CN102184944B - Junction terminal structure of lateral power device - Google Patents
Junction terminal structure of lateral power device Download PDFInfo
- Publication number
- CN102184944B CN102184944B CN2011101124008A CN201110112400A CN102184944B CN 102184944 B CN102184944 B CN 102184944B CN 2011101124008 A CN2011101124008 A CN 2011101124008A CN 201110112400 A CN201110112400 A CN 201110112400A CN 102184944 B CN102184944 B CN 102184944B
- Authority
- CN
- China
- Prior art keywords
- field plate
- region
- power device
- lateral
- semiconductor region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 76
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 65
- 229920005591 polysilicon Polymers 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 20
- 230000003647 oxidation Effects 0.000 abstract 3
- 238000007254 oxidation reaction Methods 0.000 abstract 3
- 229910044991 metal oxide Inorganic materials 0.000 abstract 1
- 150000004706 metal oxides Chemical class 0.000 abstract 1
- 230000005684 electric field Effects 0.000 description 24
- 238000009826 distribution Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/112—Field plates comprising multiple field plate segments
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/117—Recessed field plates, e.g. trench field plates or buried field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
- H10D62/116—Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明属于半导体功率器件技术和半导体工艺领域,尤其涉及大功率和高压应用的横向功率器件结终端技术,如横向扩散场效应晶体管LDMOS、横向高压二极管、横向绝缘栅双极型晶体管LIGBT等。The invention belongs to the field of semiconductor power device technology and semiconductor technology, and particularly relates to the junction terminal technology of lateral power devices for high-power and high-voltage applications, such as lateral diffusion field effect transistor LDMOS, lateral high-voltage diode, lateral insulated gate bipolar transistor LIGBT and the like.
背景技术 Background technique
众所周知,在横向功率器件的设计过程中,必须综合考虑击穿电压、导通电阻、工艺复杂度以及可靠性等因素的相互影响,使其达到一个较为合理的折中。通常某一方面性能的提高往往会导致其它方面性能的退化,击穿电压和导通电阻即存在着这样的矛盾关系。如何在提高击穿电压的同时能够保持导通电阻的不变或者能够尽量地减小导通电阻一直是研究的热点。As we all know, in the design process of lateral power devices, the interaction of factors such as breakdown voltage, on-resistance, process complexity, and reliability must be considered comprehensively to achieve a reasonable compromise. Usually, the improvement of one aspect of performance often leads to the degradation of other aspects of performance, and there is such a contradictory relationship between breakdown voltage and on-resistance. How to keep the on-resistance constant or minimize the on-resistance while increasing the breakdown voltage has always been a research hotspot.
对于常规横向功率器件,由于受结边缘曲率效应影响,击穿电压较之理论值会大打折扣,特别是在浅结扩散和小曲率的情况下表现尤为明显。为解决这个问题,A.S.Grove等人在1967年3月发表的文章“表面电场对平面PN结击穿电压的影响”(IEEE TransElectron Devices,vol.ED-14,pp.157-162)中最先提出了场板技术,起初它被用于降低PN结电场峰值,因其结构简单、工艺和集成电路工艺完全兼容、并且效果明显,故而迅速在高压分立结器件、功率MOS器件、高压功率集成电路中得到了广泛的应用。场板的基本结构如图1所示,在半导体衬底100上分别进行两次掺杂形成第一类导电类型半导体区域102和第二类导电类型半导体区域104,即构成PN结,在该PN结上方二氧化硅层120上覆盖一层金属层110,我们称该金属层为金属场板,如果在场板上偏置适当的电压,将在硅的上表面感应出界面电荷,这些界面电荷产生的电场可以大大削弱PN结的峰值电场,从而提高击穿电压。For conventional lateral power devices, due to the junction edge curvature effect, the breakdown voltage will be greatly reduced compared with the theoretical value, especially in the case of shallow junction diffusion and small curvature. In order to solve this problem, A.S.Grove et al. published in March 1967 in the article "The Effect of Surface Electric Field on the Breakdown Voltage of Planar PN Junction" (IEEE TransElectron Devices, vol.ED-14, pp.157-162) first The field plate technology was proposed. At first it was used to reduce the peak value of the PN junction electric field. Because of its simple structure, fully compatible process and integrated circuit process, and obvious effect, it was quickly used in high-voltage discrete junction devices, power MOS devices, and high-voltage power integrated circuits. has been widely applied. The basic structure of the field plate is shown in FIG. 1 . The
