CN101452980B - Production method of group III nitride compound semiconductor LED - Google Patents
Production method of group III nitride compound semiconductor LED Download PDFInfo
- Publication number
- CN101452980B CN101452980B CN2007101958501A CN200710195850A CN101452980B CN 101452980 B CN101452980 B CN 101452980B CN 2007101958501 A CN2007101958501 A CN 2007101958501A CN 200710195850 A CN200710195850 A CN 200710195850A CN 101452980 B CN101452980 B CN 101452980B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor material
- material layer
- type semiconductor
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- -1 nitride compound Chemical class 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 75
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 23
- 150000002830 nitrogen compounds Chemical class 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 21
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 26
- 229910002601 GaN Inorganic materials 0.000 claims description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical group [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 150000002902 organometallic compounds Chemical class 0.000 claims description 3
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 claims description 3
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical group CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 4
- 238000010276 construction Methods 0.000 claims 2
- 238000003475 lamination Methods 0.000 claims 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 229910010271 silicon carbide Inorganic materials 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 118
- 239000013078 crystal Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000005253 cladding Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 3
- 230000005701 quantum confined stark effect Effects 0.000 description 3
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- FWLGASJILZBATH-UHFFFAOYSA-N gallium magnesium Chemical compound [Mg].[Ga] FWLGASJILZBATH-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域 technical field
本发明是关于一种三族氮化合物半导体发光二极管和其制造方法,尤其关于一种能释放活性层与N型半导体材料层之间应力的三族氮化合物半导体发光二极管和其制造方法。 The invention relates to a group III nitrogen compound semiconductor light emitting diode and its manufacturing method, in particular to a group III nitrogen compound semiconductor light emitting diode capable of releasing stress between an active layer and an N-type semiconductor material layer and its manufacturing method. the
背景技术 Background technique
随着发光二极管元件的被广泛应用于不同产品,近年来制作蓝光发光二极管的材料,已成为当前光电半导体材料业重要的研发对象。目前蓝光发光二极管的材料有硒化锌(ZnSe)、碳化硅(SiC)和氮化铟镓(InGaN)等材料,这些材料都是宽能隙(band gap)的半导体材料,能隙大约在2.6eV以上。由于氮化镓系列是直接能隙(direct gap)的发光材料,因此可以产生高亮度的照明光线,且相比于同为直接能隙的硒化锌具有寿命长的优点。 As light-emitting diode elements are widely used in different products, in recent years, materials for making blue light-emitting diodes have become an important research and development object in the current optoelectronic semiconductor material industry. At present, the materials of blue light-emitting diodes include zinc selenide (ZnSe), silicon carbide (SiC) and indium gallium nitride (InGaN) and other materials. These materials are semiconductor materials with a wide band gap, and the band gap is about 2.6 above eV. Since the gallium nitride series is a luminescent material with a direct gap, it can produce high-brightness illumination light, and has the advantage of longer life than zinc selenide, which is also a direct gap. the
