Its lower contact surface is the thin InGaN layer 151 of the lower multi-period n-type electron coupling layer 15 . Growth parameters include: reaction temperature 700-900°C, reaction chamber pressure 100-500 Torr, carrier gas flow 5-20 liters/min, ammonia flow 200-800 mol/min, trimethylindium flow 10-50 micromol/min , the flow rate of trimethylgallium is 0.1-1.0 micromol/min, the flow rate of trimethylaluminum is 20-100 micromol/min, the flow rate of silane is 0-2.0 nanomol/min, and the time is 0.1-5 minutes;

一上多周期n型电子耦合层17,该上多周期n型电子耦合层17制作在下隧穿势垒层16上,所述上多周期n型电子耦合层17是由铟镓氮(InGaN)薄层171和铝铟镓氮(AlInGaN)薄层172交互层叠形成的多周期的量子阱结构构成。生长参数包括:AlInGaN薄层(即垒层172):反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;InGaN薄层(即阱层171):反应温度700-850℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,时间0.1-5分钟;结构周期数为3至20;An upper multi-period n-type electron coupling layer 17, the upper multi-period n-type electron coupling layer 17 is made on the lower tunneling barrier layer 16, and the upper multi-period n-type electron coupling layer 17 is made of indium gallium nitride (InGaN) A multi-period quantum well structure is formed by stacking thin layers 171 and aluminum indium gallium nitride (AlInGaN) thin layers 172 alternately. The growth parameters include: AlInGaN thin layer (that is, barrier layer 172): reaction temperature 700-900°C, reaction chamber pressure 100-500Torr, carrier gas flow rate 5-20 liters/minute, ammonia flow rate 200-800 mol/minute, trimethyl The base indium flow rate is 10-50 micromol/min, the trimethylgallium flow rate is 0.1-1.0 micromol/min, the trimethylaluminum flow rate is 20-100 micromol/min, the silane flow rate is 0-2.0 nanomol/min, and the time is 0.1- 5 minutes; InGaN thin layer (i.e. well layer 171): reaction temperature 700-850°C, reaction chamber pressure 100-500Torr, carrier gas flow 5-20 liters/minute, ammonia flow 200-800 mol/minute, trimethyl The gallium flow rate is 0.1-1.0 micromol/min, the trimethylindium flow rate is 10-50 micromol/min, and the time is 0.1-5 minutes; the number of structural periods is 3 to 20;

一上隧穿势垒层18,该上隧穿势垒层18制作在上多周期n型电子耦合层17上,由铝铟镓氮(AlInGaN)薄层构成。其下层接触面为上多周期n型电子耦合层17的铟镓氮薄层171。生长参数包括:反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;An upper tunneling barrier layer 18, the upper tunneling barrier layer 18 is fabricated on the upper multi-period n-type electron coupling layer 17, and is composed of a thin layer of aluminum indium gallium nitride (AlInGaN). The lower contact surface is the thin InGaN layer 171 of the upper multi-period n-type electron coupling layer 17 . Growth parameters include: reaction temperature 700-900°C, reaction chamber pressure 100-500 Torr, carrier gas flow 5-20 liters/min, ammonia flow 200-800 mol/min, trimethylindium flow 10-50 micromol/min , the flow rate of trimethylgallium is 0.1-1.0 micromol/min, the flow rate of trimethylaluminum is 20-100 micromol/min, the flow rate of silane is 0-2.0 nanomol/min, and the time is 0.1-5 minutes;