美国专利6468837将场板技术运用到RESURF(reduced surface field)器件中,并给出了工艺上的实现步骤,其结构如图2所示。它主要由轻掺杂的第一类导电类型外延层半导体区域100,第一类导电类型的半导体区域102,重掺杂的第一类导电类型的半导体区域101、第二类导电类型的半导体区域103、105,较轻掺杂的第二类导电类型半导体区域104(Resurf植入区),覆盖在半导体区域104上的场氧区120,延伸长度超过场氧一半长度以上的栅场板110等组成。这种结构与普通Resurf LDMOS器件区别主要在于栅极延伸了一段场板,使结边缘表面峰场得到抑制,从而提高了击穿电压。然而对于这种普通的平面场板,存在的一个突出问题是场板边界处将会形成高电场峰值,从而限制了击穿电压的进一步提高。US Patent 6468837 applies the field plate technology to RESURF (reduced surface field) devices, and provides the implementation steps in the process. Its structure is shown in Figure 2. It mainly consists of a lightly doped
为了解决场板边缘高电场峰值的问题,K.Brieger等人在1988年5月发表的文章“最优化场板轮廓的一种解析近似”(IEEE TransElectron Devices,Vol.35,pp.684-688)中最早通过理论计算表明当场板下方的氧化层厚度以一定的梯度连续增加时,可以完全消除场板下方的电场峰值,于是提出了斜场板的概念。然而斜场板虽然可以实现完全均匀的表面电场,但是却难以制造,尤其是和集成电路工艺不兼容。美国专利753930给出了多阶梯场板构造的LDMOS结构,如图3所示。与常规LDMOS不同的是,在靠近漏端增加了阶梯状的氧化层120和多晶硅场板110,最低一阶的场板又与源端进行电学连接。该结构下表面漂移区的电场分布更为均匀,耐压特性在一定程度上得到了提升。然而该方法的缺点是需要多个附加掩模版和多步附加工艺来制造多阶梯场板,增加了工艺复杂性,提高了成本。In order to solve the problem of high electric field peaks at the edge of the field plate, K.Brieger et al. published the article "An Analytical Approximation of the Optimal Field Plate Profile" in May 1988 (IEEE TransElectron Devices, Vol.35, pp.684-688 ) first showed through theoretical calculation that when the thickness of the oxide layer under the field plate increases continuously with a certain gradient, the peak value of the electric field under the field plate can be completely eliminated, so the concept of the inclined field plate was proposed. However, although the slanted field plate can achieve a completely uniform surface electric field, it is difficult to manufacture, especially not compatible with the integrated circuit process. US Patent No. 753930 provides an LDMOS structure with a multi-step field plate structure, as shown in FIG. 3 . Different from the conventional LDMOS, a
美国专利7230313中提出了一种分段场板的横向功率器件结构,如图4所示。该结构的显著特点是在表面氧化层120上有多段分开一定距离的场板110、112、114、116。各场板通过由多电阻连接构成的分压网络被偏置不同的电压,可以使各场板边缘的电场峰值趋于相同,即临界击穿电场,从而使击穿电压得以提高。但对这种结构的横向功率器件,分压网络比较复杂且不易于调节。US Patent 7230313 proposes a segmented field plate lateral power device structure, as shown in FIG. 4 . The salient feature of this structure is that there are
上述的各种结构均是在功率器件表面制备场板来达到调节表面电场的作用,但是像表面多阶梯状、倾斜状场板的制备工艺十分复杂,效果不是非常理想。The various structures mentioned above all prepare field plates on the surface of power devices to adjust the surface electric field, but the preparation process of multi-step and inclined field plates on the surface is very complicated, and the effect is not very ideal.
发明内容 Contents of the invention
技术问题:本发明的目的是提供另一种横向功率器件中的结终端结构,采用该结构,不仅可以在侧壁实现任意几何尺寸和任意阶梯数的多阶梯场板和任意形状的斜场板的制备,从而充分地发挥场板的降场作用,最大程度地提高击穿特性,同时还可以抑制体内电场,使漂移区浓度的优化值得以提高,从而降低导通电阻,增大工作电流。此外,该结构制作工艺只需增加一块掩膜版即可实现常规平面场板中很难实现的多阶梯场板和斜场板的制备,其工艺与标准CMOS工艺基本完全兼容,从而降低制造成本。Technical problem: The purpose of the present invention is to provide another junction termination structure in a lateral power device. With this structure, not only can a multi-step field plate of any geometric size and any number of steps be realized on the sidewall, but also a slope field plate of any shape can be realized. preparation, so as to give full play to the field drop effect of the field plate, improve the breakdown characteristics to the greatest extent, and at the same time suppress the electric field in the body, so that the optimal value of the concentration in the drift region can be improved, thereby reducing the on-resistance and increasing the working current. In addition, the structure manufacturing process only needs to add a mask to realize the preparation of multi-step field plates and slope field plates, which are difficult to achieve in conventional planar field plates. The process is basically fully compatible with the standard CMOS process, thereby reducing manufacturing costs. .