目前蓝光发光二极管的活性层(发光层)多采用氮化铟镓/氮化镓(InGaN/GaN)量子阱结构,所述量子阱结构是夹设于N型氮化镓(GaN)层与P型氮化镓层之间的。当In加入GaN形成InGaN时,由于InGaN与GaN之间的晶格常数不同,以致于活性层和氮化镓界面产生应力。所述应力会产生压电的作用而形成压电场,从而会影响活性层的发光效率和波长,因此需要消除应力以避免不良的影响。 At present, the active layer (light-emitting layer) of blue light-emitting diodes mostly adopts an indium gallium nitride/gallium nitride (InGaN/GaN) quantum well structure, and the quantum well structure is sandwiched between an N-type gallium nitride (GaN) layer and a P type between GaN layers. When In is added to GaN to form InGaN, due to the difference in lattice constant between InGaN and GaN, the interface between the active layer and gallium nitride produces stress. The stress will produce a piezoelectric effect to form a piezoelectric field, which will affect the luminous efficiency and wavelength of the active layer, so it is necessary to eliminate the stress to avoid adverse effects. the
图1是美国专利US6,345,063的发光二极管的剖面示意图。发光二极管10包含衬底11、缓冲层12、N型InGaN层13、活性层14、第一P型三五族氮化合物层15、第二P型三五族氮化合物层16、P型电极17和N型电极18。N型InGaN层13和活性层14的InGaN膜间的晶格常数匹配,因此可消除累积的应力。但所述N型InGaN层13的形成温度较低,因此会牺牲晶体外延生长质量而取代原先质量较佳的GaN层。
FIG. 1 is a schematic cross-sectional view of a light emitting diode in US Pat. No. 6,345,063. The
图2是美国专利US6,861,270的发光二极管的剖面示意图。发光二极管20包含衬底21、N型氮化铝镓(AlGaN)层22、多个镓或铝的微凸部25、活性层23和P型氮化铝镓层24。所述镓微凸部25会使得活性层23在能 隙上产生波动(fluctuation),在能隙带较窄的区域的发光效率会增加,即使位错(dislocation)在所述区域仍会发生。参见所述美国专利的发明内容(Summary of the Invention),其中明确揭示所述能隙带的波动是通过晶格常数不同所产生,因此本专利并非解决晶格常数不匹配所造成的应力问题。
FIG. 2 is a schematic cross-sectional view of a light emitting diode in US Pat. No. 6,861,270. The
图3是美国专利US7,190,001的发光二极管的剖面示意图。发光二极管30包含衬底31、缓冲层32、N型覆盖层(cladding layer)33、AlN非平坦层34、活性层35、P型覆盖层36、接触层37、透明电极38、P型电极391和N型电极392。活性层35形成于AlN非平坦层34上,因此可简化活性层35的生长条件,从而增加发光效率。然而所述AlN非平坦层34需要特别的热处理工艺才能形成于N型覆盖层33上,因此容易影响原本底层的晶体外延生长质量。 FIG. 3 is a schematic cross-sectional view of a light emitting diode of US Pat. No. 7,190,001. The light emitting diode 30 comprises a substrate 31, a buffer layer 32, an N-type cladding layer (cladding layer) 33, an AlN uneven layer 34, an active layer 35, a P-type cladding layer 36, a contact layer 37, a transparent electrode 38, and a P-type electrode 391 and an N-type electrode 392 . The active layer 35 is formed on the AlN non-planar layer 34, so the growth conditions of the active layer 35 can be simplified, thereby increasing the luminous efficiency. However, the AlN non-planar layer 34 needs a special heat treatment process to be formed on the N-type cladding layer 33 , so it is easy to affect the quality of the epitaxial crystal growth of the original bottom layer. the
综上所述,市场上急需一种确保质量稳定的发光二极管,才能改善上述常规技术的各种缺点。 To sum up, there is an urgent need for a light-emitting diode with stable quality in the market, so as to improve the various shortcomings of the above-mentioned conventional technologies. the
发明内容 Contents of the invention
本发明的主要目的是提供一种三族氮化合物半导体发光二极管和其制造方法,其可以减少晶体外延生长层的应力累积,因而能降低量子限制Stark效应(Quantum Confined Stark Effect;QCSE),增加电子和空穴复合机率,从而提高发光二极管的发光效率。 The main purpose of the present invention is to provide a kind of Group III nitrogen compound semiconductor light-emitting diode and its manufacturing method, it can reduce the stress accumulation of crystal epitaxial growth layer, thereby can reduce Quantum Confined Stark Effect (Quantum Confined Stark Effect; QCSE), increase electron And hole recombination probability, thereby improving the luminous efficiency of light-emitting diodes. the