一活性发光层19,该活性发光层19制作在上隧穿势垒层18上,所述活性发光层19是由铟镓氮(InGaN)薄层191和铝铟镓氮(AlInGaN)薄层192交互层叠形成的多周期的量子阱结构构成。生长参数包括:AlInGaN薄层(即垒层192):反应温度700-900℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,硅烷流量0-2.0纳摩尔/分钟,时间0.1-5分钟;InGaN薄层(即阱层191):反应温度700-850℃,反应腔压力100-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量0.1-1.0微摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,时间0.1-5分钟;多量子阱周期数为4至15;An active luminescent layer 19, the active luminescent layer 19 is made on the upper tunneling barrier layer 18, the active luminescent layer 19 is composed of an indium gallium nitride (InGaN) thin layer 191 and an aluminum indium gallium nitride (AlInGaN) thin layer 192 A multi-period quantum well structure formed by alternate lamination. The growth parameters include: AlInGaN thin layer (ie barrier layer 192): reaction temperature 700-900°C, reaction chamber pressure 100-500Torr, carrier gas flow rate 5-20 liters/minute, ammonia gas flow rate 200-800 mol/minute, trimethyl The base indium flow rate is 10-50 micromol/min, the trimethylgallium flow rate is 0.1-1.0 micromol/min, the trimethylaluminum flow rate is 20-100 micromol/min, the silane flow rate is 0-2.0 nanomol/min, and the time is 0.1- 5 minutes; InGaN thin layer (i.e. well layer 191): reaction temperature 700-850°C, reaction chamber pressure 100-500Torr, carrier gas flow 5-20 liters/minute, ammonia flow 200-800 mol/minute, trimethyl The gallium flow rate is 0.1-1.0 micromol/min, the trimethylindium flow rate is 10-50 micromol/min, and the time is 0.1-5 minutes; the number of multiple quantum well cycles is 4 to 15;

本发明中的下多周期n型电子耦合层15中铟镓氮薄层151的生长温度优选为600-900℃,低于上多周期n型电子耦合层17中铟镓氮薄层171的生长温度,且这两层铟镓氮薄层151、171的生长温度都低于活性发光层19中铟镓氮薄层191的生长温度。The growth temperature of the thin InGaN layer 151 in the lower multi-period n-type electron coupling layer 15 in the present invention is preferably 600-900°C, which is lower than the growth temperature of the InGaN thin layer 171 in the upper multi-period n-type electron coupling layer 17 The growth temperature of the two InGaN thin layers 151 and 171 is lower than the growth temperature of the InGaN thin layer 191 in the active light emitting layer 19 .

本发明中的n型电子耦合层中铟镓氮薄层的铟组分应当在0<x<0.3。且由下多周期n型电子耦合层15中铟镓氮薄层151到上多周期n型电子耦合层17中铟镓氮薄层171再到活性发光层19中铟镓氮薄层191,其铟组分是逐渐增加的。The indium composition of the thin InGaN layer in the n-type electron coupling layer in the present invention should be 0<x<0.3. And from the thin InGaN layer 151 in the lower multi-period n-type electronic coupling layer 15 to the thin InGaN layer 171 in the upper multi-period n-type electronic coupling layer 17 to the thin InGaN layer 191 in the active light-emitting layer 19, its Indium composition is gradually increased.

本发明中的铝铟镓氮隧穿势垒层16/18的厚度优选为2-20纳米。The thickness of the AlInGaN tunneling barrier layer 16/18 in the present invention is preferably 2-20 nm.

本发明通过在活性发光层19下方生长具有多组n型电子耦合层15/17,获得了发光强度得到较大提高的GaN系发光二极管。主要原因在于如下:In the present invention, a GaN-based light-emitting diode with greatly improved luminous intensity is obtained by growing multiple sets of n-type electron coupling layers 15/17 under the active light-emitting layer 19. The main reasons are as follows:

在活性发光层19下方生长多组电子耦合层15、17,且电子耦合层中铟镓氮薄层的铟组分由下多周期n型电子耦合层15中铟镓氮薄层151到上多周期n型电子耦合层17中铟镓氮薄层171再到活性发光层19中铟镓氮薄层191,其铟组分是逐渐增加的。由于电子耦合层中具有较高的铟组分,对电子的束缚能力增强,这样更多的电子将被束缚在电子耦合层内部,减少大电流注入条件下电子的过冲。通过调节铟镓氮薄层151、171中的铟组分及阱宽,实现下多周期n型电子耦合层15与上多周期n型电子耦合层17之间能级共振,并最终实现上多周期n型电子耦合层17与活性发光层19中的铟镓氮薄层191之间的能级共振;通过调节隧穿势垒层铝铟镓氮层16、18的厚度,实现下多周期n型电子耦合层15与上多周期n型电子耦合层17以及活性发光层19之间的能级共振隧穿。从而达到提高载流子注入效率的目的。Multiple groups of electron coupling layers 15, 17 are grown under the active light-emitting layer 19, and the indium composition of the thin indium gallium nitrogen layer in the electron coupling layer is from the lower multi-period n-type electron coupling layer 15 to the upper multi-indium gallium nitrogen thin layer 15. From the thin InGaN layer 171 in the periodic n-type electron coupling layer 17 to the thin InGaN layer 191 in the active light-emitting layer 19, the indium composition gradually increases. Due to the higher indium composition in the electron coupling layer, the ability to bind electrons is enhanced, so that more electrons will be bound inside the electron coupling layer, reducing the overshoot of electrons under the condition of large current injection. By adjusting the indium composition and well width in the InGaN thin layers 151 and 171, the energy level resonance between the lower multi-period n-type electronic coupling layer 15 and the upper multi-period n-type electronic coupling layer 17 is realized, and finally the upper multi-period n-type electronic coupling layer 17 is realized. The energy level resonance between the periodic n-type electron coupling layer 17 and the thin InGaN layer 191 in the active light-emitting layer 19; by adjusting the thickness of the tunneling barrier layers AlInGaN layers 16 and 18, the lower multi-period n The energy level resonant tunneling between the n-type electron coupling layer 15 and the upper multi-period n-type electron coupling layer 17 and the active light-emitting layer 19. So as to achieve the purpose of improving the carrier injection efficiency.

一负电极22,该负电极22制作在n型接触层14的台面141上,由铬铂金或钛铝钛金组成。A negative electrode 22, the negative electrode 22 is fabricated on the mesa 141 of the n-type contact layer 14, and is composed of chrome-platinum gold or titanium-aluminum-titanium gold.

一p型电子阻挡层20,该p型电子阻挡层20制作在活性发光层19上,该p型电子阻挡层20由铝铟镓氮构成。所述p型电子阻挡层20的厚度为10-50nm,并且所述p型电子阻挡层的下表面与所述活性发光层中的铝铟镓氮薄层192接触。生长参数包括:反应温度700-1000℃,反应腔压力50-200Torr,载气流量5-20升/分钟,氨气流量100-400摩尔/分钟,三甲基铟流量10-50微摩尔/分钟,三甲基铝流量20-100微摩尔/分钟,三甲基镓流量80-200微摩尔/分钟,二茂镁流量为150-400纳摩尔/分钟,时间1-10分钟。A p-type electron blocking layer 20, the p-type electron blocking layer 20 is fabricated on the active light-emitting layer 19, and the p-type electron blocking layer 20 is made of AlInGaN. The thickness of the p-type electron blocking layer 20 is 10-50 nm, and the lower surface of the p-type electron blocking layer is in contact with the thin AlInGaN layer 192 in the active light emitting layer. Growth parameters include: reaction temperature 700-1000°C, reaction chamber pressure 50-200 Torr, carrier gas flow 5-20 liters/min, ammonia flow 100-400 mol/min, trimethylindium flow 10-50 micromol/min , the flow rate of trimethylaluminum is 20-100 micromol/min, the flow rate of trimethylgallium is 80-200 micromol/min, the flow rate of magnesiumocene is 150-400 nanomol/min, and the time is 1-10 minutes.

其中所述p型电子阻挡层20以二茂镁为p型掺杂剂,并且二茂镁的掺杂浓度为1019-1021cm-3Wherein the p-type electron blocking layer 20 uses magnesocene as the p-type dopant, and the doping concentration of magnesocene is 10 19 -10 21 cm -3 .