技术方案:本发明的横向功率器件的结终端结构包括衬底区域、一个具有第一类导电类型的半导体区域、一个具有高掺杂浓度的第二类导电类型的半导体区域,二者之间通过一个具有低掺杂浓度的第二类导电类型的半导体区域和一个边侧并列的侧壁氧化层隔开,半导体区域构成了功率器件的漂移区,侧壁氧化层靠近两端光刻淀积第一斜坡形多晶硅场板、第二斜坡形多晶硅场板,该两斜坡形多晶硅场板分别与栅极、漏极电学连接。Technical solution: The junction terminal structure of the lateral power device of the present invention includes a substrate region, a semiconductor region with the first type of conductivity, and a semiconductor region with the second type of conductivity with high doping concentration. A semiconductor region of the second conductivity type with a low doping concentration is separated from a sidewall oxide layer juxtaposed side by side. The semiconductor region constitutes the drift region of the power device, and the sidewall oxide layer is photolithographically deposited near both ends. A slope-shaped polysilicon field plate and a second slope-shaped polysilicon field plate are electrically connected to the gate and the drain respectively.
半导体区域作为漂移区的具有低掺杂浓度的第二类导电类型的半导体区域,其浓度为均匀的。The semiconductor region serves as a semiconductor region of the second conductivity type with a low doping concentration in the drift region, and its concentration is uniform.
侧壁氧化层位于作为漂移区的半导体区域边侧,其垂直深度超过漂移区厚度,进入衬底区域内部。The side wall oxide layer is located on the side of the semiconductor region as the drift region, and its vertical depth exceeds the thickness of the drift region and enters into the substrate region.
第一斜坡形多晶硅场板、第二斜坡形多晶硅场板的垂直深度需要超过作为漂移区的半导体区域的厚度,进入衬底区域内部。The vertical depth of the first slope-shaped polysilicon field plate and the second slope-shaped polysilicon field plate needs to exceed the thickness of the semiconductor region serving as the drift region and enter the substrate region.
衬底区域为半导体材料,或者为二氧化硅氧化层SOI。The substrate region is a semiconductor material, or a silicon dioxide oxide layer SOI.
第一斜坡形多晶硅场板、第二斜坡形多晶硅场板还可以为多阶梯状或者多段分开状的分段场板,分段场板是浮空的,或被分压网络偏置不同的电压。The first slope-shaped polysilicon field plate and the second slope-shaped polysilicon field plate can also be multi-stepped or multi-segmented segmented field plates, and the segmented field plates are floating or biased to different voltages by the voltage divider network .
侧壁氧化层是二氧化硅。The sidewall oxide is silicon dioxide.
所述的横向功率器件的具体形式是横向扩散场效应晶体管LDMOS、横向PN二极管、横向绝缘栅双极型晶体管LIGBT、或横向晶闸管。The specific form of the lateral power device is a lateral diffusion field effect transistor LDMOS, a lateral PN diode, a lateral insulated gate bipolar transistor LIGBT, or a lateral thyristor.
有益效果:本发明所述的侧壁场板结构可采用如下工艺制备。首先刻蚀并填充侧壁氧化层,这一步可以利用介质隔离工序完成,不需要任何附加掩模版和附加工序,其次光刻场板图形,图形的形状由数值仿真的结果来确定,其深度应当略大于顶层硅的厚度,而后进行多晶硅淀积,形成场板,随后即可按照标准CMOS工艺完成LDMOS的加工。由此可见该工艺是一个和标准CMOS工艺完全兼容的工艺方案,只需增加一次光刻,通过调整掩模版图形,即可完成侧向任意形状的斜场板、任意阶梯的阶梯场板或者各种类型的浮空场板的制作。通过该方法制备的器件不仅可调节表面电场,同时可以调节体内电场,达到大幅提高击穿电压的效果,而且漂移区浓度优值也得到了较大提升,I-V特性更好。Beneficial effects: the side wall field plate structure of the present invention can be prepared by the following process. First, etch and fill the sidewall oxide layer. This step can be completed by using the dielectric isolation process without any additional mask and additional process. Secondly, the photolithography field plate pattern, the shape of the pattern is determined by the results of numerical simulation, and its depth should be Slightly larger than the thickness of the top layer of silicon, and then deposited polysilicon to form a field plate, and then the processing of LDMOS can be completed according to the standard CMOS process. It can be seen that this process is a process scheme that is fully compatible with the standard CMOS process. It only needs to add one photolithography, and by adjusting the pattern of the mask plate, it can complete the inclined field plate of any shape in the side direction, the stepped field plate of any step or each Fabrication of various types of floating field plates. The device prepared by this method can not only adjust the surface electric field, but also adjust the internal electric field to achieve the effect of greatly improving the breakdown voltage, and the concentration value of the drift region has also been greatly improved, and the I-V characteristics are better.
附图说明 Description of drawings
图1是平面PN结场板结构示意图。Figure 1 is a schematic diagram of the structure of a planar PN junction field plate.
图2是RESURF LDMOS平面场板结构示意图。Figure 2 is a schematic diagram of the RESURF LDMOS planar field plate structure.
图3是平面多阶梯场板结构LDMOS示意图。FIG. 3 is a schematic diagram of a planar multi-step field plate structure LDMOS.
图4是一种改进的分段场板结构横向功率器件结构示意图。Fig. 4 is a structural schematic diagram of an improved segmented field plate structure lateral power device.