为达上述目的,本发明揭示一种三族氮化合物半导体发光二极管,其包含衬底、第一型半导体材料层、共形(conformation)活性层和第二型半导体材料层。所述第一型半导体材料层包括第一表面和第二表面,其中所述第一表面朝向所述衬底,所述第二表面相对于所述第一表面并具有多个凹部。所述共形活性层形成于所述第二表面上和所述多个凹部内。所述共形活性层与所述第一型半导体材料层之间的应力可通过所述多个凹部释放。所述第二型半导体材料层设置于所述共形活性层上。 To achieve the above purpose, the present invention discloses a Group III nitrogen compound semiconductor light-emitting diode, which includes a substrate, a first-type semiconductor material layer, a conformation (conformation) active layer, and a second-type semiconductor material layer. The first-type semiconductor material layer includes a first surface and a second surface, wherein the first surface faces the substrate, and the second surface is opposite to the first surface and has a plurality of recesses. The conformal active layer is formed on the second surface and within the plurality of recesses. Stress between the conformal active layer and the first type semiconductor material layer can be released through the plurality of recesses. The second type semiconductor material layer is disposed on the conformal active layer. the
上述发光二极管另外包含介于所述衬底与所述第一型半导体材料层之间的缓冲层。 The above light emitting diode further includes a buffer layer between the substrate and the first type semiconductor material layer. the
所述凹部的深度大于所述共形活性层中量子阱层的厚度,且小于所述第一型半导体材料层的厚度。且所述凹部的上方开口的宽度大于0.1μm且 小于10μm。所述多个凹部具有不同尺寸。所述多个不同尺寸的凹部呈均匀或交错分布。所述凹部的开口宽度大于所述凹部的底部宽度。 The depth of the recess is larger than the thickness of the quantum well layer in the conformal active layer and smaller than the thickness of the first type semiconductor material layer. And the width of the upper opening of the concave part is greater than 0.1 μm and less than 10 μm. The plurality of recesses have different sizes. The plurality of recesses with different sizes are uniformly or staggeredly distributed. The opening width of the recess is larger than the bottom width of the recess. the
所述共形活性层是单层量子阱结构或多层量子阱结构。 The conformal active layer is a single-layer quantum well structure or a multi-layer quantum well structure. the
所述第一型半导体材料层是N型半导体材料层,且所述第二型半导体材料层是P型半导体材料层。 The first-type semiconductor material layer is an N-type semiconductor material layer, and the second-type semiconductor material layer is a P-type semiconductor material layer. the
本发明还揭示一种三族氮化合物半导体发光二极管的制造方法,包含下列步骤:提供衬底;在所述衬底上生长第一型半导体材料层,其中所述第一型半导体材料层包括第一表面和第二表面,所述第一表面朝向所述衬底,所述第二表面相对于所述第一表面并具有多个凹部;生长共形活性层于所述第一型半导体材料层上;以及在所述共形活性层上形成第二型半导体材料层。 The present invention also discloses a method for manufacturing a Group-III nitrogen compound semiconductor light-emitting diode, comprising the following steps: providing a substrate; growing a first-type semiconductor material layer on the substrate, wherein the first-type semiconductor material layer includes a first-type semiconductor material layer A surface and a second surface, the first surface is facing the substrate, the second surface is opposite to the first surface and has a plurality of recesses; growing a conformal active layer on the first type semiconductor material layer and forming a second type semiconductor material layer on the conformal active layer. the
所述多个凹部是通过蚀刻工艺形成于所述第一型半导体材料层的第二表面。 The plurality of recesses are formed on the second surface of the first-type semiconductor material layer through an etching process. the
所述多个凹部是通过控制氮气、氨气、氢气、三甲基镓、三乙基镓、三甲基铟、三乙基铟或有机金属化合物的流量而形成于所述第二表面的空洞。所述多个凹部是通过金属有机化学气相沉积工艺产生。 The plurality of recesses are cavities formed on the second surface by controlling the flow of nitrogen, ammonia, hydrogen, trimethylgallium, triethylgallium, trimethylindium, triethylindium or organometallic compounds . The plurality of recesses are produced by a metal organic chemical vapor deposition process. the
上述制造方法另外包含直接在所述衬底表面形成至少一缓冲层的步骤。 The above manufacturing method additionally includes the step of forming at least one buffer layer directly on the surface of the substrate. the