一p型接触层21,该p型接触层21制作在p型电子阻挡层20上,该p型接触层21由p型氮化镓构成。生长参数包括:反应温度950-1100℃,反应腔压力200-500Torr,载气流量5-20升/分钟,氨气流量200-800摩尔/分钟,三甲基镓流量80-400微摩尔/分钟,二茂镁流量为0.5-5微摩尔/分钟,时间10-50分钟。A p-type contact layer 21, the p-type contact layer 21 is fabricated on the p-type electron blocking layer 20, the p-type contact layer 21 is composed of p-type gallium nitride. Growth parameters include: reaction temperature 950-1100°C, reaction chamber pressure 200-500 Torr, carrier gas flow 5-20 liters/min, ammonia flow 200-800 mol/min, trimethylgallium flow 80-400 micromol/min , The flow rate of magnesium dicene is 0.5-5 micromol/min, and the time is 10-50 minutes.

一正电极23,该正电极23制作在p型接触层21上,由铬铂金组成。完成氮化镓系发光二极管的制作。A positive electrode 23 is fabricated on the p-type contact layer 21 and is composed of chromium platinum. Completed the production of gallium nitride-based light-emitting diodes.

图2所示为根据本发明的具有n型电子耦合层的氮化镓系发光二极管与传统工艺没有n型电子耦合层的氮化镓系发光二极管的光致发光特性对比。其中三角线条为本发明的具有n型电子耦合层结构的氮化镓系LED;圆形线条为传统结构的氮化镓系LED。由图2中可以看出,与传统结构的LED相比,在同样的注入电流条件下,本发明的LED结构的发光强度增大,说明发光二极管的内量子效率得到了有效的提高。FIG. 2 shows a comparison of photoluminescence characteristics between a GaN-based light-emitting diode with an n-type electronic coupling layer according to the present invention and a GaN-based light-emitting diode without an n-type electronic coupling layer in a conventional process. The triangular lines are GaN-based LEDs with an n-type electronic coupling layer structure according to the present invention; the circular lines are GaN-based LEDs with a traditional structure. It can be seen from FIG. 2 that, compared with the LED with the traditional structure, under the same injection current condition, the luminous intensity of the LED structure of the present invention increases, indicating that the internal quantum efficiency of the light-emitting diode is effectively improved.

以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can easily think of changes or replacements within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (9)