图5是本发明的具有侧壁斜场板结构LDMOS结构三维视图。具有高掺杂浓度的第一类导电类型的半导体区域101构成LDMOS的沟道区,具有高掺杂浓度的第二类导电类型的半导体区域103构成LDMOS的漏端,源端与漏端之间用具有较轻掺杂浓度的第二类导电类型的半导体区域102和侧壁氧化层120并列连接,半导体区域102用作漂移区,侧壁氧化层120内靠近源极和漏极两端光刻淀积多晶硅形成斜坡形场板110、112,场板110与栅极131电学连接,场板112与漏极132电学连接。FIG. 5 is a three-dimensional view of an LDMOS structure with a sidewall slanted field plate structure according to the present invention. The
图6a是本发明的具有侧壁斜场板结构LDMOS的俯视图。Fig. 6a is a top view of the LDMOS with a sidewall slant field plate structure according to the present invention.
图6b是本发明的具有侧壁斜场板结构LDMOS沿图6a中AB线的截面图。FIG. 6b is a cross-sectional view of the LDMOS with a sidewall slanted field plate structure along the line AB in FIG. 6a according to the present invention.
图6c是本发明的具有侧壁斜场板结构LDMOS沿图6a中CD线的截面图。FIG. 6c is a cross-sectional view of the LDMOS with a sidewall slanted field plate structure along the line CD in FIG. 6a according to the present invention.
图7a是本发明的具有侧壁斜场板结构横向PN结的俯视图。Fig. 7a is a top view of a lateral PN junction with a sidewall slanted field plate structure according to the present invention.
图7b是本发明的具有侧壁斜场板结构横向PN结沿图7a中AB线的截面图。Fig. 7b is a cross-sectional view of a transverse PN junction with a sidewall slanted field plate structure along line AB in Fig. 7a according to the present invention.
图8a是本发明的具有侧壁多阶梯场板结构LDMOS的俯视图。与图6不同的是,两端的侧壁场板分别做成了对称多阶梯状。Fig. 8a is a top view of the LDMOS with sidewall multi-step field plate structure of the present invention. The difference from FIG. 6 is that the side wall field plates at both ends are respectively made into symmetrical multi-step shapes.
图8b是本发明的具有侧壁多阶梯场板结构LDMOS沿图8a中AB线的截面图。FIG. 8b is a cross-sectional view of the LDMOS with sidewall multi-step field plate structure according to the present invention along the line AB in FIG. 8a.
图9a是本发明的具有侧壁浮空场板结构LDMOS的一种形式。与图6不同的是,侧壁场板被做成分段的浮空状,场板间距由源端开始逐渐缩小至漂移区中间,再往漏端逐渐增大形成对称状,各段场板长度和宽度一致。Fig. 9a is a form of the LDMOS with sidewall floating field plate structure according to the present invention. The difference from Figure 6 is that the sidewall field plates are made into segments in a floating shape, and the distance between the field plates gradually decreases from the source end to the middle of the drift region, and then gradually increases toward the drain end to form a symmetrical shape. Same length and width.
图9b是图9a沿AB线的截面图。Fig. 9b is a cross-sectional view along line AB of Fig. 9a.
图10a是本发明的具有侧壁浮空场板结构LDMOS的另一种形式。与图9一样,边侧场板被做成分段的浮空状,但是各段场板宽度从源端开始渐次减小至漂移区中部,再往漏端方向逐渐增大形成对称状,场板间距不发生变化。Fig. 10a is another form of the LDMOS with sidewall floating field plate structure of the present invention. As in Figure 9, the side field plates are made into segmented floating shapes, but the width of each segment field plate gradually decreases from the source end to the middle of the drift region, and then gradually increases toward the drain end to form a symmetrical shape. The plate spacing does not change.
图10b是图10a沿AB线的截面图。Fig. 10b is a cross-sectional view along line AB of Fig. 10a.
图11a是本发明的具有侧壁斜场板结构LIGBT俯视图。Fig. 11a is a top view of a LIGBT with a sidewall slanted field plate structure according to the present invention.
图11b是图11a沿AB线的截面图。Fig. 11b is a cross-sectional view along line AB of Fig. 11a.
图12是常规Resurf结构和本发明的侧壁斜场板Resurf结构横向功率器件等势线分布、纵向电场分布和击穿电压对比图。Fig. 12 is a comparison diagram of equipotential line distribution, longitudinal electric field distribution and breakdown voltage of a conventional Resurf structure and a sidewall slanted field plate Resurf structure of the present invention.
图13是常规Resurf结构和本发明的侧壁斜场板Resurf结构横向功率器件I-V输出特性曲线图。Fig. 13 is a graph showing I-V output characteristic curves of a lateral power device with a conventional Resurf structure and a sidewall slanted field plate Resurf structure of the present invention.
