[go: up one dir, main page]

CN102175095A - Strap-down inertial navigation transfer alignment algorithm parallel implementation method - Google Patents

Strap-down inertial navigation transfer alignment algorithm parallel implementation method Download PDF

Info

Publication number
CN102175095A
CN102175095A CN2011100499340A CN201110049934A CN102175095A CN 102175095 A CN102175095 A CN 102175095A CN 2011100499340 A CN2011100499340 A CN 2011100499340A CN 201110049934 A CN201110049934 A CN 201110049934A CN 102175095 A CN102175095 A CN 102175095A
Authority
CN
China
Prior art keywords
module
inertial navigation
sub
calculation module
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100499340A
Other languages
Chinese (zh)
Other versions
CN102175095B (en
Inventor
马龙华
林灿龙
吴铁军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 201110049934 priority Critical patent/CN102175095B/en
Publication of CN102175095A publication Critical patent/CN102175095A/en
Application granted granted Critical
Publication of CN102175095B publication Critical patent/CN102175095B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

本发明公开了一种捷联惯性导航传递对准算法并行实现方法。由一次装订模块、地球相关参数解算模块、子惯导系统导航解算模块、滤波参数计算模块、卡尔曼滤波模块、对准输出模块组成,一次装订模块接收首帧主惯导系统的数据信息,经补偿计算后作为子惯导系统初始对准导航解算的初值;地球相关参数解算模块、子惯导系统导航解算模块、滤波参数计算模块和卡尔曼滤波模块组成传递对准的精对准过程,循环执行直到达到设定循环次数为止;对准输出模块在精对准过程结束后,对子惯导系统的姿态信息进行一次性修正,并输出子惯导系统导航解算所需的姿态、速度和位置初值。本发明方法加快了捷联惯导传递对准算法的计算速率,提高了传递对准的对准精度。

Figure 201110049934

The invention discloses a parallel implementation method of a strapdown inertial navigation transfer alignment algorithm. It consists of a primary binding module, an earth-related parameter calculation module, a sub-inertial navigation system navigation calculation module, a filter parameter calculation module, a Kalman filter module, and an alignment output module. The primary binding module receives the first frame of data information from the main inertial navigation system , which is used as the initial value of the sub-inertial navigation system's initial alignment navigation calculation after compensation calculation; the earth-related parameter calculation module, sub-inertial navigation system navigation calculation module, filter parameter calculation module and Kalman filter module constitute the transfer alignment The fine alignment process is executed cyclically until the set number of cycles is reached; after the fine alignment process is completed, the alignment output module performs a one-time correction on the attitude information of the sub-inertial navigation system, and outputs the navigation solution result of the sub-inertial navigation system. Initial values of attitude, velocity and position required. The method of the invention accelerates the calculation rate of the transfer alignment algorithm of the strapdown inertial navigation and improves the alignment accuracy of the transfer alignment.

Figure 201110049934

Description

一种捷联惯性导航传递对准算法并行实现方法A Parallel Implementation Method of Strapdown Inertial Navigation Transfer Alignment Algorithm

技术领域technical field

本发明属于捷联惯性导航领域,特别是涉及到一种捷联惯性导航系统传递对准算法的并行实现方法。The invention belongs to the field of strapdown inertial navigation, and in particular relates to a parallel implementation method of a transfer alignment algorithm of a strapdown inertial navigation system.

背景技术Background technique

为适应现代战争的需要,战术导弹已发展成为日益重要的中等规模打击武器。同时,随着战争的发展对战术导弹的反应速度和命中精度的要求也越来越高。战术导弹一般由运载体进行发射,一般采用惯性中制导和光、电末制导,在导弹发射前,弹载捷联惯导系统的初始化通常采用传递对准完成。机翼和飞机结构的挠曲变形及子惯导的安装误差使装订值与子惯导的真实姿态阵不一致,所引起的子惯导的失准角可达一度左右。因此,快速而准确地在运载体上对战术导弹惯导系统进行初始对准就成为战术导弹的一项关键技术。In order to meet the needs of modern warfare, tactical missiles have developed into increasingly important medium-scale strike weapons. At the same time, with the development of war, the requirements for the reaction speed and hit accuracy of tactical missiles are getting higher and higher. Tactical missiles are generally launched by carriers, and generally use inertial guidance and optical and electronic terminal guidance. Before the missile is launched, the initialization of the missile-borne strapdown inertial navigation system is usually completed by transfer alignment. The deflection deformation of the wing and aircraft structure and the installation error of the sub-inertial navigation make the binding value inconsistent with the real attitude array of the sub-inertial navigation, and the misalignment angle of the sub-inertial navigation caused by it can reach about one degree. Therefore, the initial alignment of the tactical missile inertial navigation system on the carrier quickly and accurately becomes a key technology of the tactical missile.

提高传递对准过程中对准算法中导航解算和数字滤波的运算频率,可在设定时间内提高传递对准的精度,进而提升武器的打击精确度。传统的提高运算频率的方法是采用更高频的计算芯片。目前,多采用DSP作为主处理芯片,在DSP芯片中所有运算指令都是串行执行的,这样的特点使得传递对准算法计算频率难以得到大幅度的提高。Increasing the operation frequency of navigation calculation and digital filtering in the alignment algorithm in the process of transfer alignment can improve the accuracy of transfer alignment within the set time, thereby improving the strike accuracy of weapons. The traditional way to increase the operating frequency is to use higher frequency computing chips. At present, DSP is mostly used as the main processing chip, and all operation instructions in the DSP chip are executed serially, which makes it difficult to greatly increase the calculation frequency of the transfer alignment algorithm.

近年来以FPGA为代表的可编程逻辑器件技术取得了快速发展,高端FPGA器件不仅集成了丰富的可配置逻辑块资源,还包含大量的面向计算密集应用的DSP48(E)单元。就硬件而言,FPGA在并行计算领域具有不可比拟的优势。In recent years, programmable logic device technology represented by FPGA has achieved rapid development. High-end FPGA devices not only integrate rich configurable logic block resources, but also include a large number of DSP48(E) units for computing-intensive applications. As far as hardware is concerned, FPGA has incomparable advantages in the field of parallel computing.