1. GaN series LED that improves electron injection efficiency, it comprises:
One substrate;
One gallium nitride nucleating layer, this gallium nitride nucleating layer is produced on the substrate;
One resilient coating, this resilient coating are produced on the gallium nitride nucleating layer;
One n type contact layer, this n type contact layer is produced on the resilient coating, forms a table top in this side above n type contact layer, and this n type contact layer is made of n type gallium nitride;
Multicycle n type electronics coupled layer once, this following multicycle n type electronics coupled layer be produced on n type contact layer upper table surface opposite side above;
Tunneling barrier layer once, this time tunneling barrier layer is produced on n of the following multicycle type electronics coupled layer;
One n of last multicycle type electronics coupled layer, multicycle n type electronics coupled layer is produced on down on the tunneling barrier layer on this;
Tunneling barrier layer on one, tunneling barrier layer is produced on the multicycle n type electronics coupled layer on this;
Active luminescent layer of one multicycle, this activity luminescent layer is produced on the tunneling barrier layer;
One negative electrode, this negative electrode are produced on the table top of n type contact layer;
One p type electronic barrier layer, this p type electronic barrier layer are produced on the active luminescent layer of multicycle;
One p type contact layer, this p type contact layer is produced on the p type electronic barrier layer, and this p type contact layer is made of p type gallium nitride;
One positive electrode, this positive electrode are produced on the p type contact layer, form the structure of GaN series LED.
2. the GaN series LED of raising electron injection efficiency as claimed in claim 1, wherein each cycle of n of following multicycle type electronics coupled layer comprises:
One indium gallium nitrogen thin layer and the aluminium indium gallium nitrogen thin layer of making thereon, the top of this following multicycle n type electronics coupled layer makes one deck indium gallium nitrogen thin layer again.
3. the GaN series LED of raising electron injection efficiency as claimed in claim 1, each cycle of wherein going up multicycle n type electronics coupled layer comprises:
One indium gallium nitrogen thin layer and the aluminium indium gallium nitrogen thin layer of making thereon, the top of multicycle n type electronics coupled layer makes one deck indium gallium nitrogen thin layer again on this.
4. the GaN series LED of raising electron injection efficiency as claimed in claim 1, each cycle of wherein said active luminescent layer comprises:
One indium gallium nitrogen thin layer and the aluminium indium gallium nitrogen thin layer of making thereon, the top of this activity luminescent layer makes one deck indium gallium nitrogen thin layer again.
5. the GaN series LED of raising electron injection efficiency as claimed in claim 2, wherein the periodicity of n of following multicycle type electronics coupled layer is 3-20, the thickness of every layer of aluminum indium gallium nitrogen thin layer is 2-20nm; The thickness of each layer indium gallium nitrogen thin layer is 1-4nm.
6. the GaN series LED of raising electron injection efficiency as claimed in claim 3, the periodicity of wherein going up multicycle n type electronics coupled layer is 3-20, the thickness of every layer of aluminum indium gallium nitrogen thin layer is 2-20nm; The thickness of each layer indium gallium nitrogen thin layer is 1-4nm.
7. the GaN series LED of raising electron injection efficiency as claimed in claim 4, wherein the periodicity of active luminescent layer is 4-15, the thickness of every layer of aluminum indium gallium nitrogen thin layer is 4-20nm; The thickness of each layer indium gallium nitrogen thin layer is 1-4nm.
8. as the GaN series LED of claim 2 or 3 described raising electron injection efficiencies, wherein the indium component in n of following multicycle type electronics coupled layer and the last multicycle n type electronics coupled layer indium gallium nitrogen thin layer from bottom to up is increase gradually, but can not be above the indium component in the indium gallium nitrogen thin layer in the described active luminescent layer.
9. the GaN series LED of raising electron injection efficiency as claimed in claim 1, the thickness that wherein descends tunneling barrier layer and last tunneling barrier layer is 2-20nm.
CN201110115323A 2011-05-05 2011-05-05 Gallium-nitride-based light emitting diode capable of improving electron injection efficiency Active CN102185056B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110115323A CN102185056B (en) 2011-05-05 2011-05-05 Gallium-nitride-based light emitting diode capable of improving electron injection efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110115323A CN102185056B (en) 2011-05-05 2011-05-05 Gallium-nitride-based light emitting diode capable of improving electron injection efficiency

Publications (2)

Publication Number Publication Date
CN102185056A true CN102185056A (en) 2011-09-14
CN102185056B CN102185056B (en) 2012-10-03

Family

ID=44571190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110115323A Active CN102185056B (en) 2011-05-05 2011-05-05 Gallium-nitride-based light emitting diode capable of improving electron injection efficiency

Country Status (1)