具体实施方式 Detailed ways
本发明提供了一种横向功率器件中的结终端结构。图5是该结构的3D视图,图6a是该结构的俯视图,图6b是该结构沿图6a中AB线的截面图,图6c是该结构沿图6a中CD线的截面图。可以看出,它是在第一类导电类型的衬底区域100上的硅基中,通过两次高掺杂形成高掺杂浓度的第一类导电类型的半导体区域101,高掺杂浓度的第二类导电类型的半导体区域103,二者通过轻掺杂浓度的第二类导电类型的半导体区域102相连,半导体区域102用做漂移区,同时半导体区域102的侧壁用场氧填充形成与之并列的侧壁氧化层120,侧壁氧化层120垂直延伸到衬底区域100中。在靠近侧壁氧化层120的两端光刻淀积多晶硅形成第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板112,第一斜坡形多晶硅场板110与栅极131电学连接,第二斜坡形多晶硅场板112与漏极132电学连接,第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板112也要垂直延伸到超过衬底区域100的上表面进入衬底区域100内。The invention provides a junction termination structure in a lateral power device. Fig. 5 is a 3D view of the structure, Fig. 6a is a top view of the structure, Fig. 6b is a cross-sectional view of the structure along line AB in Fig. 6a, and Fig. 6c is a cross-sectional view of the structure along line CD in Fig. 6a. It can be seen that in the silicon base on the
横向功率器件的结终端结构包括衬底区域100、一个具有第一类导电类型的半导体区域101、一个具有高掺杂浓度的第二类导电类型的半导体区域103,二者之间通过一个具有低掺杂浓度的第二类导电类型的半导体区域102和一个边侧并列的侧壁氧化层120隔开,半导体区域102构成了功率器件的漂移区,侧壁氧化层120靠近两端光刻淀积第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板112,该两斜坡形多晶硅场板分别与栅极131、漏极132电学连接。The junction termination structure of a lateral power device includes a
需要说明的是It should be noted
(1)所述的具有低掺杂浓度的第二类导电类型的半导体区域102的浓度分布是均匀的。(1) The concentration distribution of the
(2)所述的侧壁氧化层120的材料为二氧化硅。(2) The material of the
(3)所述的侧壁氧化层120、第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板(112)均需要垂直延伸进入衬底区域100内部,以起到抑制体内电场的作用。(3) The
(4)所述的衬底区域100可以是轻掺杂的半导体(体硅),也可以是二氧化硅氧化层(SOI)。(4) The
(5)所述的侧壁场板区即第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板112既可以做成侧壁斜坡形,也可以做成侧壁多阶梯形(如图8),还可以做成多种侧壁分段场板类型(如图9、10),分段场板可以为浮空状,也可以被偏置不同的电压。(5) The side wall field plate region, that is, the first slope-shaped
(6)所述的侧壁场板结构可以与普通平面场板结合使用,以达到更好的降场效果。(6) The sidewall field plate structure described above can be used in combination with ordinary planar field plates to achieve a better field drop effect.
(7)所述的场板结构还可以用于横向PN二极管(如图7)、LIGBT(如图11)、横向晶闸管等功率器件,以同时改善器件的击穿特性和导通特性。(7) The field plate structure described in (7) can also be used in power devices such as lateral PN diodes (as shown in FIG. 7 ), LIGBTs (as shown in FIG. 11 ), lateral thyristors, etc., to simultaneously improve the breakdown characteristics and conduction characteristics of the devices.
本发明的工作原理:Working principle of the present invention:
图12是根据初步仿真结果勾勒的常规RESURF结构与侧壁3D斜场板Resurf结构的等势线分布、纵向电场分布和击穿电压对比图。两种结构的结构参数相同,而漂移区浓度分布则进行了优化。由图12a可以看出,对于常规RESURF结构,在漂移区两端的表面等势线密集,中间稀疏,从而导致两端出现非常高的电场峰值,降低了击穿电压。而对于图12b中的3D斜场板结构,漂移区等势线分布近乎均匀,表面电场近似为常数,从而使击穿电压得到了大幅度提高。图12c为相同的外加偏置条件下漏端下方的纵向电场分布,可以看出,由于场板的屏蔽作用,3D斜场板的纵向电场分布也比常规RESURF结构更为均匀,其顶层硅/埋氧层界面上的峰值电场也较低,这说明3D场板也有改善纵向耐压的效果。从图12d中可以看出3D斜场板结构较之常规RESURF结构的击穿电压有大幅提升,且漂移区浓度优值也更高。Figure 12 is a comparison diagram of the equipotential line distribution, longitudinal electric field distribution and breakdown voltage between the conventional RESURF structure and the sidewall 3D slope field plate Resurf structure based on the preliminary simulation results. The structural parameters are the same for both structures, while the concentration profile in the drift region is optimized. It can be seen from Figure 12a that for the conventional RESURF structure, the surface equipotential lines at both ends of the drift region are dense and sparse in the middle, resulting in very high electric field peaks at both ends and reducing the breakdown voltage. For the 3D slanted field plate structure in Figure 12b, the distribution of equipotential lines in the drift region is almost uniform, and the surface electric field is approximately constant, so that the breakdown voltage is greatly improved. Figure 12c shows the longitudinal electric field distribution under the drain terminal under the same applied bias conditions. It can be seen that due to the shielding effect of the field plate, the longitudinal electric field distribution of the 3D oblique field plate is also more uniform than that of the conventional RESURF structure. The top silicon/ The peak electric field on the interface of the buried oxide layer is also lower, which shows that the 3D field plate also has the effect of improving the vertical withstand voltage. It can be seen from Figure 12d that the breakdown voltage of the 3D inclined field plate structure is greatly improved compared with the conventional RESURF structure, and the concentration of merit in the drift region is also higher.