通过上述设计,本发明第一型半导体材料层表面并具有多个凹部,共形活性层形成于所述表面上和所述多个凹部内。因此所述共形活性层与所述第一型半导体材料层之间的应力可通过所述多个凹部释放,从而增加电子和空穴复合机率,以提高发光二极管的发光效率。 Through the above design, the surface of the first-type semiconductor material layer of the present invention has a plurality of recesses, and the conformal active layer is formed on the surface and in the plurality of recesses. Therefore, the stress between the conformal active layer and the first-type semiconductor material layer can be released through the plurality of recesses, thereby increasing the recombination probability of electrons and holes, so as to improve the luminous efficiency of the light emitting diode. the
附图说明 Description of drawings
图1是美国第US6,345,063号专利的发光二极管的剖面示意图; Fig. 1 is a schematic cross-sectional view of a light-emitting diode of the U.S. Patent No. US6,345,063;
图2是美国第US6,861,270号专利的发光二极管的剖面示意图; Fig. 2 is a schematic cross-sectional view of a light-emitting diode of the U.S. Patent No. US6,861,270;
图3是美国第US7,190,001号专利的发光二极管的剖面示意图; Fig. 3 is a schematic cross-sectional view of a light-emitting diode of the U.S. Patent No. US7,190,001;
图4是本发明三族氮化合物半导体发光二极管的剖面示意图; Fig. 4 is a schematic cross-sectional view of a group III nitrogen compound semiconductor light-emitting diode of the present invention;
图5A是本发明发光二极管的部分剖面示意图;以及 Figure 5A is a partial cross-sectional schematic view of a light emitting diode of the present invention; and
图5B是图5A中部分发光二极管的上视图。 FIG. 5B is a top view of part of the LEDs in FIG. 5A. the
具体实施方式 Detailed ways
图4是本发明三族氮化合物半导体发光二极管的剖面示意图。发光二极管40包含衬底41、缓冲层42、N型(或称为第一型)半导体材料层43、共形活性层44和P型(或称为第二型)半导体材料层45,又在N型半导体材料层43表面设置有N型电极47,和在P型半导体材料层45表面设置有P型电极46。
FIG. 4 is a schematic cross-sectional view of a III-nitride semiconductor light-emitting diode of the present invention. The light-emitting diode 40 includes a
一般来说,制作此发光二极管40是先提供基材41,例如:蓝宝石(即铝氧化合物Al2O3)、碳化硅(SiC)、硅、氧化锌(ZnO)、氧化镁(MgO)和砷化镓(GaAs)等,并在所述基材41上形成不同的材料层。因为基材41与三族氮化合物的晶格常数不匹配,因此需要在基材41上先形成至少一缓冲层42,所述缓冲层42的材料可以是GaN、InGaN或AlGaN,或硬度比常规含铝元素缓冲层低的超晶格(Superlattice)层。然后在缓冲层42上生长N型半导体材料层43,其可以利用晶体外延生长的方式产生N型氮化镓掺杂硅薄膜以作为N型半导体材料层43。所述N型半导体材料层43的上表面并非平坦状,其包含多个凹部431和一平坦区432。凹部431的形成仍可以在金属有机化学气相沉积(MOCVD)炉内完成,其是在N型半导体材料层43沉积到达一定厚度(1~5μm)之后,再将供应的氮气、氨气、氢气、三甲基镓(trimethylgalliaum;TMGa)、三乙基镓、三甲基铟(trimethylindium;TMIn)、三乙基铟或有机金属化合物关闭或降至低流量,因此表面的晶体外延生长部分会产生很多空洞的凹部431。另外,还可选择在N型半导体材料层43形成之后,再以蚀刻工艺在N型半导体材料层43表面产生同样的凹部431。
Generally speaking, to fabricate the light emitting diode 40, a
然后在N型半导体材料层43上生长单层量子阱(single quantum well;SQW)结构或多层量子阱(multiquantum well;MQW)结构的共形活性层44,例如:二层至三十层的发光层/阻挡层(barrier layer)的多层量子阱叠层结构,而又以六层至十八层的叠层结构为优选,所述共形活性层44为发光二极管 40主要产生光线的部分。所述发光层可以是氮化铝铟镓(AlXInYGa1-X-YN)且阻挡层可以是氮化铝铟镓(AlIInJGa1-I-JN),而且0≤X<1、0≤Y<1、0≤I<1和0≤J<1,X+Y<1和I+J<1;又当X、Y、I、J>0,则X≠I和Y≠J。又氮化铟镓(InGaN)/氮化镓(GaN)也可作为发光层/阻挡层的材料。通过N 型半导体材料层43表面的凹部431,可释放共形活性层44与N型半导体材料层43之间的应力,因此可增加共形活性层44的发光效率。此外,因为是在N型半导体材料层43上形成凹部431,所以不需要再增加不同材料的晶体外延生长层或沉积金属微凸部,所以不会降低底部各晶体外延生长层的质量,也不需采用晶格常数匹配但牺牲晶体外延生长质量的晶体外延生长层作为N型半导体材料层43。
Then grow a single-layer quantum well (single quantum well; SQW) structure or a conformal active layer 44 of a multiquantum well (multiquantum well; MQW) structure on the N-type
在共形活性层44上形成至少一P型半导体材料层45,所述P型半导体材料层45可以为掺杂镁的氮化镓与氮化铟镓的叠层或掺杂镁的氮化铝镓与氮化镓超晶格结构加上掺杂镁的氮化镓等不同结构。另外,在N型半导体材料层43和P型半导体材料层45分别形成N型电极47和P型电极46的图型,借此可连接外部的电力。
At least one P-type semiconductor material layer 45 is formed on the conformal active layer 44, and the P-type semiconductor material layer 45 can be a stack of magnesium-doped gallium nitride and indium gallium nitride or magnesium-doped aluminum nitride Different structures such as gallium and gallium nitride superlattice structure plus magnesium doped gallium nitride. In addition, patterns of N-type electrodes 47 and P-type electrodes 46 are respectively formed on the N-type
图5A是本发明发光二极管的部分剖面示意图。在衬底41上依序形成缓冲层42和N型半导体材料层43,所述N型半导体材料层43表面有多个凹部431和一平坦区432。凹部431的深度h可以大于单一量子阱层的厚度,且小于N型半导体材料层43的厚度。另外,凹部431的截面略呈倒梯形,其上方开口的宽度W可大于0.1μm且小于10μm。
FIG. 5A is a schematic partial cross-sectional view of a light emitting diode of the present invention. A
图5B是图5A中部分发光二极管的上视图。多个凹部431的宽度W或直径并非单一而是大小不一,不同尺寸的凹部431约略呈均匀或交错分布于N型半导体材料层43表面。
FIG. 5B is a top view of part of the LEDs in FIG. 5A. The width W or diameter of the plurality of
本发明的技术内容和技术特点已揭示如上,然而所属领域的技术人员仍可能基于本发明的教导和公开而作种种不背离本发明精神的替换和修饰。因此,本发明的保护范围应不限于实施例所公开的范围,而应包括各种不背离本发明的替换和修饰,并为所附的权利要求书所涵盖。 The technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still make various replacements and modifications based on the teaching and disclosure of the present invention without departing from the spirit of the present invention. Therefore, the protection scope of the present invention should not be limited to the scope disclosed in the embodiments, but should include various replacements and modifications that do not depart from the present invention, and are covered by the appended claims. the
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101958501A CN101452980B (en) | 2007-11-30 | 2007-11-30 | Production method of group III nitride compound semiconductor LED |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101958501A CN101452980B (en) | 2007-11-30 | 2007-11-30 | Production method of group III nitride compound semiconductor LED |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101452980A CN101452980A (en) | 2009-06-10 |
CN101452980B true CN101452980B (en) | 2012-03-21 |
Family
ID=40735096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101958501A Expired - Fee Related CN101452980B (en) | 2007-11-30 | 2007-11-30 | Production method of group III nitride compound semiconductor LED |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101452980B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120079392A (en) * | 2011-01-04 | 2012-07-12 | (주)세미머티리얼즈 | A method for manufacturing semiconductor light emitting device |
CN102623600A (en) * | 2011-01-31 | 2012-08-01 | 隆达电子股份有限公司 | semiconductor light emitting structure |
CN102738337B (en) * | 2011-04-08 | 2015-02-04 | 展晶科技(深圳)有限公司 | Light emitting diode and manufacturing method thereof |
DE102014115599A1 (en) * | 2013-10-28 | 2015-04-30 | Seoul Viosys Co., Ltd. | Semiconductor device and method for its production |
JP6457784B2 (en) * | 2014-11-07 | 2019-01-23 | スタンレー電気株式会社 | Semiconductor light emitting device |
JP6433246B2 (en) * | 2014-11-07 | 2018-12-05 | スタンレー電気株式会社 | Semiconductor light emitting device |
CN105070793B (en) * | 2015-07-13 | 2018-08-31 | 厦门市三安光电科技有限公司 | A kind of production method of LED epitaxial structure |
KR102320022B1 (en) * | 2017-03-09 | 2021-11-02 | 서울바이오시스 주식회사 | Semiconductor light emitting device |
CN109494306B (en) * | 2017-09-11 | 2021-04-09 | 上海和辉光电股份有限公司 | Device packaging method and flexible device |
CN110571316A (en) * | 2019-09-11 | 2019-12-13 | 合肥彩虹蓝光科技有限公司 | A light-emitting diode structure and method of making the same |
CN110828623B (en) * | 2019-11-15 | 2020-10-02 | 芜湖德豪润达光电科技有限公司 | Light-emitting diode preparation method and light-emitting diode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1289865A (en) * | 1999-09-28 | 2001-04-04 | 住友电气工业株式会社 | Growth process for monocrystal of gadolinium nitride, substrates of gadolinium mitride monocrystal and manufacture thereof |
CN1529915A (en) * | 2001-07-24 | 2004-09-15 | ���ǻ�ѧ��ҵ��ʽ���� | Semiconductor light emitting element having substrate with unevenness |
CN1897319A (en) * | 2005-07-12 | 2007-01-17 | 三星电机株式会社 | Light emitting diode and method of fabricating the same |
-
2007
- 2007-11-30 CN CN2007101958501A patent/CN101452980B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1289865A (en) * | 1999-09-28 | 2001-04-04 | 住友电气工业株式会社 | Growth process for monocrystal of gadolinium nitride, substrates of gadolinium mitride monocrystal and manufacture thereof |
CN1529915A (en) * | 2001-07-24 | 2004-09-15 | ���ǻ�ѧ��ҵ��ʽ���� | Semiconductor light emitting element having substrate with unevenness |
CN1897319A (en) * | 2005-07-12 | 2007-01-17 | 三星电机株式会社 | Light emitting diode and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
CN101452980A (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101452980B (en) | Production method of group III nitride compound semiconductor LED | |
TWI381547B (en) | Group III nitrogen compound semiconductor light-emitting diode and manufacturing method thereof | |
TWI385822B (en) | Method for manufacturing group III nitride semiconductor layer, and group III nitride semiconductor light-emitting device, and lamp | |
CN102439740B (en) | Light emitting device | |
CN102185056B (en) | Gallium-nitride-based light emitting diode capable of improving electron injection efficiency | |
WO2010100844A1 (en) | Nitride semiconductor element and method for manufacturing same | |
JP5165702B2 (en) | Nitride semiconductor light emitting device | |
CN1413362A (en) | Vertical geometry InGaN light-emitting diode | |
JP6484551B2 (en) | Light emitting element | |
CN102576782A (en) | Light-emitting diode having an interlayer with a high voltage density, and method for manufacturing same | |
CN101267008A (en) | Photoelectric semiconductor assembly with III-nitride compound semiconductor buffer layer and manufacturing method thereof | |
JP2005101533A (en) | Light emitting device and manufacturing method therefor | |
CN106653971B (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
CN102185052A (en) | Manufacturing method of modulation-doped gallium nitride series light-emitting diode | |
JPWO2016002419A1 (en) | Nitride semiconductor light emitting device | |
CN106711295A (en) | Growth method of GaN-based light emitting diode epitaxial wafer | |
CN108767079A (en) | LED epitaxial structure and growing method based on graphene substrate and LED | |
KR20070081862A (en) | Nitride semiconductor light emitting device and manufacturing method thereof | |
JP2008034444A (en) | Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp | |
CN106848017B (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
TW202123488A (en) | Led precursor incorporating strain relaxing structure | |
TWI398016B (en) | Photoelectric semiconductor device having buffer layer of iii-nitride based semiconductor and manufacturing method thereof | |
WO2006057485A1 (en) | Iii-nitride semiconductor light emitting device | |
CN108550674A (en) | A kind of light emitting diode and preparation method thereof enhancing hole injection | |
TWI545798B (en) | Nitride semiconductor light emitting device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: ZHANJING TECHNOLOGY (SHENZHEN) CO., LTD. Free format text: FORMER OWNER: ADVANCED DEVELOPMENT PHOTOELECTRIC CO., LTD. Effective date: 20101117 Owner name: RONGCHUANG ENERGY TECHNOLOGY CO., LTD. |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: HSINCHU COUNTY, TAIWAN PROVINCE, CHINA TO: NO. 2, E. RING ROAD 2, INDUSTRY ZONE 10, YOUSONG, LONGHUA SUBDISTRICT OFFICE, BAO'AN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20101117 Address after: No. two, No. 2, East Ring Road, Pinus tabulaeformis Industrial Zone, Longhua, Baoan District, Shenzhen, Guangdong, Applicant after: Zhanjing Technology (Shenzhen) Co., Ltd. Co-applicant after: Advanced Optoelectronic Technology Inc. Address before: Hsinchu County, Taiwan, China Applicant before: Advanced Development Photoelectric Co., Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120321 Termination date: 20151130 |
|
EXPY | Termination of patent right or utility model |