Country Link
CN (1) CN102185056B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972340A (en) * 2013-01-25 2014-08-06 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN103972339A (en) * 2013-01-25 2014-08-06 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN104465913A (en) * 2014-11-26 2015-03-25 西安电子科技大学 Resonance tunneling diode with double InGaN sub quantum wells and manufacturing method thereof
CN104795476A (en) * 2015-04-24 2015-07-22 广西盛和电子科技股份有限公司 Epitaxial structure of gallium nitride LED
CN106025023A (en) * 2016-06-22 2016-10-12 华灿光电(苏州)有限公司 Yellow-green-light light emitting diode and preparation method therefor
CN106410001A (en) * 2016-06-23 2017-02-15 孙月静 Novel AlGaN-based ultraviolet light emitting diode
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
CN107316924A (en) * 2013-01-25 2017-11-03 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN107452843A (en) * 2017-06-30 2017-12-08 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof
CN107924966A (en) * 2014-09-22 2018-04-17 夏普株式会社 Nitride semiconductor luminescent element
CN108447952A (en) * 2018-03-26 2018-08-24 华灿光电(浙江)有限公司 A light-emitting diode epitaxial wafer and its preparation method
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
US10319879B2 (en) 2016-03-08 2019-06-11 Genesis Photonics Inc. Semiconductor structure
US10381511B2 (en) 2012-11-19 2019-08-13 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
CN110335904A (en) * 2019-07-10 2019-10-15 陕西科技大学 A kind of InGaN/GaN multi-quantum well solar cell with AlInGaN barrier structure inserted
US10468549B2 (en) 2016-09-19 2019-11-05 Genesis Photonics Inc. Semiconductor device containing nitrogen
CN110729394A (en) * 2019-10-12 2020-01-24 深圳第三代半导体研究院 A kind of negative resistance GaN pressure sensor and preparation method thereof
CN116705942A (en) * 2023-08-08 2023-09-05 江西兆驰半导体有限公司 Light-emitting diode and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552104A (en) * 2001-05-30 2004-12-01 ���﹫˾ Group III nitride based light emitting diode structures with a quantum well and superlattice
CN1921157A (en) * 2005-08-26 2007-02-28 中国科学院半导体研究所 High efficiency deep ultraviolet light-emitting diode
CN101174662A (en) * 2006-10-30 2008-05-07 璨圆光电股份有限公司 Multiple quantum well nitride light emitting diode with carrier providing layer
CN101540364A (en) * 2009-04-23 2009-09-23 厦门大学 Nitride luminescent device and production method thereof
CN101931036A (en) * 2010-07-21 2010-12-29 中国科学院半导体研究所 A gallium nitride-based light-emitting diode
WO2011007637A1 (en) * 2009-07-15 2011-01-20 住友電気工業株式会社 Nitride-based semiconductor light-emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552104A (en) * 2001-05-30 2004-12-01 ���﹫˾ Group III nitride based light emitting diode structures with a quantum well and superlattice
CN1921157A (en) * 2005-08-26 2007-02-28 中国科学院半导体研究所 High efficiency deep ultraviolet light-emitting diode
CN101174662A (en) * 2006-10-30 2008-05-07 璨圆光电股份有限公司 Multiple quantum well nitride light emitting diode with carrier providing layer
CN101540364A (en) * 2009-04-23 2009-09-23 厦门大学 Nitride luminescent device and production method thereof
WO2011007637A1 (en) * 2009-07-15 2011-01-20 住友電気工業株式会社 Nitride-based semiconductor light-emitting element
CN101931036A (en) * 2010-07-21 2010-12-29 中国科学院半导体研究所 A gallium nitride-based light-emitting diode