图13比较了以上二种结构的IV特性曲线。可以看出,3D斜场板结构的线性区电阻远远小于常规RESURF结构,同时其饱和电流也远远高于常规RESURF结构。其原因可以归结于3D场板结构的最优漂移区浓度较之常规RESURF结构得到大幅提升。Figure 13 compares the IV characteristic curves of the above two structures. It can be seen that the linear region resistance of the 3D oblique field plate structure is much smaller than that of the conventional RESURF structure, and its saturation current is also much higher than that of the conventional RESURF structure. The reason can be attributed to the fact that the optimal drift region concentration of the 3D field plate structure is greatly improved compared with the conventional RESURF structure.
根据本发明提供的横向功率器件结构,可以制作出特性优良的侧壁斜场板、多阶梯场板、分段场板结构横向功率器件,举例如下:According to the lateral power device structure provided by the present invention, lateral power devices with sidewall inclined field plates, multi-step field plates, and segmented field plate structures with excellent characteristics can be manufactured, examples are as follows:
1)具有侧壁斜场板的LDMOS,如图5、图6。它包括第一类导电类型的衬底区域100,通过两次高掺杂形成高掺杂浓度的第一类导电类型的半导体区域101,高掺杂浓度的第二类导电类型的半导体区域103,分别作为源区和漏区。二者通过轻掺杂浓度的第二类导电类型的半导体区域102相连,半导体区域102用做漂移区,其浓度分布式为均匀的,同时半导体区域102的边侧用场氧进行填充形成与之并列的侧壁氧化层120,侧壁氧化层120与半导体区域101、103相连,并垂直延伸到衬底区域100中。在侧壁氧化层120靠近两侧光刻淀积多晶硅形成第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板112,第一斜坡形多晶硅场板110与栅极131电学连接,第二斜坡形多晶硅场板112与漏极132电学连接,第一斜坡形多晶硅场板110、第二斜坡形多晶硅场板112也要延伸到超过衬底区域100的上表面进入衬底区域100内。1) LDMOS with sidewall slope field plate, as shown in Figure 5 and Figure 6. It includes a
2)具有侧壁多阶梯场板的LDMOS,如图8所示。它包括第一类导电类型的衬底区域100,通过两次高掺杂形成高掺杂浓度的第一类导电类型的半导体区域101,高掺杂浓度的第二类导电类型的半导体区域103,分别作为源端和漏端。二者通过轻掺杂浓度的第二类导电类型的半导体区域102相连,半导体区域102用做漂移区,其浓度分布式为均匀的,同时半导体区域102的边侧用场氧进行填充形成与之并列的侧壁氧化层120,侧壁氧化层120与半导体区域101、103相连,并垂直延伸到半导体区域100中。在侧壁氧化层120的靠近两侧光刻淀积多晶硅形成背靠背多阶梯状的第一阶梯形多晶硅场板110、第二阶梯形多晶硅场板112,第一阶梯形多晶硅场板110与栅极131电学连接,第二阶梯形多晶硅场板112与漏极132电学连接,第一阶梯形多晶硅场板110、第二阶梯形多晶硅场板112也要延伸到超过衬底区域100的上表面进入衬底区域100内。2) LDMOS with sidewall multi-step field plates, as shown in FIG. 8 . It includes a
3)具有侧壁分段场板的LDMOS,如图9所示。它包括第一类导电类型的衬底区域100,通过两次高掺杂形成高掺杂浓度的第一类导电类型的半导体区域101,高掺杂浓度的第二类导电类型的半导体区域103,分别作为源端和漏端。二者通过轻掺杂浓度的第二类导电类型的半导体区域102相连,半导体区域102用做漂移区,其浓度分布式为均匀的,同时半导体区域102的边侧用场氧进行填充形成与之并列的侧壁氧化层120,侧壁氧化层120与第一类导电类型的半导体区域101、第二类导电类型的半导体区域103相连,并垂直延伸到半导体区域100中。在侧壁氧化层120从源端到漏端光刻淀积分段的第一矩形多晶硅场板110、第二矩形形多晶硅场板112、第三矩形多晶硅场板114、第四矩形多晶硅场板116、第五矩形多晶硅场板118、第六矩形多晶硅场板117、第七矩形多晶硅场板115、第八矩形多晶硅场板113、第九矩形多晶硅场板111,分段场板分布呈对称状,场板间间距从源端逐渐缩小到侧壁氧化层120中部,再往漏端方向逐渐增大。第一矩形多晶硅场板110与栅极131电学连接,第九矩形多晶硅场板111与漏极132电学连接,各段场板均要垂直延伸到超过衬底区域100的上表面进入衬底区域100内。3) LDMOS with sidewall segmented field plates, as shown in FIG. 9 . It includes a
4)具有另一种形式侧壁分段场板的LDMOS,如图10所示。它包括第一类导电类型的衬底区域100,通过两次高掺杂形成高掺杂浓度的第一类导电类型的半导体区域101,高掺杂浓度的第二类导电类型的半导体区域103,分别作为源端和漏端。二者通过轻掺杂浓度的第二类导电类型的半导体区域102相连,半导体区域102用做漂移区,其浓度分布式为均匀的,同时半导体区域102的边侧用场氧进行填充形成与之并列的侧壁氧化层120,侧壁氧化层120与半导体区域101、103相连,并垂直延伸到半导体区域100中。在侧壁氧化层120内从源端到漏端光刻淀积分段的第一矩形多晶硅场板110、第二矩形多晶硅场板112、第三矩形多晶硅场板114、第四矩形多晶硅场板116、第五矩形多晶硅场板115、第六矩形多晶硅场板113、第七矩形多晶硅场板111,分段场板分布呈对称状,场板间间距不变,场板自身宽度从源端逐渐缩小至侧壁氧化层120中部,再往漏端方向逐渐增大。第一矩形多晶硅场板110与栅极131电学连接,第七矩形多晶硅场板111与漏极132电学连接,各段场板均要垂直延伸到超过衬底区域100的上表面进入衬底区域100内。4) LDMOS with another type of sidewall segmented field plate, as shown in FIG. 10 . It includes a
需要说明的是,本发明提出的横向功率晶体管结构除了可以应用于上面的LDMOS器件外,还可用于横向扩散PN结、横向晶闸管等其它未列出的横向功率器件,侧壁场板类型可以根据实际需要进行调整,或者与平面场板进行配合使用,以达到更佳的电场调制效果。It should be noted that the lateral power transistor structure proposed by the present invention can not only be applied to the above LDMOS devices, but also can be used for lateral diffusion PN junctions, lateral thyristors and other lateral power devices not listed, and the type of side wall field plate can be determined according to In fact, it needs to be adjusted, or used in conjunction with a flat field plate to achieve a better electric field modulation effect.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101124008A CN102184944B (en) | 2011-04-29 | 2011-04-29 | Junction terminal structure of lateral power device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101124008A CN102184944B (en) | 2011-04-29 | 2011-04-29 | Junction terminal structure of lateral power device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102184944A CN102184944A (en) | 2011-09-14 |
CN102184944B true CN102184944B (en) | 2013-01-02 |
Family
ID=44571085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101124008A Expired - Fee Related CN102184944B (en) | 2011-04-29 | 2011-04-29 | Junction terminal structure of lateral power device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102184944B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3855506A1 (en) * | 2020-01-23 | 2021-07-28 | STMicroelectronics (Rousset) SAS | Transistor structure |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945838A (en) * | 2012-11-05 | 2013-02-27 | 电子科技大学 | A High Voltage Interconnect Structure |
US8878275B2 (en) * | 2013-02-18 | 2014-11-04 | Fairchild Semiconductor Corporation | LDMOS device with double-sloped field plate |
CN104241132B (en) * | 2013-06-18 | 2017-12-19 | 北大方正集团有限公司 | LDMOS and its manufacture method |
JP6828472B2 (en) * | 2017-02-01 | 2021-02-10 | 富士電機株式会社 | Semiconductor device |
CN111180504A (en) * | 2018-11-13 | 2020-05-19 | 无锡华润上华科技有限公司 | Laterally diffused metal oxide semiconductor device and method of making the same |
FR3096832B1 (en) | 2019-05-28 | 2022-05-13 | St Microelectronics Rousset | Transistor structure |
CN111092123A (en) * | 2019-12-10 | 2020-05-01 | 杰华特微电子(杭州)有限公司 | Lateral double diffused transistor and method of making the same |
TWI804736B (en) * | 2020-03-25 | 2023-06-11 | 立錡科技股份有限公司 | Power device having lateral insulated gate bipolar transistor (ligbt) and manufacturing method thereof |
CN113053999B (en) * | 2021-03-12 | 2023-02-21 | 深圳方正微电子有限公司 | Metal oxide semiconductor transistor and its manufacturing method |
CN114429987B (en) * | 2022-04-01 | 2022-06-03 | 北京芯可鉴科技有限公司 | Transverse double-diffusion field effect transistor, manufacturing method, chip and circuit |
CN115863406A (en) * | 2023-03-02 | 2023-03-28 | 广州粤芯半导体技术有限公司 | Lateral diffusion metal oxide semiconductor device |
CN119153488A (en) * | 2023-06-15 | 2024-12-17 | 东南大学 | Isolation structure and integrated circuit |
CN117219675B (en) * | 2023-11-09 | 2024-02-13 | 华南理工大学 | A kind of LDMOS device structure and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6468837B1 (en) * | 1997-11-25 | 2002-10-22 | Texas Instruments Incorporated | Reduced surface field device having an extended field plate and method for forming the same |
CN101079446A (en) * | 2007-06-01 | 2007-11-28 | 安徽大学 | Horizontal dispersion oxide semiconductor of heterogeneous bar multi-step field electrode board |
EP1528600A3 (en) * | 2001-09-07 | 2008-08-06 | Power Integrations, Inc. | High-voltage semiconductor devices |
CN101599462A (en) * | 2009-06-13 | 2009-12-09 | 无锡中微爱芯电子有限公司 | Production method of high and low voltage devices based on thin epitaxy |
CN201681942U (en) * | 2010-04-09 | 2010-12-22 | 杭州电子科技大学 | Longitudinal trench SOI LDMOS unit |
EP2264746A2 (en) * | 2001-09-07 | 2010-12-22 | Power Integrations, Inc. | Method of making a high-voltage field-effect transistor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7230313B2 (en) * | 2002-10-16 | 2007-06-12 | Fairchild Semiconductor Corporation | Voltage divider field plate termination with unequal fixed biasing |
-
2011
- 2011-04-29 CN CN2011101124008A patent/CN102184944B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6468837B1 (en) * | 1997-11-25 | 2002-10-22 | Texas Instruments Incorporated | Reduced surface field device having an extended field plate and method for forming the same |
EP1528600A3 (en) * | 2001-09-07 | 2008-08-06 | Power Integrations, Inc. | High-voltage semiconductor devices |
EP2264746A2 (en) * | 2001-09-07 | 2010-12-22 | Power Integrations, Inc. | Method of making a high-voltage field-effect transistor |
CN101079446A (en) * | 2007-06-01 | 2007-11-28 | 安徽大学 | Horizontal dispersion oxide semiconductor of heterogeneous bar multi-step field electrode board |
CN101599462A (en) * | 2009-06-13 | 2009-12-09 | 无锡中微爱芯电子有限公司 | Production method of high and low voltage devices based on thin epitaxy |
CN201681942U (en) * | 2010-04-09 | 2010-12-22 | 杭州电子科技大学 | Longitudinal trench SOI LDMOS unit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3855506A1 (en) * | 2020-01-23 | 2021-07-28 | STMicroelectronics (Rousset) SAS | Transistor structure |
FR3106697A1 (en) * | 2020-01-23 | 2021-07-30 | Stmicroelectronics (Rousset) Sas | Transistor structure |
Also Published As
Publication number | Publication date |
---|---|
CN102184944A (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102184944B (en) | Junction terminal structure of lateral power device | |
US9105680B2 (en) | Insulated gate bipolar transistor | |
TWI453919B (en) | Diode structure with controlled injection efficiency for fast switching | |
US7923804B2 (en) | Edge termination with improved breakdown voltage | |
US11888022B2 (en) | SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof | |
CN112164719B (en) | Low resistance device with equipotential floating groove and manufacturing method thereof | |
WO2014094362A1 (en) | Lateral power device having low specific on-resistance and using high-dielectric constant socket structure and manufacturing method therefor | |
CN114503279A (en) | High Density Power Components with Selectively Shielded Recessed Field Effect Panels | |
CN102412297A (en) | Silicon-based power device structure based on substrate bias technology | |
CN102376762A (en) | Super junction LDMOS(Laterally Diffused Metal Oxide Semiconductor) device and manufacturing method thereof | |
CN103219386A (en) | Transverse power component with high K insulating regions | |
CN114050187A (en) | An integrated trench gate power semiconductor transistor with low characteristic on-resistance | |
CN106356401B (en) | A kind of field limiting ring terminal structure of power semiconductor | |
CN115148826A (en) | A kind of fabrication method of deep trench silicon carbide JFET structure | |
CN108110057B (en) | Superjunction Metal Oxide Field Effect Transistor | |
CN118763119A (en) | A super junction power device and a method for manufacturing the same | |
CN110212026B (en) | Superjunction MOS device structure and preparation method thereof | |
CN102522338A (en) | Forming method of high-voltage super-junction metal oxide semiconductor field effect transistor (MOSFET) structure and P-shaped drift region | |
CN113555414B (en) | Groove type silicon carbide field effect transistor and preparation method thereof | |
CN111969051B (en) | Split-gate VDMOS device with high reliability and manufacturing method thereof | |
CN113410281B (en) | P-channel LDMOS device with surface voltage-resistant structure and preparation method thereof | |
WO2023202275A1 (en) | Silicon-on-insulator transverse device and manufacturing method therefor | |
CN203941904U (en) | Based on SOI pressure-resistance structure and the power device of folding drift region | |
CN103681791B (en) | NLDMOS device and manufacture method | |
CN113659008A (en) | Shimming device with electric field clamping layer and manufacturing method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130102 Termination date: 20150429 |
|
EXPY | Termination of patent right or utility model |