将传统的串行捷联惯导传递对准算法进行并行化处理,并由FPGA器件实现,是一种提高捷联惯导传递对准算法运算频率的可行方案。应用FPGA的并行计算特性,将传递对准算法执行过程进行并行化处理,并使传递算法各模块按多个流程同时进行,可大大加快传递对准算法的计算速率,对捷联惯导传递对准精度的提高具有重大价值。Parallelizing the traditional serial SINS transfer alignment algorithm and implementing it with FPGA devices is a feasible solution to increase the operation frequency of the SINS transfer alignment algorithm. Applying the parallel computing characteristics of FPGA, parallelize the execution process of the transfer alignment algorithm, and make each module of the transfer algorithm run simultaneously according to multiple processes, which can greatly speed up the calculation rate of the transfer alignment algorithm, and the strapdown inertial navigation transfer pair The improvement in quasi-accuracy is of great value.

发明内容Contents of the invention

为解决传统串行捷联惯导传递对准算法运算速率难以有效提高的问题,本发明提供了一种基于FPGA的捷联惯导传递对准并行实现方法,该方法将传递对准算法模块化,对各模块进行并行设计,并在单个FPGA上设计实现,大大加快了捷联惯导传递对准算法运算速率,提高了传递对准的精度。In order to solve the problem that the operation rate of the traditional serial strapdown inertial navigation transfer alignment algorithm is difficult to effectively improve, the present invention provides an FPGA-based strapdown inertial navigation transfer alignment parallel implementation method, which modularizes the transfer alignment algorithm , each module is designed in parallel, and designed and implemented on a single FPGA, which greatly speeds up the calculation speed of the strapdown inertial navigation transfer alignment algorithm and improves the transfer alignment accuracy.

本发明解决其技术问题所采用的技术方案是:一种捷联惯性导航传递对准算法并行实现方法,采用速度加姿态匹配算法,由一次装订模块、地球相关参数解算模块、子惯导系统导航解算模块、滤波参数计算模块、卡尔曼滤波模块和对准输出模块组成。The technical solution adopted by the present invention to solve its technical problems is: a parallel implementation method of strapdown inertial navigation transfer alignment algorithm, which adopts a speed plus attitude matching algorithm, and consists of a primary binding module, an earth-related parameter calculation module, and a sub-inertial navigation system It consists of a navigation calculation module, a filter parameter calculation module, a Kalman filter module and an alignment output module.

所述的一次装订模块根据本地存储的补偿四元数、臂杆矢量对接收的主惯导数据,对运载体姿态四元数和运载体对地速度进行补偿计算后,作为传递对准算法导航解算的初始值。一次装订模块包括了姿态装订模块和速度装订模块两个并行运行的子模块。According to the main inertial navigation data received by the locally stored compensation quaternion and the arm lever vector, the one-time binding module compensates and calculates the attitude quaternion of the carrier and the speed of the carrier to the ground, and uses it as a transfer alignment algorithm navigation The initial value for the solution. The primary binding module includes two sub-modules running in parallel, the posture binding module and the speed binding module.

所述的地球相关参数解算模块根据主惯导传递的运载体位置、速度信息计算得到地球自转角速度、主惯导所在导航坐标系相对地球的旋转角速度和主惯导所在位置的重力加速度等信息。地球相关参数解算模块包括了地球自转角速度解算模块、导航坐标系对地角速度解算模块和当地重力加速度解算模块三个并行运行的子模块。The earth-related parameter calculation module calculates and obtains information such as the angular velocity of the earth's rotation, the rotational angular velocity of the navigation coordinate system where the main inertial navigation is located relative to the earth, and the gravitational acceleration at the location of the main inertial navigation according to the carrier position and speed information transmitted by the main inertial navigation . The earth-related parameter calculation module includes three parallel-running sub-modules: the earth rotation angular velocity calculation module, the navigation coordinate system ground angular velocity calculation module and the local gravity acceleration calculation module.

所述的子惯导系统导航解算模块根据子惯导提供的角速度和比力信号,以一次装订后的输出为初值进行导航解算,其中姿态解算算法采用四元数算法,速度解算算法采用单子样速度算法。子惯导系统导航解算模块包括了姿态四元数解算模块和速度解算模块两个并行运行的子模块。The sub-inertial navigation system navigation calculation module is based on the angular velocity and the specific force signal provided by the sub-inertial navigation system, and uses the output after one binding as the initial value to perform navigation calculation, wherein the attitude calculation algorithm adopts the quaternion algorithm, and the velocity solution The calculation algorithm adopts the single-sample velocity algorithm. The sub-inertial navigation system navigation calculation module includes two sub-modules running in parallel, the attitude quaternion calculation module and the speed calculation module.

所述的滤波参数计算模块计算卡尔曼滤波所需噪声分配矩阵、状态转移矩阵和匹配量后,将计算结果传递给卡尔曼滤波模块,进行一次卡尔曼滤波计算。滤波参数计算模块包括了速度差值计算模块、计算姿态误差角计算模块、噪声分配矩阵计算模块和状态转移矩阵计算模块四个并行运行的子模块。After the filter parameter calculation module calculates the noise allocation matrix, state transition matrix and matching quantity required by Kalman filtering, the calculation result is passed to the Kalman filtering module to perform a Kalman filtering calculation. The filter parameter calculation module includes four parallel sub-modules: the speed difference calculation module, the attitude error angle calculation module, the noise distribution matrix calculation module and the state transition matrix calculation module.

所述的卡尔曼滤波模块包括了状态预测模块、估计协方差预测模块、卡尔曼增益计算模块、状态估计模块和协方差估计模块五个模块,其中状态预测模块、估计协方差预测模块根据滤波参数并行运行,运行结束后估计协方差预测模块将估计协方差预测值送至卡尔曼增益计算模块计算出卡尔曼增益和量测均方差,最后启动并行模块状态估计模块和协方差估计模块,得出状态估计值和协方差估计值。Described Kalman filtering module has included five modules of state prediction module, estimation covariance prediction module, Kalman gain calculation module, state estimation module and covariance estimation module, wherein state prediction module, estimation covariance prediction module according to filter parameter Run in parallel, after the running, the estimated covariance prediction module sends the estimated covariance prediction value to the Kalman gain calculation module to calculate the Kalman gain and measurement mean square error, and finally start the parallel module state estimation module and covariance estimation module, and get State estimates and covariance estimates.

所述的对准输出模块根据卡尔曼滤波估计得到的误差角对子惯导姿态四元数做一次修正,并结合补偿后的子惯导速度值和主惯导位置信息作为子惯导导航解算的初始值输出。The alignment output module performs a correction on the sub-inertial navigation attitude quaternion according to the error angle estimated by the Kalman filter, and combines the compensated sub-inertial navigation speed value and the main inertial position information as the sub-inertial navigation solution Calculated initial value output.

与现有技术相比,本发明的优点是:将传递对准串行算法的各模块划分成了若干并行执行的子模块,并采用FPGA实现进一步提高算法并行度,大大提高了捷联惯导传递对准的运算速率。如表1所示,以北向不对准角的估计为例,运算速率越快则对准精度越高,因此,提高运算速率可以提高了传递对准的精度,具有重要的意义。Compared with the prior art, the present invention has the advantages of: dividing each module of transfer alignment serial algorithm into several sub-modules executed in parallel, and adopting FPGA to further improve the parallelism of the algorithm, greatly improving the efficiency of SINS The operation rate of the transfer alignment. As shown in Table 1, taking the estimation of the north misalignment angle as an example, the faster the operation rate, the higher the alignment accuracy. Therefore, increasing the operation rate can improve the accuracy of transfer alignment, which is of great significance.

表1计算频率与估计误差关系表(北向加速15s)Table 1. Relationship between calculation frequency and estimation error (acceleration in the north direction for 15s)

  计算频率(Hz)Calculation frequency (Hz)   5050   100100   200200   500500   10001000   估计误差(mrad)Estimate error (mrad)   -2.08-2.08   -1.20-1.20   -0.68-0.68   -0.33-0.33   -0.19-0.19

附图说明Description of drawings

图1是本发明的算法流程图。Fig. 1 is an algorithm flow chart of the present invention.

图2是本发明的一次装订模块并行设计原理图。Fig. 2 is a schematic diagram of the parallel design of the primary binding module of the present invention.

图3是本发明的地球相关参数解算模块并行设计原理图。Fig. 3 is a schematic diagram of the parallel design of the earth-related parameter calculation module of the present invention.

图4是本发明的子惯导系统导航解算模块并行设计原理图。Fig. 4 is a schematic diagram of parallel design of the sub-inertial navigation system navigation calculation module of the present invention.

图5是本发明的滤波参数计算模块并行设计原理图。Fig. 5 is a schematic diagram of parallel design of the filter parameter calculation module of the present invention.

图6是本发明的卡尔曼滤波模块并行设计原理图。Fig. 6 is a schematic diagram of the parallel design of the Kalman filter module of the present invention.

图7是本发明的对准输出模块并行设计原理图。FIG. 7 is a schematic diagram of the parallel design of the alignment output module of the present invention.

具体实施方式Detailed ways

公式符号说明如下:The formula symbols are explained as follows:

h    载体所在处的海拔高度h Altitude where the carrier is located

l    载体所在处的纬度l The latitude of the carrier

g0   赤道海平面的重力加速度大小g 0 is the gravitational acceleration at equatorial sea level

T     计算周期T calculation cycle

Qk    系统噪声矩阵Q k system noise matrix

Rk    量测噪声矩阵R k measurement noise matrix

fa/q()将姿态角装换成相应姿态四元数的函数f a/q () A function that converts the attitude angle into the corresponding attitude quaternion

以下以当前动基座传递对准中较常用的速度加姿态匹配算法为例,具体说明本发明的并行实现方法。In the following, the parallel implementation method of the present invention will be described in detail by taking the commonly used speed plus attitude matching algorithm in the transfer alignment of the moving base as an example.

本发明的传递对准算法流程图如图1所示,包括:一次装订模块、地球相关参数解算模块、子惯导系统导航解算模块、滤波参数计算模块、卡尔曼滤波模块和对准输出模块。该算法的总流程为:1)执行一次装订模块(M1),对输入数据中的主惯导姿态四元数、主惯导速度进行一次补偿后,作为子惯导姿态解算和速度解算的初值;2)执行地球相关数据解算模块(M2),根据输入数据中的主惯导位置和主惯导速度,解算出当前的地球自转角速度、导航坐标系对地角速度以及当地重力加速度;3)调用子惯导导航解算模块(M3),解算子惯导姿态四元数和子惯导对地速度;4)调用滤波参数计算模块(M4),计算卡尔曼滤波中用到的时变参数;5)调用卡尔曼滤波模块(M5),根据传递的滤波参数进行一次卡尔曼滤波计算;6)判断滤波次数是否达到设定值N,如果未达到则继续执行步骤2到5的过程;7)调用对准输出模块(M6),对子惯导姿态四元数进行一次修正,并输出子惯导导航解算所需的姿态、速度和位置初值。The transfer alignment algorithm flow chart of the present invention is shown in Figure 1, including: a binding module, an earth-related parameter calculation module, a sub-inertial navigation system navigation calculation module, a filter parameter calculation module, a Kalman filter module and an alignment output module. The overall process of the algorithm is: 1) Execute the binding module (M1) once, and after compensating the main inertial navigation attitude quaternion and main inertial navigation speed in the input data, it is used as the sub-inertial navigation attitude calculation and speed calculation 2) Execute the earth-related data calculation module (M2), and calculate the current angular velocity of the earth, the angular velocity of the navigation coordinate system and the local acceleration of gravity according to the main inertial navigation position and main inertial navigation velocity in the input data ; 3) Call the sub-inertial navigation solution module (M3) to solve the sub-inertial navigation attitude quaternion and sub-inertial speed to the ground; 4) Call the filter parameter calculation module (M4) to calculate the Kalman filter used Time-varying parameters; 5) call the Kalman filter module (M5), and perform a Kalman filter calculation according to the passed filter parameters; 6) judge whether the number of filters reaches the set value N, if not, continue to execute steps 2 to 5 Process; 7) calling the alignment output module (M6), performing a correction to the attitude quaternion of the sub-inertial navigation, and outputting the initial values of attitude, velocity and position required for the sub-inertial navigation solution.

本发明的一次装订模块并行设计原理图如图2所示,一次装订模块(M1)包括并行运算的姿态装订模块(M1_1)和速度装订模块(M1_2)。姿态装订模块(M1_1)根据输入数据中的主惯导姿态四元数qnb和系统给定的补偿四元数qcomp,对子惯导姿态进行装订,具体如下式:The schematic diagram of parallel design of one-time binding module of the present invention is shown in Fig. 2, one-time binding module (M1) includes posture binding module (M1_1) and speed binding module (M1_2) of parallel operation. The attitude binding module (M1_1) binds the sub-inertial navigation attitude according to the main inertial navigation attitude quaternion q nb in the input data and the compensation quaternion q comp given by the system, as follows:

qq nsns 00 == qq nbnb ⊗⊗ qq compcomp -- -- -- (( 11 ))

速度装订模块(M1_2)根据主惯导速度

Figure BDA0000048560780000042
主惯导角速度
Figure BDA0000048560780000043
以及臂杆矢量rb,对子惯导速度进行装订,具体如下式:The speed binding module (M1_2) according to the main inertial navigation speed
Figure BDA0000048560780000042
Primary inertial angular velocity
Figure BDA0000048560780000043
and the arm lever vector r b , to bind the sub-inertial navigation speed, the specific formula is as follows:

VV sthe s 00 nno == VV mm nno ++ CC bb nno (( ωω ibib bb ×× rr bb )) -- -- -- (( 22 ))

一次装订模块(M1)运算结束后,输出qns0

Figure BDA0000048560780000045
作为子惯导导航解算顶得姿态和速度初值。After the operation of the binding module (M1) finishes, output q ns0 ,
Figure BDA0000048560780000045
As a sub-inertial navigation solution, the attitude and velocity initial values are obtained.

本发明的地球相关参数解算模块并行设计原理图如图3所示,地球相关参数解算模块(M2)包括并行运算的地球自转角速度解算模块(M2_1)、导航坐标系转动角速度解算模块(M2_2)和当地重力加速度解算模块(M2_3)。地球自转角速度解算模块(M2_1)根据输入数据中的主惯导位置Pm,解算当前时刻导航坐标系下地球自转角速度

Figure BDA0000048560780000051
导航坐标系转动角速度解算模块(M2_2)根据输入数据中的主惯导位置Pm和主惯导速度
Figure BDA0000048560780000052
解算导航坐标系下导航坐标系相对地球坐标系的转动角速度
Figure BDA0000048560780000053
当地重力加速度解算模块(M2_3)根据输入数据中的主惯导位置Pm,解算出gn,具体如下式:As shown in Figure 3, the parallel design principle diagram of the earth-related parameter calculation module of the present invention, the earth-related parameter calculation module (M2) includes a parallel computing earth rotation angular velocity calculation module (M2_1), a navigation coordinate system rotation angular velocity calculation module (M2_2) and the local gravity acceleration calculation module (M2_3). The earth rotation angular velocity calculation module (M2_1) calculates the earth rotation angular velocity in the navigation coordinate system at the current moment according to the main inertial navigation position P m in the input data
Figure BDA0000048560780000051
The navigation coordinate system rotation angular velocity calculation module (M2_2) is based on the main inertial navigation position P m and the main inertial navigation velocity in the input data
Figure BDA0000048560780000052
Calculate the rotational angular velocity of the navigation coordinate system relative to the earth coordinate system in the navigation coordinate system
Figure BDA0000048560780000053
The local gravitational acceleration calculation module (M2_3) calculates g n according to the main inertial navigation position P m in the input data, the specific formula is as follows:

gg nno == [[ gg 00 (( 11 ++ 5.270945.27094 ** 1010 -- 33 sinsin 22 ll ++ 2.327182.32718 ** 1010 -- 55 sinsin 44 ll )) -- 3.0863.086 ** 1010 -- 66 hh ]] 00 00 -- 11 -- -- -- (( 33 ))

本发明的子惯导系统导航解算模块并行设计原理图如图4所示,子惯导系统导航解算模块(M3)包括并行运算的姿态四元数解算模块(M3_1)和速度解算模块(M3_2)。姿态四元数解算模块(M3_1)根据地球自转角速度导航坐标系相对地球坐标系的转动角速度

Figure BDA0000048560780000056
和子惯导角速度
Figure BDA0000048560780000057
对子惯导的姿态四元数qns进行更新,具体如下式:Sub-inertial navigation system navigation solution module parallel design schematic diagram as shown in Figure 4 of the present invention, sub-inertial navigation system navigation solution module (M3) comprises the attitude quaternion solution module (M3_1) and speed solution module of parallel operation module (M3_2). Attitude quaternion calculation module (M3_1) according to the earth's rotation angular velocity The rotational angular velocity of the navigation coordinate system relative to the earth coordinate system
Figure BDA0000048560780000056
and sub inertial angular velocity
Figure BDA0000048560780000057
Update the attitude quaternion q ns of the sub-inertial navigation, as follows:

qq nsns (( tt kk ++ 11 )) == qq nsns (( tt kk )) ⊗⊗ qq (( hh )) -- -- -- (( 44 aa ))

qq (( hh )) == coscos ΦΦ 22 ++ ΦΦ ΦΦ sinsin ΦΦ 22 -- -- -- (( 44 bb ))

ΦΦ == [[ ωω ibib bb -- CC nno bb (( ωω ieie nno ++ ωω enen nno )) ]] ** TT -- -- -- (( 44 cc ))

速度解算模块(M3_2)根据地球自转角速度导航坐标系相对地球坐标系的转动角速度

Figure BDA00000485607800000512
子惯导角速度子惯导比力加速度
Figure BDA00000485607800000514
子惯导的姿态四元数qns和当地重力加速度gn对子惯导的速度
Figure BDA00000485607800000515
进行更新,具体如下式:The velocity calculation module (M3_2) is based on the angular velocity of the earth's rotation The rotational angular velocity of the navigation coordinate system relative to the earth coordinate system
Figure BDA00000485607800000512
sub inertial angular velocity Sub-inertial navigation specific force acceleration
Figure BDA00000485607800000514
The sub-inertial navigation attitude quaternion q ns and the local gravitational acceleration g n pair the speed of the sub-inertial navigation
Figure BDA00000485607800000515
Update as follows:

VV sthe s nno (( tt kk ++ 11 )) == VV sthe s nno (( tt kk )) ++ CC bb nno ΔΔ VV sfmsfm ++ ΔΔ VV gg // cormcorm -- -- -- (( 55 aa ))

ΔΔ VV gg // cormcorm == [[ gg nno -- (( 22 ωω ieie nno ++ ωω enen nno )) ×× VV sthe s nno (( tt kk )) ]] ** TT -- -- -- (( 55 bb ))

ΔVsfm=ΔVm+Δθm×ΔVm                 (5c)ΔV sfm = ΔV m + Δθ m × ΔV m (5c)

ΔΔ θθ mm == ωω isis sthe s TT -- -- -- (( 55 dd ))

ΔΔ VV mm == ff sfsf sthe s TT -- -- -- (( 55 ee ))

本发明的滤波参数计算模块并行设计原理图如图5所示,滤波参数计算模块(M4)包括并行运算的速度差值计算模块(M4_1)、计算姿态误差角计算模块(M4_2)、噪声分配矩阵计算模块(M4_3)和状态转移矩阵计算模块(M4_4)。速度差值计算模块(M4_1)首先计算补偿后的主惯导速度

Figure BDA0000048560780000062
再用子惯导速度减去
Figure BDA0000048560780000064
得到速度误差ΔVc;计算姿态误差角计算模块(M4_2),根据主惯导四元数qnb和子惯导解算姿态qns计算得到子惯导计算载体坐标系到主惯导载体坐标系的欧拉角,计算姿态误差角
Figure BDA0000048560780000065
噪声分配矩阵计算模块(M4_3)根据子惯导解算姿态qns计算得到噪声分配矩阵Γk/k-1;状态转移矩阵计算模块(M4_4)根据子惯导解算姿态qns、子惯导角速度地球自转角速度
Figure BDA0000048560780000067
导航坐标系对地角速度
Figure BDA0000048560780000068
以及子惯导比力加速度
Figure BDA0000048560780000069
解算出状态转移矩阵Φk/k-1。The filter parameter calculation module parallel design schematic diagram of the present invention is as shown in Figure 5, and the filter parameter calculation module (M4) includes the speed difference calculation module (M4_1) of parallel operation, the calculation attitude error angle calculation module (M4_2), and the noise distribution matrix Calculation module (M4_3) and state transition matrix calculation module (M4_4). The speed difference calculation module (M4_1) first calculates the main inertial navigation speed after compensation
Figure BDA0000048560780000062
Reuse sub-inertial speed minus
Figure BDA0000048560780000064
Obtain the speed error ΔV c ; calculate the attitude error angle calculation module (M4_2), calculate and obtain the sub-inertial navigation calculation carrier coordinate system to the main inertial navigation carrier coordinate system according to the main inertial navigation quaternion q nb and the sub-inertial navigation solution attitude q ns Euler angle, calculate attitude error angle
Figure BDA0000048560780000065
The noise allocation matrix calculation module (M4_3) calculates the noise allocation matrix Γ k/k-1 according to the attitude q ns calculated by the sub-inertial navigation; the state transition matrix calculation module (M4_4) calculates the attitude q ns and sub-inertial navigation angular velocity Earth's rotational angular velocity
Figure BDA0000048560780000067
Angular velocity of the navigation coordinate system to the ground
Figure BDA0000048560780000068
and sub inertial navigation specific force acceleration
Figure BDA0000048560780000069
Solve and calculate the state transition matrix Φ k/k-1 .

本发明的卡尔曼滤波模块并行设计原理图如图6所示,卡尔曼滤波模块(M5)包括状态预测模块(M5_1)、估计协方差预测模块(M5_2)、卡尔曼增益计算模块(M5_3)、状态估计模块(M5_4)和协方差估计模块(M5_5)。状态预测模块(M5_1)根据状态转移矩阵Φk/k-1和上一时刻的系统状态Xk得到系统状态预测值Xk/k-1,具体如下式:As shown in Figure 6, the Kalman filter module parallel design schematic diagram of the present invention, the Kalman filter module (M5) includes a state prediction module (M5_1), an estimated covariance prediction module (M5_2), a Kalman gain calculation module (M5_3), State estimation module (M5_4) and covariance estimation module (M5_5). The state prediction module (M5_1) obtains the system state prediction value X k/k-1 according to the state transition matrix Φ k/k-1 and the system state X k at the last moment, specifically as follows:

Xk/k-1=Φk/k-1Xk                             (6)估计协方差预测模块(M5_2)根据状态转移矩阵Φk/k-1、噪声分配矩阵Γk/k-1和上一时刻的估计协方差Pk得到估计协方差预测Pk/k-1,具体如下式:X k/k-1 =Φ k/k-1 X k (6) Estimated covariance prediction module (M5_2) according to the state transition matrix Φ k/k-1 , the noise distribution matrix Γ k/k-1 and the previous moment The estimated covariance P k to get the estimated covariance prediction P k/k-1 , the specific formula is as follows:

PP kk // kk -- 11 == ΦΦ kk // kk -- 11 PP kk ΦΦ kk // kk -- 11 TT ++ ΓΓ kk // kk -- 11 QQ kk ΓΓ kk // kk -- 11 TT -- -- -- (( 77 ))

状态预测模块(M5_1)和估计协方差预测模块(M5_2)并行执行,完成后调用卡尔曼增益计算模块(M5_3)。卡尔曼增益计算模块(M5_3)根据估计协方差预测Pk/k-1计算出卡尔曼滤波增益Kk,具体如下式:The state prediction module (M5_1) and the estimated covariance prediction module (M5_2) are executed in parallel, and the Kalman gain calculation module (M5_3) is called after completion. The Kalman gain calculation module (M5_3) calculates the Kalman filter gain K k according to the estimated covariance prediction P k/k-1 , specifically as follows:

PP zzzz == Hh kk PP kk // kk -- 11 Hh kk TT ++ RR kk -- -- -- (( 88 aa ))

KK kk == PP kk // kk -- 11 Hh kk TT PP zzzz -- 11 -- -- -- (( 88 bb ))

状态估计模块(M5_4)根据计算姿态误差角

Figure BDA00000485607800000613
速度误差ΔVc、系统状态预测值Xk/k-1和卡尔曼滤波增益Kk计算得到估计的系统状态Xk,具体如下式:The state estimation module (M5_4) calculates the attitude error angle according to
Figure BDA00000485607800000613
The estimated system state X k is obtained by calculating the speed error ΔV c , the system state prediction value X k/k-1 and the Kalman filter gain K k , as follows:

Figure BDA00000485607800000614
Figure BDA00000485607800000614

Xk=Xk/k-1+Kk(zk-HkXk/k-1)                 (9b)协方差估计模块(M5_5)根据量测预测均方差Pzz、卡尔曼滤波增益Kk和估计协方差预测Pk/k-1计算得到估计的系统协方差Pk,具体如下式:X k =X k/k-1 +K k (z k -H k X k/k-1 ) (9b) The covariance estimation module (M5_5) predicts the mean square error P zz and the Kalman filter gain K k according to the measurement and the estimated covariance prediction P k/k-1 to calculate the estimated system covariance P k , specifically as follows:

Pk=(I-KkHk)Pk/k-1                         (10)状态估计模块(M5_4)和协方差估计模块(M5_5)并行执行,执行完成后判断滤波次数是否已达到设定值N。P k =(IK k H k )P k/k-1 (10) The state estimation module (M5_4) and the covariance estimation module (M5_5) are executed in parallel, and after the execution is completed, it is judged whether the number of filtering times has reached the set value N.

本发明的对准输出模块并行设计原理图如图7所示,对准输出模块(M6)包括并行执行的姿态四元数修正模块(M6_1)和速度、位置赋值模块(M6_2)。姿态四元数修正模块(M6_1)根据估计系统状态Xk中的估计误差角对子惯导计算四元数qns经行一次修正得到子惯导导航解算的姿态初值qns/c0,具体如下式:The principle diagram of the parallel design of the alignment output module of the present invention is shown in FIG. 7 . The alignment output module (M6) includes a parallel execution of the attitude quaternion correction module (M6_1) and the speed and position assignment module (M6_2). The attitude quaternion correction module (M6_1) is based on the estimated error angle in the estimated system state X k The quaternion q ns calculated by the sub-inertial navigation is corrected once to obtain the initial attitude value q ns/c0 of the sub-inertial navigation solution, specifically as follows:

Figure BDA0000048560780000072
Figure BDA0000048560780000072

速度、位置赋值模块(M6_2)将补偿后的主惯导速度

Figure BDA0000048560780000073
作为子惯导导航解算的速度初值
Figure BDA0000048560780000074
将主惯导位置Posm作为子惯导导航解算的位置初值Poss/c0。The speed and position assignment module (M6_2) will compensate the main inertial navigation speed
Figure BDA0000048560780000073
As the initial value of the velocity for the sub-inertial navigation solution
Figure BDA0000048560780000074
The main inertial navigation position Pos m is used as the initial position value Pos s/c0 of the sub-inertial navigation solution.

Claims (5)

1.一种捷联惯性导航传递对准算法并行实现方法,由一次装订模块、地球相关参数解算模块、子惯导系统导航解算模块、滤波参数计算模块、卡尔曼滤波模块和对准输出模块组成,其特征在于:1. A parallel implementation method of strapdown inertial navigation transfer alignment algorithm, consisting of a binding module, an earth-related parameter calculation module, a sub-inertial navigation system navigation calculation module, a filter parameter calculation module, a Kalman filter module and an alignment output Module composition, characterized in that: 所述的一次装订模块由并行运算的姿态装订模块和速度装订模块组成;The one-time binding module is composed of a posture binding module and a speed binding module of parallel computing; 所述的地球相关参数解算模块由并行运算的地球自转角速度解算模块、导航坐标系对地角速度解算模块和当地重力加速度解算模块组成;The earth-related parameter calculation module is composed of a parallel computing earth rotation angular velocity calculation module, a navigation coordinate system earth angular velocity calculation module and a local gravitational acceleration calculation module; 所述的子惯导系统导航解算模块由并行运算的姿态四元数解算模块和速度解算模块组成;The sub-inertial navigation system navigation solution module is composed of an attitude quaternion solution module and a speed solution module of parallel operation; 所述的滤波参数计算模块由并行运算的速度差值计算模块、计算姿态误差角计算模块、噪声分配矩阵计算模块和状态转移矩阵计算模块组成;The filter parameter calculation module is composed of a speed difference calculation module of parallel operation, a calculation module of attitude error angle calculation, a noise distribution matrix calculation module and a state transition matrix calculation module; 所述的卡尔曼滤波模块由状态预测模块、估计协方差预测模块、卡尔曼增益计算模块、状态估计模块和协方差估计模块组成;Described Kalman filtering module is made up of state prediction module, estimated covariance prediction module, Kalman gain calculation module, state estimation module and covariance estimation module; 所述的对准输出模块由并行运算的姿态四元数修正模块和速度、位置赋值模块组成;The alignment output module is composed of an attitude quaternion correction module and a speed and position assignment module of parallel operation; 所述的一次装订模块接收首帧主惯导系统的导航信息和陀螺仪信号、加速度计信号,经补偿计算后作为子惯导系统初始对准导航解算的初值;所述的地球相关参数解算模块、子惯导系统导航解算模块、滤波参数计算模块和卡尔曼滤波模块组成传递对准的精对准过程,精对准过程循环执行直到达到设定循环次数N为止;所述的对准输出模块在精对准过程结束后,对子惯导系统的姿态信息进行一次性修正,并输出子惯导系统导航解算所需的姿态、速度和位置初值。The primary binding module receives the navigation information, gyroscope signal and accelerometer signal of the main inertial navigation system in the first frame, and is used as the initial value of the sub-inertial navigation system's initial alignment navigation solution after compensation calculation; the earth-related parameters The calculation module, the sub-inertial navigation system navigation calculation module, the filter parameter calculation module and the Kalman filter module form a fine alignment process of transfer alignment, and the fine alignment process is executed cyclically until the set number of cycles N is reached; the described After the fine alignment process, the alignment output module performs a one-time correction to the attitude information of the sub-inertial navigation system, and outputs the initial values of attitude, velocity and position required for the navigation solution of the sub-inertial navigation system. 2.根据权利要求1所述的捷联惯性导航传递对准算法并行实现方法,其特征在于:所述的地球相关参数解算模块根据主惯导传递的位置、速度信息计算出地球自转角速度、主惯导所在导航坐标系相对地球的旋转角速度和主惯导所在位置的重力加速度。2. The strapdown inertial navigation transfer alignment algorithm parallel implementation method according to claim 1, is characterized in that: the described earth-related parameter calculation module calculates the earth's rotation angular velocity, The rotation angular velocity of the navigation coordinate system where the main inertial navigation is located relative to the earth and the gravitational acceleration at the location of the main inertial navigation. 3.根据权利要求1所述的捷联惯性导航传递对准算法并行实现方法,其特征在于:所述的子惯导系统导航解算模块根据子惯导提供的角速度和比力信号,以一次装订后的输出为初值进行导航解算,包括姿态四元数解算和速度解算。3. The strapdown inertial navigation transfer alignment algorithm parallel implementation method according to claim 1, characterized in that: the sub-inertial navigation system navigation calculation module provides an angular velocity and a specific force signal according to the sub-inertial navigation system once The bound output is the initial value for navigation calculation, including attitude quaternion calculation and velocity calculation. 4.根据权利要求1所述的捷联惯性导航传递对准算法并行实现方法,其特征在于:所述的滤波参数计算模块计算卡尔曼滤波所需的噪声分配矩阵、状态转移矩阵和匹配参数后,将计算结果传递给卡尔曼滤波模块,进行一次卡尔曼滤波计算。4. The strapdown inertial navigation transfer alignment algorithm parallel implementation method according to claim 1, characterized in that: after the noise distribution matrix, state transition matrix and matching parameters required for Kalman filtering are calculated by the filter parameter calculation module, , and pass the calculation result to the Kalman filter module to perform a Kalman filter calculation. 5.根据权利要求1所述的捷联惯性导航传递对准算法并行实现方法,其特征在于:所述的主惯导系统的导航信息包括运载体姿态四元数、运载体对地速度、运载体位置。5. The strapdown inertial navigation transfer alignment algorithm parallel implementation method according to claim 1, characterized in that: the navigation information of the main inertial navigation system includes the attitude quaternion of the carrier, the speed of the carrier over the ground, the carrier position.
CN 201110049934 2011-03-02 2011-03-02 Strap-down inertial navigation transfer alignment algorithm parallel implementation method Expired - Fee Related CN102175095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110049934 CN102175095B (en) 2011-03-02 2011-03-02 Strap-down inertial navigation transfer alignment algorithm parallel implementation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110049934 CN102175095B (en) 2011-03-02 2011-03-02 Strap-down inertial navigation transfer alignment algorithm parallel implementation method

Publications (2)

Publication Number Publication Date
CN102175095A true CN102175095A (en) 2011-09-07
CN102175095B CN102175095B (en) 2013-06-19

Family

ID=44518305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110049934 Expired - Fee Related CN102175095B (en) 2011-03-02 2011-03-02 Strap-down inertial navigation transfer alignment algorithm parallel implementation method

Country Status (1)

Country Link
CN (1) CN102175095B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607330A (en) * 2012-03-23 2012-07-25 东南大学 Optimization method of baseline information in transfer alignment of inertial navigation system
CN102636081A (en) * 2011-12-29 2012-08-15 南京航空航天大学 Transfer alignment method and device based on visual movement modeling
CN103278178A (en) * 2013-04-26 2013-09-04 哈尔滨工程大学 Flexural deformation measurement method capable of considering transmission delay in transfer alignment
CN104181574A (en) * 2013-05-25 2014-12-03 成都国星通信有限公司 Strapdown inertial navigation system/global navigation satellite system combined based navigation filter system and method
CN104236586A (en) * 2014-09-05 2014-12-24 南京理工大学 Moving base transfer alignment method based on measurement of misalignment angle
CN104655132A (en) * 2015-02-11 2015-05-27 北京航空航天大学 Method for estimating body elastic deformation angle on basis of accelerometer
CN104880190A (en) * 2015-06-02 2015-09-02 无锡北微传感科技有限公司 Intelligent chip for accelerating inertial navigation attitude fusion
CN105242248A (en) * 2015-11-19 2016-01-13 上海无线电设备研究所 Radar captive carrying test position parameter automatic binding method based on measurement and control equipment
CN110857860A (en) * 2018-08-23 2020-03-03 凌宇科技(北京)有限公司 Positioning conversion method and system thereof
CN111121773A (en) * 2020-01-09 2020-05-08 陕西华燕航空仪表有限公司 MEMS inertia measurement combination

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527003A (en) * 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
US5672872A (en) * 1996-03-19 1997-09-30 Hughes Electronics FLIR boresight alignment
WO2007050163A1 (en) * 2005-10-27 2007-05-03 Honeywell International Inc. Systems and methods for reducing vibration-induced errors in inertial sensors
EP1862763A2 (en) * 2006-05-31 2007-12-05 Honeywell International Inc. Rapid self-alignment of a strapdown inertial system through real-time reprocessing
CN101216321A (en) * 2008-01-04 2008-07-09 南京航空航天大学 A Fast and Fine Alignment Method for Strapdown Inertial Navigation System
CN101246022A (en) * 2008-03-21 2008-08-20 哈尔滨工程大学 Two-position Initial Alignment Method for Fiber Optic Gyro Strapdown Inertial Navigation System Based on Filtering
CN101514900A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)
CN101706287A (en) * 2009-11-20 2010-05-12 哈尔滨工程大学 Rotating strapdown system on-site proving method based on digital high-passing filtering
CN101713666A (en) * 2009-11-20 2010-05-26 哈尔滨工程大学 Single-shaft rotation-stop scheme-based mooring and drift estimating method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527003A (en) * 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
US5672872A (en) * 1996-03-19 1997-09-30 Hughes Electronics FLIR boresight alignment
WO2007050163A1 (en) * 2005-10-27 2007-05-03 Honeywell International Inc. Systems and methods for reducing vibration-induced errors in inertial sensors
EP1862763A2 (en) * 2006-05-31 2007-12-05 Honeywell International Inc. Rapid self-alignment of a strapdown inertial system through real-time reprocessing
CN101216321A (en) * 2008-01-04 2008-07-09 南京航空航天大学 A Fast and Fine Alignment Method for Strapdown Inertial Navigation System
CN101246022A (en) * 2008-03-21 2008-08-20 哈尔滨工程大学 Two-position Initial Alignment Method for Fiber Optic Gyro Strapdown Inertial Navigation System Based on Filtering
CN101514900A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)
CN101706287A (en) * 2009-11-20 2010-05-12 哈尔滨工程大学 Rotating strapdown system on-site proving method based on digital high-passing filtering
CN101713666A (en) * 2009-11-20 2010-05-26 哈尔滨工程大学 Single-shaft rotation-stop scheme-based mooring and drift estimating method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636081A (en) * 2011-12-29 2012-08-15 南京航空航天大学 Transfer alignment method and device based on visual movement modeling
CN102636081B (en) * 2011-12-29 2014-10-15 南京航空航天大学 Transfer alignment method and device based on visual movement modeling
CN102607330B (en) * 2012-03-23 2014-04-16 东南大学 Optimization method of baseline information in transfer alignment of inertial navigation system
CN102607330A (en) * 2012-03-23 2012-07-25 东南大学 Optimization method of baseline information in transfer alignment of inertial navigation system
CN103278178A (en) * 2013-04-26 2013-09-04 哈尔滨工程大学 Flexural deformation measurement method capable of considering transmission delay in transfer alignment
CN104181574B (en) * 2013-05-25 2016-08-10 成都国星通信有限公司 A kind of SINS/GLONASS integrated navigation filtering system and method
CN104181574A (en) * 2013-05-25 2014-12-03 成都国星通信有限公司 Strapdown inertial navigation system/global navigation satellite system combined based navigation filter system and method
CN104236586A (en) * 2014-09-05 2014-12-24 南京理工大学 Moving base transfer alignment method based on measurement of misalignment angle
CN104236586B (en) * 2014-09-05 2017-02-08 南京理工大学 Moving base transfer alignment method based on measurement of misalignment angle
CN104655132B (en) * 2015-02-11 2017-08-25 北京航空航天大学 A kind of body elastic deformation angular estimation method based on accelerometer
CN104655132A (en) * 2015-02-11 2015-05-27 北京航空航天大学 Method for estimating body elastic deformation angle on basis of accelerometer
CN104880190A (en) * 2015-06-02 2015-09-02 无锡北微传感科技有限公司 Intelligent chip for accelerating inertial navigation attitude fusion
CN104880190B (en) * 2015-06-02 2018-05-25 无锡北微传感科技有限公司 A kind of intelligent chip accelerated for the fusion of inertial navigation posture
CN105242248A (en) * 2015-11-19 2016-01-13 上海无线电设备研究所 Radar captive carrying test position parameter automatic binding method based on measurement and control equipment
CN110857860A (en) * 2018-08-23 2020-03-03 凌宇科技(北京)有限公司 Positioning conversion method and system thereof
CN110857860B (en) * 2018-08-23 2022-03-04 凌宇科技(北京)有限公司 Positioning conversion method and system thereof
CN111121773A (en) * 2020-01-09 2020-05-08 陕西华燕航空仪表有限公司 MEMS inertia measurement combination
CN111121773B (en) * 2020-01-09 2023-04-11 陕西华燕航空仪表有限公司 MEMS inertia measurement combination

Also Published As

Publication number Publication date
CN102175095B (en) 2013-06-19

Similar Documents

Publication Publication Date Title
CN102175095B (en) Strap-down inertial navigation transfer alignment algorithm parallel implementation method
CN103256928B (en) Distributed inertial navigation system and posture transfer alignment method thereof
CN109141476B (en) A decoupling method of angular velocity during transfer alignment under dynamic deformation
CN106052716B (en) Gyro error online calibration method based on starlight information auxiliary under inertial system
CN102901514A (en) Collaborative initial alignment method based on multiple-inertia-unit informational constraint
CN104034329B (en) The air navigation aid of the many integrated navigations processing means under employing launching inertial system
CN103076025B (en) A kind of optical fibre gyro constant error scaling method based on two solver
CN103063216B (en) A kind of inertia based on star image coordinates modeling and celestial combined navigation method
CN110371318A (en) Transfer Alignment based on diplex filter under a kind of dynamic deformation
CN104457748A (en) Embedded targeting pod attitude determination system and transmission alignment method thereof
CN104215244B (en) Re-entry space vehicle integrated navigation robust filtering method based on launch inertial coordinate system
CN105606846A (en) Accelerometer calibration method based on attitude information
CN103345148A (en) Micro gyroscope robust self-adaptive control method
CN105157724A (en) Transfer alignment time delay estimation and compensation method based on velocity plus attitude matching
CN102087110A (en) Miniature underwater moving vehicle autonomous attitude detecting device and method
CN113029197B (en) A transfer alignment method for flexible lever arm
CN111707292A (en) A Fast Transfer Alignment Method for Adaptive Filtering
Yang et al. Performance enhancement of large-ship transfer alignment: a moving horizon approach
CN108489485B (en) An Error-Free SINS Numerical Update Method
CN110487300A (en) Vibration absorber influences test method to the performance of inertial navigation system
CN111207734B (en) EKF-based unmanned aerial vehicle integrated navigation method
CN111220182B (en) Rocket transfer alignment method and system
CN113916226B (en) Minimum variance-based interference rejection filtering method for integrated navigation system
CN104121930A (en) Compensation method for MEMS (Micro-electromechanical Systems) gyroscopic drifting errors based on accelerometer coupling
Geng et al. Real-time estimation of dynamic lever arm effect of transfer alignment for wing's elastic deformation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130619

Termination date: 20180302