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381511B2 (en) 2012-11-19 2019-08-13 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
US10147845B2 (en) 2012-11-19 2018-12-04 Genesis Photonics Inc. Semiconductor structure
CN107316924A (en) * 2013-01-25 2017-11-03 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN107833956A (en) * 2013-01-25 2018-03-23 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN103972340A (en) * 2013-01-25 2014-08-06 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN103972340B (en) * 2013-01-25 2018-06-08 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN107833956B (en) * 2013-01-25 2020-04-07 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN103972339A (en) * 2013-01-25 2014-08-06 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN103972339B (en) * 2013-01-25 2017-12-12 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN107819059A (en) * 2013-01-25 2018-03-20 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
CN107924966A (en) * 2014-09-22 2018-04-17 夏普株式会社 Nitride semiconductor luminescent element
CN104465913B (en) * 2014-11-26 2017-06-16 西安电子科技大学 Resonance tunnel-through diode with the sub- SQWs of double InGaN and preparation method thereof
CN104465913A (en) * 2014-11-26 2015-03-25 西安电子科技大学 Resonance tunneling diode with double InGaN sub quantum wells and manufacturing method thereof
CN104795476B (en) * 2015-04-24 2018-01-30 广西钦州市易通浩光电科技有限公司 A kind of epitaxial structure of gallium nitride light-emitting diode
CN104795476A (en) * 2015-04-24 2015-07-22 广西盛和电子科技股份有限公司 Epitaxial structure of gallium nitride LED
US10319879B2 (en) 2016-03-08 2019-06-11 Genesis Photonics Inc. Semiconductor structure
CN106025023B (en) * 2016-06-22 2019-04-12 华灿光电(苏州)有限公司 A yellow-green light-emitting diode and preparation method thereof
CN106025023A (en) * 2016-06-22 2016-10-12 华灿光电(苏州)有限公司 Yellow-green-light light emitting diode and preparation method therefor
CN106410001B (en) * 2016-06-23 2018-10-19 孙月静 A kind of AlGaN bases UV LED
CN106410001A (en) * 2016-06-23 2017-02-15 孙月静 Novel AlGaN-based ultraviolet light emitting diode
US10468549B2 (en) 2016-09-19 2019-11-05 Genesis Photonics Inc. Semiconductor device containing nitrogen
CN107452843B (en) * 2017-06-30 2019-03-01 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof
CN107452843A (en) * 2017-06-30 2017-12-08 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof
CN108447952A (en) * 2018-03-26 2018-08-24 华灿光电(浙江)有限公司 A light-emitting diode epitaxial wafer and its preparation method
CN108447952B (en) * 2018-03-26 2020-04-14 华灿光电(浙江)有限公司 A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN110335904A (en) * 2019-07-10 2019-10-15 陕西科技大学 A kind of InGaN/GaN multi-quantum well solar cell with AlInGaN barrier structure inserted
CN110729394A (en) * 2019-10-12 2020-01-24 深圳第三代半导体研究院 A kind of negative resistance GaN pressure sensor and preparation method thereof
CN116705942A (en) * 2023-08-08 2023-09-05 江西兆驰半导体有限公司 Light-emitting diode and its manufacturing method
CN116705942B (en) * 2023-08-08 2023-10-17 江西兆驰半导体有限公司 Light emitting diode and preparation method thereof

Also Published As

Publication number Publication date
CN102185056B (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102185056B (en) Gallium-nitride-based light emitting diode capable of improving electron injection efficiency
CN101834248B (en) Gallium Nitride-based Light Emitting Diodes
CN101488550B (en) Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure
CN103730557B (en) A kind of growing method of the light emitting diode with novel P-type electron barrier layer structure
CN103730552B (en) A kind of epitaxial growth method improving LED luminous efficiency
CN106229390B (en) Growth method of GaN-based light emitting diode chip
CN101452980B (en) Production method of group III nitride compound semiconductor LED
CN105449051B (en) One kind is using MOCVD technologies in GaN substrate or GaN/Al2O3The method that high brightness homogeneity LED is prepared in compound substrate
CN103811601B (en) A kind of GaN base LED multi-level buffer layer growth method with Sapphire Substrate as substrate
CN104051586A (en) A GaN-based light-emitting diode epitaxial structure and its preparation method
CN107180899B (en) A deep ultraviolet LED
CN102306691A (en) Method for raising light emitting diode luminescence efficiency
CN105206726A (en) LED structure and growth method thereof
CN102185052A (en) Manufacturing method of modulation-doped gallium nitride series light-emitting diode
CN101931036B (en) Gallium nitride luminous diode
CN104576852A (en) Stress regulation method for luminous quantum wells of GaN-based LED epitaxial structure
CN105047776A (en) Light-emitting diode epitaxial structure containing AlGaN conducting layer, and manufacturing method thereof
CN103996765A (en) A LED epitaxial structure and growth method for improving internal quantum efficiency
CN103985797B (en) Multi-quantum pit structure and growing method thereof and there is the LED chip of this structure
CN101359711A (en) A green light emitting diode
CN104253181A (en) LED (Light Emitting Diode) epitaxy structure with multiple barrier layers
CN110473940B (en) Epitaxial structure of UV LED
CN108538973A (en) A kind of LED epitaxial slice and preparation method thereof
CN108281520A (en) A kind of GaN base LED epitaxial structure and preparation method thereof
CN103633218A (en) Gallium-nitride-based light-emitting device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant